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Abstract—We describe new techniques for model-based recognition
of fiat objects in 3-D space. The recognition is performed from single
gray scale images taken from unknown viewpoints. The objects in the
scene may be overlapping and partially occluded. An efficient matching
algorithm, which assumes affine approximation to the perspective view-
ing transformation, is proposed. The algorithm has an off-line model
preprocessing (shape representation) phase, which is independent of the
scene information, and a recognition phase, based on efficient indexing.
It has a straightforward parallel implementation. The algorithm was
successfully tested in recognition of industrial objects appearing in
composite occluded scenes.

I. INTRODUCTION

ECOGNITION of industrial parts and their location in a

factory environment is a major task in robot vision. Most
industrial part recognition systems are model-based systems
(see a survey in [1]). The model-based approach is well
suited for an industrial environment since the objects pro-
cessed by the robot are usually known in advance and belong
to a certain subset of the factory’s tools and products.

We discuss the object-recognition problem, where the robot
is faced with a composite scene of overlapping parts (thus
partially occluding each other), taken from a database of
known objects (e.g., the factory’s warehouse). The task is to
recognize the objects in the scene and their location.

No restriction on the viewing angle of the camera is
assumed. In this paper, we discuss the recognition of flat
objects arbitrarily positioned in space. However, our method
can be extended to recognition of 3-D objects from single
2-D images, and we have already obtained some initial
results in this direction (see [2]). The recognition is done
from 2-D intensity images. The algorithms we describe were
actually tested in a ‘‘real life situation’” by recognition of
objects comprising composite scenes of industrial tools, such
as pliers, wrenches, etc. (see Figs. 3-7).

Since we are concerned with recognition of partially oc-
cluded objects, no use of global features can be made. We
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describe our objects by sets of local features. These features
can be points, line segments [3], curve segments [4], etc. In
this paper, we restrict ourselves to the use of points, which
we denote as interest points. The point sets of the various
model objects are matched simultaneously against the point
set of the composite overlapping scene using a small number
of corresponding points. Once a candidate correspondence
was established, we find the best transformation in the least-
squares sense 1o establish the correct position of the candidate
model object in the scene image. This candidate match is
verified by matching all the relevant model features with the
corresponding scene features. A key factor in our scheme is
its division into a preprocessing stage and a recognition
stage. Our model point sets are preprocessed off line, inde-
pendent of the scene information, thus enabling an efficient
on-line recognition stage. A major advantage of the proposed
matching algorithm is its straightforward parallelism both in
the preprocessing and recognition stages.

Much work was done on recognition of overlapping ob-
jects in 2-D scenes. Ayache and Faugeras [5] developed the
HYPER system for recognition of 2-D objects from 2-D
images. This system models objects as polygons and per-
forms privileged segment matching, exploiting angle con-
straints. Since angles and length ratios are not affine invariant
properties, the system cannot be naturally extended to deal
with affine invariant object recognition. The local feature
focus (LFF) system [6] performs 2-D object recognition by
using local geometric constraints. A later system (3DPO) {7]
works in a similar fashion and is used for recognition of 3-D
objects from range data. Both systems compute local features
and perform matching of distinguished features, which are
labeled by means of their neighboring features. Matching is
done by a graph search algorithm, which is inherently NP
complete. Since the geometric constraints used are distance
and angle, the systems performance is not affine invariant.
The recognition and attitude finder (RAF) system, which is
proposed in [8] and [9], also applies local geometric con-
straints. RAF utilizes simple distance and angle constraints to
find consistent model and image features. The search is
organized as a tree, which makes its complexity inherently
exponential. In addition, the geometric constraints used by
RAF are not affine invariant.

Turney et al. [10] propose a recognition technique of 2-D
objects that have undergone translation and rotation by
matching their boundary curves. They match subtemplates of
model object boundary curves to subtemplates of the bound-
ary curve of an observed scene. The object transformation is
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recovered by Hough-type clustering of the transformation
parameters for the matching subtemplates. A somewhat simi-
lar but computationally more efficient curve matching algo-
rithm, which is suitable for recognition of 2-D from 2-D and
3-D from 3-D is proposed by Kalvin ef a/. [11] and Hong
and Wolfson [12]. Rather then match a given image curve to
all model curves, matching is attempted only for candidate
model curves, which are ‘similar’ enough to the image curve.
This is facilitated by a hash table, which is created in a
preprocessing stage. The above-mentioned methods are lim-
ited to objects that can be well modeled by curve segments
and can deal only with translation and rotation.

