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Object Recognition Using Alignment
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Abstract.

This paper presents an approach to recogni-
tion where an object is first aligned with an image using
a small number of pairs of model and image features, and
then the aligned model is compared‘d,irectly against the im-
age. For instance, the position, orientation, and scale of an

ob ject in th’ree -space can be determined from three pairs of

ﬁxed number of features to determine posxtxon and orien-
tation, the alignment method avoids structuring the recog-
nition process as an exponential search. To demoustrate
the method, we present some examples of recognizing flat
rigid objects with arbitrary three-dimensional position, ori-
entation, and scale, from a single two-dimensional image.
The recognition system chooses features for alignment using

a scale- -space segmentation of egge contours, which yields
rc:}atwely distinctive feature labels. Finally, the method is
extended to the domain of non-flat objects as well.

1 Introduction

Object recognition involves identifying a correspondence
between part of an image and a particular view of a known
object. This requires matching the image against stored
ob_}ect models to detcrmme if any o" the models én pro-
duce a pﬁrtlon of ’che mmge The presence of more than

one objeci in an image further complicates the recognition
problein. First, objects wsly occlude ane disther: Gecond,
different objects in the image rousi somehow be individu-
ated. In the case of touching and overlapping objects this
generally cannot be done prior to recognition, but rather
must be part of the recognition process itself,
Considerable attention has been paid to the problem of
recogrizing planar objects with two-dimensional positinral
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uncertainty (we will refer to this as the 2D recognition prob-
lem). There are several 2D recognition systems that cag
find a given object in a grey-scale image, even when the
object is partially occluded [9] [4].

Recognizing objects in three-space has generally been
approached using a depth map, which specifies the distance
from the sensor at each pixel (the 3D from 3D recognition
problem). A depth map can be derived from a laser scanner,
stereo matcher, or shape from motion, shading, contours,
etc. Relatively successful systems have been developed for
the 3D from 3D recognition task, using laser scanners to
derive a depth map [9].

Lowe’s recent work {10} addresses the problem of rec-
ognizing objects with three-dimensional positional uncer-
tainty given a smgle two-dimensional view (the 3D from
2D recognition problem). In 3D from 2D recognition, the
sensory data only partially specifies the position of the ob-
ject. Thus it appears to be more difficult than 3D from 3D
recognition. People, however, seem 1o be good at this task,
making it unclear whether three-dimensional sensory input
is actually necessary for recognition.

The Task

In this paper we consider the pruhlem of matchmg a two-
dimensional view of aﬁﬁid cbzeﬁ'aqs‘aﬂﬁ' ?at@qﬂﬁﬂh@d@]z
The viewed object can ha"earb;'(nay thyee dinensioyal

sition, orientation, and scale, and may be touching or ‘oc-
cluded by other objects. First we consider the domain of
flat rigid objects. While the viewed object is flat, the prob-
lem is not two-dimensional because » fat ohiect positicned

ir three-space can undergo distortion such as foreshorten-
i\rzg when projected into the image plane. This task, like
the general recognition task, suffers from problems of ve-

clusion and of individuating multiple objects in an image.
We then consider extending the method to the domain of
rigid objects in general.

The current task cannot be handled by recognition sys-
tems that assume rigid objects with no distortion [9] [4] [7]
[2], or by systems that only allow parameterized variation
of rigid models [5]. The task is similar to that of Lowe,
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who addresses the problem of three-dimensional recogni-
tion from a single two-dimensional view [10]. The task con-
sidered by Lowe is more restricted, however, because it is
assumed that objects are polyhedral, and are viewed such
that parallel surfaces appear more or less parallel.

In order to solve thlS task, we divide the recognmon

process mto two stages.

bér of such sets is exponentlal requmng ‘the use of various
techniques to limit the search.

Aligning a Mode! With an Image

For 2D recognition, only two pairs of corresponding model

and image points are needed to align a model with an image.

Consider two pénrs, (@m,a;) and (bm,b;), such that model
point a, corresponds to image point a; and model point by
corresponds to image point b;. Figure la shows the edge
contours of two widgets, labeled with these four points. The
two—dlmensmnal alignment of the contours has three steps.
First the 1 model is translated such that is coincident
a; _Figure 1b. Then o

w1th a; as s shov

part (d) These t\wg}translatmns one rotatwn and a scale
factor make each unoccluded point ol the modei coinciaent

with its corresponding immage poiul, o luig . ilic initial
correspondence of (@,,a;) and (b, b;) is correct.

