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Abstract. Pose clustering is a method to perform object recognition by determining hypothetical object poses
and finding clusters of the poses in the space of legal object positions. An object that appears in an image will
yield a large cluster of such poses close to the correct position of the object. If there arem model features andn
image features, then there areO(m3n3) hypothetical poses that can be determined from minimal information for
the case of recognition of three-dimensional objects from feature points in two-dimensional images. Rather than
clustering all of these poses, we show that pose clustering can have equivalent performance for this case when
examining onlyO(mn) poses, due to correlation between the poses, if we are given two correct matches between
model features and image features. Since we do not usually know two correct matches in advance, this property is
used with randomization to decompose the pose clustering problem intoO(n2) problems, each of which clusters
O(mn) poses, for a total complexity ofO(mn3). Further speedup can be achieved through the use of grouping
techniques. This method also requires little memory and makes the use of accurate clustering algorithms less costly.
We use recursive histograming techniques to perform clustering in time and space that is guaranteed to be linear in
the number of poses. Finally, we present results demonstrating the recognition of objects in the presence of noise,
clutter, and occlusion.

1. Introduction

The recognition of objects in digital image data is
an important and difficult problem in computer vision
(Besl and Jain, 1985; Chin and Dyer, 1986; Grimson,
1990). Interesting applications of object recognition
include navigation of mobile robots, indexing image
databases, automatic target recognition, and inspection
of industrial parts. In this paper, we investigate tech-
niques to perform object recognition efficiently through
pose clustering.

Pose clustering (also known as the generalized
Hough transform) is a method to recognize objects
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IRI-8957274 to Jitendra Malik, and NSF Materials Handling Grant
IRI-9114446. A preliminary version of this work appears in (Olson,
1994).

from hypothesized matches between feature sets in the
object model and feature sets in the image (Ballard,
1981; Stockman et al., 1982; Silberberg et al., 1984;
Turney et al., 1985; Silberberg et al., 1986; Dhome
and Kasvand, 1987; Stockman, 1987; Thompson and
Mundy, 1987; Linnainmaa et al., 1988). In this method,
the transformation parameters that bring the sets of
features into alignment are determined. Under a rigid-
body assumption, the correct matches will yield trans-
formations close to the correct pose of the object.
Objects can thus be recognized by finding clusters
among these transformations in the pose space. Since
we do not know which of the hypothesized matches
are correct in advance, pose clustering methods typi-
cally examine the poses from all possible matches of
some cardinality,k, wherek is the minimum number
of feature matches necessary to constrain the pose of
the object to a finite set of possibilities, assuming non-
degeneracy.
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We will focus on the recognition of general three-
dimensional objects undergoing unrestricted rotation
and translation from single two-dimensional images.
To simplify matters, the only features used for recog-
nition are feature points in the model and the image. It
should be noted, however, that these results can be gen-
eralized to any problem for which we have a method
to estimate the pose of the object from a set of feature
matches.

If m is the number of model feature points andn
is the number of image feature points, then there are
O(m3n3) transformations to consider for this problem,
assuming that we generate transformations using the
minimal amount of information. We demonstrate that,
if we are given two correct matches, performing pose
clustering on only theO(mn) transformations that can
be determined from these correct matches using mini-
mal information yields equivalent performance to clus-
tering allO(m3n3) transformations, due to correlation
between the transformations. Since we do not know two
correct matches in advance, we must examineO(n2)

such initial matches to ensure an insignificant proba-
bility of missing a correct object, yielding an algorithm
that requiresO(mn3) total time. This is the best com-
plexity that has been achieved for the recognition of
three-dimensional objects from feature points in sin-
gle intensity images. When additional information is
present, as is typical in computer vision applications,
additional speedup can be achieved by using group-
ing to generate likely initial matches and to reduce the
number of additional matches that must be examined
(Olson, 1995).

An additional problem with previous pose clustering
methods is that they have required a large amount of
memory and/or time to find clusters, due to the large
number of transformations and the size of pose space.
Since we now examine onlyO(mn) transformations
at a time, we can perform clustering quickly using lit-
tle memory through the use of recursive histograming
techniques.

The remainder of this paper is structured as fol-
lows. Section 2 discusses some previous techniques
used to perform pose clustering. Section 3 proves
that examining small subsets of the possible transfor-
mations is adequate to determine if a cluster exists
and discusses the implications of this result on pose
clustering algorithms. Section 4 discusses the com-
putational complexity of these techniques. Section 5
gives an analysis of the frequency of false positives,
using the results on the correlation between transfor-

mations to achieve more accuracy than previous work.
Section 6 describes methods by which clustering can
be performed efficiently. Section 7 discusses the imple-
mentation of these ideas. Experiments that have been
performed to demonstrate the utility of the system are
presented in Section 8. Section 9 discusses several in-
teresting issues pertaining to pose clustering. Finally,
Section 10 describes previous work that has been done
in this area and a summary of the paper is given in
Section 11.

2. Recognizing Objects by Clustering Poses

As mentioned above, pose clustering is an object recog-
nition technique where the poses that align hypothe-
sized matches between sets of features are determined.
Clusters of these poses indicate the possible presence
of an object in the image. We will assume that we are
considering the presence of a single object model in the
image. Multiple objects can be processed sequentially.

To prevent a combinatorial explosion in the num-
ber of poses that are considered, we want to use as
few as possible matches between image and model
points to determine the hypothetical poses of the ob-
ject. It is well known that matches between three model
points and three image points is the smallest number
of non-degenerate matches that yield a finite number
of transformations that bring three-dimensional model
points into alignment exactly with two-dimensional
image points using the perspective projection or any
of several approximations (Fischler and Bolles, 1981;
Huttenlocher and Ullman, 1990; DeMenthon and
Davis, 1992; Alter, 1994). See Fig. 1. If we know the
center of projection and focal length of the camera, we
can use the perspective projection to model the imaging
process accurately. Otherwise, an approximation such

Figure 1. There exist a finite number of transformations that align
three non-colinear model points with three image points.
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as weak-perspective can be used. Weak-perspective is
accurate only when the distance of the object from the
camera is large compared to the depth variation within
the object. In either case, pose clustering algorithms
can use matches between three model points and three
image points to determine hypothetical poses.