Cyganski, Orr, and their colleagues [13], [14] developed
affine invariant curve matching methods. However, they use
global region information; hence, these methods are not
applicable for recognition of partially occluded objects. An-
other global affine invariant recognition technique was pro-
posed by Hong and Tan [15]. Bamieh and De Figueiredo [16]
suggest a 3-D object recognition method based on general
moment invariants of 2-D affine transformations. The model
database consists of polyhedral objects. The objects are rep-
resented by an attributed graph describing the connectivity of
the faces along with the moment invariants and the angles
between the normals to the surfaces. Recognition is facili-
tated by matching model attributed graphs against attributed
graphs extracted in a similar fashion from the image. In order
to compute moment invariants of a given face, that face has
to be fully visible, which limits the ability of the algorithm to
cope with occlusion. The matching algorithm, which per-
forms subgraph isomorphism, is inherently exponential and
thus is not suitable for recognition in complex images. Even
though an extension of the algorithm is suggested to deal with
objects that have arbitrarily shaped flat faces, it is mainly
suitable for recognition of polyhedral objects.

Additional examples of 2-D recognition techniques can be
found in [1]. We refer to [1] and [17] for a comprehensive
survey of existing 3-D object recognition systems. More
recent results that are relevant to this paper are [18]-[20].
The SCERPO system of Lowe [18] recognizes 3-D objects
from 2-D intensity scenes. It is viewpoint invariant and is
based on perceptual grouping of object features. At its pre-
sent stage, however, the SCERPO system is mainly suited for
polyhedral scenes. Thompson and Mundy [19] use a cluster-
ing (Hough-transform) approach to discover the transforma-
tion between the model and the scene images. Huttenlocher
and Ullman [20] proposed the so-called alignment tech-
nique, which is based on matching of minimal sets of features
in a model and the scene. They try an exhaustive match of all
such minimal sets describing the transformation. Our task is
similar in its basic assumptions to that described in [20]. Both
methods, which have been developed independently, are
trying to solve the same problem under the same assump-
tions. However, our approach and the approach in [20] are
somewhat complementary. In [20], there is an emphasis on
the classification of the model and image features to reduce
the complexity of matching, whereas the matching algorithm
itself is straightforward. We, on the other hand, consider the
case where no such effective classification can be done (this is
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also the assumption in [19]), and hence, our empbhasis is on
the development of an efficient feature matching algorithm,
which processes the models and the scene images indepen-
dently, allowing fast recognition. This is achieved using
indexing by affine invariants. In case feature classification is
possible, it can be incorporated in our algorithm in a natural
way to improve its efficiency.

This paper reports results in a series of experiments to
develop a 3-D object-recognition system from 2-D images,
based on efficient point, line, and curve matching procedures
(see also [2] and [4]).

II. DEFINITION OF THE PROBLEM

Consider the problem of object recognition in a cluttered
3-D scene. The models of the objects to be recognized are
assumed to be known in advance. The objects in the scene
may overlap and may also be partially occluded by other
(unknown) objects (see Fig. 6(a)). We allow the image to be
obtained from an arbitrary viewpoint. At this stage, we will
assume that we are dealing with flat objects. These initial
assumptions are similar to those in [20]. We also assume that
the depth of the centroids of the objects in the scene is large
compared to the focal length of the camera and that the depth
variation of the objects is small compared with the depth of
their centroids. Under these assumptions, it is well known
that the perspective projection is well approximated by a
parallel projection with a scale factor (see, for example, p.
79 of [21] or [19], [22]). Hence, two different images of the
same flat object are in an affine 2-D correspondence, namely,
there is a nonsingular 2 X 2 matrix 4 and a 2-D (transla-
tion) vector b, such that each point x in the first image is
translated to the corresponding point Ax + & in the second
image.

Our problem is to recognize the objects in the scene and
for each recognized object to find the affine transformation
that gives the best least-squares fit (see Section VI for details)
between the model of the object and its transformed image in
the scene.

HI. CHOICE OF ‘INTEREST POINTS’

Our matching algorithm, which is described in the next
section, extracts so-called interest points, both in the object
model images and in the scene image to find the best match
between those point sets. We do not try, at this stage, to
optimize the point extraction methods. These should be
database dependent so that different databases of models will
suggest different natural interest points. For example, a
database of polyhedral objects naturally suggests the use of
polyhedra vertices as interest points, whereas ‘curved’ ob-
Jects suggest the use of sharp convexities, deep concavities,
and zero curvature points. Interest points do not have to
appear physically in the image. For example, a point may be
taken as the intersection of two nonparallel line segments,
which are not necessarily touching. An interest point does not
necessarily have to correspond to a geometrical feature. An
interest operator based on high variance in intensity is de-
scribed in [23] and was used in [24].

Our basic assumption is that enough interest points can be
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extracted in the relevant images. We assume no special
classification of these points. It is important to observe that
since our matching algorithm is designed to deal with missing
and spurious points, we do not require foolproof performance
of the interest point operator.

In our experiments, we used points of sharp convexities
and deep concavities (see Figs. 3(c), 3(d), 4(b), 5(b), 6(b),
and 7(b)). The extraction of these points is described in
Section XI.