For 3D from 2D recognition, the alignment method is
similar, requiring three pairs of model and image points
to perform a three-dimensional transformation and scaling
of the model.  Section 6 presents the 3D from 2D align-
ment method in detail, showing how to use three pairs of
model and image points to position and orient a model in
three-space given a single two-dimensional view, assuming
orthographic projection.

‘The alignment method requires identifying potentially
corresponding model and image points such as (am,a;) in
Figure 1. These pairs are then used to determine possibl
alignments of the model with the image. Local orientajion
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Figure 1. Two dimensional translation, rotation and
scaling of one object to match another.

measures can also be used to solve for possible alignments.
The problem of finding points and orientations for align-
ment is addressed in Section 3 and Section 4. In Section 5,
a system for recognizing flat objects with three-dimensional
positional freedom is described. Some recognition exam-
ples are also presented in that section. The details of the
3D from 2D alignment computation are given in Section 6,
and the method is extended to handle non-planar objects
in Section 7.

2 Matching Models and Images: Previous
Approaches

This section briefly discusses the limitations of some recent
recognition systems with respect to the recognition task
described above (for a more general review see [3]). Recog-
nition is generally structured as a searcn ior ihe largesi

paiiing ol aaodel and image features for whickh ihers exists

a smgTe transformation mapping each mode! feature to its
corresponding image feature [9] (4] [10] [5] [7). For i image
features and m model features there are at most p =i xm ;
pairs of model and image features. Because of occluded'
image points, and image points which do not correspond to '
the model, any subset of these p pairs could be the largest |
set of matching model and image points, and thus the num- /
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ber of possible matches is expox}ential in the size of p. Two
methods are used to limit this space of possible matchings
of model and image features.

’ ﬁtion is that there is a tradeoff between the distinc-,
and the tobgs@gﬁs W;th thlpt can be
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tity of features must use relatively distinctive features , they

For instance, the LFF [4] recognition system forms fea-
ture descriptions using clusters of spatially proximate fea-
tures. A “focus feature”
in matching. This feature is described in terms of its type

in each cluster is chosen for use

(e.g., corner, hole), and the type, distance, and angle of
the other features in the cluster. The use of local feature
 clusters yields relatively distinctive features. However, it
1s difficult to ensure that each cluster is composed of fea-
tures from a single object, making the system sensitive to
i the position and orientation of neighboring and occluding
objects.

The second method of limiting the possible matches is
to use relations between features to eliminate inconsistent
pairs of model and image features [9] [7] [4] [2]. Forinstance,
in order for two pairs of model and image features (mq,?,)
and (ma,12) to be part of a consistent set, the distance
between the image features ¢; and i, must be the same as
the distance between the model features m; and m,, within
some error bound. Similarly, the angle between orientation
measures for any pair of image features must match the
angle between the corresponding pair of model features.

The problem with using relations between features in

recogmtlon is that the relations must be measurable in the

image. Since relations such as distance and d angle are not

invariant under projection, three- dimensional distances and
angle
Therefore these constraints cannot be exploited by 3D from
2D recognition systems. Relations which are invariant un-
der projection tend to be much weaker than distance and

annot be measured in a. two—dxmg:,x;@;gnal image.

angle relations.

The SCERPO system [10] [11] is the only one to ad-
dress the problem of three-dimensional recognition from a
single two-dimensional view. Image edges are grouped to-
gether usmg proximity and paralleh . Thus (sumlarly to
LEX} the groups are sensitive to th= posttionin iz of meighe
bosine objects. The local groupings ake they n%ﬁé’l fo fuiw
pairs of model and image features, and the space of pairs is
searched for the maximally consistent subset. Under per-
spective projection, however, there are no simple pairwise

checks such as distance and angle relations to incremen-
tally check consistency. Instead, the perspective viewing

equation is solved for each subset, using a Newton-Raphson

1teratxon techmque

3 The Alignment Method of Recognition

As we have seen, recognition can be viewed as a search
through the space of all possible positions and orientations
of all possible objects. The idea of the alignment approach
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is to separate this search into two stages. In the first stage,
the position, orientation, and scale of an object are found
usii\gh'a minimal amount of information, such as three pairs
of model and image points. In the second stage, the align-
ment is used to map.ihe.object. model-into-image-coordi-

nates for companson with the image.