Let us call a set of three model features,{µ1, µ2, µ3},
amodel groupand a set of three image points,{ν1, ν2,

ν3}, an image group. A hypothesized matching of a
single model feature to an image feature,π = (µ, ν),
will be called apoint matchand three point matches
of distinct image and model features,γ = {(µ1, ν1),

(µ2, ν2), (µ3, ν3)}, will be called agroup match.
If there arem model features andn image features,

then there are 6(m
3 )(

n
3 ) distinct group matches (since

each group of three model points may match any group
of three image points in six different ways), each of
which yields up to four transformations that bring them
into alignment exactly. Most pose clustering algorithms
find clusters by histograming the poses in the multi-
dimensional transformation space (see Fig. 2). In this
method, each pose is represented by a single point in
the pose space. The pose space is discretized into bins
and the poses are histogramed in these bins to find large
clusters. Since pose space is six-dimensional for gen-
eral rigid transformations, the discretized pose space is
immense for the fineness of discretization necessary to
perform accurate pose clustering.

Two techniques that have been proposed to reduce
this problem are coarse-to-fine clustering (Stockman
et al., 1982) and decomposing the pose space into
orthogonal subspaces in which histograming can be
performed sequentially (Dhome and Kasvand, 1987;

Figure 2. Clusters representing good hypotheses are found by per-
forming multi-dimensional histograming on the poses. This figure
represents a coarsely quantized three-dimensional pose space.

Figure 3. In coarse-to-fine histograming, the bins at a coarse scale
that contain many transformations are examined at a finer scale.

Figure 4. Pose space can be decomposed into orthogonal sub-
spaces. Histograming is then performed in one of the decomposed
subspaces. Bins that contain many transformations are examined
with respect to the remaining subspaces.

Thompson and Mundy, 1987; Linnainmaa et al., 1988).
In coarse-to-fine clustering (see Fig. 3), pose space is
quantized in a coarse manner and the large clusters
found in this quantization are then histogramed in a
more finely quantized pose space. Pose space can also
be decomposed such that clustering is performed in two
or more steps, each of which examines a projection of
the transformation parameters onto a subspace of the
pose space (see Fig. 4). The clusters found in a projec-
tion of the pose space are subsequently examined with
respect to the remaining transformation parameters.

These techniques can lead to additional problems.
The largest clusters in the first clustering step do not
necessarily correspond to the largest clusters in the
entire pose space. We could examine all of the bins in
the first space that contain some minimum number of
transformations, but Grimson and Huttenlocher (1990)
have shown that for cluttered images, an extremely
large number of bins would need to be examined due
to saturation of the coarse or projected histogram. In
addition, we must either store the group matches that
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contribute to a cluster in each bin (so that we can per-
form the subsequent histograming steps on them) or
we must reexamine all of the group matches (and re-
determine the transformations aligning them) for each
subsequent histograming step. The first possibility re-
quires much memory and the second requires consid-
erable extra time.

We will see that these problems can be solved
through a decomposition of the pose clustering prob-
lem. Furthermore, randomization can be used to achi-
eve a low computational complexity with a low rate of
failure. Similar techniques in the context of transform-
ation equivalence analysis can be found in (Cass, 1993).

3. Decomposition of the Problem

Let 2 be the space of legal model positions. Each
p ∈ 2 can be considered a function,p :R3→R2, that
takes a model point to its corresponding image point.
Each group match,γ ={(µ1, ν1), (µ2, ν2), (µ3, ν3)},
yields some subset of the pose space,θ(γ ) ⊂ 2, that
brings each of the model points in the group match
to within the error bounds of the corresponding image
point. We will consider a generalization of this func-
tion, θ(γ ), that applies to sets of point matches of any
cardinality.

Let’s assume that the feature points are localized
with error bounded by a circle of radiusε (though
the following analysis is not dependent on any choice
of error boundary). We can then defineθ(γ ) as
follows:

Definition.

θ(γ ) ≡ {p ∈ 2 : ‖p(µi )−νi ‖2 ≤ ε, for 1≤ i ≤ |γ |}

The following theorem is the key to showing that
we can examine several small subproblems and achieve
equivalent performance to examining the original pose
clustering problem.

Theorem 1. The following statements are equivalent
for each p∈ 2:

1. There exist g= ( x
3 ) distinct group matches that

pose p brings into alignment up to the error bounds.
Formally,

∃γ1, . . . , γg s.t. p∈ θ(γi ) for 1≤ i ≤ g.

2. There exist x distinct point matches, π1, . . . , πx,
that pose p brings into alignment up to the error
bounds:

∃π1, . . . , πx s.t. p∈ θ({πi }) for 1≤ i ≤ x.

3. There exist x− 2 distinct group matches sharing
some pair of point matches that pose p brings into
alignment up to the error bounds:

∃π1, .., πx s.t. p∈ θ({π1, π2, πi }) for 3≤ i ≤ x.

Proof: The proof of this theorem has three steps.
We will prove (a) Statement 1 implies Statement 2,
(b) Statement 2 implies Statement 3, and (c) Statement
3 implies Statement 1. Therefore the three statements
must be equivalent.

(a) Each of the group matches is composed of a set
of three point matches. The fewest point matches
from which we can choose( x

3 ) group matches isx.
The definition ofθ(γ ) guarantees that each of the
individual point matches of any group match that is
brought into alignment are also brought into align-
ment. Thus each of thesex point matches must be
brought into alignment up to the error bounds.

(b) Choose any two of the point matches that are
brought into alignment. Form all of thex−2 group
matches composed of these two point matches and
each of the additional point matches. Since each of
the point matches is brought into alignment, each
of the group matches composed of them also must
be from the definition ofθ(γ ).