IV. RECOGNITION OF A SINGLE MODEL IN A SCENE

For the sake of clarity, we describe our algorithm in the
simpler situation, where the database consists only of one
model. However, the presentation given here applies to the
general case, where a number of models may appear in the
scene.

As was mentioned in the previous section, the models and
the scene are described by sets of interest points. Hence, we
may rephrase the model-based recognition problem to the
point-set matching task, namely, is there a (large enough)
affinely transformed subset of a model point set that matches
a subset of the scene point set?

Given m points on a model and » points in the scene,
there are O(n™) ways to match the model points to the scene
points. Since such an exponential complexity is unacceptable
for object recognition algorithms, various attempts were made
to prune the space of possible matches. Some of them try to
employ efficient tree search techniques, where the pruning is
based on geometric constraints (see, for example, [8]). How-
ever, the search still remains exponential in the number of
scene features for recognition of partially occluded objects
(see [25]).

To overcome this exponential complexity, one may ob-
serve that a transformation of a rigid object is usually defined
by the transformation of a small number of the object’s
points. This geometric observation is at the core of the
so-called pose clustering [26] and alignment [20] tech-
niques. For example, it is well known that an affine transfor-
mation of the plane is uniquely defined by the transformation
of three ordered noncollinear points (see [27]). Moreover,
there is a unique affine transformation that maps any ordered
noncollinear triplet in the plane to another ordered non-
collinear triplet. Hence, we may extract interest points on the
model and the scene and try to match noncollinear triplets of
such points to obtain candidate affine transformations. Each
such transformation can be checked by matching the trans-
formed model against the scene. This is the basic approach in
[20].

However, the complexity of such a scheme is quite unfa-
vorable. Given m points in the model and n points in the
scene, the worst-case complexity is (m X n)® X t, where ¢
is the complexity of matching the model against the scene. If
we assume that m and # are of the same magnitude and ¢ is
at least of magnitude m, the worst case complexity is of
order n’. One way to reduce this complexity [20] is to
classify the points in a distinctive way so that each triplet can
match only a small number of other triplets. We consider,
however, the situation where such a distinction does not exist
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or cannot be made in a reliable way (see [19]). Hence, we
present a more efficient triplet matching algorithm. In addi-
tion, in Section VIII, we show how, in special cases, the
complexity can be reduced by using certain affine metric
invariants.

The algorithm consists of two major steps. The first one is
a preprocessing step, which is applied to the model points.
This step does not use any information about the scene and is
executed off line before actual matching is attempted. The
second step (matching proper) uses the data prepared by the
first step to match the models against the scene. The execu-
tion time of this second step is the actual recognition time.

In order to separate the computation into such two inde-
pendent steps, we have to represent the model and scene
point information in a way that is independent and still allows
comparison of corresponding triplets. The fact that an affine
transformation is uniquely defined by the transformation of
three noncollinear points can also be expressed as follows.
Consider a set of m points, and pick any ordered subset of
three noncollinear points. The two linearly independent vec-
tors based on these points are a 2-D linear basis. One can
express the coordinates of all the model points in this basis.
(The basis points will have the coordinates (0,0), (1,0),
(0, 1), respectively.) Any affine transformatin applied to the
set points will not change the set of coordinates based on the
same ordered basis triplet. Specifically, let ey, e, €, be
an ordered affine basis triplet in the plane. Then, the affine
coordinates («, 8) of a point v are

v=oa(eg— ey) + B(ey — ey) + -

Application of an affine transformation T will transform the
point v to

Tv=oa(Te,, — Tey) + B(Tey — Tey) + Tey,.

Hence, Tv has the same coordinates («, 3) in the basis
triplet Tey, Te,,, Tey,.

Our algorithm will efficiently compare these sets of coordi-
nates belonging to different bases.

A. Preprocessing

Assume that we are given an image of a model where m
interest points have been extracted. For each ordered non-
collinear triplet of model points, the coordinates of all other
m — 3 model points are computed taking this triplet as an
affine basis of the 2-D plane. Each such coordinate (after a
proper quantization) is used as an entry to a hash table,
where we record the basis-triplet at which the coordinate
was obtained as was the model (in case of more than one
model). This encoding of each point in all possible affine
basis coordinates gives us an affine invariant representation
of the m-point set, which will enable efficient indexing in the
recognition stage. The complexity of the preprocessing step
is of order m* per model. New models added to the database
can be processed independently without recomputing the hash
table.

B. Recognition

In the recognition stage, we are given an image of a scene
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where n interest points have been extracted. We choose an
arbitrary ordered triplet in the scene and compute the coordi-
nates of the scene points taking this triplet as an affine basis.
For each such coordinate, we check the appropriate entry in
the hash table, and for every pair (model, basis triplet) that
appears there, we tally a vote for the model and the basis
triplet as corresponding to the triplet that was chosen in the
scene. (If there is only one model, we have to vote for the
basis triplet alone).

