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Abstract

Grouping processes, which "organize” a given data by elating the irrelevant items and sorting the
rest into groups, each corresponding to a particular objact provide reliable pre-processed information
to higher level computer vision functions, such as obje¢ed®n and recognition. In this paper, we
consider the problem of grouping oriented segments in highittered images. In this context, we
have developed a general and powerful method based on ativigermultiscale tensor voting approach.
Segments are represented as second-order tensors and cmatewvith each other through a voting
scheme that incorporates the Gestalt principles of viseatgption. The key idea of our approach
is removing background segments conservatively on antiierdashion, using multi-scale analysis,
and re-voting on the retained segmerni$e have performed extensive experiments to evaluate the
strengths and weaknesses of our approach using both Sgrahetreal images from publicly available
datasets including the William and Thornber’s fruit-textuataset [1] and the Berkeley segmentation
dataset [2]. Our results and comparisons indicate that tbpgsed method improves segmentation
results considerably, especially under severe backgreluiter. In particular, we show that using the
iterative multiscale tensor voting approach to post-psedbe posterior probability map, produced by
segmentation methods, improves boundary detection seisuB4% of the grayscale test images in the

Berkeley segmentation benchmark.

Index Terms
Segmentation, Boundary Detection, Grouping, Object DetecTensor Voting
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. INTRODUCTION

Perceptual grouping (or organization) can be defined aslitiéyao detect organized struc-
tures or patterns in the presence of missing and noisy irdbom. It has been proven to be
of fundamental importance in computer vision, providinjatde pre-processed information to
higher level functions, such as object detection and retiogn Indeed, many low-level vision
methods, such as edge labeling [3], rely on perfect segiemntand connectivity, producing
undesired results when these assumptions are not valigr @tethods, like shape from contour
[4], rely on connected edges, and can benefit from the renodvadise (i.e., erroneous segments).
Pattern recognition approaches, such as [5], also rely eomextied edges, and usually fail
when the edge image is very fragmented. Besides, the coityplExsuch schemes is directly
proportional to the number of distinct primitives in the utpStill, the amount of noise is in
general directly proportional to the computational cosffinfling true objects in a scene. By
using global perceptual organization cues on connectiagniiented edge images can alleviate
many of these problems.

Although perceptual grouping ability is present in differédiological systems (e.g. visual
[6] and auditory [7]), in computer vision it has been simathusing empirical evidence based
primarily on research performed by the Gestalt psychoted®. Determining organized struc-
tures from a given set of points or edges can be a very difftagk, as the actual measurement
of compatibility within a sub-set is not well defined. The @&éispsychologists are considered
the first to address the issues of perceptual grouping. 8lelaevs of how grouping might work
inside the human mind have been formulated, although tlenpcitational implementation turns
out to be non-trivial as they lead to conflicting interpritas.

Considering inputs in the form of edges, the Gestalt lawst medsvant to computer vision have
been related to proximity and good continuation, usualfyreésented in one expression called
saliency Conversion of the saliency measure to a prior probabiitgdmmonly done, allowing
the perceptual grouping problem to be approached usingapilidtic techniques [9]-[11]. Quite
frequently, perceptual grouping has also been tackled aspéimization problem, where the
best or most perceptive configuration emerges after seaydBi, [12]-[14]. Yet another way
of dealing with perceptual grouping is to consider each Ippxeedgel as a node in a graph and

use a pair-wise saliency measure as the strength of the edighs graph [15]-[17]. A brief
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review of representative approaches is presented in Il.

The use of a voting process for salient feature inferencen feparse and noisy data was
introduced by Guy and Medioni [18] and then formalized intorégfied tensor voting framework
in [19]. Tensor voting represents input data as tensors atefrélates them through voting
fields built from a saliency function that incorporates thes@lt laws of proximity and good
continuation. The methodology has been used in 2D for cunekjanction detection and for
figure completion in [20] and [21]. It has also been applie@hfor dense reconstruction from
stereo [22] or multiple views [23], and for tracking [24]. &xples of higher dimensional voting
include the 4D frameworks for epipolar geometry estimaf@B] and motion analysis [26], the
8D method for the estimation of the fundamental matrix [Zf]jd theND approach for image
repairing [28].

In this paper we propose a new approach for perceptual grgupi oriented segments in
highly cluttered images based on tensor voting. Similablenms have been considered in other
studies including [10], [15], and [14]. Specifically, we leagteveloped an iterative tensor voting
scheme that removes noisy segments using multi-scale sssabnd re-votes on the retained
segmentsThe proposed approach has been motivated by two obsersatipstructures should
reach a maximum saliency when all segments that support tteeso and there are no more
segments to be added, and (ii) non-salient segments do Mdbitegonsistent stability over
multiple scales

This paper aims at showing that this process results inrogtigity segmentations, specially
under severe background clutter. In contrast to traditie@asor voting approaches, that use
hard thresholding and single-scale analysis, our methoaves noisy segments conservatively
according to their behavior across a range of scales. Thappiies re-voting on the remaining
segments to estimate their saliency more reliablis worth mentioning that multi-scale tensor
voting approaches have been proposed before in the litergs], [29], [30]. The main objective
of these approaches, however, was to determine an optimial fr processing. In contrast, our
approach performs analysis over the entire range of sckeseover, iterative tensor voting
schemes have been adopted in [31], [32] in order to compuiensg more reliably. However,
these iterative scheme differ from the one proposed herkanthe role of their iterations was
to strengthen salient structures enough to allow a singkshtiold to segment out clutter; our

scheme, on the other hand, removes clutter iteratively.

DRAFT



We have performed extensive experiments and comparisotestaur approach using both
synthetic and real images. First, we experimented with asdatintroduced by Williams and
Thornber (WT) [1], [10]. Although containing real objectrdours, we consider this a synthetic
dataset due to the artificial way the images were created.akerthis dataset more challenging
and the experiments more complete, we have augmented WiEseddy incorporating images
containing multiple objects having different sizes andoimplete boundaries. The synthetic
dataset provides important insight on the method’s stfengtllowing us to study special cases
that would be difficult to isolate in real, natural imagesc@e, we experimented with real
images from the Berkeley segmentation dataset [2], [33]@mdpared our results to five other
methods that are among the top performers for this dataket.objective of these experiments
is to demonstrate the effectiveness of our method, as wat disnitation in real scenarios. Our
results indicate that the proposed scheme improves segtimntesults considerably, especially
under severe background clutter. It is worth mentioningt tising the iterative, multiscale
tensor voting scheme to post-process the posterior priiyaimiaps produced by segmentation
methods, improves boundary detection in 84% of the gragstedt images in the Berkeley
segmentation dataset. An earlier version of this work, lwing detection of single objects with
closed boundaries in synthetic images, has appeared in [34]

The rest of the paper is organized as follows: Section Il jples a review of representative
perceptual grouping approaches. Section Il summarizedehsor voting framework and dis-
cusses the main challenges in applying it for perceptualgng. Section IV presents the new
approach and provides a number of examples to illustrateniiia ideas. Section V describes
the datasets used in our experiments and our evaluationodwtigy. Section VI presents our
experimental results and comparisons. Finally, conciusind directions for future work are

presented in Section VII.

II. PERCEPTUAL GROUPING REVIEW

Perceptual grouping has been used in computer vision ierdiit contexts and for different
applications. We review below a number of representatiygaaches.