Consider an object, O, with three-dimensional posi-
tional freedom, and a two-dimensional image, I, which con-
tains a view of O (perhaps along with other objects). We
are interested in using the alignment computation to find
O in the image. Assume that a feature detector returns a
set of potentially matching model and image feature pairs,
P (one such detector is described in Section §). Since three
pans of model and image features specify a potent:a] align-

ment of a model w1th an 1mage any trxplet in P may spec-
xfy the posxtxon and orientation of the ob_]ect In general,
some small number of tnplets ‘will specify the correct posi-
tion and orientation, and the rest will be due to incorrect

matchings of model and image points. Thus the recognition
problem is to determine which a.hgnment in P dcﬁnes the
transformatxon that best maps the model mto the image.

Given a set of pairs of model and image features, P,
we solve for the alignment specified by each tnplet in P.
For some tnplets, there will be no way to posi
orient the three hey
their correspondmg image points. Such tnplets do not spec-
ify a possible alignment of the model and the image. The
remaining triplets each specify a transformation mapping
model points to image points. An ahgnment is scored by
using the transformation to map the model edges into the
image, and comparing the transformed model edges with
the image edges The best alxgnment is the one that maps
the mosf mmodel edges onto image eEges [

For m model features and ¢ image features, the number
of pairs of model and image features, p, is at most i x m.
With a good labeling scheme, the number of pairs, p, will be
much smaller, approaching m when each model point has
one corresponding image point. Given p pairs of features,
there are (%), or an upper bound of O(p*), triplets of pairs.
Each triplet specifies a possible alignment of the model and
the image. An alignment is scored by mapping the model
edges into the image. If the model edges are of length I,
then the worst case running time of the algorithm is o(Ip®).
stage followed by a comparison stage, it is transformed from
the exﬁ*mmmi'”"'rmﬁféﬁ of finding the largest consisient set
of model and i image points, to the polynomial problem  of
finding the best triplet of model and image points.
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4 Alignment Points

The alignment operation requires finding pairs of corre-
sponding model and image points, and model and image
orientations. Since the number of possible alignments is
cubic in the numberof g;ggigL and image feature pairs, it
is 1Mpo | features distinctively in order to limit
The labels, however, must be rel-

1mber of pa.xré

If the 'number of pmrs p, is kept small, then little or no
sea,rcﬁ is Tiecessary to find the correct alignment.

As long as different kinds of alignment points are iden-
tified by distinct labels, the more kinds of information the
better in terms of being able to quickly identify the cor-
rect alignment of a model with an image. A large amount
of data is not a problem, only a large amount of indistin-
guishable data. Thus while we have chosen to use a shape
description based on intensity edges to define labeled edge
segments that are used for alignment, it is possible to aug-
ment this using other kinds of points. For instance, vertices
where multiple edges come together make good alignment
points. Other kinds of potential alignment points are cusps,
tips, deep concavities and small blobs.

Forming a shape description based on intensity edges
involves segmenting edge contours into primitive pieces.
Many techniques (e.g., curvature primal sketch [1]) seg-
ment contours at maximal curvature points. Part of the
reason for choosmg { maximal curvature points is their sup-
posed special importance in recognizing line drawings. For
instance, contours constructed by linear interpolation be-
tween maximal curvature points are easily recognizable.
Lowe [10], however, pomts out. that a contour ¢

is a.lso easily recognizable. Maximal curvature points, per
se, are not important.

Therefore, the choice of points should be motivated by
the requirements of the recognition task being addressed.
imzl curveiure points are highly unstable under thra--

icimonal tviation and pro;ectxon, both appearicg and
dlsappeanng (w:thout being occluded by other parts of the
), mal hem inappropriate for 3D from 2D recog-
f)ie an ellipse can be rotated about its
minor axis to obtain a circle ~ illustrating maximal curva-
ture points that disappear. This circle can then be rotated
around another axis to obtain a different ellipse — illustrat-
ing maximal curvature points that appear.