If a certain pair (model, basis triplet) scores a large
number of votes, we decide that this triplet corresponds to
the one chosen in the scene. The uniquely defined affine
transformation between these triplets is assumed to be the
transformation between the model and the scene. This candi-
date transformation is then verified in two successive verifi-
cation steps, where the first is based on the best least-squares
match of all the candidate model points (see Section VI), and
the second is based on direct verification of all the model
edges under the appropriate transformation versus the scene
edges (this time, ali the edges and not only interest points,
are considered). If the current triplet does not score high
enough, we pass to another basis triplet in the scene.

For the algorithm to be successful, it is enough, theoreti-
cally, to pick three noncollinear points in the scene belonging
to one model. The voting process per triplet is linear in the
number of points in the scene. Hence, the overall recognition
time is dependent on both the number of model points in the
scene and the number of additional interest points that belong
to the scene that did not appear on any of the models.
Although, in the worst case, we might have an order of n*
operations, in most cases, especially when the number of
models is small, the algorithm will be much faster. For
example, if there are & model points in a scene of n points,
the probability of not choosing a model triplet in ¢ trials is

approximately
k'
- (] ) .
n

Hence, for a given e < 1, if we assume a lower bound on the
‘density’ d = k/n of model points in a scene, the number of
trials ¢ giving p < e is of order log ¢/log (1 — d%), which is
a constant independent of 7. Since the verification process is
linear in n, we have, in this case, an algorithm of complexity
O(n), which will succeed with probability of at least 1 — .

The method, the way it is presented here, assumes no a
priori classification of the model and scene points to achieve
matching candidates. In practical applications, some addi-
tional information might be available about the interest points.
For example, points of sharp concavities and points of sharp
convexities belong to different classes. The hash table can be
easily adjusted to accommodate such qualitative information,
thus improving the recognition speed.

A major potential advantage of the suggested algorithm is
its high inherent parallelism. Parallel implementation of this
algorithm is straightforward; moreover, it should be quite
easy to build a special device for this implementing it at very
high speed.
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Fig. 1. Coordinates of the point d in the affine basis triplet (a, b, ¢).

V. ERROR ANALYSIS

So far, we have discussed our algorithm in its ‘noiseless’
version. However, since real scene measurements are noisy,
this noise will affect both the implementation of the algorithm
and its performance. We give a short description of the issues
raised by noise analysis and their handling by our method. A
more extensive noise analysis is given in [28].

We assume that the models can be acquired under ‘ideal’
circumstances (from a CAD model, for example); hence, the
preprocessing step is noiseless. In the recognition step, image
coordinates of interest points are measured. These coordi-
nates are represented by 2-D vectors. One may define a norm
on this 2-D vector space. We will usually use either the
Euclidean L, or the maximum coordinate L_ norm. Assume
that image point measurements introduce an error of at most
€ in the given norm.

The _computation of the coordinates of an interest point

= (d,, dz) in the affine basis (a, b, ¢) can be formulated
as a solution of the linear system of two equations in two
unknowns Ax = d. If a is the origin of the affine basis
triplet (see Section IV), the two columns of the matrix A4 are
the difference vectors of the basis interest points b — a, and
¢ — a, respectively, and the free vector is d = d — a. These
vectors are represented in image coordinates, whereas the
solution vector x gives the representation of the point d in
the affine basis (a, b, c¢) coordinates (see Fig. 1).

Taking the errors into account, our task can be formulated
as the solution of the following linear system:

(A+8A4)(x+6x)=d+od (1)

where 64, 6x, and 6d are the errors of the matrix 4 and
the vectors x and d, respectively. By the nature of our point
measurements, we may assume that the absolute values of
entries of the matrix 64 and the vector éd are less than
some given measurement error €. An extensive treatment of
such ‘approximate’ linear systems is given in [29]. Let us just
mention the following well-known result from standard nu-
merical analysis (see, for example, p. 25 of [30]) stating that

4]l
=« )[ Tar *

Ioxll _

(B2

L]
Il

] +oer

where k(A) = | A|| | A|| ™" is the condition number of the
matrix A. The above inequality holds for any vector norm
and its appropriate matrix norm.



582

Inequality (2) gives an estimate of the maximal relative
error that can be introduced by the image measurement noise
into the coordinates of the hash table address x. Hence, the
voting procedure reflects this noise. For an address x, all the
bins with addresses in the 8x neighborhood of x participate
in the voting. This ensures that votes for a correct model
basis are not missed due to noise. In practice, tighter bounds
usually apply [29]. Note that the amount of error € is defined
by the known imaging process; hence, the worst-case 6A
and &d can be computed in advance. Since for a given basis
triplet «(A) can also be computed, we can evaluate in
advance the relative merit of voting for a given basis triplet
and eliminate those triplets that are going to introduce exces-
sive noise. It should be noted that if a certain basis triplet
belonging to some model was not chosen in the image (or did
not get enough votes), we still have a chance to recover this
model from another basis triplet.