(c) There arex distinct point matches that compose
the x − 2 group matches, each of which must be
brought into alignment. Any of the( x

3 ) distinct
group matches that can be formed from them must
therefore also be brought into alignment. 2

This theorem implies that we can achieve equivalent
performance to the examining all of the group matches
when we examine subproblems in which only those
group matches that share some pair of correct point
matches are considered. So, instead of finding a clus-
ter of size( x

3 ) among all of the group matches, we
simply need to find a cluster of sizex − 2 within any
set of group matches that all share some pair of point
matches. Furthermore, it is clear that any pair of cor-
rect point matches can be used. For each such pair, we
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1. Pose-Clustering(M, I ): /* M is the model point set.
I is the image point set. */

2. Repeat ktimes:
3. Choose two random image pointsν1 andν2.
4. For all pairs of model pointsµ1 andµ2:
5. For all point matches(µ3, ν3):
6. Determine the poses aligning the group

matchγ = {(µ1, ν1), (µ2, ν2), (µ3, ν3)}.
7. End-for
8. Find and output clusters among these poses.
9. End-for

10. End-repeat
11. End

Figure 5. The new pose clustering algorithm.

must examineO(mn) group matches, since there are
(m−2)(n−2) group matches for a single pair of point
matches such that no feature is used more than once.
Of course, examining just one pair of image points will
not be sufficient to rule out the appearance of an ob-
ject in an image since there may be image clutter. We
could simply examine all 2( n

2 )(
m
2 ) possible pairs of

point matches, but we will see in the next section that
we can examineO(n2) pairs of matches and achieve a
low rate of failure.

Figure 5 gives the updated pose clustering algorithm.

4. Computational Complexity

This section discusses the computational complexity
necessary to perform pose clustering using the tech-
niques described above. We can use a randomization
technique similar to that used in RANSAC (Fischler
and Bolles, 1981) to limit the number of initial pairs
of matches that must be examined. A random pair of
image points is chosen to examine as the initial image
points. All pairs of point matches that include these
image points are examined, and, if one of them leads
to recognition of the object, then we may stop. Oth-
erwise, we continue choosing pairs of image points at
random until we have reached a sufficient probability
of recognizing the object if it is present in the image.
Note that once we have examined this number of pairs
of image points, we stop, regardless of whether we
have found the object, since it may not be present in
the image.

If we require f m model points to be present in the
image to ensure recognition, we can determine an upper
bound on the probability of not choosing a correct pair
of image points ink trials, where each trial consists
of examining a pair of image points at random. (We

allow (1− f )m model points to be absent as the result
of occlusion by other objects, self-occlusion, or being
missed by the feature detector;f is the fraction of
model points that must appear.) Since the probability
of a single image point being a correct model point is at
least f m

n in this case, the maximum probability of a pair
being incorrect is approximately 1− ( f m

n )
2. Thus, the

probability thatk random trials will all be unsuccessful
is approximately:

p ≤
(

1−
(

f m

n

)2
)k

If we require the probability of a false negative to be
less thanδ we have:(

1−
(

f m

n

)2
)k

≤ δ

k ≥ ln δ

ln
(
1− ( f m

n

)2)
Note that the minimumk that is necessary isO( n2

m2 )

since, kmin approaches n2

( f m)2 ln 1
δ

as ( f m/n)2 ap-
proaches zero1.

For each pair of image points, we must exam-
ine each of the 2(m

2 ) permutations of model points
which may match them. So, in total, we must exam-
ine O( n2

m2 ) · O(m2) = O(n2) pairs of point matches
to achieve the success rate 1− δ. Since we halt af-
ter k trials, regardless of whether we have found the
object, this is the number of trials we examine in the
worst-case, and is independent of whether the object
appears in the image. The time bound varies with only
the logarithm of the desired success rate, so very high
success rates can be achieved without greatly increas-
ing the running time of the algorithm. Since we must
examineO(mn) group matches for each pair of point
matches, this method requiresO(mn3) time per object
in the database in the worst case, if we perform clus-
tering in linear time, where previouslyO(m3n3) time
was required.

5. Frequency of False Positives

While the above analysis has been interpreted in terms
of the “correct” clusters, so far, it also applies to false
positive clusters. Lett be our threshold for the number
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of model points that must be brought into alignment for
us to output a hypothesis. If a pose clustering system
that examines all of the poses finds a false positive
cluster of size( t

3), we would expect the new techniques
to yield a false positive cluster of sizet − 2. We will
thus find false positives with the same frequency as
previous pose clustering systems.

Grimson et al. (1992) analyze the pose clustering ap-
proach to object recognition to estimate the probability
of a false match having a large peak in transformation
space for the case of recognition of three-dimensional
objects from two-dimensional images. They use the
Bose-Einstein occupancy model (see, for example,
Feller, 1968) to estimate this probability. This anal-
ysis assumes independence in the locations of the
transformations, which is not correct. Consider two
group matches composed of a total of six distinct point
matches. If there is some pose,p ∈ 2, that brings
both group matches into alignment up to the error con-
ditions, then any of the( 6

3) group matches that can be
formed using the six point matches is also brought into
alignment by this pose. The poses determined from
these group matches are thus highly correlated.

Theorem 1 indicates that we will find a false positive
only in the case where there is a pose that bringst model
points into alignment with corresponding image points.
This result allows us to perform a more accurate analy-
sis of the likelihood of false positive hypotheses. We’ll
summarize the results of Grimson et al. before describ-
ing modifications to their analysis that account for the
correlations between transformations and achieve more
accuracy.

The Bose-Einstein occupancy model yields the
following approximation of the probability that a bin
will receive l or more votes due to random accumu-
lation:

p≥l ≈ λl

(1+ λ)−l

In this equation,λ is the average number of votes in
a single bin (including redundancy due to uncertainty
in the image). In the work of Grimson et al.,λ =
6(m

3 )(
n
3 )bg ≈ m3n3bg

6 , wherebg is the average fraction
of bins that contain a pose bringing a particular group
match into alignment (called the redundancy factor),m
is the number of model features, andn is the number
of image features. Each correct object is expected to
have( f m

3 ) ≈ ( f m)3

6 correct transformations, since each
distinct group of model features will include the correct
bin among those it votes for. The probability that an

incorrect point match will have a cluster of at least this
size is:

q ≈
(

λ

1+ λ
) ( f m)3

6

Settingq ≤ δ and solving forn, they find that the
maximum number of image features that can be toler-
ated without surpassing the given error rate,δ, is:

nmax≈ f

3

√
bg ln 1

δ

Grimson et al. have determined overestimates on the
size of the redundancy factor,bg, necessary for various
noise levels to ensure that the correct bin is among
those voted for by an image group using a bounded
error model and they have used this to compute sample
values ofnmax.

