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Abstract

Grouping processes, which ”organize” a given data by eliminating the irrelevant items and sorting the

rest into groups, each corresponding to a particular object, can provide reliable pre-processed information

to higher level computer vision functions, such as object detection and recognition. In this paper, we

consider the problem of grouping oriented segments in highly cluttered images. In this context, we

have developed a general and powerful method based on an iterative, multiscale tensor voting approach.

Segments are represented as second-order tensors and communicate with each other through a voting

scheme that incorporates the Gestalt principles of visual perception. The key idea of our approach

is removing background segments conservatively on an iterative fashion, using multi-scale analysis,

and re-voting on the retained segments.We have performed extensive experiments to evaluate the

strengths and weaknesses of our approach using both synthetic and real images from publicly available

datasets including the William and Thornber’s fruit-texture dataset [1] and the Berkeley segmentation

dataset [2]. Our results and comparisons indicate that the proposed method improves segmentation

results considerably, especially under severe backgroundclutter. In particular, we show that using the

iterative multiscale tensor voting approach to post-process the posterior probability map, produced by

segmentation methods, improves boundary detection results in 84% of the grayscale test images in the

Berkeley segmentation benchmark.

Index Terms

Segmentation, Boundary Detection, Grouping, Object Detection, Tensor Voting
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I. INTRODUCTION

Perceptual grouping (or organization) can be defined as the ability to detect organized struc-

tures or patterns in the presence of missing and noisy information. It has been proven to be

of fundamental importance in computer vision, providing reliable pre-processed information to

higher level functions, such as object detection and recognition. Indeed, many low-level vision

methods, such as edge labeling [3], rely on perfect segmentation and connectivity, producing

undesired results when these assumptions are not valid. Other methods, like shape from contour

[4], rely on connected edges, and can benefit from the removalof noise (i.e., erroneous segments).

Pattern recognition approaches, such as [5], also rely on connected edges, and usually fail

when the edge image is very fragmented. Besides, the complexity of such schemes is directly

proportional to the number of distinct primitives in the input. Still, the amount of noise is in

general directly proportional to the computational cost offinding true objects in a scene. By

using global perceptual organization cues on connecting fragmented edge images can alleviate

many of these problems.

Although perceptual grouping ability is present in different biological systems (e.g. visual

[6] and auditory [7]), in computer vision it has been simulated using empirical evidence based

primarily on research performed by the Gestalt psychologists [8]. Determining organized struc-

tures from a given set of points or edges can be a very difficulttask, as the actual measurement

of compatibility within a sub-set is not well defined. The Gestalt psychologists are considered

the first to address the issues of perceptual grouping. Several laws of how grouping might work

inside the human mind have been formulated, although their computational implementation turns

out to be non-trivial as they lead to conflicting interpretations.

Considering inputs in the form of edges, the Gestalt laws most relevant to computer vision have

been related to proximity and good continuation, usually represented in one expression called

saliency. Conversion of the saliency measure to a prior probability is commonly done, allowing

the perceptual grouping problem to be approached using probabilistic techniques [9]–[11]. Quite

frequently, perceptual grouping has also been tackled as anoptimization problem, where the

best or most perceptive configuration emerges after searching [3], [12]–[14]. Yet another way

of dealing with perceptual grouping is to consider each pixel or edgel as a node in a graph and

use a pair-wise saliency measure as the strength of the edgesof the graph [15]–[17]. A brief
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review of representative approaches is presented in II.

The use of a voting process for salient feature inference from sparse and noisy data was

introduced by Guy and Medioni [18] and then formalized into aunified tensor voting framework

in [19]. Tensor voting represents input data as tensors and interrelates them through voting

fields built from a saliency function that incorporates the Gestalt laws of proximity and good

continuation. The methodology has been used in 2D for curve and junction detection and for

figure completion in [20] and [21]. It has also been applied in3D for dense reconstruction from

stereo [22] or multiple views [23], and for tracking [24]. Examples of higher dimensional voting

include the 4D frameworks for epipolar geometry estimation[25] and motion analysis [26], the

8D method for the estimation of the fundamental matrix [27],and theND approach for image

repairing [28].

In this paper we propose a new approach for perceptual grouping of oriented segments in

highly cluttered images based on tensor voting. Similar problems have been considered in other

studies including [10], [15], and [14]. Specifically, we have developed an iterative tensor voting

scheme that removes noisy segments using multi-scale analysis, and re-votes on the retained

segments.The proposed approach has been motivated by two observations: (i) structures should

reach a maximum saliency when all segments that support themdo so and there are no more

segments to be added, and (ii) non-salient segments do not exhibit consistent stability over

multiple scales.

This paper aims at showing that this process results in better quality segmentations, specially

under severe background clutter. In contrast to traditional tensor voting approaches, that use

hard thresholding and single-scale analysis, our method removes noisy segments conservatively

according to their behavior across a range of scales. Then, it applies re-voting on the remaining

segments to estimate their saliency more reliably.It is worth mentioning that multi-scale tensor

voting approaches have been proposed before in the literature [25], [29], [30]. The main objective

of these approaches, however, was to determine an optimal scale for processing. In contrast, our

approach performs analysis over the entire range of scales.Moreover, iterative tensor voting

schemes have been adopted in [31], [32] in order to compute saliency more reliably. However,

these iterative scheme differ from the one proposed here in that the role of their iterations was

to strengthen salient structures enough to allow a single threshold to segment out clutter; our

scheme, on the other hand, removes clutter iteratively.
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We have performed extensive experiments and comparisons totest our approach using both

synthetic and real images. First, we experimented with a dataset introduced by Williams and

Thornber (WT) [1], [10]. Although containing real object contours, we consider this a synthetic

dataset due to the artificial way the images were created. To make this dataset more challenging

and the experiments more complete, we have augmented WT’s dataset by incorporating images

containing multiple objects having different sizes and incomplete boundaries. The synthetic

dataset provides important insight on the method’s strengths, allowing us to study special cases

that would be difficult to isolate in real, natural images. Second, we experimented with real

images from the Berkeley segmentation dataset [2], [33] andcompared our results to five other

methods that are among the top performers for this dataset. The objective of these experiments

is to demonstrate the effectiveness of our method, as well asits limitation in real scenarios. Our

results indicate that the proposed scheme improves segmentation results considerably, especially

under severe background clutter. It is worth mentioning that using the iterative, multiscale

tensor voting scheme to post-process the posterior probability maps produced by segmentation

methods, improves boundary detection in 84% of the grayscale test images in the Berkeley

segmentation dataset. An earlier version of this work, involving detection of single objects with

closed boundaries in synthetic images, has appeared in [34].

The rest of the paper is organized as follows: Section II provides a review of representative

perceptual grouping approaches. Section III summarizes the tensor voting framework and dis-

cusses the main challenges in applying it for perceptual grouping. Section IV presents the new

approach and provides a number of examples to illustrate themain ideas. Section V describes

the datasets used in our experiments and our evaluation methodology. Section VI presents our

experimental results and comparisons. Finally, conclusion and directions for future work are

presented in Section VII.

II. PERCEPTUAL GROUPING REVIEW

Perceptual grouping has been used in computer vision in different contexts and for different

applications. We review below a number of representative approaches.