Since, as we have shown, the appropriate voting bins for
each address can be evaluated in advance, we do not expect a
correct basis triplet to achieve less votes than the correspond-
ing number of unoccluded model points. There still remains
the possibility of a ‘random’ basis triplet achieving a large
number of votes. Such a ‘wrong’ candidate will be discov-
ered by two verification procedures that are incorporated in
the algorithm and described in the following sections (see (4)
and (5) of the Summary of the Algorithm in Section VII).
Although ‘wrong’ candidates will be discovered in the veri-
fication steps and discarded, we would still like to show that
the probability of a ‘random’ configuration to get a high vote
is small. This probabilistic analysis is out of the scope of this
paper and will be presented in [28].

VI. FINDING THE BEST LEAST-SQUARES MATCH

As we have mentioned before, an affine transformation in
the plane is uniquely defined by the transformation of three
noncollinear points. However, in practical applications, this
transformation may be somewhat distorted because of noisy
computation of these three points. Knowledge of additional
points, which were transformed to each other, may help us to
improve the accuracy of the computed transformation. In this
section, we show how to compute an affine transformation,
giving the best least-squares match between sets of points that
are transformed to each other. In [31], this problem was
solved for Euclidean transformations. Our presentation gen-
eralizes the solution to affine transformations.

Specifically, assume that we are looking for an affine
match between the sequences of planar points (u;)7_, and
(vj)j-':l. We would like to find the affine transformation
Tu = Au + b of the plane that will minimize the /> distance
between the sequences (Tu /-)j’.’:1 and (v j);': ¥

n
6=min Y |Tu, —v;|*.
T j=1

Without loss of generality, we may translate the set u; so
that

n
> u;=0.
im
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Then
n
6=min Y | Au;+b-v;|’
A, b j=1
n n
=min| Y |b-v;|>+ > | Au;|?
A.b| j=1 j=1
n n
+2Zb-Auj——ZZ AuJ'vj].
j=1 j=1
However

n n
Zb'Auj=b'A(Zuj) = 0.
j=1 ji=1

Hence, b and A appear independently in &, and we can
minimize their contributions separately.
To minimize over b, we simply put

Asto A = (a;), (i =1,2; j = 1,2), denote

g(A) =g(ay,, an, ay, a)

n n
=3 | Au;|? -2 Au;- v,
j=1 J

=1
We have to find

rrgng(A) = min g(a,, a3, @y, ).

To find this minima, one has to solve the following system of
four equations (i = 1,2; j = 1,2)
dg

— =0. *
ar (*)

Since g is a quadratic function in each of its unknowns, (*) is
a system of four linear equations with four unknowns. (Actu-
ally, these happen to be two independent sets of two linear
equations with two unknowns.) Omitting the tedious details,
we present the final solution of this system.

Since u; = (u},u) and v; = (v}, v}) are two-dimen-
sional vectors for each j = 1,---,n, we may define the
following four n-dimensional vectors for i = 1,2:

U= (i),
V= (o)
Then, the solution of (*) is given by
(UI,VI)(UZ,UZ)_(UZ, Vl)(Ul'Uz)
a, = A
(U“Ul)(Uz' Vl)_(ulVl)(Ule)
a, = A
B CAR 6 ot R AR i 9
21 A



LAMDAN et al.. AFFINE INVARIANT MODEL-BASED OBJECT RECOGNITION

(W U)W v - (v )
- A

A=(U'-UYU-U?) - (U -U*)(U'-UY
(- is the vector dot product.)

As we can see, A is dependent only on one set of points (in
this case, the model points); therefore, we can know in
advance which sets of model points will give a stable solution
for the minima.

In Fig. 5(c) we see an example of a fit obtained by
calculating the affine transformation from three basis points,
and in Fig. 5(d), the same model is fitted using the best
least-squares affine match, which is based on ten points, all
of which were recovered as corresponding points by the
transformation in Fig. 5(c).

VII. SUMMARY OF THE ALGORITHM

Our algorithm can be summarized as follows:

1) Represent the model objects by sets of interest points.
2) For each noncollinear triplet of model points, compute
the coordinates of all the other model points according
to this basis triplet, and hash these coordinates into a
table that stores all the pairs (model, basis triplet) for
every coordinate.
3) Given an image of a scene, extract its interest points,
choose a triplet of noncollinear points as a basis triplet,
and compute the coordinates of the other points in this
basis. For each such coordinate, vote for the pairs
(model, basis triplet), and find the pairs that obtained a
large number of votes. For each such pair, its model
and the affine transformation between its basis triplet
and the image basis triplet become candidates for the
verification steps 4) and 5). If there is no high scoring
(model, basis triplet), pair, continue by checking an-
other basis triplet in the image.
For each candidate model and affine transformation
from the previous step, establish a correspondence be-
tween the model points and the appropriate scene points,
and find the affine transformation giving the best least-
squares match for these corresponding sets. If the
least-squares difference is too big, go back to step 3)
for another candidate triplet.
Finally, the model edges are transformed according to
the transformation of step 4) and compared with the
scene edges (this time, we are not considering previ-
ously extracted interest points only). If this comparison
gives a bad result, go back again to step 3). (In our
experiments, we compared the boundaries of our ob-
Jects at equally spaced sample points.)