As noted above, this analysis can be made more
accurate by considering the correlations between the
transformations. Theorem 1 indicates that there exists
some point,p, in transformation space that brings( f m

3 )

group matches into alignment if and only if there are
f mpoint matches thatp brings into alignment. So, we
must determine the likelihood that there exists a point
in transformation space that brings into alignmentf m
of thenm point matches. We’ll call the average frac-
tion of transformation space that brings a single point
match into alignmentbp.

If we otherwise follow the analysis of Grimson et al.,
we haveλ = bpmn and we expect a correct pose to
yield f mmatches. Using the Bose-Einstein occupancy
model we can estimate the probability of a false positive
of this size:

p ≈
(

bpmn

1+ bpmn

) f m

We can setp ≤ δ and solve forn as follows:(
bpmn

1+ bpmn

) f m

≤ δ

f m ln

(
1+ 1

bpmn

)
≥ ln

1

δ

Using the approximation: ln(1+ α) ≈ α, for small
α, we have:

f m

bpmn
≥ ln

1

δ
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In fact, 1
bpmn is not always small, but this approxi-

mation yields a conservative estimate forn.

n ≤ f

bp ln 1
δ

Note that this is not very different from the result
derived by Grimson et al. sincebp ≈ 3

√
bg. The pri-

mary difference is a change from a factor of3

√
ln 1

δ
to

ln 1
δ
, which means that the new estimate of the allow-

able number of image features before a given rate of
false positives is produced is lower than that obtained
by Grimson et al.

It should be noted that this result is a fundamen-
tal limitation of all object recognition systems that
use only point features to recognize objects, not of
this system alone. Any time there exists a transfor-
mation that bringsf m model points into alignment
with image points, a system dealing only with feature
points should recognize this as a possible instance of the
object.

Some possible solutions to this problem are to use
grouping or more descriptive features. The results pre-
sented here are easily generalized to encompass such
information, if a method exists to estimate the pose
from a set of matches between such features. This will
increase the allowable clutter, but a similar result will
still be applicable.

The primary implication of this result is that we
should not assume that large clusters in the pose space
necessarily imply the presence of the modeled object.
We should use pose clustering as a method of finding
likely hypotheses for further verification. As an addi-
tional verification step, we could, for example, verify
the presence of edge information in the image as is
done by Huttenlocher and Ullman (1990).

6. Efficient Clustering

This section discusses methods to perform clustering
of the poses in time and space that is linear in the num-
ber of poses. This is accomplished through the use of
recursive histograming techniques. Each hypothetical
position of the model that is determined from a group
match is represented by a single point in pose space. We
use overlapping bins that are large enough to contain
most, if not all, of the transformations consistent with
the bounded error. This prevents clusters from being
missed due to falling on a boundary between bins. This

method is able to find clusters containing most of the
correct transformations, but it does not have optimal
accuracy.

An alternate method that could be used for complex
or very noisy images, where false positives could prove
problematic, is to sample carefully selected points in
the pose space (see, for example, (Cass, 1988)) and de-
termine which matches are brought into alignment by
each sampled point. This alternative will find no cases
where the matches in a cluster are not mutually con-
sistent, but at a lower speed and at the risk of missing
a cluster due to the sampling rate. Another alternative
(Cass, 1992) determines regions of the pose space that
are equivalent with respect to the matches they bring
into alignment and that bring a large number of such
matches into alignment. Such a method can achieve
optimal accuracy in the sense that it can find all parti-
tions of the pose space that bring some minimum num-
ber of matches into alignment. However, this appears
difficult for the case of three-dimensional object un-
dergoing rigid transformations since the legal poses do
not form a vector space. Note that the analysis of the
previous sections still applies to these methods.

When histograming is used to find clusters, either
coarse-to-fine clustering or decomposition of the pose
space should be used, since the six-dimensional pose
space is immense. Let’s consider the decomposition
approach here. The pose space can be decomposed
into the six orthogonal spaces corresponding to each of
the transformation parameters. To solve the clustering
problem, histograming can be performed recursively
using a single transformation parameter at a time. In
the first step, all of the transformations are histogramed
in a one-dimensional array, using just the first param-
eter. Each bin that contains more thanf m− 2 trans-
formations is retained for further examination, where
f is the predetermined fraction of model features that
must be present in the image for us to recognize the
object. (Let us for the moment neglect the possibil-
ity that not all of the correct poses may be found. In
this case, if f m model points are present in the im-
age, a correct pair of point matches will yieldf m− 2
correct transformations.) For each bin with enough
transformations, we recursively cluster the poses in
that bin using the remaining parameters. Since this
procedure continues until all six parameters have been
examined, the bins in the final step contain transforma-
tions that agree closely in all six of the transformation
parameters and thus form a cluster in the complete pose
space.
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1. Find-Clusters(P, Π): /* P is the set of poses.Π is
the set of pose parameters. */

2. If |Π| > 0 then
3. Choose someπ ∈Π.
4. Histogram poses inP by parameterπ .
5. For eachbin, b, in the histogram:
6. If |b| > f m− 2 then
7. Find-Clusters({p ∈ P : p ∈ b}, Π\π );
8. End-if
9. End-for

10. Else
11. Output the cluster location.
12. End-if
13. End

Figure 6. The recursive clustering algorithm.

This method can be formulated as a depth-first tree
search. The root of the tree corresponds to the entire
pose space and each node corresponds to some subset
of the pose space. The leaves correspond to individual
bins in the six-dimensional pose space. At each level of
the tree, the nodes from the previous level are expanded
by histograming the poses in those nodes using a previ-
ously unexamined transformation parameter. The tree
has height six, since there are six pose parameters to
examine. At each level, we can prune every node of the
tree that does not correspond to a volume of transforma-
tion space containing at leastf m− 2 transformations.

Figure 6 gives an outline of this algorithm. If un-
examined parameters remain at the current branch of
the tree, we histogram the remaining poses using one
of these parameters. Each of the bins that contains at
least f m− 2 poses is then clustered recursively using
the remaining parameters. The other bins are pruned.
When we reach a leaf (after all of the parameters have
been examined) that contains enough poses, we output
the location of the cluster.

Although this decomposition of the clustering al-
gorithm has not previously been formulated as a tree
search, the analysis of Grimson and Huttenlocher
(1990) implies that previous pose clustering methods
saturate such decomposed transformation spaces at the
levels of the tree near the root, due to the large number
of transformations that need to be clustered. For those
methods, virtually none of the branches near the root
of the tree can be pruned.