Gestalt principles such as collinearity, co-curvilingaand simplicity are noted to be important
for perceptual grouping by Lowe [12]. Ahuja and Tuceryanf@re among the first to introduce

a method for clustering and grouping of sets of points baseginounderlying perceptual pattern.
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Proximity and good continuation were used as compatibitigasures by Dolan and Weiss [3]
to the development of a hierarchical grouping approachuf@ing is performed by Mohan and
Nevatia [35] based on models of the desired features whietpeeviously computed according
to the contents of the scene. In a later work [36], the samieoasitdevelop a grouping method
based explicitly on symmetries, performing the conneistisieps locally.

Uliman [37] deals with grouping of edge fragments as an opation problem which suggests
that the smoothest line joining every pair of fragments &houinimize the integral of the square
of the curvature. Although there is clearly a intuitive ideghind this approach, one can note
that elliptical curves, for example, cannot be construdtggoining only a pair of circular arcs.
Also, as Guy and Medioni noted [38], this scheme cannot benptly generalized to a set of
three or more edge fragments, and does not allow for outligne tensor voting framework
used in this work is in essence an extension of the idea abtnegenotherwise a curve may
be formed (and/or approximated) by joining an unlimited emof (possibly) short circular
arcs, and outliers are dealt naturally. Parent and Zuck@} pBoposed a relaxation labeling
scheme that utilizes local kernels incorporating co-dagty measures used to estimate tangent
and curvature. Very similar kernels are used in the tenstngdramework, but applied in a
different way. A saliency measure is proposed by Uliman amasBua [15] to guide the grouping
process and eliminate erroneous features in the imager $timme tends to give preference to
long curves with low total curvature.

Hérault and Horaud [14] tackled the problem of segmentirignbed edges into figure and
ground as a quadratic programming problem, solved by siedil@annealing. Saliency was
defined as a function of proximity, contrast, co-circulaahd smoothness. An optimization step
searches for the configuration of image edgels that leadbedighest interactivity between
elements while minimizing an objective function which ha® terms, one that accounts for the
total saliency of the edgel configuration, and another oae ghevents trivial solutions, such as
all edgels selected. The latter one, although it is said toetsted to the signal-to-noise ratio
(SNR), it was not explained how to compute it and, in practicés very sensitive. Sarkar and
Boyer [16] make use of a saliency measure that includes, ditiad to proximity and good
continuation, parallelism and perpendicularity in orderassess man-made land development
from aerial images. Clustering is done by computing the redgcomposition of an affinity

matrix composed of pairwise saliency measures.
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Recently, Williams and Thornber [10] have proposed a priiséib approach based ddlosed
Random Walk§CRWSs). In their approach, saliency was defined relativelihe number of times
an edge is visited by a particle in a random walk. The mairrictsin assumed in their work
is that the movement has to start and finish on the same edge.r@duces the number of
paths to consider along with the complexity of the problemwéver, it imposes a restriction
that is not practical. For example, objects in real imagesrart expected to be closed or well
formed, due to occlusions and pre-processing artifactgirTfiechnique was compared to five
other methods in the literature and found to outperform thigl@hamud et al. [11] generalized
the CRW technique to deal with multiple salient contourg, il closed.

Summarizing the main features of the methods above andastimy them to the tensor
voting framework, it is interesting to note that virtuallif af them use local operators to infer
a more global structureAlso, many of them are inherently iterative, relying on ap#iation
techniques (e.g., relaxation or minimization), which agasstive on initialization and are subject
to instabilitiesThe main difference among these methods is in the choiceeottimpatibility

measures employed or the function to be minimized.

IIl. PERCEPTUAL GROUPING USING TENSORVOTING
A. Tensor Voting Framework

In the framework proposed by Medioei al.[19], input data is encoded as elementary tensors.
Support information (including proximity and smoothnesspropagated from tensor to tensor
by vote casting. Tensors that lie on salient features @Leves in 2D, or curves and surfaces in
3D) strongly support each other and deform according to tegaiing orientation, producing
generic tensors. Each such tensor encodes the local dreentd features, given by the tensor
orientation, and their saliency, given by the tensor shaypkesize. Features can then be extracted
by examining the tensors resulting from voting.

Fig. 1 illustrates the voting process for the extraction alient curves from a noisy set of
2D points. The input points (Fig. 1(a)) are initially encddes ball tensors, equivalent to circles
in 2D, as shown in Fig. 1(b). The voting process allows temgor propagate their position
information in a neighborhood, such that, (i) tensors tlebh a salient curve strongly reinforce

each other and deform according to the prevailing oriemtanormal to the curve), and (ii)
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Fig. 1. Tensor voting example: (a) input points, (b) ballsienencoding, (c) deformation of tensors reveals the datierve.

isolated tensors receive little support, as they do notespond to any underlying salient curve,
and therefore can be identified as noise (see Fig. 1(c)).
1) Tensor Representation and Votingt 2D, a generic tensor can be visualized as an ellipse.
It is described by a 2 2 eigen-system, where eigenvecterse, give the ellipsoid orientation
and eigenvalues, \, (with \; > )\;) give its shape and size. The tensor is represented as a
matrix S
S =X\ elef + Ao - egeg Q)

There are two types of features in 2D - curves and points {jong) - that correspond to
two elementary tensors. A curve element can be intuitivalyoded as atick tensorwhere one
dimension dominates (i.e., along the curve normal), wikelength of the stick represents the
curve saliency (i.e., confidence in this knowledge). A palgment appears aslall tensor
where no dimension dominates, showing no preference forpanycular orientation.

Input tokens are encoded as such elementary tensors. A @eimient is encoded as a ball
tensor, withe, e; being any orthonormal basis, while = A\, = 1. A curve element is encoded as
a stick tensor, witke; being normal to the curve, whil®;, = 1 and\, = 0. Tokens communicate
through a voting process, where each token casts a vote latt@een in its neighborhood. The
size and shape of this neighborhood, and the vote strengtlo@entation are encapsulated in
predefined voting fields (kernels), one for each feature tyfieere is a stick voting field and
a ball voting field in the 2-D case. Revisiting the example ig. A, note that the input was
encoded as ball tensors. However, if some orientation mmdion is initially known (e.g., from
edge detection), the input can be simply encoded using stitors.

At each receiving site, the collected votes are combinedutin simple tensor addition,
producing generic tensors that reflect the saliency andhtatien of the underlying salient

features. Local features can be extracted by examiningribygepties of a generic tensor, which
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can be decomposed in its stick and ball components:
S= (A — o) -erel + Xy - (erel + egeld) (2)

Each type of feature can be characterized asC(aye- saliency is §; — \;) and orientation
is e, and (b)Point - saliency isA, with no preferred orientation. After voting, curve elengent
can be identified as they have a large curve saliekcy- )\, (appear as elongated tensors),
junction points have a large point salienty and no preferred orientation (appear as large ball
tensors), while noisy points have low point saliency. Thees the voting process infers curves
and junctions simultaneously, while at the same time if@ng outliers, that is, tokens with
little support. The method is robust to considerable amahbutlier noise and does not depend
on critical thresholds, the only free parameter being tredestactorc which defines the voting
fields.

2) Vote Generation:The vote strengtH\/S(E)) decays with the distanc|eﬁ)\ between voter
and recipient, and with the curvatupe
[P +cp?