Gestalt principles such as collinearity, co-curvilinearity and simplicity are noted to be important

for perceptual grouping by Lowe [12]. Ahuja and Tuceryan [9]were among the first to introduce

a method for clustering and grouping of sets of points based on an underlying perceptual pattern.
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Proximity and good continuation were used as compatibilitymeasures by Dolan and Weiss [3]

to the development of a hierarchical grouping approach. Grouping is performed by Mohan and

Nevatia [35] based on models of the desired features which are previously computed according

to the contents of the scene. In a later work [36], the same authors develop a grouping method

based explicitly on symmetries, performing the connectivity steps locally.

Ullman [37] deals with grouping of edge fragments as an optmization problem which suggests

that the smoothest line joining every pair of fragments should minimize the integral of the square

of the curvature. Although there is clearly a intuitive ideabehind this approach, one can note

that elliptical curves, for example, cannot be constructedby joining only a pair of circular arcs.

Also, as Guy and Medioni noted [38], this scheme cannot be promptly generalized to a set of

three or more edge fragments, and does not allow for outliers. The tensor voting framework

used in this work is in essence an extension of the idea above where otherwise a curve may

be formed (and/or approximated) by joining an unlimited number of (possibly) short circular

arcs, and outliers are dealt naturally. Parent and Zucker [39] proposed a relaxation labeling

scheme that utilizes local kernels incorporating co-circularity measures used to estimate tangent

and curvature. Very similar kernels are used in the tensor voting framework, but applied in a

different way. A saliency measure is proposed by Ullman and Shashua [15] to guide the grouping

process and eliminate erroneous features in the image. Their scheme tends to give preference to

long curves with low total curvature.

Hérault and Horaud [14] tackled the problem of segmenting oriented edges into figure and

ground as a quadratic programming problem, solved by simulated annealing. Saliency was

defined as a function of proximity, contrast, co-circularity and smoothness. An optimization step

searches for the configuration of image edgels that leads to the highest interactivity between

elements while minimizing an objective function which has two terms, one that accounts for the

total saliency of the edgel configuration, and another one that prevents trivial solutions, such as

all edgels selected. The latter one, although it is said to berelated to the signal-to-noise ratio

(SNR), it was not explained how to compute it and, in practice, it is very sensitive. Sarkar and

Boyer [16] make use of a saliency measure that includes, in addition to proximity and good

continuation, parallelism and perpendicularity in order to assess man-made land development

from aerial images. Clustering is done by computing the eigen-decomposition of an affinity

matrix composed of pairwise saliency measures.
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Recently, Williams and Thornber [10] have proposed a probabilistic approach based onClosed

Random Walks(CRWs). In their approach, saliency was defined relatively to the number of times

an edge is visited by a particle in a random walk. The main restriction assumed in their work

is that the movement has to start and finish on the same edge. This reduces the number of

paths to consider along with the complexity of the problem, however, it imposes a restriction

that is not practical. For example, objects in real images are not expected to be closed or well

formed, due to occlusions and pre-processing artifacts. Their technique was compared to five

other methods in the literature and found to outperform them. Mahamud et al. [11] generalized

the CRW technique to deal with multiple salient contours, but still closed.

Summarizing the main features of the methods above and contrasting them to the tensor

voting framework, it is interesting to note that virtually all of them use local operators to infer

a more global structure.Also, many of them are inherently iterative, relying on optimization

techniques (e.g., relaxation or minimization), which are sensitive on initialization and are subject

to instabilities.The main difference among these methods is in the choice of the compatibility

measures employed or the function to be minimized.

III. PERCEPTUAL GROUPING USING TENSORVOTING

A. Tensor Voting Framework

In the framework proposed by Medioniet al. [19], input data is encoded as elementary tensors.

Support information (including proximity and smoothness)is propagated from tensor to tensor

by vote casting. Tensors that lie on salient features (i.e.,curves in 2D, or curves and surfaces in

3D) strongly support each other and deform according to the prevailing orientation, producing

generic tensors. Each such tensor encodes the local orientation of features, given by the tensor

orientation, and their saliency, given by the tensor shape and size. Features can then be extracted

by examining the tensors resulting from voting.

Fig. 1 illustrates the voting process for the extraction of salient curves from a noisy set of

2D points. The input points (Fig. 1(a)) are initially encoded as ball tensors, equivalent to circles

in 2D, as shown in Fig. 1(b). The voting process allows tensors to propagate their position

information in a neighborhood, such that, (i) tensors that lie on a salient curve strongly reinforce

each other and deform according to the prevailing orientation (normal to the curve), and (ii)
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(a) (b) (c)
Fig. 1. Tensor voting example: (a) input points, (b) ball tensor encoding, (c) deformation of tensors reveals the salient curve.

isolated tensors receive little support, as they do not correspond to any underlying salient curve,

and therefore can be identified as noise (see Fig. 1(c)).

1) Tensor Representation and Voting:In 2D, a generic tensor can be visualized as an ellipse.

It is described by a 2× 2 eigen-system, where eigenvectorse1, e2 give the ellipsoid orientation

and eigenvaluesλ1, λ2 (with λ1 ≥ λ2) give its shape and size. The tensor is represented as a

matrix S:

S = λ1 · e1e
T
1

+ λ2 · e2e
T
2

(1)

There are two types of features in 2D - curves and points (junctions) - that correspond to

two elementary tensors. A curve element can be intuitively encoded as astick tensorwhere one

dimension dominates (i.e., along the curve normal), while the length of the stick represents the

curve saliency (i.e., confidence in this knowledge). A pointelement appears as aball tensor

where no dimension dominates, showing no preference for anyparticular orientation.

Input tokens are encoded as such elementary tensors. A pointelement is encoded as a ball

tensor, withe1, e2 being any orthonormal basis, whileλ1 = λ2 = 1. A curve element is encoded as

a stick tensor, withe1 being normal to the curve, whileλ1 = 1 andλ2 = 0. Tokens communicate

through a voting process, where each token casts a vote at each token in its neighborhood. The

size and shape of this neighborhood, and the vote strength and orientation are encapsulated in

predefined voting fields (kernels), one for each feature type- there is a stick voting field and

a ball voting field in the 2-D case. Revisiting the example in Fig. 1, note that the input was

encoded as ball tensors. However, if some orientation information is initially known (e.g., from

edge detection), the input can be simply encoded using sticktensors.

At each receiving site, the collected votes are combined through simple tensor addition,

producing generic tensors that reflect the saliency and orientation of the underlying salient

features. Local features can be extracted by examining the properties of a generic tensor, which
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can be decomposed in its stick and ball components:

S = (λ1 − λ2) · e1e
T
1

+ λ2 · (e1e
T
1

+ e2e
T
2
) (2)

Each type of feature can be characterized as: (a)Curve - saliency is (λ1−λ2) and orientation

is e1, and (b)Point - saliency isλ2 with no preferred orientation. After voting, curve elements

can be identified as they have a large curve saliencyλ1 − λ2 (appear as elongated tensors),

junction points have a large point saliencyλ2 and no preferred orientation (appear as large ball

tensors), while noisy points have low point saliency. Therefore, the voting process infers curves

and junctions simultaneously, while at the same time identifying outliers, that is, tokens with

little support. The method is robust to considerable amounts of outlier noise and does not depend

on critical thresholds, the only free parameter being the scale factorσ which defines the voting

fields.