Since previous systems would clusterO(m3n3)

transformations, there areO(n3) bins that could hold

as many as( f m
3 ) transformations at each level of the

tree. Thus, despite histograming in a high-dimensional
space, these systems may have a large number of un-
pruned bins at even low levels of the tree, since they

are clustering so many transformations. Using the tech-
niques presented here, we can have onlyO(n) bins that
contain as many asf m−2 transformations at any level
of the tree, since there areO(mn) transformations clus-
tered at a time. This means that there are onlyO(n)
unpruned bins at each level. Thus, we do not have sat-
uration at any level of the tree for this system.O(mn)
time and space is required per clustering step.

7. Implementation

This section describes our implementation of the tech-
niques described in the previous sections of this paper.
Of course, in general, we follow the algorithm given in
Fig. 5.

Recall that the analysis of Section 4 showed that we
need to examine

k ≥ ln δ

ln
(
1− ( f m

n

)2)
pairs of random image points to achieve probability
1− δ that we examine a pair from the model, iff m
model points appear in the image. Now, since we do
not use a perfect clustering system, we cannot assume
that each correct pair of point matches will result in the
implementation finding a cluster of the optimal size.
The next section describes experiments determining
how many we actually find. Knowing this, we can set a
threshold on the number of matches necessary to output
a hypothesis and a threshold on the number of trials
necessary to achieve a low rate of failure. If we estimate
that in pathological models and/or images, only 50%
of the correct pairs of point matches will result in a
cluster that surpasses this threshold, then we have:

kmin =
⌈

ln δ

ln
(
1− 1

2

( f m
n

)2)
⌉

For each pair of random image points that we ex-
amine, we consider each pair of model points that may
match them. We then form the(m − 2)(n − 2) dis-
tinct group matches that contain them. For each such
group match, we use the method of Huttenlocher and
Ullman (1990) to determine the transformation param-
eters that bring three model points into alignment with
three image points in the weak-perspective imaging
model. Each group match yields two transformations,
and the parameters of these transformations are stored
in a preallocated array, since we know in advance how
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many we will have. The use of this method makes the
implicit assumption that weak-perspective is an accu-
rate approximation to the actual imaging process for
the problems we consider. This has been demonstrated
to be true for the case when the depth within the ob-
ject is small compared to the distance to the object
(Thompson and Mundy, 1987). However, this does in-
troduce error into our pose estimates. If we know the
center of projection and focal length of our camera, we
can use the full perspective projection to eliminate this
source of error.

We find clusters among the poses using the recur-
sive histograming techniques of the previous section.
The order in which the parameters are examined is:
scale, then translation inx and y, and then the three
rotational parameters. Changing the order of the pa-
rameters has no effect on the clusters found and little
effect on the running time.

We use overlapping bins to avoid missing clusters
that fall on cluster boundaries. Each parameter is di-
vided into small bins and a sliding box that covers three
consecutive bins is used to find clusters. The size of
the bins is changed with varying image noise levels,
but the number of bins used in each dimension typi-
cally varies from 30 to 200. For each bin, we maintain
a linked list of pointers to the transformations that fall
into the bin and an associated count of the number of
such transformations. This allows us to easily perform
the recursive binning steps on subsequent parameters
once the initial binning steps have been performed. At
each position of the sliding box, the poses in the box
are recursively clustered only if the number of trans-
formations in the bins surpasses the threshold. When
a cluster is found after considering all of the transfor-
mation parameters, the hypothetical pose of the ob-
ject is estimated by averaging all of the poses in the
cluster.

Once a cluster has been found, we use the method of
Huttenlocher and Cass (1992) to determine an estimate
of the number of consistent matches. They argue that
the total number of matches in a cluster is not necessar-
ily a good measure of the quality of the cluster, since
different matches in the cluster may match the same im-
age point to multiple model points, or vice versa, which
we do not wish to allow. Huttenlocher and Cass rec-
ommend counting the lesser of the number of distinct
model points and distinct image points matched in the
cluster, since it can be determined quickly (as opposed
to the maximal bipartite matching) and is reasonably
accurate.

8. Results

This section describes experiments performed on real
and synthetic data to test the system.

8.1. Synthetic Data

Models and images have been generated for these ex-
periments using the following methodology:

1. Model points were generated at random inside a 200
× 200× 200 pixel cube.

2. The model was transformed by a random rotation
and translation and was projected using the per-
spective projection onto the image plane. The focal
length that was used was the same as the distance
to the center of the cube, which was approximately
10 times the depth within the object.

3. Bounded noise (ε= 1 pixel) was added to each im-
age point.

4. In some experiments, additional random image
points were added.

The first experiment determined whether the correct
clusters were found. Table 1 shows the performance of
two methods at finding correct clusters. The first sys-
tem uses the old method of clustering all of the poses si-
multaneously. The second system uses the new method
of clustering only those poses from group matches shar-
ing a pair of point matches. The old method finds much
larger clusters, of course, since it clusters many more
correct transformations, but the size of the incorrect
clusters is expected to rise at the same rate. The new

Table 1. The performance in finding correct clusters.

Old method New method

m opt. avg. % opt. avg. %

10 120 95.5 .796 8 6.64 .831

20 1140 882.2 .774 18 15.02 .834

30 4060 3046.9 .750 28 23.23 .830

40 9880 7400.8 .749 38 30.79 .810

50 19600 14569.9 .743 48 40.47 .843

We use the following terms in the above table:
m: the number of object points.
opt.: the size of the optimal cluster.
avg.: the size of the average cluster found.
%: the average fraction found of the optimal cluster.
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Table 2. The size of false positive clusters found
for objects with 20 feature points.

n average std. dev. maximum

20 3.84 0.88 6
40 5.32 1.14 8
60 6.35 1.35 10
80 7.06 1.52 12

100 7.64 1.68 13
120 7.94 1.80 13
140 8.21 1.87 13
160 8.42 1.95 14
180 8.61 1.98 14
200 8.79 2.02 15

We use the following terms in the above table:
n: the number of image points.
average: the average size of the largest cluster found.
std. dev.: the standard deviation of the cluster size.
maximum: the largest cluster found overall.

techniques actually find a larger percentage of the cor-
rect poses in the best cluster. This is because these clus-
ters are smaller. Since we examine only those group
matches that share some pair of point matches, the noise
associated with those two image points stays the same
over the entire cluster. This noise may move the clus-
ter from the true location, but it does not increase the
expected size of the cluster, as it does when we ex-
amine all possible group matches, since each pose is
computed using this same pair of points.