02

VS(d) = exp(— ) 3)

where ¢ is a constant regulating the relative effects of distancé emrvature.The vote
orientation corresponds to the smoothest local continuation from vtierecipient (see Fig.
2). A tensorP with locally known curve information, illustrated by cur\m)rmaljvp, casts a
vote at its neighbor). The vote orientation is chosen to ensure a smooth curvanc@iion
through a circular arc from voteP to recipient(). To propagate the curve norma thus

obtained, the voté/stick(j) sent fromP to () is encoded as a tensor according to:
— — ——
Viien(d) =VS(d)- NNT (4)

It should be noted that, the vote strengthtatand Q" is smaller than at) due to the fact
thatQ' is farther away and)” corresponds to a higher curvature th@nFig. 2(b) shows the 2D
stick field, with its color-coded strength. When the voteraidall tensor, with no information
known locally, the vote is generated by rotating a stick vatéhe 2D plane and integrating all

contributions according to equation 5. The 2D ball field iswgh in Fig. 2(c).

e o —1 7\ pT
Vi (d) = [ BV 55 D) RS 1 5)
0
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(a) (b) (c)
Fig. 2. \ote generation in 2-D: (a) decay function used bysoervoting framework, (b) stick voting field, and (c) ball iraj

field.

Table | shows a summary of the geometric features that appear2D space and their
representation aslementary2D tensors, where@ andt represent the normal and tangent vector
respectively. From aeneric 2D tensor that results after voting, the geometric featunes
extracted as shown in Table Il. The framework can be readitgreled to higher dimensions,
for example, in 3D the features are points, curves or susfacerresponding to ball, plate, or

stick tensors, all expressed asx33 eigen-systems.

TABLE | TABLE |
ELEMENTARY TENSORS IN2-D ELEMENTARY TENSORS IN2-D
Feature‘ A1 A2 ‘ el ez Tensor Feature ‘ Saliency ‘ Normal ‘ Tangent
point 1 1 | Any orthonormal basi§ Ball point A2 none none
curve 10 nt Stick curve A1 — A2 el e

The space complexity of the voting process isfD(vheren is the input size (i.e., total number
of candidate tokens). The average time complexity is:@)(wherem is the average number of
candidate tokens in the neighborhood. Therefore, in centoaother voting techniques, such as
the Hough Transform, both time and space complexities ofte¢hsor voting methodology are

independendf the dimensionality of the desired feature.

B. Grouping Using Tensor Voting

Although the tensor voting framework has only one free patam the scale, several other
issues must be considered carefully when employing it focgqeual grouping and segmentation.
The voting dimensionality, the features to be used as tqkarsthe encoding of the input tokens

are important issues that need consideration.
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The voting dimensionality is determined by the number oftife=s used to represent the
problem. Ideally, a small number of features with maximalresentation capability is desired.
This raises the issue of what features to use. First, theresichosen must be in the Euclidean
space, or at least be scaled to, so that the decay functiarhvelstablishes the vote strength is a
valid one, as suggested in [40]. Pixel coordinates, eddgehtation and gradient, are examples
of features commonly used for raster images or their edgeeébaounterparts. Color information
should be represented in terms of hue, intensity or any dthexsi-)Euclidean measure, instead
of RGB.

Token encoding has considerable impact on the performdrte@sor voting. It was mentioned
earlier that an input token can be initialized either as &dyah stick tensor in 2D. The benefits
of using stick tensors instead of ball tensors in 2D, can Is#lyeanderstood by comparing the
voting fields of Figs. 2(b) and 2(c). Stick voting fields cownaller regions and, in general,
require fewer vote castings than ball voting fields, allayvfaster computations. Although this
choice is not extremely critical in the voting results, ktencoding allows the introduction of
prior knowledge in terms of the tokens’ preferred direct{erg., edgel orientation) and should
be used whenever it is possible.

In the case of edges, one can choose among several differegrtrepresentations as shown
in Fig. 3. One way would be assigning a ball tensor to eachl pixine edge contour as shown in
Fig. 3(b). Alternatively, one could assign a stick tensoeach pixel with position and orientation
determined the pixel and its adjacent neighbors (see F@).3[he main disadvantage of the
above representations is that they lead to a large numbengbts, increasing computational
requirements. Alternatively, one could choose a subsetpfesentative pixels along the edge
contour and initialize them as ball or stick tensors (see B{d)). This would lead to a more
economical representation and lower computational requents.

We have adopted this last approach in our study. Using thdlm&hd/or end pixels along the
edge contour can yield good support for short edge segmieoigever, this choice would not
work well for long edge segments since the distance betwa@ns plays an important role in
the voting process. Here, we propose re-sampling the edgewointo a number of equi-distant
points using a fixed sampling step. Then, we initialize thes¢e voting framework by encoding
sampled points as stick tensors with position and oriesnatietermined by the position and
gradient information of the sampled points.
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(@) (b) (© (d)

Fig. 3. Various tensor initializations using edge contoe edge contour, (b) each pixel on the edge contour could be

considered to be a token and initialized as a ball tensoredch pixel on the edge contour could be considered to be a toke
and initialized as a stick tensor tangent to the curve, (d)lset of the edge pixels, obtained through sub-samplingiddoe

considered to be tokens and initialized as stick tensorgetanto the contour.

Another issue that needs consideration is the selectiomeo$tale parameter. In [40], it was
found that tensor voting has low sensitivity with respecttdHowever, finding the appropriate
o value might not be easy in practice. It is well known that dreahles capture local structures
while large scales capture global configurations. In a reahatrio, it is unlikely that we would
have anya-priori information about the size of objects in the scene, makimgctioice ofc a
"trial-and-error” process. In general, the choice of thalsparameter will vary from application
to application, or even worse, from image to image.

Analyzing information at a single scale can compromise okenhard the detection of
structures with different sizes. This situation can besiilated using an image containing two
similar figures, one smaller than the other, as shown in Figiodhelp visualization, we have
plotted "Scale versus Saliency” curves, thereafter cadl@ency curvesSpecifically, a saliency
curve is computed by voting in different scales and comjputime saliency of each segment
in each scale. We then normalize the saliency curves acupitdi the average saliency of all
segments in the image in order to prevent a monotonicalleasing curve. This is due to the
fact that, as the voting neighborhood increases, segméenhsa also increases simply because
new segments are considered.

As the voting neighborhood increases, the smaller cirdetssthecoming more salient since
more of its segments are considered in the voting processaliency maximum is reached when
the voting neighborhood contains all its segments, (itfearaundo=10). After this point, not
having any more segments to strengthen its saliency, théesnsacle starts "losing” saliency
for the larger one, which becomes more salient as more ofeggnents are included in the

voting neighborhood. Once the larger circle reaches itsimam saliency, at around=35, its
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Fig. 4. (a) Two circles with different sizes and few segmdnghlighted, (b) normalized saliency curves correspogdmthe
segments selected (dashed for smaller circle). The sgliginhe smaller circle increases until the voting neighloaidh contains

all of its segments. After this point, it is surpassed by takescy of the larger circle, which keeps increasing urtileiaches

its own maximum.

saliency curves stabilize since there are no more segmemsrisider beyond this scale.
Another important issue when segmenting a figure from thé&dracind is the choice of a
threshold for filtering out non-figure segments. It is read@ to expect that if the saliency
values of the figure are quite higher than those of the backgltothen it would be easy to
find a threshold value that separates them completely. FsfpoBvs a simple example where we
consider a well-formed circle surrounded by random nois&MR=70%. By applying tensor
voting and observing its saliency histogram shown in Fig)5(t becomes evident that by

eliminating segments with a saliency value below a thresfai45%, all noisy segments are

filtered out while all figure segments are preserved (seeXD).
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A simple example where figure and background can baratgal easily using a single threshold: (a) original image,

(b) saliency histogram (striped for figure) and the optinméshold T, (c) resulting segmentation.