2) Vote Generation:The vote strengthVS(
−→
d ) decays with the distance|

−→
d | between voter

and recipient, and with the curvatureρ:

V S(
−→
d ) = exp(−

|
−→
d |2 + c · ρ2

σ2
) (3)

where c is a constant regulating the relative effects of distance and curvature.The vote

orientation corresponds to the smoothest local continuation from voterto recipient (see Fig.

2). A tensorP with locally known curve information, illustrated by curvenormal
−→
Np, casts a

vote at its neighborQ. The vote orientation is chosen to ensure a smooth curve continuation

through a circular arc from voterP to recipientQ. To propagate the curve normal
−→
N thus

obtained, the voteVstick(
−→
d ) sent fromP to Q is encoded as a tensor according to:

Vstick(
−→
d ) = V S(

−→
d ) ·
−→
N
−→
N T (4)

It should be noted that, the vote strength atQ
′

and Q
′′

is smaller than atQ due to the fact

thatQ
′

is farther away andQ
′′

corresponds to a higher curvature thanQ. Fig. 2(b) shows the 2D

stick field, with its color-coded strength. When the voter isa ball tensor, with no information

known locally, the vote is generated by rotating a stick votein the 2D plane and integrating all

contributions according to equation 5. The 2D ball field is shown in Fig. 2(c).

Vball(
−→
d ) =

∫
2π

0

RθVstick(R
−1

θ

−→
d )RT

θ dθ (5)
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(a) (b) (c)
Fig. 2. Vote generation in 2-D: (a) decay function used by tensor voting framework, (b) stick voting field, and (c) ball voting

field.

Table I shows a summary of the geometric features that appearin a 2D space and their

representation aselementary2D tensors, wheren andt represent the normal and tangent vector

respectively. From ageneric 2D tensor that results after voting, the geometric featuresare

extracted as shown in Table II. The framework can be readily extended to higher dimensions,

for example, in 3D the features are points, curves or surfaces, corresponding to ball, plate, or

stick tensors, all expressed as 3× 3 eigen-systems.

TABLE I

ELEMENTARY TENSORS IN2-D

Feature λ1 λ2 e1 e2 Tensor

point 1 1 Any orthonormal basis Ball

curve 1 0 n t Stick

TABLE II

ELEMENTARY TENSORS IN2-D

Feature Saliency Normal Tangent

point λ2 none none

curve λ1 − λ2 e1 e2

The space complexity of the voting process is O(n), wheren is the input size (i.e., total number

of candidate tokens). The average time complexity is O(mn) wherem is the average number of

candidate tokens in the neighborhood. Therefore, in contrast to other voting techniques, such as

the Hough Transform, both time and space complexities of thetensor voting methodology are

independentof the dimensionality of the desired feature.

B. Grouping Using Tensor Voting

Although the tensor voting framework has only one free parameter, the scaleσ, several other

issues must be considered carefully when employing it for perceptual grouping and segmentation.

The voting dimensionality, the features to be used as tokens, and the encoding of the input tokens

are important issues that need consideration.
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The voting dimensionality is determined by the number of features used to represent the

problem. Ideally, a small number of features with maximal representation capability is desired.

This raises the issue of what features to use. First, the features chosen must be in the Euclidean

space, or at least be scaled to, so that the decay function which establishes the vote strength is a

valid one, as suggested in [40]. Pixel coordinates, edgel orientation and gradient, are examples

of features commonly used for raster images or their edge-based counterparts. Color information

should be represented in terms of hue, intensity or any other(quasi-)Euclidean measure, instead

of RGB.

Token encoding has considerable impact on the performance of tensor voting. It was mentioned

earlier that an input token can be initialized either as a ball or a stick tensor in 2D. The benefits

of using stick tensors instead of ball tensors in 2D, can be easily understood by comparing the

voting fields of Figs. 2(b) and 2(c). Stick voting fields coversmaller regions and, in general,

require fewer vote castings than ball voting fields, allowing faster computations. Although this

choice is not extremely critical in the voting results, stick encoding allows the introduction of

prior knowledge in terms of the tokens’ preferred direction(e.g., edgel orientation) and should

be used whenever it is possible.

In the case of edges, one can choose among several different tensor representations as shown

in Fig. 3. One way would be assigning a ball tensor to each pixel of the edge contour as shown in

Fig. 3(b). Alternatively, one could assign a stick tensor toeach pixel with position and orientation

determined the pixel and its adjacent neighbors (see Fig. 3(c)). The main disadvantage of the

above representations is that they lead to a large number of tensors, increasing computational

requirements. Alternatively, one could choose a subset of representative pixels along the edge

contour and initialize them as ball or stick tensors (see Fig. 3(d)). This would lead to a more

economical representation and lower computational requirements.

We have adopted this last approach in our study. Using the middle and/or end pixels along the

edge contour can yield good support for short edge segments,however, this choice would not

work well for long edge segments since the distance between tokens plays an important role in

the voting process. Here, we propose re-sampling the edge contour into a number of equi-distant

points using a fixed sampling step. Then, we initialize the tensor voting framework by encoding

sampled points as stick tensors with position and orientation determined by the position and

gradient information of the sampled points.
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(a) (b) (c) (d)
Fig. 3. Various tensor initializations using edge contours: (a) edge contour, (b) each pixel on the edge contour could be

considered to be a token and initialized as a ball tensor, (c)each pixel on the edge contour could be considered to be a token

and initialized as a stick tensor tangent to the curve, (d) a subset of the edge pixels, obtained through sub-sampling, could be

considered to be tokens and initialized as stick tensors tangent to the contour.

Another issue that needs consideration is the selection of the scale parameterσ. In [40], it was

found that tensor voting has low sensitivity with respect toσ. However, finding the appropriate

σ value might not be easy in practice. It is well known that small scales capture local structures

while large scales capture global configurations. In a real scenario, it is unlikely that we would

have anya-priori information about the size of objects in the scene, making the choice ofσ a

”trial-and-error” process. In general, the choice of the scale parameter will vary from application

to application, or even worse, from image to image.

Analyzing information at a single scale can compromise or make hard the detection of

structures with different sizes. This situation can be illustrated using an image containing two

similar figures, one smaller than the other, as shown in Fig. 4. To help visualization, we have

plotted ”Scale versus Saliency” curves, thereafter calledsaliency curves. Specifically, a saliency

curve is computed by voting in different scales and computing the saliency of each segment

in each scale. We then normalize the saliency curves according to the average saliency of all

segments in the image in order to prevent a monotonically increasing curve. This is due to the

fact that, as the voting neighborhood increases, segment saliency also increases simply because

new segments are considered.

As the voting neighborhood increases, the smaller circle starts becoming more salient since

more of its segments are considered in the voting process. Its saliency maximum is reached when

the voting neighborhood contains all its segments, (i.e., at aroundσ=10). After this point, not

having any more segments to strengthen its saliency, the smaller circle starts ”losing” saliency

for the larger one, which becomes more salient as more of its segments are included in the

voting neighborhood. Once the larger circle reaches its maximum saliency, at aroundσ=35, its
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(a) (b)
Fig. 4. (a) Two circles with different sizes and few segmentshighlighted, (b) normalized saliency curves corresponding to the

segments selected (dashed for smaller circle). The saliency of the smaller circle increases until the voting neighborhood contains

all of its segments. After this point, it is surpassed by the saliency of the larger circle, which keeps increasing until it reaches

its own maximum.

saliency curves stabilize since there are no more segments to consider beyond this scale.