In contrast to curvature mamma, ZETO CIOSS mg@ of cur~
vature (or inflection points in the contour) ) &rngg_}gafg;ngly
stable under projection, only disappearing when the con-
tour is projects to a straight line, F:glggﬂ,,mtayl‘eetéonmpoints

{

s b
BT

fe afﬂ ¥l

z/ only appear when one piece of an object partly occludes an-

other Low curvature regions pose a problem because very
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small cha.nges in curvature may yield “inflections”. We de-
fine sngmﬁcant mﬂectlons to occur only in regions where the

curvature is not in the range [~¢, €. The recognition sys-
tem described in the next section uses sign

pomts and 1ow curvature regions to segment edge contours

5 A 3D from 2D Recognition System

The recognition system forms edge-based shape features for’
use in aligning models with images. The input to the sys- |

tem is a grey-level image, which is processed by an edge

detector [6]. Given the array of edge points, the points are i\

chained together into contours wherever there is an unam-
biguous eight-way neighbor. Chains with low overall edge
strength are then discarded. Thresholding whole chains
rather than individual edge points - produces a more sta-
ble output. Finally, edge chains with unambiguous nearest
nelghbots are merged together if they can be connected by

a smooth spline, without intersecting another edge contour.

Once pieces of edge contour have been chained to-
gether, simple shape descriptors are derived using the local
curvature of the edge contours. The curvature i
as the change in angle (per unit arclength) between local
tangent vectors at neighboring pixels. The tangents are
computed using the least squares best fit line over a small
local neighborhood. Edge contours are segmented by break-
ing the contour at zéro crossings of curvature (mﬂectlon
points in the contour), and at the ends of low- -curvature re-

coggguted

St e,

The purpose of labehng the edge segments is to produce dis-
tinctive labels for use in pairing together potentially match-

ing model and image points..
farm distinativs

Most recognition systems
> labels by ucing lccal context to describe

A mven featvre. The problem with iliis, however, is that
an image feature may be labeled using context which is not
part of the object being recognized (e.g., as in LFF [4] and
SCERPO [10]).

We use a more limited form of context, in which the
edge contour is smoothed at various scales, and the finer
scale descriptions are used to label the coarser scale seg-
ments. In other words, the coarser scale segments are used
to group finer scale segments together. This produces dis-
tinctive labels without the problem of accidentally using
context from a different object, because the “context” is
part of the same edge contour.

glons, producmg sttmght, posmve ‘curvature and negat;ve f
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‘ producing a scale-space [14] hierarchy

A hierarchy of curve segmentations can be obtained by
pgmoothing the curvature at different scales, and using the
/'smoothed curvature to segment the edge contour. Smooth-
/ ing the curvature preserves only those inflection points in
the edge contour (zero crossings of curvature) that are sig-
nificant at a given scale. Thus coarser scale segments cor-
respond to merging neighf)pring segmen s at finer scales,
e
coarser scales of smoothing do not introduce zero cross-
ings that were not present at finer scales [15], the hierarchy
forms a tree of segments from coarser to finer scales.
Figure 2 shows a three-level scale-space curvature seg-
mentation of the edge contours of a widget. Each part of
the figure shows the same contour, segmented according to
the curvature smoothed at different scales (using Gaussian
filters of size o = 7, 20, and 40 pixels, respectively). The
coarsest scale is at the top of the figure and the finest scale
is at the bottom. The endpoints of each segment are de-
limited by a dot, and straight regions (at that scale) are
shown in bold. Each segment is labeled with a letter, and
a number denoting the level (1 is coarsest and 3 is finest).

3

Figure 2. A scale-space segmentation of a widget, W
where the contours are segmented at inflections in the
simoainhed fnirvniioes Tha aea

THIITIN STl s el the top..