4

~

5

~

This is a short summary of the basic algorithm. It is
schematically represented in Fig. 2. Of course, various im-
provements can be incorporated in its different steps, e.g.,
the complexity reduction described in Section VIII.
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Fig. 2. Scheme of the algorithm.
VIII. REpucTION OF COMPLEXITY USING AFFINE
INVARIANTS

When the number. of interest points on the models is large,
various affine invariants can be exploited to reduce the com-
plexity of the method presented in Section IV. We give one
such example. We will use the following:

Lemma (see, for example, p. 73 of [21]): Two straight
lines that correspond in an affine transformation are ‘similar’,
i.e., corresponding segments on the two lines have the same
length ratio.

Moreover, the same statement holds for sets of parallel
lines. Hence, if we have a set of points located on parallel
lines in a model and another set of points on parallel lines in
the scene, we can efficiently check the conjecture that some
of these points correspond.

Let us see how the method described in Section IV can be
reduced for the case of a one-dimensional line.

We again have two major steps.

A. Model Preprocessing

Extract the interest points on the model and find those that
are positioned on the same line. (A point may belong to
different lines.) Take a pair of points on a line and compute
the coordinates of all other model points on this line, taking
this pair to be the standard one-dimensional basis of the line.
Each such coordinate is used as an entry to a hash table,
where we record the basis pair at which the coordinate was
obtained, the line, and the model.

B. Recognition

Extract sets of points positioned on the same line in the
image. Choose a pair of points on such a line as a basis and
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compute the coordinates of the other points on the same line
according to this basis. For each such coordinate, check the
appropriate entry in the hash table, and vote for every triple
of (model, line, basis pair) that appears there. A triple that
scores a large number of votes gives the correspondence
between the points on the appropriate lines. Correspondence
of three noncollinear points (obtained from different lines, of
course) already gives a full affine basis, and we proceed as
before.

Since we have to choose only two points as a basis and not
three, the worst-case complexity is reduced by a factor of n.

IX. RECOGNITION OF OBJECTS UNDER SIMILARITY
TRANSFORMATION

In numerous vision problems, we are confronted with the
problem of recognition of objects that have undergone a
similarity transformation, namely, rotation, translation, and
scale. This is the situation in which the viewing angle of the
camera is the same for both the model and the image of a
scene. Such conditions can be achieved, for example, in a
factory environment where the viewing angle of a camera on
a conveyor belt can be kept constant.

Our algorithm is obviously applicable to the case of a
similarity transformation since it is a restricted case of an
affine transformation. Moreover, since the similarity case is
simpler than the general affine case, the complexity of both
the preprocessing and recognition stage can be reduced. The
key observation here is that since the similarity transforma-
tion is orthogonal, two points are enough to form a basis that
spans the 2-D plane. (The first point is assigned coordinates
(0,0) and the second (1,0). The third basis point (0, 1) is
uniquely defined by these two points.) Hence, we may repeat
the procedure described in Section IV using basic pairs
instead of basic triplets. This reduces the complexity of the
preprocessing step by a factor of m and the worst-case
complexity of the recognition step by a factor of n.

X. LINE MATCHING

In the previous sections, we dealt with point matching
algorithms. However, extraction of points might be quite
noisy. A line is a more stable feature than a point. Thus, in
scenes, in which lines can be extracted in a reliable way,
e.g., scenes of polyhedral objects, we might be interested to
apply similar procedures to lines.

All the point matching techniques of Section IV apply
directly to lines since lines can be viewed as points in the
dual space. Thus, three lines, which have no parallel pair,
are a basis of the affine space, each line has unique coordi-
nates in this basis, and we repeat exactly the matching
procedure of Section IV.

We can also make use of line segments to reduce the
complexity of the matching algorithm of Section IV. If the
endpoints of line segments can be reliably extracted, then
instead of a triplet of points or lines as a basis, we can take a
line segment plus an additional point. The reduction of
complexity is significant.

Since an affine transformation maps collinear points into
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collinear points and points of line intersection into points of
the same line intersection, we may develop algorithms that
combine point and line information. For example, even if the
algorithm utilizes point triplets as an affine basis, the verifi-
cation can be done not only on other interest point coordi-
nates but also on line equations, etc.