Another important issue when segmenting a figure from the background is the choice of a

threshold for filtering out non-figure segments. It is reasonable to expect that if the saliency

values of the figure are quite higher than those of the background, then it would be easy to

find a threshold value that separates them completely. Fig. 5shows a simple example where we

consider a well-formed circle surrounded by random noise atSNR=70%. By applying tensor

voting and observing its saliency histogram shown in Fig. 5(b), it becomes evident that by

eliminating segments with a saliency value below a threshold T=45%, all noisy segments are

filtered out while all figure segments are preserved (see Fig.5(c)).

(a) (b) (c)
Fig. 5. A simple example where figure and background can be separated easily using a single threshold: (a) original image,

(b) saliency histogram (striped for figure) and the optimal threshold T, (c) resulting segmentation.

However, this is hardly the case in practice. Let us considerthe image shown in Fig. 6(a).

Applying tensor voting to the original image and plotting the corresponding saliency curves
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(Fig. 6(b)) (only curves that overlap are shown) and saliency histogram (Fig. 6(c)), we can

easily conclude that there is no threshold value able to provide a perfect figure-background

segmentation. Although the saliency histogram shown in Fig. 6(c) corresponds to one, high

scale, the same happens at different scales as well. Moreover, even if we were able to choose

an optimal threshold in some way, the number of misclassifiedsegments would be unavoidably

large as shown in Figs. 6(d), 6(e), 6(f).

(a) (b) (c)

(d) (e) (f)
Fig. 6. An image with SNR=15% processed by different threshold values. A unique, fixed threshold value (T) cannot produce

a good segmentation at any scale. (a) original image, (b) overlapping saliency curves corresponding to segments of the figure

(dashed) and the background, (c) saliency histogram (striped for figure) and 3 threshold choices: (d) T=40%, (e) T=55%, and

(f) T=70%.

IV. I TERATIVE MULTI -SCALE TENSORVOTING

The example of Fig. 6 illustrates that a high threshold valuecould eliminate parts of the

figure while a low threshold value could preserve too many background segments, leading to

poor segmentation results in both cases. Aiming at eliminating the largest number of background

segments while preserving as many figure ones as possible, wehave developed an iterative tensor

voting scheme based on multi-scale analysis and re-voting.The key idea is conservatively re-

moving segments from the image in an iterative fashion, and applying re-voting on the remaining

segments to estimate saliency information more reliably. Improvements in figure segmentation
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come from two facts: (i) after each iteration, low saliency segments are filtered out and, (ii) after

the subsequent re-voting steps, background segments get less and less support. Fig. 7 illustrates

this idea using the example shown in Fig. 6. As more and more background segments are

eliminated, the saliency difference between figure and background segments becomes more and

more pronounced.

(a) (c)

(b) (d)
Fig. 7. Conservative elimination of segments improves discrimination between figure and background segments after re-voting:

(a) image with a few segments selected from ground and figure,(b) saliency curves (dashed for figure) for selected segments

showing overlap in various scales, (c) image after conservative thresholding which eliminates some spurious segments, (d)

saliency curves (dashed for figure) after re-voting showingbetter separation between figure and background segments.

From an implementation point of view, the conservative elimination of low saliency segments

is performed by applying a low thresholdTs, which, in most cases, removes background segments

only. In the next iteration, a new saliency map is obtained using re-voting, without considering

the eliminated segments this time. After re-voting, the threshold value is increased to adapt to

the strengthening of figure saliency due to the elimination of background segments. In practice,

we slightly increaseTs after each re-voting session by a fixed amount∆Ts.

Multi-scale analysis is incorporated to this scheme by voting in a number of scales and

thresholding according to the behavior of saliency in thesescales.The key idea is that non-

salient segments do not exhibit consistent stability over multiple scales, an idea motivated by

scale-space theory [41]. Specifically, the saliency curve of a segment is computed byvoting in
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different scales and computing the saliency of that segmentin each scale. Segments are then

eliminated if they do not present any significant saliency peaks across a range of scales. This

will preserves salient segments of any size. Algorithmically, this is implemented by counting

the number of scales that the saliency curve stays above the thresholdTs. If this number does

not exceed another thresholdTσ, then we consider that the corresponding segment does not

have strong saliency and it is eliminated. Fig. 8 illustrates this procedure. As mentioned in the

previous section, we normalize the saliency curves according to the average saliency of all the

segments in the image.

(a) (b)

Fig. 8. Illustration of thresholdsTs andTσ: (a) the number of times a saliency curve is aboveTs is computed, (b) segments

whose saliency curves do not reach a number of times more thanTσ are eliminated.

Below, we present the pseudo-code of the iterative, multiscale tensor voting scheme. The input

to the algorithm are the number of iterationsI, number of scalesK, and the size of the input

image (i.e., width Wimg and height Himg). ∆Ts is the amount by whichTs is incremented in each

iteration to account for stronger saliencies due to the formation of more organized structures as

clutter is eliminated (see Fig. 9).

1. Initialize I, K, Ts, Tσ and∆Ts

2. Set i← 0, m← max{Himg, Wimg}, andσj ←
j×m

K
, j = 1, 2, ..., K

3. While i less thanI:

3.1. Apply tensor voting at scalesσ ← σ1, σ2, ..., σK

3.2. Eliminate segments with saliency belowTs more thanTσ times

3.3. Ts ← Ts + ∆Ts

3.4. i← i + 1
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The iterative multiscale voting scheme can be implemented efficiently without requiring to

compute the votes from in a brute-force manner at each iteration or at each scale. Specifically,

the votes at iterationi can be computed from the votes at iterationi− 1 by simply subtracting

the votes cast at iterationi− 1 by the low saliency segments eliminated at iterationi. Similarly,

the votes at a given scaleσj can be computed from the votes at the immediate lower scaleσj−1.

Since the voting neighborhood increases as the scale increases, we need to compute and add

only votes corresponding to segments that lie in area corresponding to the difference between

the two neighborhoods.

The complexity of the iterative scheme is asymptotically the same to the complexity of the

original tensor voting scheme at a fixed scale. Specifically,let us assume that there areN

segments in the image andM of them are contained in the voting neighborhood for a given

fixed scale; then, the complexity of voting isO(NM) or O(N2) sinceM = O(N). In the case

of iterative voting, we performI iterations and vote atK different scales in each iteration. The

complexity of voting at each scaleσj is O(NMj) wherej = 1, 2, ..., K andMj is the number of

segments contained in the difference of the neighborhoods corresponding toσj andσj−1. Since

Mj = O(N), and K = O(1), the complexity at each iteration would beO(N2). The overall

complexity would beO(N2) sinceI = O(1).