Each segment of edge contour is classified according to
whether it is curved orw‘s‘g}ya.ight. The curvedsegments
are also classified by the degree of closure: open or closed.
The hierarchy of segmentations at different scales can also
be viewed in terms of the correspondence between segments
at neighboring scales, as show in Figure 3. Each segment at

P

a coarse scale corresponds to one or more segm the

n r scale. Each segment in the tree is indicate bywits
label from Mﬁigﬁre 2 and by the type of segment: straight,
curve, and open-cuxrve,

Multi-scale descriptions are formed using the types of

segments at a given scale, plus the structure of the hierarchy
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Figure 3. The tree corresponding to the curvature
scale-space segmentation in Figure 2.

at the next finer scale. Two aspects of the tree structure
are used. First, a segment is classified according to whether
it corresponds (primarily) to one or many segments at the
next finer scale: single or multiple. Second, a multiple
segment is classified according to whether or not the finer
scale segments form a pattern of alternating direction of
curvature,

For example, using this multi-scale description, the
straight segment A1 at level 1 in the tree is differenti-
ated from the other straight segments C1 and E1 at the
same level, because A1 is composed of multiple segments
at the next level whereas €1 and E1 are each composed of
a single segment. At the coarsest scale the widget is com-
posed of seven segments, only two of which can be confused
with one another (the two straight segments C1 and E1).

" Since the coarse scale segzqsgﬁt'grvggv;glﬁgﬂtjgg‘l‘zgxiitjnit,
they are usedﬁdéﬁneaﬁzgﬁhe;t points, based on the t}pe
of the segment. For closed segments of contour, the center
of the region defined by the contour is used. This point is
found from the intersection of the major and minor axes of

S w ‘ AP =a Hvte §rm B T
the regicn. Tu: sivaicne segmante fhs endoiine g uscd,

and for other enrved cegments the middle of e vorve s
used. Since the endpoints of the segments are at inflection
points or at the ends of zero curvature regions, they are
relatively st’égllé,mazxking it reasonable to use endpoints and
midpoints for matching.

Using coarse scale regions for choosing alignment points
reduces mx}gmbenrv of i;gints, while re{;'xining relatively dis-
tir els. It is often possible, however, to achieve
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is relatively fast. In general, each partially aligned model
feature has only one corresponding image feature, and the
correspondence of model and image features is correct.

Recognition Examples

The recogmzer is lmplemented on a Symbolics 3650, and
mnutes@ each of the examples shown in

this sectxon ‘using a pre-computed model. The bulk of the

time is for edge detection and feature extraction. First a
i-scale descnptxon of the edge segments is formed and

g tnplets of model and image point pairs, as
discussed in Section 3. For each alignment, the model is
mapped into the image and the transformed model edges
are correlated with the image edges. The alignments are
rantked Lased on the percentage of the model edge contour
for which there is a corresponding image edge contour. The
recognizer returns the best alignment accounting for each
part of the image which is matched by the model.

We present several examples of the recognizer process-
ing grey-scale images of widgets. The model is the multi-
scale description of the widget shown in Figure 2 and Fig-
ure 3. The model is just the result of processing the image
of the isolated widget in the same manner as any image.
Thus for flat objects, models are formed directly from an
image of an object.

Figure 4. Matching a widget against an image of two
widgets in the plane, a) the grey-level image and in-
tensity edges of the model, b) the grey-level image, c)
the image and the intensity edges, d) the edges of the
aligned model superimposed on (c), with the align-
ment points marked.

The example in Figure 4 sh;)ws two widgets in the plane.

¢{The top widget has been flipped over,sand thus cannot

107

be recognized using only two-dimensional transformations.
The recognizer finds two distinct positions and orientations
of the model that match 99% and 98% of the model edge
contour to image edges. These two matches are shown su-
perimposed on the image in part (d) of the figure.

Figure 5. An alignment of a widget with an image that
does not match the model edge contour with image
edges.

Another position and orientation is found at the alignment
stage, but is eliminated because the correlation with the
image is poor, and the image edges are accounted for by a
better alignment. This alignment is shown in Figure & su-
perimposed with the image edges. The alignment is found
because the two straight edges are indistinguishable, and
the three points used in computing the alignment were the
two straight edges and the bend.

Figure 6. Matching a widget against an image of a
foreshortened widget (see Figure 4 for an explanation).

Figure 6 shows a widget that has been tilted approximately
30 degrees by resting one end of it on a block, foreshortening

5
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Figure 7. Matching a widget against an image of two (z\
t

partly occluded widgets (see Figure 4 for an explana-

tion). E\ ,,,,, //

the image. The recognizer finds a single best position and
orientation, which is shown in part (d) of the figure.