However, this is hardly the case in practice. Let us considerimage shown in Fig. 6(a).

Applying tensor voting to the original image and plottinge thorresponding saliency curves
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(Fig. 6(b)) (only curves that overlap are shown) and saliehistogram (Fig. 6(c)), we can
easily conclude that there is no threshold value able toigeoa perfect figure-background
segmentation. Although the saliency histogram shown in B{g@) corresponds to one, high
scale, the same happens at different scales as well. Maremxen if we were able to choose
an optimal threshold in some way, the number of misclass#egiments would be unavoidably

large as shown in Figs. 6(d), 6(e), 6(f).

d
Saliency
P(Saliency)

RS NN

0.8 1

04 0.6
Saliency
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-
\
-
’

(d) (e) 0]
Fig. 6. Animage with SNR=15% processed by different thré&halues. A unique, fixed threshold value (T) cannot produce

a good segmentation at any scale. (a) original image, (bjlayy@ng saliency curves corresponding to segments of thei
(dashed) and the background, (c) saliency histogram éstrfpr figure) and 3 threshold choices: (d) T=40%, (e) T=5586 a
(f) T=70%.

IV. | TERATIVE MULTI-SCALE TENSORVOTING

The example of Fig. 6 illustrates that a high threshold vatoeld eliminate parts of the
figure while a low threshold value could preserve too manykgamnd segments, leading to
poor segmentation results in both cases. Aiming at elinmgahe largest number of background
segments while preserving as many figure ones as possibleaweedeveloped an iterative tensor
voting scheme based on multi-scale analysis and re-volihg. key idea is conservatively re-
moving segments from the image in an iterative fashion, gpdlyang re-voting on the remaining

segments to estimate saliency information more relialphprbvements in figure segmentation
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come from two facts: (i) after each iteration, low salienegments are filtered out and, (ii) after
the subsequent re-voting steps, background segmentssgeare less support. Fig. 7 illustrates
this idea using the example shown in Fig. 6. As more and mookdraund segments are
eliminated, the saliency difference between figure and dgpacknd segments becomes more and

more pronounced.

Saliency
s o

Saliency
o o o
5 5 &
IR

-
%

5 [ 7
Scale Scale

(b) (d)

Fig. 7. Conservative elimination of segments improvesriigoation between figure and background segments afteotiag:
(a) image with a few segments selected from ground and figb)esaliency curves (dashed for figure) for selected segment
showing overlap in various scales, (c) image after consgevahresholding which eliminates some spurious segmeuis

saliency curves (dashed for figure) after re-voting showiagier separation between figure and background segments.

From an implementation point of view, the conservative glation of low saliency segments
is performed by applying a low threshdld, which, in most cases, removes background segments
only. In the next iteration, a new saliency map is obtainedgise-voting, without considering
the eliminated segments this time. After re-voting, theeshiold value is increased to adapt to
the strengthening of figure saliency due to the eliminatibbackground segments. In practice,
we slightly increasd’; after each re-voting session by a fixed amoufit,.

Multi-scale analysis is incorporated to this scheme byngtin a number of scales and
thresholding according to the behavior of saliency in thesales.The key idea is that non-
salient segments do not exhibit consistent stability ovettiple scales, an idea motivated by

scale-space theory [41$pecifically, the saliency curve of a segment is computegdiyng in
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different scales and computing the saliency of that segnmeetaich scale. Segments are then
eliminated if they do not present any significant saliencgkseacross a range of scales. This
will preserves salient segments of any size. Algorithniycahis is implemented by counting
the number of scales that the saliency curve stays abovehtbshbldT,. If this number does

not exceed another threshald, then we consider that the corresponding segment does not
have strong saliency and it is eliminated. Fig. 8 illustsat@s procedure. As mentioned in the
previous section, we normalize the saliency curves acegrth the average saliency of all the

segments in the image.
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Fig. 8. lllustration of threshold¥s and T, : (a) the number of times a saliency curve is ab@ves computed, (b) segments

whose saliency curves do not reach a number of times moreTfthare eliminated.

Below, we present the pseudo-code of the iterative, maléstensor voting scheme. The input
to the algorithm are the number of iteratiohsnumber of scales(, and the size of the input
image (i.e., width W,,, and height H,,,). AT} is the amount by whicl’; is incremented in each
iteration to account for stronger saliencies due to the &vion of more organized structures as

clutter is eliminated (see Fig. 9).

1. Initialize I, K, T, T, and AT,
2. Set |<— O: m < maX{Himg) Wimg}, andO’j — j;{m, ] = 1,2, ,K
3. While i less than!:

3.1. Apply tensor voting at scales < o, 09, ..., 0

3.2. Eliminate segments with saliency bel@wmore thanT, times
33. T, — T, + AT,
34.1—1+1
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The iterative multiscale voting scheme can be implementédeantly without requiring to
compute the votes from in a brute-force manner at each iberatr at each scale. Specifically,
the votes at iteratiom can be computed from the votes at iteration 1 by simply subtracting
the votes cast at iteratian— 1 by the low saliency segments eliminated at iteratioSimilarly,
the votes at a given scatg can be computed from the votes at the immediate lower scale
Since the voting neighborhood increases as the scale segeave need to compute and add
only votes corresponding to segments that lie in area quoreting to the difference between
the two neighborhoods.

The complexity of the iterative scheme is asymptotically #ame to the complexity of the
original tensor voting scheme at a fixed scale. Specificédty,us assume that there aré
segments in the image and of them are contained in the voting neighborhood for a given
fixed scale; then, the complexity of voting (N M) or O(N?) sinceM = O(N). In the case
of iterative voting, we perforni iterations and vote ak’ different scales in each iteration. The
complexity of voting at each scatg is O(NM;) wherej = 1,2, ..., K and}; is the number of
segments contained in the difference of the neighborhoodesponding tar; ando;_;. Since
M; = O(N), and K = O(1), the complexity at each iteration would [6& N?). The overall
complexity would beO(N?) sincel = O(1).