Fig. 9 shows the behavior of figure (dashed) and background saliency curves during different

iterations of the proposed approach. The input image has SNR=15% (i.e., about 7 times more

background segments than figure ones). The threshold valueTs goes from 10 up to 40 with

a ∆Ts=10%. The voting was performed with aσ ranging from 1 (5% of image size) to 20

(100% of image size).It should be mentioned that we experimented with different∆Ts values

or numbers of scales, however, we did not notice significant differences in our results except

when using a rather big∆Ts value or a rather small number of scales.The improvements over

using the naive approach (i.e., fixed threshold and single scale - see Fig. 6) are remarkable. A

quantitative comparison can reveal the benefits of the proposed scheme. In Fig. 6, using T = 55%

(Fig. 6(e)), 10 out of 40 figure segments were eliminated (FN rate equal to 25%) and 19 out of

270 ground segments were not filtered out (FP rate equal to 7%). In contrast, our methodology

eliminated 2 out of 40 figure segments (FN rate equal to 5%) anddid not filter out 3 out of 270

ground segments (FP rate equal to 1%).
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Fig. 9. Image with 15% SNR processed by our iterative, multi-scale tensor voting scheme. By conservatively eliminating

low saliency segments, the saliency difference between figure (dashed) and background segments becomes more and more

pronounced. Each column shows: (i) resulting image, (ii) saliency curves of segments in the ambiguity region, and (iii)saliency

histogram at the highest scale. By row: First - Original image. Second - Resulting image using Ts = 10%. Third - Resulting

image using Ts = 20%. Fourth - Resulting image using Ts = 30%. Fifth - Resulting image using Ts = 40%.
DRAFT
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V. DATASETS AND EVALUATION METHODOLOGY

We have divided our experiments in two parts. In the first part, we have performed a series

of experiments using synthetic images based on the set of fruit and texture sampled silhouettes

used in [10]. The objective of this set of experiments is to consider different figure-ground

configurations in order to get important insight on the method’s strengths, allowing us to study

special cases that would be difficult to isolate in real, natural images. The second part reports

test results on the Berkeley segmentation dataset and benchmark [33]. The objective of this set

of experiments is to demonstrate the effectiveness of our method, as well as its limitation in real

scenarios.

Part I of our experiments was performed with synthetic images created from a pair of sampled

silhouettes belonging to a fruit or a vegetable (thereaftercalled figure) and textured background

(thereafter called background). Nine figure silhouettes were re-scaled to an absolute size of 32x32

and placed in the middle of nine 64x64 re-scaled background windows. We have experimented

with five different SNR values in order to reduce the number offigure segments proportionally

to the number of background segments. Further details regarding this benchmark can be found

in [10]. The images used to build the benchmark are shown in Fig. 10. Fig. 11 shows some

examples of benchmark images for different SNRs.

(a) Figure (b) Background
Fig. 10. Images used to build the benchmark (publicly available at [1]).

This set of images offers a good synthetic dataset for experimentation and comparison pur-

poses. It is composed of real objects in real backgrounds which is more challenging than images

containing a random background which is typically used. Nevertheless, since the objects have
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(a) SNR=20% (b) SNR=15% (c) SNR=10%
Fig. 11. Examples of benchmark images from [10] at differentSNRs.

always a closed contour and placed in the same position and scale, this dataset lacks realistic

characteristics that would make it more challenging.

We have augmented WT’s dataset by using the same objects and backgrounds, however, we

have incorporated new characteristics in order to make it more realistic. In particular, we have

created more test images by varying the number of figures and their size, and by removing parts

of their boundary, opening their silhouette. Fig. 12 shows some examples from the extended

benchmark. Table III summarizes the different datasets used in our experiments. Note that for

the datasets with more than one figure, only one SNR was used since the number of background

segments in WT’s was limited.It is worth mentioning that in Williams and Thornber’s evaluations

[10], different algorithms were tested by comparing the setof N most salient segments returned

by each algorithm, whereN is the number of foreground segments. Our algorithm makes a

decision on each segment without assuming knowledge ofN .

(a) (b) (c)
Fig. 12. Examples from the extended benchmark: (a) open figure contour, (b) multiple figures, (c) multiple instances of the

same figure with different sizes.

In this part, quantitative evaluations and comparisons with other methods were performed

using Receiver Operational Characteristic (ROC) curves (i.e., False Positives (FP) versus False

Negatives (FN) plots). A FN is a figure segment detected as background while a FP is a
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TABLE III

DIFFERENT DATASETS BUILT FROM9 OBJECTS, 9 BACKGROUNDS AND 5 SNRS.

Dataset Images Characteristics SNR

Single figure 405 one object, one background 25%− 5%

Incomplete figure contour 405 one object, one background 25%− 5%

Multiple figures 1458 two or three objects, one background 25%

Figures with different size 1458 two objects, one background 25%

background segment detected as figure. For each dataset, theROC curves are average ROC

curves over all the images in the dataset. In order to allow a direct comparison with WT’s

method [10], we also show SNR vs FP and SNR vs FN plots.

We have also performed additional experiments using the Berkeley Segmentation dataset and

benchmark [2], [33]. In order to evaluate the contribution of our method in real boundary

detection and segmentation scenarios, we used our method topost-process the Boundary Posterior

Probability (BPP) map produced by five different segmentation methods from the Berkeley

segmentation benchmark: Brightness Gradient (BG), Gradient Magnitude (GM), Multi-Scale

Gradient Magnitude (MGM), Texture Gradient (TG), and Brightness/Texture Gradients (BTG).

Thresholding the BPP map yields a set of boundaries in an image. The output of our method is

a new BPP map which is computed by counting the number of iterations each pixel survived the

elimination process. The longer a pixel is conserved, the higher is its probability to belong to

an organized structure in the image. For evaluation, we usedthe gray-scale test images and the

corresponding BPP maps from the Berkeley segmentation benchmark. Pixels in the BPP map

were encoded as tensors whose size was given by the BPP intensity and direction by the normal

to the edge direction crossing the pixel.

To quantify boundary detection results, we used Precision-Recall Curves (PRCs) like in the

Berkeley segmentation benchmark. PRCs reflect the trade-off between true boundary pixels

detected and non-boundary pixels detected at a given threshold. It should be mentioned, however,

that all comparisons in the Berkeley benchmark were carriedout using the F-measure [42], which

is a weighted harmonic mean of precision (P) and recall (R):F = PR/(αR + (1−α)P ) where

(α) is a weight. The value ofα was set to.5 in [33] which is usually called theequal regime.

Different values of (α) allow for different regimes (e.g.,high precision regimefor α > .5, or
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high recall regimefor α < .5).

To avoid any bias towards a specific regime and evaluate overall performance more objectively,

we have also computed the Area Above the precision-recall curve (AAC) in our experiments.

The use of AAC’s dual, the Area Under a Curve (AUC), has been investigated in other studies

(e.g., [43]), suggesting that AUC is a better measure for evaluating overall performance instead

of using a single measurement on the curve. In our case, our objective is minimizing AAC in

order to improve both precision and recall rates.

A BPP map can be visualized as an image whose pixel intensity encodes the probability that

a pixel lies on a boundary. The higher the pixel intensity, the higher the probability that the pixel

lies on a boundary. Figures 13 (b)-(f) show the BPP map computed by each of these methods

for the images in Fig. 13(a). The ground truth obtained by fivehuman subjects is shown in

Fig. 13(f). All five methods above have been previously evaluated on the Berkeley dataset and

represent some of the top performers. The BPP maps, specific results and ranking information

for each method are publicly available from the Berkeley benchmark website [2].