XI. EXPERIMENTAL RESULTS

We have done several experiments of recognizing models
in composite scenes. Models of pliers and wrenches have
been used (Fig. 3(a) and (b)). These objects are actually three
dimensional, but they have a good 2-D approximation. The
model objects have one degree of freedom, namely, the angle
between their handles. However, this free parameter was
kept constant for each model object throughout the experi-
ments. (A natural extension of our methods to deal with
parametrized bodies is under current investigation.) We at-
tempted to recognize these models in several composite scenes
(see, for example Figs. 4, 6, and 7).

Gray-level images of models and scenes were taken using a
Vidicon camera. The objects were put on a flat surface.
While the camera was kept at a fixed angle, the surface slant
and tilt have been changed (this is equivalent to changing the
camera viewpoint). In addition, the distance between the
camera and the surface was variable to induce scale changes.
Hence, we were able to effect a variety of 2-D affine transfor-
mations of the model objects.

The model database was created by taking images of the
models in which the camera viewing axis was perpendicular
to the plane (Fig. 3(a) and (b)). However, since the recogni-
tion method is 2-D affine invariant, any other feasible camera
viewpoint could be chosen.

The images were digitized and stored as 512 X 512 pixel
images using a Vicom image processor that was interfaced to
SUN workstations. The images were segmented by intensity
thresholding, and approximating polygonal boundary curves
were extracted. Since the digitizing camera system introduces
some noise, the extracted curves were smoothed using the
smoothing algorithm described in [31]. The smoothing algo-
rithm basically places a narrow band around the curve and
finds the shortest path between the curve’s endpoints that lie
completely within the band. The band is just the e neighbor-
hood of the curve. The parameter e is chosen in a manner
reflecting our a priori knowledge of the noise introduced by
the imaging process. In our experiments, ¢ was chosen to be
two pixels.

After smoothing, points of sharp convexities and deep
concavities were extracted to serve as interest points. We
followed the method described in [11] for detecting deep
concavities and used it to find sharp convexities as well. The
technique can be described as follows:

a) Discretize the (smoothed) curve into a sequence of
evenly spaced points (¢,)7_,.

b) For each j, compute an estimate of the boundary
tangent at (c;) by calculating the line of best (least-
squares) fit to a prescribed number of k successive
boundary points starting at j.
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(d)
Models of the two pliers and their extracted interest points: (a), (b)
Models of pliers; (c), (d) extracted interest points.

Fig. 3.

c) Calculate the second derivative by differencing succes-
sive tangents. Look for the maxima and minima of the
second derivatives. The maxima points correspond to
deep concavities, whereas the minima points corre-
spond to sharp convexities.
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(@)

(b)

(©)
(a) Composite scene of the pliers of Fig. 3 (observe different
lengths of handles due to the tilt); (b) extracted interest points; (c)
recognition of the models in the scene.

Fig. 4.

In our experiments, we used a 2-pixel distance between
points ¢; and ¢, (j=1,--,n—1) in step (@), and
k = 7 points for the tangent fit in step (b).

Quantized coordinates (in the appropriate bases) of the
extracted interest points were stored in the model hash table.
The quantization of the hash table was done following a
simple noise model. The basic assumption was that if the
coordinate value was bigger, the more (absolute) variation
was introduced into this value as a consequence of image
noise. This model is rather simplistic, as opposed to the
worst-case noise model, which we discuss in Section V and
expand on in [28]. However, at that stage of the experiments,
we were not concerned with obtaining optimal results.

We used a hash table with variable size bins. The hash-ta-
ble bin size becomes bigger as a function of the coordinate
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(c)

(d)
Fig. 5. (a) Pliers rotated and tilted in space (see different length of
handles); (b) extracted interest points; (c) matching based on one basis
tripiet; (d) best least squares affine correspondence.

(c)

Fig. 6. (a) Composite scene of the pliers of Fig. 3 with an additional
occluding object; (b) extracted interest points; (c) recognition of the
models.

value. The amount of growth is linear in each coordinate
value. Each bin has two parameters: the x and y coordinates
of a point. A point (x, y) belongs to bin (i, j), if X(i — 1)
<x< X()and Y(j— 1) =y < Y(J). The range of each
parameter is determined independently. We initiate by setting

X(0) = Y(0) = 0;: X(1) = Y(1) = L;
X(-1)=Y(-1)=-L,.

The bin size is then defined recursively as follows. For
positive i = 1,2, + -

X(i+1)-X()=Y(i+1)-Y()=is



LAMDAN et al.: AFFINE INVARIANT MODEL-BASED OBJECT RECOGNITION

(c)

Fig. 7. (a) Composite scene of one of the pliers of Fig. 3 with an additional
occluding object (obscrve the change in scale): (b) extracted interest
points: (c) recognition of the model.

and for negative i = —1, ~ 2, --

X(i-1)-X(i)=Y(-1)- Y(i) = id

where L, and 6 are fixed parameters, regulating the size of
the bins. In our experiments, we chose L,=0.1, and 6 =
0.01. The coordinates were limited to the range of
(-~ 10, +10) along each axis.