Fig. 9 shows the behavior of figure (dashed) and backgrouliehsg curves during different
iterations of the proposed approach. The input image has=3BR (i.e., about 7 times more
background segments than figure ones). The threshold V@&lgoes from 10 up to 40 with
a AT,=10%. The voting was performed with @ ranging from 1 (5% of image size) to 20
(100% of image size)lt should be mentioned that we experimented with differaft, values
or numbers of scales, however, we did not notice significéiférdnces in our results except
when using a rather bid\7, value or a rather small number of scal&he improvements over
using the naive approach (i.e., fixed threshold and singiéescsee Fig. 6) are remarkable. A
guantitative comparison can reveal the benefits of the m@gpscheme. In Fig. 6, using T = 55%
(Fig. 6(e)), 10 out of 40 figure segments were eliminated (&f¢ equal to 25%) and 19 out of
270 ground segments were not filtered out (FP rate equal to [i¥&pntrast, our methodology
eliminated 2 out of 40 figure segments (FN rate equal to 5%)dahehot filter out 3 out of 270
ground segments (FP rate equal to 1%).
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Fig. 9. Image with 15% SNR processed by our iterative, nadtéile tensor voting scheme. By conservatively eliminating

low saliency segments, the saliency difference betweendigdashed) and background segments becomes more and more

pronounced. Each column shows: (i) resulting image, (ligsay curves of segments in the ambiguity region, and ggiiency
histogram at the highest scale. By row: First - Original ima§econd - Resulting image using ¥ 10%. Third - Resulting

image using T = 20%. Fourth - Resulting image using £ 30%. Fifth - Resulting image usings &= 40%.
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V. DATASETS AND EVALUATION METHODOLOGY

We have divided our experiments in two parts. In the first,pag have performed a series
of experiments using synthetic images based on the set ibfaind texture sampled silhouettes
used in [10]. The objective of this set of experiments is tosider different figure-ground
configurations in order to get important insight on the mdihstrengths, allowing us to study
special cases that would be difficult to isolate in real, retimages. The second part reports
test results on the Berkeley segmentation dataset and mankH33]. The objective of this set
of experiments is to demonstrate the effectiveness of otinade as well as its limitation in real
scenarios.

Part | of our experiments was performed with synthetic insageated from a pair of sampled
silhouettes belonging to a fruit or a vegetable (thereafédied figure) and textured background
(thereafter called background). Nine figure silhouettesewe-scaled to an absolute size of 32x32
and placed in the middle of nine 64x64 re-scaled backgrouindaws. We have experimented
with five different SNR values in order to reduce the numbefigiire segments proportionally
to the number of background segments. Further details dagpathis benchmark can be found
in [10]. The images used to build the benchmark are shown ¢n F0. Fig. 11 shows some

examples of benchmark images for different SNRs.

i .
(a) Figure (b) Background
Fig. 10. Images used to build the benchmark (publicly abélat [1]).

This set of images offers a good synthetic dataset for exyeriation and comparison pur-
poses. It is composed of real objects in real backgroundshwiimore challenging than images

containing a random background which is typically used. éMineless, since the objects have
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- - . [ . IR ., B 1

- Y ~ . e N
(©) SNR=10%

(@) SNR=20% (b) SNR=15%
Fig. 11. Examples of benchmark images from [10] at diffef@NRs.

always a closed contour and placed in the same position ald, sbis dataset lacks realistic
characteristics that would make it more challenging.

We have augmented WT’s dataset by using the same objectsamkdrbunds, however, we
have incorporated new characteristics in order to make remealistic. In particular, we have
created more test images by varying the number of figurestaiddize, and by removing parts
of their boundary, opening their silhouette. Fig. 12 showse examples from the extended
benchmark. Table Ill summarizes the different datasets us@ur experiments. Note that for
the datasets with more than one figure, only one SNR was used tie number of background
segments in WT’s was limitedk is worth mentioning that in Williams and Thornber’s evafions
[10], different algorithms were tested by comparing theadelV most salient segments returned
by each algorithm, wheréVv is the number of foreground segments. Our algorithm makes a

decision on each segment without assuming knowledg¥'.of

@ \ ®

Fig. 12. Examples from the extended benchmark: (a) openefigantour, (b) multiple figures, (c) multiple instances of th

same figure with different sizes.

In this part, quantitative evaluations and comparison$ wither methods were performed
using Receiver Operational Characteristic (ROC) curves, (False Positives (FP) versus False

Negatives (FN) plots). A FN is a figure segment detected akdgmaand while a FP is a
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TABLE 1lI

DIFFERENT DATASETS BUILT FROM9 OBJECTS 9 BACKGROUNDS AND5 SNRs.

Dataset Images Characteristics SNR
Single figure 405 one object, one background 25% — 5%
Incomplete figure contouy 405 one object, one background 25% — 5%
Multiple figures 1458 | two or three objects, one background 25%
Figures with different sizeg 1458 two objects, one background 25%

background segment detected as figure. For each datasdRCifecurves are average ROC
curves over all the images in the dataset. In order to allowrecdcomparison with WT’s
method [10], we also show SNR vs FP and SNR vs FN plots.

We have also performed additional experiments using th&ebsy Segmentation dataset and
benchmark [2], [33]. In order to evaluate the contributiodhonr method in real boundary
detection and segmentation scenarios, we used our metlpadtqrocess the Boundary Posterior
Probability (BPP) map produced by five different segmeatatnethods from the Berkeley
segmentation benchmark: Brightness Gradient (BG), Gnadidbagnitude (GM), Multi-Scale
Gradient Magnitude (MGM), Texture Gradient (TG), and Btiggss/Texture Gradients (BTG).
Thresholding the BPP map vyields a set of boundaries in anamBige output of our method is
a new BPP map which is computed by counting the number oftibeieach pixel survived the
elimination process. The longer a pixel is conserved, tlyhdr is its probability to belong to
an organized structure in the image. For evaluation, we tisedray-scale test images and the
corresponding BPP maps from the Berkeley segmentationhbegr. Pixels in the BPP map
were encoded as tensors whose size was given by the BPPitytamd direction by the normal
to the edge direction crossing the pixel.

To quantify boundary detection results, we used PreciBecall Curves (PRCs) like in the
Berkeley segmentation benchmark. PRCs reflect the trddbetiveen true boundary pixels
detected and non-boundary pixels detected at a given thicedhshould be mentioned, however,
that all comparisons in the Berkeley benchmark were camedising the F-measure [42], which
is a weighted harmonic mean of precision (P) and recall R}: PR/(aR+ (1 — «)P) where
(o) is a weight. The value oft was set to.5 in [33] which is usually called thequal regime

Different values of &) allow for different regimes (e.ghigh precision regimdor o« > .5, or
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high recall regimefor o < .5).

To avoid any bias towards a specific regime and evaluate bperformance more objectively,
we have also computed the Area Above the precision-recallec(AAC) in our experiments.
The use of AAC’s dual, the Area Under a Curve (AUC), has beggastigated in other studies
(e.g., [43]), suggesting that AUC is a better measure foluatilng overall performance instead
of using a single measurement on the curve. In our case, gactoike is minimizing AAC in
order to improve both precision and recall rates.

A BPP map can be visualized as an image whose pixel intensggdes the probability that
a pixel lies on a boundary. The higher the pixel intensitg, ilgher the probability that the pixel
lies on a boundary. Figures 13 (b)-(f) show the BPP map coetphy each of these methods
for the images in Fig. 13(a). The ground truth obtained by fivenan subjects is shown in
Fig. 13(f). All five methods above have been previously eatdd on the Berkeley dataset and
represent some of the top performers. The BPP maps, spexsfitts and ranking information

for each method are publicly available from the Berkeleydhemark website [2].