(a) (b) (c) (d) (e) (f) (g)
Fig. 13. The BPP map computed by the methods tested in our study: (a) original image, (b) GM BPP map, (c) MGM BPP

map, (d) TG BPP map, (e) BG BPP map, (f) BGT BPP map, (g) ground truth.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

A. Part I - Experiments on Synthetic Images

We have performed extensive experiments in order to evaluate our methodology using the

datasets discussed in Section V. Analysis of the saliency histograms is provided so that the
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behavior of segments belonging to figure and background can be better understood. Comparisons

between the naive approach, referred as single-scale, fixedthreshold (SSF-T), and the iterative,

multi-scale threshold (IMS-T) approach are shown for all datasets. In addition, we have included

a direct comparison between our method and WT’s method usingthe original dataset.

1) Influence of the Signal-to-Noise Ratio:Saliency histograms were plotted for the different

SNR values used in [10] (see Fig. 14). For each histogram, we used 81 images (9 figures and

9 backgrounds). It can be observed that, as SNR decreases, figure (red) and background (blue)

histograms start overlapping more and more until they become indistinguishable. The larger the

overlap between figure and background histograms, the harder is to visually separate the figures

from the background. This observation agrees with the visual perception of the objects in the

image, as can be seen in Fig. 15. At some point, for instance, when SNR is below 10%, the

structures of the background are visually more distinguishable than the figure itself. This effect

is mainly due to the use of textures (i.e., leaves, bricks, etc) as background instead of random

noise.

(a) SNR up to 25% (b) SNR up to 20%

(c) SNR up to 15% (d) SNR up to 10% (e) SNR up to 5%
Fig. 14. Saliency histograms assuming various SNR values (striped for figure).σ was set to 20 (i.e., voting field covers the

entire image). As SNR decreases, background and figure histograms overlap more and more until they become indistinguishable.

Fig. 16(a) shows the ROC curves obtained using the SSF-T approach. The scale was chosen

based on knowledge of the benchmark images (i.e.,σ was set equal to 20, yielding a voting field
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(a) SNR=25% (b) SNR=25% (c) SNR=5%
Fig. 15. Examples of dataset images assuming increasing SNR. Visual perception of the objects in these images agrees with

the saliency histograms for figure and background produced by tensor voting (Fig. 14). The larger the overlap between figure

and background histograms, the harder is to visually segment the objects from the background.

that covers the entire image). When SNR is below 10%, the perception of the figure becomes

more difficult. The worst performance is for SNR=10% and SNR=5%. Fig. 16(b) shows the ROC

curves obtained using the proposed iterative, multi-scalescheme. The scale parameterσ varies

from 2 to 20 (covering from 5% to 100% of the image),∆Ts was equal to 5%, and Tσ was

equal to 50% (i.e., the saliency curve must be above Ts in at least half of the processed scales).

This allows structures to pop out in any region of the scale range. Significant improvements can

be noted by comparing Fig. 16(b) to Fig. 16(a). In addition, the curve corresponding to SNR

up to 10% is closer to the ones corresponding to higher SNR values (i.e., up to 25%, up to

20% and up to 15%). This indicates that the iterative, multi-scale approach deals with cluttered

scenes much better. Fig. 17 shows some representative results using the proposed approach.

The ROC curves of each approach can be compared side-by-sidefor quantitative evaluation

purposes in Fig. 18. For the iterative approach, different step sizes∆Ts were used (i.e., 5%, 10%

and 15%), showing no remarkable differences between each other, while showing a considerable

improvement over the naive approach for all SNR values.

To compare our results with those in [10], we have created plots of SNR vs FP, shown in Fig.

19(a). Specifically, it compares the results obtained usingthe SSF-T at T=30% - Fig. 16(a)), the

best result obtained by our iterative, multi-scale tensor voting scheme (i.e., 3 iterations using

∆Ts=5% - Fig. 16(b)), and the results reported in [10]. Since theresults in [10] were not provided

explicitly, we used a ruler over a hard copy of their plots to infer the values shown for their

method in Fig. 19(a).

Fig. 19(b) is a plot of SNR vs FN. In this case, a direct comparison with [10] is not possible

since they do not report FN rates. As it can be seen from the plots, our iterative, multi-scale
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(a) (b)
Fig. 16. (a) ROC curves corresponding to different SNR values. When SNR is up to 10%, the perception of the figures becomes

more difficult. This is reflected by the overlapping saliencyhistograms shown in Fig. 14. (b) ROC curves corresponding to

different SNR values using the iterative, multi-scale approach with∆Ts=5%. We can observe improvements in all ROC curves

compared to those obtained using the SSF-T approach shown inpart (a). In addition, the ROC curve for SNR up to 10% is closer

to those corresponding to higher SNR values indicating thatthe iterative, multi-scale approach can deal better with cluttered

images.

(a) (b) (c)
Fig. 17. Representative results using the proposed methodology: (a) avocado on bark with SNR up to 20%, (b) pear on wood

background with SNR up to 15%, (c) pear on wood with SNR up to 5%.
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(a) SNR up to 25% (b) SNR up to 20%

(c) SNR up to 15% (d) SNR up to 10%

(e) SNR up to 5%
Fig. 18. ROC curves for the SSF-T and the IMS-T
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tensor voting approach shows improvements of more than 14% over [10] when SNR is up to

25%, and improvements of almost 90% when SNR is up to 5%, whilekeeping a low FN rate.

Compared to SSF-T, the iterative, multi-scale approach improves figure vs noise discrimination

by 5% on the average for all SNR values considered. The graphsalso show a significantly

smaller performance deterioration as SNR decreases.

(a) (b)
Fig. 19. Plots of (a) SNR vs FP and (b) SNR vs FN. The iterative,multi-scale tensor voting approach outperforms William’sand

Thornber’s method [10] as well as the naive approach. Also, it has a low FN rate and performs consistently as SNR decreases.

2) Incomplete Contour Figures:Objects with incomplete boundaries were included in our

benchmark to evaluate the performance of our method in the case of open contours. Gaps

varying from 1/5 to 1/3 of the silhouette’s length were introduced in each figure by eliminating

adjacent segments (see Fig. 12(a)). Fig. 20 shows the saliency histograms of the same figure

when its contour is closed or open. Specifically, Fig. 20(a) shows the saliency histogram of the

complete contour in clean background while Fig. 20(b) showsthe saliency histogram assuming

cluttered background. Fig. 20(c) shows the saliency histogram of the same figure, with part of

its contour deleted, in clean background, while Fig. 20(d) shows the saliency histogram of the

same incomplete contour in cluttered background. The histograms corresponding to incomplete

contours peak at the same position as those corresponding tothe complete contours, however,

they are rather wider. This is because the end segments are slightly less salient, due to the fact

that they receive votes from one side of the contour only.

Fig. 21(a) shows the ROC curves obtained using the naive approach. The scale was chosen

based on knowledge of the benchmark images (i.e.,σ was set equal to 20, yielding a voting
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(a) (b)

(c) (d)
Fig. 20. Saliency histograms (dashed for figure).σ was set to 20 so that the voting field covers the entire image. (a) saliency

histogram of closed contour in clean background, (b) saliency histogram in cluttered background, (c) incomplete contour in

clean background, and (d) incomplete contour in cluttered background.

field that covers the entire image). Figure 21(b) shows the ROC curves obtained using the

proposed approach. The scale parameterσ varies from 2 to 20 (covering from 5% to 100% of

the image),∆Ts was equal to 5%, and Tσ was equal to 50% (i.e., the saliency curve must be

above Ts in at least half of the processed scales). This allows structures to pop out in any region

of the scale range. Significant improvements can be noted again by comparing Fig. 21(b) to

Fig. 21(a). In addition, the ROC curve corresponding to SNR up to 10% is closer to the ones

corresponding to higher SNR values (i.e., up to 25%, up to 20%and up to 15%). This indicates

that the iterative, multi-scale approach can deal with cluttered scenes much better even when

the objects have incomplete contours. Fig. 22 shows some representative segmentation results

using the proposed approach. The ROC curves of each approachcan be compared side-by-side

for quantitative evaluation purposes in Fig. 23. As it can beobserved, the proposed approach

improves segmentation results for all SNR values.