Experiments were run to determine the size of false
hypotheses generated by the new method for models
of 20 random model points and various image com-
plexities. Table 2 shows the average size of the largest
cluster found for each pair of image points, the stan-
dard deviation among these clusters, and the size of
the largest cluster over all of the pairs of image points.
Since the new method found correct clusters of aver-
age size 15.02 for models of twenty points and false
positive clusters of average size 8.79 for 200 random
image points, these levels of complexity do not cause
a large number of false positives to be found.

An experiment determining the number of trials nec-
essary to recognize objects in the presence of random
extraneous image points was run. Table 3 shows the
results of this experiment. To generate a hypothesis of
the model being present in the image, this experiment
required a cluster to be at least 80% of the optimal size
(14 for models of size 20). For each value ofn, Table 3
showskmin for δ = 0.01, the average number of trials
necessary to generate a correct hypothesis that the ob-
ject was present in the image, the maximum number

Table 3. The number of trials required to find objects
with 20 points.

n kmin avg. max. over

20 6.65 1.51 11 2

40 34.52 5.28 20 0

60 80.65 14.50 165 2

80 145.20 25.24 270 1

100 228.19 33.39 223 0

120 329.61 51.70 412 1

140 449.47 55.86 280 0

160 587.77 109.97 2321 1

180 744.51 113.31 556 0

200 919.69 145.95 697 0

We use the following terms in the above table:
n: number of image points.
kmin: expected number of trials necessary forδ = 1.0.
avg.: average number of trials required for 100 objects.
max.: maximum number of trials required.
over: number of objects that required>kmin trials.

of trials necessary to generate such a hypothesis, and
the number of objects (out of 100) that required more
thankmin trials. For each case, at least 98 of the 100 ob-
jects were recognized withinkmin trials. Overall, 99.3
percent of the objects were recognized withinkmin tri-
als, with the expectation of recognizing 1− δ = 99.0
percent of the objects.

To summarize the results on synthetic data, the new
pose clustering method has been determined to find
a larger fraction of the optimal cluster than previous
methods and to result in very few false positives for
images of moderate complexity. In addition, the num-
ber of pairs of point matches that we must examine to
recognize objects has been confirmed experimentally
to beO(n2), validating the analysis that indicated the
total time required by this algorithm isO(mn3).

8.2. Real Images

This pose clustering system has also been tested on
several real images from two data sets. The first data set
consists entirely of planar figures. The second consists
of three-dimensional objects. Note that when applied
to the first data set, this algorithm made no use of the
fact that the figures were planar. No benefit is gained
from using this data set, except that corners are easy to
detect on them. Furthermore, the only features used in
either data set to generate hypotheses are the locations
of corner points in the image.
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Hypothesis generation followed the following steps:

1. Object models were created. For the first data set
this was done by capturing images of the object and
determining the location of corners. For the second
data set this was done by hand.

2. Images including the objects were captured.
3. Corners were detected in the images using a fast and

precise interest operator (F¨orstner, 1993; F¨orstner
and Gülch, 1987).

4. The model and image feature points were used by
the pose clustering system to generate hypotheses
as specified in the previous section.

Figure 7 shows an example of recognizing objects
from the first data set in an image. Figure 7(a) shows the
84 feature points found by the interest operator. While
there is no occlusion in this image, the interest operator
did not find all of the correct corners. In several cases
where two corners were close together (e.g., the engines
on the plane) only one corner is found. Figure 7(b)
shows the best hypotheses found for this image with the
edges drawn in. The projected model edges line up very
well with the object edges in the images. Figure 7(c)
shows the largest incorrect match that was found for
this image. This is a rotated and scaled version of the
person model. For this pose of this model, several of
the points in the model are brought very close to the
corners detected in the image. When large false posi-
tives are found, they can be easily disambiguated from
the correct hypotheses by examining whether the trans-
formed model edges agree with edges in the image.

Several images from this data set included occluded
objects. See, for example, Fig. 8. Despite the occlu-
sion, we are able to find good hypotheses, since we
only require some fraction,f , of the model points to
appear in the image. The algorithm was still able to
find the correct hypotheses for objects with up to 40%
occlusion.

Figure 9 shows an example recognizing a stapler
from the second data set. Figure 9(a) shows the 70
feature points detected in this image. Self-occlusion
prevented many of the features points on the stapler
from being found. In addition, a large number of spu-
rious points were found due to shadows and unmodeled
stapler points. Figure 9(b) shows the best hypothesis
found.

The largest source of error in the experiments on
both real and synthetic images was the use of weak-
perspective as the imaging model. The poor pose

(a)

(b)

(c)

Figure 7. Recognition example for two-dimensional objects. (a)
The corners found in an image. (b) The four best hypotheses found
with the edges drawn in. (The nose of the plane and the head of the
person do not appear because they were not in the models.) (c) The
largest incorrect match found.
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(a) (b)

Figure 8. Recognition example for occluded two-dimensional objects. (a) The corners found in an image. (b) The best hypotheses found for
the occluded objects with the edges drawn in.

(a) (b)

Figure 9. Recognition example for a 3D object. (a) The features found in the image. (b) The best hypothesis found.

recovered in Fig. 10 demonstrates the problems that
perspective distortion can cause. The use of weak-
perspective is the limiting factor on the current accuracy
of this system.