\\ \\\ \\

AN : P A A \

\p\\” 2 Iy RN N 5

D A )
e\ W ‘
“A 4 \ %

%\\ \\SS% \\\‘ N N\ N
() (b) () (d) (e) (U] (9)

Fig. 13. The BPP map computed by the methods tested in ouy:staporiginal image, (b) GM BPP map, (c) MGM BPP
map, (d) TG BPP map, (e) BG BPP map, (f) BGT BPP map, (g) groturti.t

VI. EXPERIMENTAL RESULTS AND COMPARISONS
A. Part | - Experiments on Synthetic Images
We have performed extensive experiments in order to evaloat methodology using the

datasets discussed in Section V. Analysis of the salienstodpiams is provided so that the
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behavior of segments belonging to figure and background edetier understood. Comparisons

between the naive approach, referred as single-scale, tlixedhold (SSF-T), and the iterative,

multi-scale threshold (IMS-T) approach are shown for athdats. In addition, we have included

a direct comparison between our method and WT’s method ubmg@riginal dataset.
1) Influence of the Signal-to-Noise Rati8aliency histograms were plotted for the different

SNR values used in [10] (see Fig. 14). For each histogram, see 81 images (9 figures and
9 backgrounds). It can be observed that, as SNR decrease® (regd) and background (blue)
histograms start overlapping more and more until they becomistinguishable. The larger the
overlap between figure and background histograms, the herde visually separate the figures
from the background. This observation agrees with the Vipaeception of the objects in the
image, as can be seen in Fig. 15. At some point, for instanbenveNR is below 10%, the
structures of the background are visually more distinqaliéd than the figure itself. This effect
is mainly due to the use of textures (i.e., leaves, bricks), @ background instead of random

noise.
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0 02
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(c) SNR up to 15%
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Saliency histograms assuming various SNR valueipdd for figure).c was set to 20 (i.e., voting field covers the

entire image). As SNR decreases, background and figureghésts overlap more and more until they become indistingiitgh

Fig. 16(a) shows the ROC curves obtained using the SSF-Toaplpr The scale was chosen

based on knowledge of the benchmark images @.&vas set equal to 20, yielding a voting field
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N - . - ~ 4y o=
(@) SNR=25% (b) SNR=25% (c) SNR=5%
Fig. 15. Examples of dataset images assuming increasing $NSRal perception of the objects in these images agreds wit

the saliency histograms for figure and background produgetémsor voting (Fig. 14). The larger the overlap betweenrégu

and background histograms, the harder is to visually segthenobjects from the background.

that covers the entire image). When SNR is below 10%, theepéon of the figure becomes
more difficult. The worst performance is for SNR=10% and SE®=Fig. 16(b) shows the ROC
curves obtained using the proposed iterative, multi-ssaleeme. The scale parameteraries
from 2 to 20 (covering from 5% to 100% of the imag&), was equal to 5%, and, Twas
equal to 50% (i.e., the saliency curve must be aboyenTat least half of the processed scales).
This allows structures to pop out in any region of the scahgea Significant improvements can
be noted by comparing Fig. 16(b) to Fig. 16(a). In additidre turve corresponding to SNR
up to 10% is closer to the ones corresponding to higher SNResafi.e., up to 25%, up to
20% and up to 15%). This indicates that the iterative, madtile approach deals with cluttered
scenes much better. Fig. 17 shows some representativésresuig the proposed approach.

The ROC curves of each approach can be compared side-byesid@antitative evaluation
purposes in Fig. 18. For the iterative approach, differéep sizesAT; were used (i.e., 5%, 10%
and 15%), showing no remarkable differences between e, athile showing a considerable
improvement over the naive approach for all SNR values.

To compare our results with those in [10], we have createts @bSNR vs FP, shown in Fig.
19(a). Specifically, it compares the results obtained ugiegSSF-T at T=30% - Fig. 16(a)), the
best result obtained by our iterative, multi-scale tensating scheme (i.e., 3 iterations using
AT,=5% - Fig. 16(b)), and the results reported in [10]. Sincerédsailts in [10] were not provided
explicitly, we used a ruler over a hard copy of their plots néer the values shown for their
method in Fig. 19(a).

Fig. 19(b) is a plot of SNR vs FN. In this case, a direct congmariwith [10] is not possible

since they do not report FN rates. As it can be seen from this,pbar iterative, multi-scale
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Fig. 16. (a) ROC curves corresponding to different SNR \&lifédhen SNR is up to 10%, the perception of the figures becomes
more difficult. This is reflected by the overlapping salierggtograms shown in Fig. 14. (b) ROC curves corresponding to
different SNR values using the iterative, multi-scale apgh withATs=5%. We can observe improvements in all ROC curves

compared to those obtained using the SSF-T approach shopartifa). In addition, the ROC curve for SNR up to 10% is closer

to those corresponding to higher SNR values indicating thatiterative, multi-scale approach can deal better withteted

images.

Fig. 17.
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Representative results using the proposed melthmpdo(a) avocado on bark with SNR up to 20%, (b) pear on wood

background with SNR up to 15%, (c) pear on wood with SNR up to 5%
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tensor voting approach shows improvements of more than 1vé6 [@0] when SNR is up to
25%, and improvements of almost 90% when SNR is up to 5%, viaéping a low FN rate.
Compared to SSF-T, the iterative, multi-scale approachrorgs figure vs noise discrimination
by 5% on the average for all SNR values considered. The grajgus show a significantly

smaller performance deterioration as SNR decreases.
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Fig. 19. Plots of (a) SNR vs FP and (b) SNR vs FN. The iterativalfi-scale tensor voting approach outperforms Williaarsl

Thornber’'s method [10] as well as the naive approach. Alsbas a low FN rate and performs consistently as SNR decreases

2) Incomplete Contour FiguresObjects with incomplete boundaries were included in our
benchmark to evaluate the performance of our method in tise cé open contours. Gaps
varying from 1/5 to 1/3 of the silhouette’s length were imlmeed in each figure by eliminating
adjacent segments (see Fig. 12(a)). Fig. 20 shows the sall@atograms of the same figure
when its contour is closed or open. Specifically, Fig. 20teves the saliency histogram of the
complete contour in clean background while Fig. 20(b) shtvessaliency histogram assuming
cluttered background. Fig. 20(c) shows the saliency histogof the same figure, with part of
its contour deleted, in clean background, while Fig. 20{vés the saliency histogram of the
same incomplete contour in cluttered background. The d¢iatos corresponding to incomplete
contours peak at the same position as those corresponditig toomplete contours, however,
they are rather wider. This is because the end segmentsigindysless salient, due to the fact
that they receive votes from one side of the contour only.

Fig. 21(a) shows the ROC curves obtained using the naiveoappr The scale was chosen

based on knowledge of the benchmark images (-ewas set equal to 20, yielding a voting
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Fig. 20. Saliency histograms (dashed for figure)vas set to 20 so that the voting field covers the entire imamesdliency
histogram of closed contour in clean background, (b) sajigmistogram in cluttered background, (c) incomplete conto

clean background, and (d) incomplete contour in clutteraeckfround.

field that covers the entire image). Figure 21(b) shows the&CRf@Drves obtained using the
proposed approach. The scale parametearies from 2 to 20 (covering from 5% to 100% of
the image) AT, was equal to 5%, and,Twas equal to 50% (i.e., the saliency curve must be
above T, in at least half of the processed scales). This allows strastto pop out in any region
of the scale range. Significant improvements can be noteth dyacomparing Fig. 21(b) to
Fig. 21(a). In addition, the ROC curve corresponding to SNiRia110% is closer to the ones
corresponding to higher SNR values (i.e., up to 25%, up to 20%up to 15%). This indicates
that the iterative, multi-scale approach can deal withteletl scenes much better even when
the objects have incomplete contours. Fig. 22 shows sonreseptative segmentation results
using the proposed approach. The ROC curves of each appcaacbe compared side-by-side
for quantitative evaluation purposes in Fig. 23. As it canobserved, the proposed approach
improves segmentation results for all SNR values.