3) Multiple Figures: In this set of experiments, we inserted multiple figures of the same

absolute size over the background textures (e.g., see Fig. 12(b)). Fig. 24 shows several repre-

sentative saliency histograms obtained in this case. As it can be observed, saliency histograms
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(a) (b)
Fig. 21. (a) ROC curves using the naive approach in the case ofincomplete contours, (b) ROC curves using the iterative,

multi-scale scheme for the same dataset. We can observe improvements in all ROC curves compared to those obtained using

the naive approach shown in part (a). In addition, the ROC curve for SNR up to 10% is closer to those corresponding to higher

SNR values (i.e., SNR up to 25%, SNR up to 20% and SNR up to 15%),indicating that the iterative, multi-scale approach can

deal better with cluttered images.

(a) (b) (c)
Fig. 22. Representative results using the proposed methodology in the case of incomplete contours: (a) peach on leaves with

SNR up to 25%, (b) banana on bark with SNR up to 25%, (c) avocadoon leaves with SNR up to 10%.
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(a) SNR up to 25% (b) SNR up to 20%

(c) SNR up to 15% (d) SNR up to 10%

(e) SNR up to 5%
Fig. 23. Side-by-side comparison of the naive and proposed approaches for the dataset composed of open or incomplete figures.
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corresponding to different objects tend to overlap with each other. This tends to make the differ-

entiation between each figure more difficult, but also strengthens the figure saliency compared

to the background. Fig. 25 shows the ROC curves corresponding to the naive and proposed

approaches. Again, we can observe remarkable improvementsusing the iterative, multi-scale

approach. Fig. 26 shows representative results using the iterative multi-scale tensor voting in

three images belonging to the multiple figure dataset.

(a) One Object (b) Two Objects (c) Three Objects
Fig. 24. Saliency histograms using multiple objects of the same absolute size. The parameterσ was set to 20 so that the voting

field covers the entire image.

Fig. 25. ROC curves corresponding to the naive and proposed approaches using images composed of multiple figures of the

same absolute size. Remarkable improvements can be observed in the case of the proposed approach.

4) Figure Size Variation:To bring up the scale analysis issue (i.e., Fig. 12(c)), we have also

experimented with multiple figures having different size. Specifically, we used three different

absolute sizes in our experiments: 20, 32 and 40 squared pixels. Fig. 27 shows representative

saliency histogram corresponding to one, two, and three objects of different size. A shift in
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(a) (b) (c)
Fig. 26. Representative results using the proposed methodology in the case of multiple figures of the same absolute size:(a)

apple and red onion on fabric ground, (b) banana and sweet potato on bark ground, (c) three avocados on bark ground.

the histograms of the second figure (green) can be noticed dueto its variation in size. This

reflects the fact that the scale chosen was more adequate for one object than the other. In real

cases, these differences are even bigger, making objects topop out in different scales, that is,

objects present stronger saliency in certain scales than others. Fig. 28 shows the ROC curves for

the naive and proposed approaches. Again, we can observe remarkable improvements using the

iterative, multi-scale approach. Fig. 29 shows representative results using the proposed approach.

(a) (b)
Fig. 27. Saliency histograms corresponding multiple objects having different size (striped - first, unchanged figure).σ was set

to 20 so that the voting field covers the entire image. A shift in the histograms of the second figure can be noticed due to its

variation in size.

B. Part II - Experiments on Natural Images
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Fig. 28. ROC curves corresponding to the SSF-T and IMS-T approaches for the case of multiple figures having different size.

(a) (b) (c)
Fig. 29. Representative results using the proposed methodology in the case of multiple figures having different size: (a) two

avocados on sand ground, (b) banana and tamarillo (larger) on wood ground, (c) lemon and tamarillo (smaller) on brick ground.

Among the five boundary detection methods evaluated on the Berkeley dataset and post-

processed by our method, four of them (i.e., GM, MGM, TG, and BG) perform boundary

detection using a single cue while one of them (i.e., BTG) combines information from two

different cues using the method of Martin et al. [33]. Each method produces a BPP map which is

used as input to IMS-T. IMS-T outputs a new BPP map by incorporating perceptual organization

cues.

A common characteristic to all five methods is their relianceon image photometric information
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to build a BPP map. The GM method computes image gradient magnitudes at each pixel to

produce the BPP map. The gradients are estimated using a pairof Gaussian derivative filters at

a unique, learned, optimal scale. Learning was performed using 200 training images from the

Berkeley segmentation dataset. The MGM method computes image gradient magnitudes at two

different scales to produce the BPP map. The gradients are estimated at each pixel using pairs

of Gaussian derivative filters at two, also learned, optimalscales. The BG method uses local

brightness gradients to obtain the BPP map. The gradients are estimated using aχ2 difference in

the distribution of pixel luminance values of two half discscentered at a given pixel and divided

in half at the assumed boundary orientation.

The TG method uses local texture gradients to produce the BPPmap. The gradients are

estimated using aχ2 difference in the distribution oftextonsof two half discs centered at a

given pixel and divided in half at the assumed boundary orientation. Textons are computed by

clustering the responses of a bank of filters using K-means. The bank of filters was composed

of standard even- and odd-symmetric quadrature pair elongated linear filters. The BTG method

combines local brightness and texture gradients to obtain the BPP. BTG has demonstrated one of

the best performances to date on the Berkeley segmentation benchmark. Additional information

about each of these methods can be found in [33].

Figure 30 shows the PRCs for each of the five boundary detection methods tested. Each graph

also shows the corresponding PRC using SSF-T and IMS-T for post-processing. Each curve is

the average over 100 PRCs corresponding to the 100 test images in the Berkeley segmentation

dataset. SSF-T curves represent the best result obtained bytesting different scales. Table IV

shows the F-measure and AAC values for each PRC. As it can be noted, at equal regime, SSF-T

is not able to improve any method, while IMS-T partially improved one method (i.e., GM),

slightly degraded another method (i.e., TG), and partiallyimproved or degraded the rest (i.e.,

MGM, BG, and BTG). Considering the AAC measure, however, SSF-T improved two methods

(GM and BG), degrading the others, while IMS-T improved all methods except TG. The reason

why TG was not improved by IMS-T is because most boundaries found using texture gradient

violate the perceptual organization rules used by IMS-T. For the methods shown improvement,

it is interesting to note that post-processing improved theresults at certain thresholds, that is,

more improvements can be noticed at a high precision regime.
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TABLE IV

RESULTING F-MEASURE (F) AT EQUAL REGIME AND AAC

FOR THE FIVE METHODS TESTED WITH AND WITHOUT

POST-PROCESSING.