Finally, we demonstrate the ability of the recognizer to
find partly occluded objects. As long as three features are
visible in the image, the alignment algorithm will be able
to align the model with the image. Figure 7 shows two
widgets obscured by each other and several smaller objects.
The matcher finds two distinct positions and orientations,
which are shown in part (d) of the figure.

From these examples we see that the alignment algo-
rithm finds a small number of reasonable matches of widgets
to images, even when the widget is foreshortened, scaled,
and partly occluded. The scoring method of transform-
ing the model edges and correlating them with the image
edges provides a simple method for finding the best align-
ment. While this scoring method suffices for the examples
considered here, it may be too simple in the ceneral cpge
it may be desiranle to have different part of
Teut welglio i sconuy the goodness

For instance,
the
of véw match.
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This section presents the alignment method in detail. It is
shown that the position, orientation, and scale of an object
in three-space can be determined from a two-dimensional

ini;gg using three pairs of kéorréqunding modelkand“ im-
.age Vpgji.qtys. The description is divided into three parts.
{1 JFirst we discuss the use of ortho raphic projection and
A g

i

a linear scale factor to approximate perspective viewing.
hen we present the alignment method using explicit three-
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' the plane defined b tlaz&i%gs&&&éél&&i&@&g

7
dimensional rotation@}'inally we note that the alignmen
method can be simulated using only planar operations.

There are two major practical consequences of perspec-

tive viewing. The first is that ob Jects that are further a%@
look smaller. The second is that objects that are Iarée rel-

| ative tg”tllewvigwing distance appear distorted, because the -

distant parts of an object project smaller images than the
closer parts do. For objects that are not large relative to
tﬂ;%ming distance, the major effect of perspective projeg:
tion is scaling proportional to the distance from the object,
Th“erefore, in these cases perspective projection can be we]l
approximated by orthiographic projection pl k,l}x‘r}earl scale

In contrast, using three pairs of model and image pointg

to solve for perspective projection can yield up to four dis-
tinct solutions. It is interesting to note, however, that the
émbiguous cases often involve solutions where all but one
‘ bilities has a high perspective distortion. Thus
three points may also be sufficient {o solve for position and

- orientation under perspective viewing, if solutions with high,\

perspective distortion are d1scardedf ¥ ok Lo D

Consider three model points an,, b,, and ¢,, and three
corresponding image points a;, b; and ¢;, where the model
points specify three-dimensional positions, (z,y, z), and the
image points specify positions in the image plane, (z,y,0).
that maps

mage
such that each model _point coincides with its cor-

| responding image point. If no such transformation exists,

then the alignment Process must determine this fact.

Since the viewing direction is along the z-axis, an align-
ment is a transformation that positions the model such that
@m projects along the z-axis onto a;, and similarly for b,,
onto b;, and ¢,, onto ¢i. The transformation consists of
translations in z and ¥, and rotations about three orthog-
onal axes. There is no translation in z because all points
along the viewing axis are equivalent st
projection. Instead, distance from the viewer is reflerted
=V & hange in scale. First we show how to solve for the
alignment assuming no change in scale, and then modify
the computation to allow for a linear scale factor.

e PP S
_a-;i"!ff. OIuielgriznse

The first step in finding an alignment is to translate
the model points so that one point projects along the z-
axis onto its corresponding image point. Using the point
am for this purpose, the model points are translated by
(%o = Zap,, Ya, — Yam,0), yielding the model points a, b,
and cj,. This brings a,.;, the projection of a,, into the
image plane, into correspondence with o;, as illustrated in
Figure 8a.

Now it is necessary to rotate the model about three or-
thogonal axes to align b, and ¢, with their corresponding

« —




bm

<m

bi

ci

Figure 8. The alignment process: a) the points a; and
am are brought into correspondence, b) the ab edges
are aligned, c) the points b; and bm are brought into
correspondence, d) the points ¢; and cm are brought
into correspondence.

image points. First we align one of the model edges with
its corresponding image edge by rotating the model about
the z-axis. Using the a! b/ edge we rotate the model by
the angle between the image edge a;b;, and the projected
model edge a! bl ;, yielding the new model points b7, and
¢!, as illustrated in Figure 8b.

To simplify the presentation, the coordinate axes are
now shifted so that a; is the origin, and the z-axis runs
along the a;b; edge.