9. Discussion

The algorithm that has been described can be paral-
lelized in a straightforward manner. We simply parti-
tion the subproblems such that each processor performs
an approximately equal number of the subproblems. In
this manner, the use ofp processors yields a speedup
of approximatelyp until p reaches the total number
of subproblems. We thus requireO(mn) time onn2

processors. We still requireO(mn) space on each pro-

cessor. Further speedup might be achieved withp > n2

by considering parallel histograming techniques.
Some of the techniques described in this paper can be

used with recognition strategies other than pose cluster-
ing, when these strategies examine pose space to de-
termine the transformations aligning several matches
between features. For example, Breuel (1992) recur-
sively subdivides the pose space to find volumes that
are consistent with the most matches. These volumes
are found by intersecting the subdivisions of pose space
with bounded constraint regions arising from hypoth-
esized matches between sets of model and image fea-
tures. The expected time was empirically found to be
linear in the number of constraint regions. To recog-
nize three-dimensional objects from two-dimensional
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Figure 10. Perspective distortion can cause error in the recovered
pose or even recognition failure when a weak-perspective model is
used.

images using point features, matches of three points
are necessary to generate bounded constraint regions.
Thus, there areO(m3n3) such constraint regions for
this case. Theorem 1 implies that Breuel’s algorithm
will still find the best match if it examines only the
O(mn) constraint regions associated with a given pair
of correct matches of feature points. Since we don’t
know two correct matches in advance, we must exam-
ine O(n2) of them (using randomization). Of course,
this introduces a probability,δ, that a correct pair of
point matches will not be chosen, and thus recognition
may fail where it would not in the original algorithm.

Clustering methods other than histograming have
been largely avoided due to their considerable time re-
quirements. For example, algorithms based on nearest-
neighbors (Sibson, 1973; Defays, 1977; Day and
Edelsbrunner, 1984) requireO(p2) time, where p
is the number of points to cluster. Since there are
p = O(m3n3) transformations to cluster in previous
methods, this means the overall time for clustering
would beO(m6n6). While most pose clustering meth-
ods have used histograming to find large clusters in
pose space, less efficient, but more accurate, clustering
methods become more feasible with this method, since
only O(mn) transformations are clustered at a time,
rather thanO(m3n3).

Another point worthy of discussion is that some pre-
vious researchers in pose clustering have assumed that
finding a large enough peak in the pose space is suffi-
cient to consider the object present in the image, while
others have claimed that pose clustering is more sensi-
tive to noise and clutter than other algorithms. Grimson
et al. (Grimson and Huttenlocher, 1990; Grimson et al.,

1992) have shown that we should not simply assume
that large clusters are instances of the object; additional
verification is needed to ensure against false positives.
However, while it is clear that further verification is
required for hypotheses generated by pose clustering,
other methods also require this additional verification
step. The analysis in Sections 3 and 5 shows that pose
clustering is not inherently more sensitive to noise and
clutter than other algorithms.

Clutter affects the efficiency of pose clustering sim-
ilarly to other algorithms. On the other hand, noise
and other sources of error are handled in considerably
different ways among various algorithms. While con-
siderable research has gone into analyzing how to best
handle error in the alignment method (Jacobs, 1991;
Alter, 1993; Alter and Jacobs, 1994; Grimson et al.,
1994), very little has been done in this regard for pose
clustering. Work by Cass (1990, 1992) demonstrates
how to handle noise exactly in the context of trans-
formation equivalence analysis, for the case where the
localization error is bounded by a polygon, but this is
not directly applicable to pose clustering. At present,
the system described here handles noise heuristically
and further study in this area should be beneficial.

We can compare the noise sensitivity of pose clus-
tering to generate-and-test methods such as alignment.
While careful alignment (Grimson et al., 1992; Alter,
1993; Alter and Jacobs, 1994; Grimson et al., 1994) en-
sures that each of the additional point matches can sep-
arately be brought into alignment with the initial set of
matches, up to some error bounds, by a single transfor-
mation, this transformation may be different for each
such additional point match. (A different error vector
may be assigned to the initial matches for each of the
additional matches.) It does not guarantee thatall of the
additional point matches and the initial set of matches
can be brought into alignment up to the error bounds
by a single transformation. Ideally, a pose clustering
system could guarantee this, but due to the limitations
imposed by discretizing the pose space and the heuris-
tic handling of noise, it is not achieved by this system.
Interestingly, the analysis of Grimson et al. (1992) in-
dicates that pose clustering techniques will find fewer
false positives than the alignment method for similar
levels of noise and clutter.

10. Related Work

This section describes previous work that has been per-
formed on techniques related to those presented here.
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Ballard (1981) showed that the Hough transform
(Hough, 1962; Illingworth and Kittler, 1988) could be
generalized to detect arbitrary two-dimensional shapes
undergoing translation by constructing a mapping be-
tween image features and a parameter space describing
the possible transformations of the object. This system
was generalized to encompass rotations and scaling in
the plane.

Stockman et al. (1982) describe a pose clustering
system for two-dimensional objects undergoing simi-
larity transformations. This system examines matches
between image segments and model segments to re-
duce the subset of the four-dimensional pose space
consistent with a hypothetical match to a single point.
Clustering is performed by conceptually moving a box
around pose space to determine if there is a position
with a large number of points inside the box and is im-
plemented by binning. The binning is performed in a
coarse-to-fine manner to reduce the overall number of
bins that must be examined.

Silberberg et al. (1984, 1986) describe a pair of sys-
tems using generalized Hough transform techniques to
perform object recognition. In the first, they assume
orthographic projection with known scale. Objects are
modeled by straight edge segments. They solve for
the best translation and rotation in the plane for each
match between an image edge and a model edge for
each viewpoint on a discretized viewing sphere and
cluster these transformations. In the second, they con-
sider the recognition of three-dimensional objects that
lie on a known ground plane using a camera of known
elevation. Matches between oriented feature points are
used to determine the three remaining transformation
parameters.

Turney et al. (1985) describe methods to recog-
nize partially-occluded two-dimensional parts un-
dergoing translation and rotation in the plane. A
generalized Hough transform voting mechanism with
votes weighted by a saliency measure is used to recog-
nize the parts.

Dhome and Kasvand (1987) recognize polyhedra in
range images using pairs of adjacent surfaces as fea-
tures. Initially compatible hypotheses between such
features in the model and in the image are determined
and then clustering is performed hierarchically in three
subsets of the viewing parameters: the view axis, the
rotation about the view axis, and the model transla-
tion. Complete-link clustering techniques are used to
determine clusters with some maximum radius in each
stage. The clusters from earlier stages are considered

separately in the later stages to ensure that the final
clusters agree in all of the parameters.

Thompson and Mundy (1987) usevertex-pairsin
the image and model to determine the transformation
aligning a three-dimensional model with the image.
Each vertex-pair consists of two feature points and
two angles at one of the feature points corresponding
to the direction of edges terminating at the point. At
run-time, precomputed transformation parameters are
used to quickly determine the transformation aligning
each model vertex-pair with an image vertex-pair and
binning is used to determine where large clusters of
transformations lie in transformation space. In addi-
tion, Thompson and Mundy show that for objects far
enough from the camera, the scaled orthographic pro-
jection (weak-perspective) is a good approximation to
the perspective projection.