Method Original w/ SSF-T w/ IMS-T

F AAC F AAC F AAC

GM .56 .43 .56 .41 .57 .38

MGM .58 .31 .57 .32 .58 .28

TG .58 .21 .56 .26 .57 .24

BG .60 .34 .59 .33 .60 .31

BTG .63 .28 .61 .29 .62 .26

TABLE V

RESULTS BASED ON THEF-MEASURE AT EQUAL

REGIME OBTAINED BY POST-PROCESSING THE

100 TEST IMAGES FROM THEBERKELEY

DATASET USING THE METHOD PROPOSED.

Method NII AIR NID ADR

GM 40 9.0% 60 5.3%

MGM 35 5.5% 65 3.7%

TG 24 3.1% 76 4.1%

BG 40 4.9% 60 4.9%

BTG 36 4.4% 64 3.4%

Looking at the PRCs alone does not provide sufficient information to appreciate the benefits

of integrating perceptual organization cues with segmentation. Tables V and VI provide more

information to further analyze the results obtained by IMS-T. Specifically, each table shows

the actual Number of Images Improved (NII) after post-processing, the Average Improvement

Rate (AIR), the Number of Images Degraded (NID) after post-processing, and the Average

Degradation Rate (ADR) for each method. Table V shows the same statistics using the F-

measure while Table VI shows the same statistics using the AAC value. The results based on

the F-measure indicate that although the number of images improved is lower than the number

of images degraded, the average rate of improvement is usually higher than the average rate of

degradation. In other words, the rate of improvement is higher for the images improved than

the rate of degradation for the images damaged. Consideringthe same statistics in the case of

AAC, it is more clear that IMS-T is really beneficial as a post-processing step. It has not only

improved more images, the rate of improvement is also higheron the average. At the same time,

it has degraded less images with a lower rate on the average.

A detailed analysis of these results can reveal even more information about the kind of images

that are more likely to be improved by IMS-T. Table VII shows the number of images improved

by IMS-T, considering the F-measure at equal regime, relative to the F-measure obtained by the

original methods. The results show that 53% to 87.5% of the images resulting in F-measures

originally below .5 were improved. As the resulting F-measure increases, the rate of improved
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TABLE VI

RESULTS BASED ONAAC OBTAINED BY

POST-PROCESSING THE100 TEST IMAGES FROM

THE BERKELEY DATASET USING IMS-T.

Method NII AIR NID ADR

GM 71 8.4% 29 5.2%

MGM 72 5.2% 28 3.8%

TG 62 4.1% 38 3.5%

BG 82 6.9% 18 3.6%

BTG 84 7.2% 16 3.6%

TABLE VII

IMPROVEMENT BASED ON THEF-MEASURE AT EQUAL

REGIME RELATIVE TO THE ORIGINAL F-MEASURE.

Method [.0,.5] (.5,.6] (.6,.7] (.7,.8] (.8,1.]

GM 87.5% 55.6% 30.0% 8.7% 0.0%

MGM 75.0% 51.9% 23.5% 5.0% 0.0%

TG 53.3% 26.0% 15.6% 20.0% 0.0%

BG 84.6% 69.6% 39.3% 6.5% 0.0%

BTG 70.0% 70.6% 40.6% 11.4% 0.0%

images decreases. These results indicate that perceptual organization cues are especially beneficial

to images having low F-measures. Although we would have to experiment more to further verify

this observation, it appears that such images are not well explained by the features extracted.

On the other hand, when the features extracted can explain animage well, then post-processing

seems to have less effect.

TABLE VIII

IMPROVEMENT BASED ON THEAAC RELATIVE TO THE ORIGINAL F-MEASURE.

Method [.0,.5] (.5,.6] (.6,.7] (.7,.8] (.8,1.]

GM 87.5% 92.6% 60.0% 52.2% 50.0%

MGM 87.5% 85.2% 58.8% 70.0% 33.3%

TG 86.7% 59.2% 57.8% 60.0% 33.3%

BG 92.3% 95.7% 67.9% 77.4% 100.0%

BTG 70.0% 100.0% 84.4% 82.9% 66.7%

Table VIII shows the number of images improved by IMS-T, considering the AAC value

relative to the F-measure obtained by the original methods.Although 70.0% to 92.3% of the

images resulting in F-measures originally below .5 were improved, it is interesting to note that

high rates in general were achieved throughout the whole F-measure range. These results suggest

that independently of the performance achieved by a given method, it might be always possible

to improve its overall performance using perceptual organization cues for post-processing.
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Figure 31 shows some boundary detection results for each method with and without IMS-T.

As it can be observed, IMS-T eliminates noisy segments more effectively, preserving boundary

segments that satisfy the perceptual organization principles underlying IMS-T.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for perceptual grouping of oriented segments in highly

cluttered images using an iterative, multi-scale tensor voting approach. Our approach removes

noisy segments conservatively using multi-scale analysisand re-votes on the retained segments.

We have tested our approach on various datasets composed by synthetic and real images. Our

experimental results with synthetic images indicate that our method can segment successfully

objects in images with up to twenty times more noisy segmentsthan object ones. Moreover,

it can handle objects with incomplete boundaries as well as multiple objects having different

size. Overall, the proposed approach has shown to work well when applied on highly cluttered

images, and it does not depend on any assumptions regarding the size, number, or boundary

completeness of the objects in the image. Our experimental results using real images show that

IMS-T improved up to 40% of the test images, when consideringthe F-measure at equal regime

as a performance measure. These improvements were especially noticed among images having

low F-measures originally, although, in general, a higher performance is more obvious at high

precision regime. When considering the AAC measure, IMS-T improved up to 84% of the test

images and across the entire range of original F-measure.

The results obtained in this study look particularly interesting and encouraging to us. The

benefits of iterative, multi-scale segmentation are quite clear. For future work, we plan to improve

and extend the proposed approach in several ways. First, we plan to investigate the issue of

choosing the parameters of our method (i.e.,Ts, ∆Ts, Tσ, I) automatically. We have reported

preliminary using on this issue a case-based thresholding scheme in [44]. The idea is classifying

saliency histograms in several cases by considering the relative position of the modes of the

figure/ground distributions and applying specific actions in each case. Another idea would be

employing learning using the 200 training images in the Berkeley dataset. Second, we plan to

improve segmentation results by better preserving junctions and corners. Small scales result in

higher saliency for points very close to a corner, however, as scale increases votes from the

other edge of the corner blur the orientation estimate and reduce the saliency of such points. As
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a result, certain corners and junctions might be removed during the iterative process. One idea

is to use polarity information in order to preserve such points [19]. Third, we plan to consider

ways to speed-up our method. Although our analysis in Section IV shows that our method has

asymptotically the same complexity as voting at a single fixed scale, it might not be appropriate

for real-time applications. Finally, we plan to apply the proposed methodology in the context of

different segmentation problems such as region segmentation or finding text regions in images

for automatic map annotation.
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(a) (b)

(c) (d)

(e)
Fig. 30. Average PRCs comparing each method with and withoutpost-processing: (a) GM, (b) MGM, (c) TG, (d) BG, (e)

BTG. The resulting F-measure and AAC are shown in Table IV.
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(a) (b) (c) (d) (e)

Fig. 31. Visual comparison of results: (a) original gray-scale images, (b) initial boundaries detected, (c) resulted boundaries

by thresholding at the optimal F-measure (d) resulted boundaries using post-processing, thresholded at the optimal F-measure,

(e) ground truth.
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