Because b’ ;, the projection of b}, into the image plane,
lies along the z-axis, it can be brought into correspondence
with b; by simply rotating the model about the y-axis. The
ameunt of rotation is determined by the relative lengths of
ambm and a;b;, because the model must be rotated such
that the projected model edge is the same length as the
image edge. If the model edge is shorter than the image
edge, then there is no such rotation, and hence the model
cannot be aligned with the image.

Thus, the model points b, and c}, are rotated about
the y-axis by ¢ to obtain bl and cl,, where
Hbi ) (1,0,0)”
ll6m - (1,0,0)]
for 0 < cos ¢ < 1. The result of this rotation is illustrated
in Figure 8c.

Finally, ¢!’ is brought into correspondence with ¢; by
rotation about the z-axis. The degree of rotation is again
determined by the relative lengths of model and image

cos¢ =

edges. In the previous case, however, the edges were paral-
lel to the z-axis, and therefore the length was the same as
the ¢ component of the length. In this case, the edges need
not be parallel to the y axis, and therefore the y component
of the lengths must be used. Thus, the rotation about the
z-axis is 8, where

_ ”C,‘ ) (0>1)0)”

= Tem (0,1,0)] @)

cos f

for 0 < cosb < 1.

If the model distance is shorter than' the image dis-
tance, there is no transformation that aligns the model and
the image. Furthermore, if the rotation does not actually
bring ¢!’ into correspondence with ¢;, then there is also no
alignment. This latter case can result because the rotations
are those that will bring the points into alignment if there
actually is a consistent solution. If there is no solution then
it may still be possible to solve for the rotations, but they
will not bring all three points into alignment.

The final rotation brings the plane defined by the three

illustrated in Figure 8d. This combination of translations

and rotations can now be used to map the model into the
image, in order to determine if the object is in fact in the
image at this position and orientation.

Now it is necessary to solve for a linear scale factor
as a sixth unknown, in order to simulate distance from the
viewer by a scale factor. The final two rotations which
align b,, with b;, and ¢,, with ¢; are the only computations
affected by a change in scale. The alignment of b,, involves
movement of b,,; along the z-axis, whereas the alignment of
¢m involves movement of ¢,,; in both the = and y directions.

Because the movement of b,,; is a sliding along the
z-axis, only the z-component, z;, changes. The change is
given by the rotation ¢ about the y-axis, as in (1). With a
scale factor, s, this becomes

z}, = szp(cos ¢). (3)
Similarly the movement of ¢y in the y direction is given
by the rotation # about the w-axis, as in (2). With a scal-
factor this becomes
Ye = syc(cos 6). (4)
The movement of ¢,; in the z direction is given by
the rotations about both the z- and the y-axis. From the
matrix for a combined rotation about the z- and y- axis we
obtain
"z’ = (zcosb + ysin$sin ).
Thus with the scale factor, the z component of ¢,, is
z, = s(z. cos § + y. sin ¢sin ). (5)

Now we have three equations in the three unknowns,
8, 8, and ¢. One method to solve for s is to substitute for



cos 8, sin 4, and sin ¢ in (5). From (3) we know that,

1
: — 2.2 2
SIn @ = — 4/ 8%z zy. 6
¢ oz, b b (6)

And similarly from (4),

sinf =

1
ay. Ve - vl

<

(7)
Substituting (6) and (7) into (5) and simp]if)n’ng yields
(s’2} — 2i")(s* 42
Expanding out the terms we obtain
s*(2hue) — 8 (23u + 25u: + (zozi — ze3y)’) + 2y,
2

+ Tp Ye
a quadratic in s°.

s (zpz! — 2.2})? =

While there are generally two possible
solutions, it can be shown that only one of the solutions
will specify possible values of cos ¢ and cos 8 [12].

Having solved for the scale of an object, the final two
rotations ¢ and @ can be computed using (1) and (2) mod-
ified to account for the scale factor s.

For planar models, the three-dimensional alignment
task only involves mapping points from one plane to an-
other. Therefore, a planar model can be aligned with an
image using only planar operations. In effect, the actual
three-dimensional rotation and translation are simulated in
the plane, as described in [13].