3) Multiple Figures: In this set of experiments, we inserted multiple figures & game
absolute size over the background textures (e.g., see E{f))1Fig. 24 shows several repre-

sentative saliency histograms obtained in this case. Aanthe observed, saliency histograms
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Fig. 21. (a) ROC curves using the naive approach in the casecomplete contours, (b) ROC curves using the iterative,
multi-scale scheme for the same dataset. We can observeniements in all ROC curves compared to those obtained using
the naive approach shown in part (a). In addition, the RO®@ector SNR up to 10% is closer to those corresponding to higher
SNR values (i.e., SNR up to 25%, SNR up to 20% and SNR up to 1Bfdiating that the iterative, multi-scale approach can

deal better with cluttered images.
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Fig. 22. Representative results using the proposed melbmdin the case of incomplete contours: (a) peach on leavts w

SNR up to 25%, (b) banana on bark with SNR up to 25%, (c) avocedieaves with SNR up to 10%.
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corresponding to different objects tend to overlap withheather. This tends to make the differ-
entiation between each figure more difficult, but also stileegs the figure saliency compared
to the background. Fig. 25 shows the ROC curves correspgndirthe naive and proposed
approaches. Again, we can observe remarkable improvenusitig the iterative, multi-scale
approach. Fig. 26 shows representative results using énatiite multi-scale tensor voting in

three images belonging to the multiple figure dataset.

0021 0.012

003F

o
=4
=

17

0.0251

r ¥ ¥y r¥j
V¥

=
o
S

P(Saliency)
2
P(Saliency)

=
2
@

P(Saliency)

=
2

N N ?nﬂﬂo Hﬂﬂﬂn ?MM ﬂ“ﬂﬂ

aQ Q
0.8 1 1.2 -02 2 04 0.6 0.8 1 1.2 02 02

0.2 0 0.2 04 0.8 . 04 0.6
Saliency Saliency Saliency

(a) One Object (b) Two Objects (c) Three Objects
Fig. 24. Saliency histograms using multiple objects of theas absolute size. The parametewas set to 20 so that the voting

08 1 12

field covers the entire image.

60

IMST { AT, =100
——— SSFT

5006

400

3L

False Negatives

20

1006

e L L L . . .
0% 10% 2054 30% 40% 50% 600

False Positives
Fig. 25. ROC curves corresponding to the naive and propopprbaches using images composed of multiple figures of the

same absolute size. Remarkable improvements can be oBisartlee case of the proposed approach.

4) Figure Size Variation:To bring up the scale analysis issue (i.e., Fig. 12(c)), westsso
experimented with multiple figures having different sizgeS&ifically, we used three different
absolute sizes in our experiments: 20, 32 and 40 squaredsphkig. 27 shows representative

saliency histogram corresponding to one, two, and threectdbjof different size. A shift in
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Fig. 26. Representative results using the proposed meimdin the case of multiple figures of the same absolute g&ke:

apple and red onion on fabric ground, (b) banana and sweatgpoh bark ground, (c) three avocados on bark ground.

the histograms of the second figure (green) can be noticedialuits variation in size. This

reflects the fact that the scale chosen was more adequatedookmect than the other. In real
cases, these differences are even bigger, making objegspi@ut in different scales, that is,
objects present stronger saliency in certain scales thertFig. 28 shows the ROC curves for
the naive and proposed approaches. Again, we can obsenaekadnie improvements using the

iterative, multi-scale approach. Fig. 29 shows represepteesults using the proposed approach.
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Fig. 27. Saliency histograms corresponding multiple disjé@ving different size (striped - first, unchanged figusejvas set

to 20 so that the voting field covers the entire image. A shifthe histograms of the second figure can be noticed due to its

variation in size.

B. Part Il - Experiments on Natural Images
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Fig. 29. Representative results using the proposed melthmpdan the case of multiple figures having different size): tfgo

avocados on sand ground, (b) banana and tamarillo (largerfjood ground, (c) lemon and tamarillo (smaller) on brickuyro.

Among the five boundary detection methods evaluated on thkelBy dataset and post-
processed by our method, four of them (i.e., GM, MGM, TG, ar@d) Berform boundary
detection using a single cue while one of them (i.e., BTG) loimis information from two
different cues using the method of Martin et al. [33]. Eaclihrod produces a BPP map which is
used as input to IMS-T. IMS-T outputs a new BPP map by incatog perceptual organization
cues.

A common characteristic to all five methods is their reliannémage photometric information
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to build a BPP map. The GM method computes image gradient ioags at each pixel to
produce the BPP map. The gradients are estimated using afp@esussian derivative filters at
a unique, learned, optimal scale. Learning was performatyu200 training images from the
Berkeley segmentation dataset. The MGM method computegdrgeadient magnitudes at two
different scales to produce the BPP map. The gradients éreadsd at each pixel using pairs
of Gaussian derivative filters at two, also learned, optiswles. The BG method uses local
brightness gradients to obtain the BPP map. The gradieatsssimated using g2 difference in
the distribution of pixel luminance values of two half disEntered at a given pixel and divided
in half at the assumed boundary orientation.

The TG method uses local texture gradients to produce the BBP. The gradients are
estimated using a? difference in the distribution ofextonsof two half discs centered at a
given pixel and divided in half at the assumed boundary taigmn. Textons are computed by
clustering the responses of a bank of filters using K-meahe. Bank of filters was composed
of standard even- and odd-symmetric quadrature pair eteddamear filters. The BTG method
combines local brightness and texture gradients to obt@BPP. BTG has demonstrated one of
the best performances to date on the Berkeley segmentatimchimark. Additional information
about each of these methods can be found in [33].

Figure 30 shows the PRCs for each of the five boundary detestgthods tested. Each graph
also shows the corresponding PRC using SSF-T and IMS-T fst-pocessing. Each curve is
the average over 100 PRCs corresponding to the 100 test smiagke Berkeley segmentation
dataset. SSF-T curves represent the best result obtainedsbgg different scales. Table IV
shows the F-measure and AAC values for each PRC. As it canted,nat equal regime, SSF-T
is not able to improve any method, while IMS-T partially iroped one method (i.e., GM),
slightly degraded another method (i.e., TG), and partiadiproved or degraded the rest (i.e.,
MGM, BG, and BTG). Considering the AAC measure, however,-$3mproved two methods
(GM and BG), degrading the others, while IMS-T improved a#thods except TG. The reason
why TG was not improved by IMS-T is because most boundariaadausing texture gradient
violate the perceptual organization rules used by IMS-T.the methods shown improvement,
it is interesting to note that post-processing improved rémilts at certain thresholds, that is,

more improvements can be noticed at a high precision regime.
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TABLE IV TABLE V

RESULTING F-MEASURE (F) AT EQUAL REGIME AND AAC RESULTS BASED ON THEF-MEASURE AT EQUAL
FOR THE FIVE METHODS TESTED WITH AND WITHOUT REGIME OBTAINED BY POSFPROCESSING THE
POSFPROCESSING 100 TEST IMAGES FROM THEBERKELEY