In the recognition, phase voting was done by computing
the appropriate bin containing the given image coordinates
and advancing the accumulators of the bases stored in that
bin. There was no attempt to accumulate votes from neigh-
boring bins. Because we did not take the worst-case ap-
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proach, part of the correct votes were missed. Nevertheless,
the performance of the system was still acceptable.

Fig. 3(a) and (b) are the original images of two models
(pliers), and Fig. 3(c) and (d) show the extracted interest
points of the models. In Fig. 5(a), we see an image of the
pliers of Fig. 3(a) rotated, translated, and tilted at about 40°
(observe the different lengths of both handles in the image).
The recognition algorithm was performed to obtain a number
of matching basis triplets. The corresponding affine transfor-
mations were calculated, and for each such transformation,
the transformed model was superimposed on the scene of
Fig. 5(a). Fig. 5(c) shows such a transformation computed
according to a basis triplet that gives a somewhat noisy
match. This solution is significantly improved by the best
least-squares match, which is given in Fig. 5(d), and was
calculated using all the points recognized as model points by
the basis triplet of Fig. 5(c) (see Section VI).

In Fig. 4, we see an image of a composite overlapping
scene of both pliers, (which was also significantly tilted), its
extracted interest points, and the recognition results. Note
that in Fig. 4(b), we have additional interest points that are
created by the superposition of the two objects. These points
do not correspond to the interest points of the original
models. In addition, one can see that a number of the original
interest points are occluded in the scene.

To give an intuitive feeling of our algorithm’s perfor-
mance, we include some statistics on the example of Fig. 4.
The total number of interest points in the scene of Fig. 4(b) is
28. Sixteen of them are unoccluded model points of the
second plier out of 21 original model points (see Fig. 3(d)).
To get the statistics, we run our recognition algorithm on all
the possible basis triplets of Fig. 4(b). For each triplet, we
found the set of best (maximum vote) matching model triplets.
The number of points identified by such a triplet as model
points are the so-called ‘no. of votes’ in the first column of
Table I. The second column gives the number of triplets that
obtained these votes, and the third column gives the number
of triplets that were verified as belonging to the model
(correct triplets).

The results are summarized in Table I.

Remarks:

a) Since we have 16 model points in the scene, we expect
a maximum of 13 votes for a correct triplet.

b) Since all six ordered occurrences of the same un-
ordered triplet will give the same voting result, we
counted unordered triplets in our statistics. In the
algorithm, we are dealing with ordered triplets; thus,
for example, we have 4 X 6 = 24 ordered basis triplets
with the maximal number of votes.

¢) Since we did not use a worst-case noise model, many
correct votes were missed. When using a worst-case
noise model, most correct votes should be around the
table row representing the maximum votes for a cor-
rect triplet (in this case 13).

Figs. 6 and 7 give additional recognition examples. These
examples include additional occluding objects that do not
belong to the model data base. Except for the tilt, there was
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TABLE 1
PERFORMANCE OF THE ALGORITHM ON THE ExaMpPLE oF FiG. 4
no. of votes | no. of basis triplets | correct basis triplets
14+ 0 0
13 4 4
12 11 10
11 12 8
10 29 12
9 56 22
8 145 38
7 287 62
6 805 151

also a significant change in the distance of the camera from
the scene, which is also in the example of Fig. 7.

At this stage of our experiments, no effort was made to
optimize various parameters of the algorithm.

XII. ConcLusiONs AND FUTURE RESEARCH

This paper represents our preliminary ideas and experi-
ments in 3-D object recognition from 2-D images. Here, we
based our methods on the representation of objects by point
sets and matching the corresponding sets of points. By apply-
ing geometric constraints, these sets of points can be further
invariantly represented by their coordinates in a small subset
of points (basis points). The size of the basis subset depends
on the transformation applied to the models of the image
scene. We have demonstrated how a basis of two points is
sufficient for 2-D scenes, where we allow rotation, transla-
tion, and scale transformations, and a basis of three points
suffices under the assumption of the affine approximation for
the perspective view. An important characteristic of our
method is the division of the matching process into prepro-
cessing and recognition stages. This significantly reduces the
complexitgy of our algorithm compared with the straightfor-
ward approach and enables execution of the preprocessing
stage off line. The algorithms presented are inherently paral-
lel.

Our algorithm has been successfully implemented and
tested on real life data of industrial parts.

The methods described in this paper naturally extend to
additional cases. In particular, 3-D object recognition from
range data can be accomplished by similar methods using
three point bases. The above-mentioned methods also extend
to the following topics, where active experimentation is
currently performed:

1) Recognition of nonflat 3-D objects from 2-D images
(see [2])

2) implementation of similar matching procedures based
on synthesis of point and line information

3) affine invariant curve matching (see [4])

4) recognition of objects using parametrized models.
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