7 Aligning Non-Flat Objects

Extending the alignment method to recognize non-flat ob-
jects is relatively straightforward. The only difference be-
tween using a three dxmensmna.l model and a wo~d1mens;9n

are not ns1blc rom a given poéxtlon an onentatxon Thus,
after computmg a possxble alxgnment model edges a.nd sur-

Fo a three-dimensional model, it must also be en-

sured that the three points used in allgnment are all v1sxble

énemﬂ Thus for each nnmhlp ahvnfnent the three model
peints must be checked to make sure that they are not on
hidden edges or surfaces.

, Rather than using a single three-dimensional model | of
g
an obJea it is possible to use multiple planar views, with

one view for each position from which a different set of
object surfaces are visible. Using multiple Tocal alignments,
such a planar model can be matched to a variety o of different
images of the.object.

A planax view of a non-planar object specifies only two-
dim information about points that actually have
thrge-dlmensmnal position. Therefore, an alignment. of such
a model image Wlu ouly correctly transform points

110

D]

Figure 9. a) a planar model of a cube, b) two different
views of the cube, c) planar alignments of the model
with the views.

that are coplanar (in three-dimensions) with the three model
points used for alignment. Other model points will be

treated as if they are the same plane even though they
are not. For an object like a cube, which is poorly ap-
proximated by a single plane, the error rapidly becomes
substantial as the object is rotated. Figure 9a shows an
isometric view of a cube which will serve as a planar model.
Part (b) of the figure shows two views of the cube, rotated
by ¥ and Z, respectively. In part (c), the model has been
aligned with each of the views, using the three alignment
points marked by dots.

Thus usmg a smgle a.hgnment a planar mode] of a

multiple alignments, however, a flat model can be matched
to images from a wide range of different viewpoints. One
method of finding regions for performing local alignments
is to triangulate the set of model features, and sepatately
align each triangular region. All the model _poin ide
a given triangle are then mapped mto th» image ‘
angnment 1or that trxawe To th 4 4. triangle
iails ou ¥y ueaily plaiiar part of an ob_)eu ihis will produce a
correct ahgnment for that region. By aligning each locally
neighboring triple of model features found in the triangula-
tion, rigidity is preserved for each triangle, but not for the
object as a whole.

Points in a - given triangle will not be mapped . into the
image correctly if they are not actually, coplanar with_ the
three points defining the triangle. Such points, however,
w1ll usually be transformed to a point near their correct
posxhon “because the alignment will be partially correct.
Therefore the locally-rigid alignment process can be iter-
ated, starting with a three-point alignment, and using the

partial match to pick potential corresponding model and
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image points for computing more refined, and less globally
ﬁgid, alignments.

This algorithm starts by computing a standard three-
point rigid alignment. If the initial alignment does not
match any portion of the model to the image, then no fur-
ther action is taken. If there is a match, however, then the
alignment is used to pick additional corresponding pairs of
model and image points. The model points are triangu-
lated and each triangle is aligned separately. This process
is repeated until either a good match of the model to the
image is obtained, or the triangles become small.

8 Summary

Recognition is generally viewed as a search through the
space of possible positions and orientations of objects. The
idea of the alignment approach is to separate this search
into two stages. In the first stage, the position, orientation,
and scale of an object are found using a minimal amount of
information, such as three pairs of model and image points.
In the second stage, the alignment is used to map the ob-
ject model into image coordinates for comparison with the
image.

The key observation behind the approach is that the
alignment can be performed with a small amount of infor-
mation. For example, three points are sufficient to deter-
mine the position, orientation and scale of a rigid object in
three-space from a single two-dimensional image. Similarly,
two points and an orientation measure can also be used to
solve for this alignment.

We have implemented a recognizer using the alignment
method. This system chooses features for alignment using
a scale-space segmentation of edge contours. The multi-
ple scale description is used for choosing reliable alignment
points, and for associating descriptive labels with them.
Coarse scale segments are described both in terms of their
shape, and the struciure of the scale-spacs hierarchy at the
next finer level. This produces relatively distinctive fea-
tures for use in finding possible alignments of a model and
an image.

Finally, we have briefly discussed how the alignment
method can be extended to recognize rigid objects in gen-
eral, either by using a three-dimensional model, or by using
two-dimensional models and multiple local alignments.
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