Method Original w/ SSE-T w/ IMS-T DATASET USING THE METHOD PROPOSED
Flaac| F |aac | F | AaC Method | NIl | AIR | NID | ADR

GM | 56| 43 | 56| .41 | 57| .38 GM | 40 | 9.0%]| 60 | 5.3%
MGM | 58| 31 | 57| 32 | 58| .28 MGM | 35 | 55%| 65 | 3.7%
TG | 58| 21 | 56| 26 | 57| .24 TG | 24| 31%| 76 | 4.1%
BG | 60| .34 | 59| .33 | .60 .31 BG | 40 | 4.9%| 60 | 4.9%
BTG | 63| .28 | 61| 29 | 62| .26 BTG | 36 | 4.4%| 64 | 3.4%

Looking at the PRCs alone does not provide sufficient inféionato appreciate the benefits
of integrating perceptual organization cues with segniemaTables V and VI provide more
information to further analyze the results obtained by IMSSpecifically, each table shows
the actual Number of Images Improved (NII) after post-pssagg, the Average Improvement
Rate (AIR), the Number of Images Degraded (NID) after pastessing, and the Average
Degradation Rate (ADR) for each method. Table V shows theesatatistics using the F-
measure while Table VI shows the same statistics using th€ A&lue. The results based on
the F-measure indicate that although the number of imagpsowad is lower than the number
of images degraded, the average rate of improvement islysugher than the average rate of
degradation. In other words, the rate of improvement is érigbr the images improved than
the rate of degradation for the images damaged. Considdmengame statistics in the case of
AAC, it is more clear that IMS-T is really beneficial as a ppsbcessing step. It has not only
improved more images, the rate of improvement is also higheghe average. At the same time,
it has degraded less images with a lower rate on the average.

A detailed analysis of these results can reveal even mooennation about the kind of images
that are more likely to be improved by IMS-T. Table VII showg humber of images improved
by IMS-T, considering the F-measure at equal regime, x&db the F-measure obtained by the
original methods. The results show that 53% to 87.5% of thages resulting in F-measures

originally below .5 were improved. As the resulting F-measincreases, the rate of improved
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TABLE VI TABLE VI
RESULTS BASED ONAAC OBTAINED BY IMPROVEMENT BASED ON THEF-MEASURE AT EQUAL
POSFPROCESSING THELOOTEST IMAGES FROM REGIME RELATIVE TO THE ORIGINAL F-MEASURE.

THE BERKELEY DATASET USINGIMS-T.

Method | NIl | AIR | NID | ADR Method | [0..5] | (5.6] | (6..7]] (7.8]] (8,1]
GM | 71 | 8.4%]| 29 | 5.2% GM | 87.5%| 55.6%| 30.0%| 8.7% | 0.0%
MGM | 72 | 5.2%| 28 | 3.8% MGM | 75.0%| 51.9% | 23.5% | 5.0% | 0.0%
TG | 62 | 41%| 38 | 3.5% TG | 53.3%| 26.0% | 15.6%| 20.0%/| 0.0%
BG | 82| 6.9%]| 18 | 3.6% BG | 84.6%| 69.6% | 39.3%/| 6.5% | 0.0%
BTG | 84 | 7.2%| 16 | 3.6% BTG | 70.0%| 70.6% | 40.6% | 11.4%| 0.0%

images decreases. These results indicate that percepgaaization cues are especially beneficial
to images having low F-measures. Although we would have peement more to further verify

this observation, it appears that such images are not wplamed by the features extracted.
On the other hand, when the features extracted can explamage well, then post-processing

seems to have less effect.

TABLE VIII

IMPROVEMENT BASED ON THEAAC RELATIVE TO THE ORIGINAL F-MEASURE.

Method | [0,.5] | (5.6] | (6.7 (7.8]| (8,1]
GM | 87.5%| 92.6% | 60.0%| 52.2%| 50.0%
MGM | 87.5%| 85.2% | 58.8% | 70.0%| 33.3%
TG | 86.7%| 59.2% | 57.8%| 60.0%| 33.3%
BG | 92.3%| 95.7% | 67.9%| 77.4% | 100.0%
BTG | 70.0%| 100.0%| 84.4% | 82.9%| 66.7%

Table VIII shows the number of images improved by IMS-T, édaesng the AAC value
relative to the F-measure obtained by the original methadthough 70.0% to 92.3% of the
images resulting in F-measures originally below .5 wererowed, it is interesting to note that
high rates in general were achieved throughout the wholee&sore range. These results suggest
that independently of the performance achieved by a givethade it might be always possible

to improve its overall performance using perceptual orz@tion cues for post-processing.
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Figure 31 shows some boundary detection results for eachaaetith and without IMS-T.
As it can be observed, IMS-T eliminates noisy segments mifeeteely, preserving boundary

segments that satisfy the perceptual organization pilegipnderlying IMS-T.

VIlI. CONCLUSIONS ANDFUTURE WORK

We have presented a new approach for perceptual groupingiesfted segments in highly
cluttered images using an iterative, multi-scale tensdingoapproach. Our approach removes
noisy segments conservatively using multi-scale anabysisre-votes on the retained segments.
We have tested our approach on various datasets composeatityetic and real images. Our
experimental results with synthetic images indicate that method can segment successfully
objects in images with up to twenty times more noisy segm#rda object ones. Moreover,
it can handle objects with incomplete boundaries as well aktipfe objects having different
size. Overall, the proposed approach has shown to work wedihvapplied on highly cluttered
images, and it does not depend on any assumptions regattgngize, number, or boundary
completeness of the objects in the image. Our experimeesallts using real images show that
IMS-T improved up to 40% of the test images, when considettiegF-measure at equal regime
as a performance measure. These improvements were egpaoiited among images having
low F-measures originally, although, in general, a highenfggmance is more obvious at high
precision regime. When considering the AAC measure, IM®aproved up to 84% of the test
images and across the entire range of original F-measure.

The results obtained in this study look particularly ingtieg and encouraging to us. The
benefits of iterative, multi-scale segmentation are quéarcFor future work, we plan to improve
and extend the proposed approach in several ways. First,lavetp investigate the issue of
choosing the parameters of our method (i&,, AT, T,, I) automatically. We have reported
preliminary using on this issue a case-based thresholdingnse in [44]. The idea is classifying
saliency histograms in several cases by considering tlaivelposition of the modes of the
figure/ground distributions and applying specific actiomseach case. Another idea would be
employing learning using the 200 training images in the Bexk dataset. Second, we plan to
improve segmentation results by better preserving junstend corners. Small scales result in
higher saliency for points very close to a corner, howevsrseale increases votes from the

other edge of the corner blur the orientation estimate addaoe the saliency of such points. As
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a result, certain corners and junctions might be removedhduhe iterative process. One idea

is to use polarity information in order to preserve such t®[t9]. Third, we plan to consider

ways to speed-up our method. Although our analysis in SedWoshows that our method has

asymptotically the same complexity as voting at a singledfizeale, it might not be appropriate

for real-time applications. Finally, we plan to apply th@posed methodology in the context of

different segmentation problems such as region segmentati finding text regions in images

for automatic map annotation.
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@ (b) (© (d) (e)

Fig. 31. Visual comparison of results: (a) original graylscimages, (b) initial boundaries detected, (c) resultegndaries

by thresholding at the optimal F-measure (d) resulted baties using post-processing, thresholded at the optinmak&sure,
(e) ground truth.
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