Linnainmaa et al. (1988) describe another pose clus-
tering method for recognizing three-dimensional ob-
jects. They first give a method for determining object
pose under the perspective projection from matches of
three image and model feature points (which they call
triangle pairs). They cluster poses determined from
such triangle pairs in a three-dimensional space quan-
tizing the translational portion of the pose. The rota-
tional parameters and geometric constraints are then
used to eliminate incorrect triangle pairs from each
cluster. Optimization techniques are described that de-
termine the pose corresponding to each cluster accu-
rately.

Grimson and Huttenlocher (1990) show that noise,
occlusion, and clutter cause a significant rate of false
positive hypotheses in pose clustering algorithms when
using line segments or surface patches as features in
two- and three-dimensional data. In addition, they show
that binning methods of clustering must examine a very
large number of histogram buckets even when using
coarse-to-fine clustering or sequential binning in or-
thogonal spaces.

Grimson et al. (1992) examine the effect of noise,
occlusion, and clutter for the specific case of recogniz-
ing three-dimensional objects from two-dimensional
images using point features. They determine over-
estimates of the range of transformations that take a
group of model points to within error bounds of hy-
pothetically corresponding image points. Using this
analysis, they show that pose clustering for this case
also suffers from a significant rate of false positive
hypotheses. A positive sign for pose clustering from
the work of Grimson et al. is that pose clustering
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produced false positive hypotheses with a lower fre-
quency than the alignment method (Huttenlocher and
Ullman, 1990) when both techniques use only feature
points to recognize objects.

Cass (1988) describes a method similar to pose clus-
tering that uses transformation sampling. Instead of
binning each transformation, Cass samples the pose
space at many points within the subspaces that align
each hypothetical feature match to within some error
bounds. The number of features brought into alignment
by each sampled point is determined and the object’s
position is estimated from sample points with maxi-
mum value. This method may miss a pose that brings
many matches into alignment, but it ensures that the
matches found for any single sample point are mutu-
ally compatible.

Another related technique is to divide pose space
into regions that bring the same set of model and im-
age features into agreement up to error bounds (Cass,
1992). For the two-dimensional case, if each image
point is localized up to an uncertainty region described
by a k-sided polygon, then each of themn possible
point matches corresponds to the intersection ofk half-
spaces in four-dimensions. The equivalence classes
with respect to which model and image features are
brought into agreement can be enumerated using com-
putational geometry techniques (Edelsbrunner, 1987)
in O(k4m4n4) time. The case of three-dimensional
objects and two-dimensional images is more difficult
since the transformations do not form a vector space.
But, by embedding the six-dimensional pose space in
an eight-dimensional space, it can be seen that there are
O(k8m8n8) equivalence classes. Not all of the equiva-
lence classes must be examined, particularly if approx-
imate algorithms are used to find transformations that
align many features. Several techniques to reduce the
computational burden of these techniques are given in
(Cass, 1993).

Breuel (1992) has proposed an algorithm that recur-
sively subdivides pose space to find volumes where
the most matches are brought into alignment. While
this method has an exponential worst case complexity,
Breuel’s experiments provide empirical evidence that,
for the case of two-dimensional objects undergoing
similarity transformations, the expected time complex-
ity is O(mn) for line segment features (orO(m2n2) for
point features). The case of three-dimensional objects
and two-dimensional data is not discussed at length, but
if the expected running time remained proportional to
number of constraint regions then it would beO(m3n3)

for point features.

11. Summary

This paper has described techniques to efficiently per-
form object recognition through the use of pose clus-
tering. Of particular interest has been a theorem that
shows that three different formalizations of the object
recognition problem are equivalent, and thus they can
be used interchangeably, assuming that other param-
eters are unchanged. This theorem has been used to
show that object recognition using pose clustering can
be decomposed into small subproblems that examine
only the sets of feature matches that include some ini-
tial set of matches. Randomization has been used to
limit the number of such subproblems that need to be
examined. The overall time required for recognizing
three-dimensional objects using feature points has been
shown to beO(mn3) for m model features andn image
features, the lowest known complexity for this prob-
lem. Since far fewer poses are clustered at a time, this
method can be implemented using much less memory
than previous pose clustering systems. The total space
requirement isO(mn).

An improved analysis on the rate of false positives
that are expected for a given image complexity has
been given. While the results indicate the rates are
slightly worse than previously thought, analysis has
shown that a fundamental bound exists on the rate of
false positives that can be achieved by algorithms that
recognize objects by finding sets of features that can be
brought into alignment. Within the limitations of this
bound, pose clustering performs well.

A new formalization of clustering using efficient his-
tograming has been given. This formalization casts the
recursive histograming of poses as a pruned tree search.
Since there areO(n) unpruned branches at each level
of the tree, this method achieves time and space that is
linear in the number of poses that are clustered.

Experiments have been described that have validated
the performance of the system. The new techniques find
a greater percentage of the poses that correspond to the
correct cluster than previous techniques, when a cor-
rect pair of initial matches is used, and the size of false
positives found in moderately complex images is small.
It has been verified experimentally that the number of
initial matches that must be examined to locate, with
high probability, an object that is present in the image is
O(n2), even when noisy features are considered. The
largest source of error in the experiments arose from
the use of weak-perspective as the imaging model, sug-
gesting that its use is limiting the performance of object
recognition algorithms in some cases.
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The algorithm has considerable inherent parallelism
and can be implemented on a parallel system simply by
dividing the subproblems among available processors.
It has been observed that the implications of the the-
orem showing the equivalence of several formalisms
of the object recognition problem apply to alternate
methods of recognition and can yield improvements
even when pose clustering is not used. We conclude by
noting again that, while we have considered primarily
the problem of 3D from 2D recognition using feature
points, these techniques are general in nature and can
be applied to other recognition problem where we have
a method for determining the hypothetical pose of an
object from a set of feature matches.
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Note

1. This assumes thatn2 À ( f m)2. On the other end of the scale,
kmin approaches 0 as( f m/n)2 approaches 1, although, of course,
kmin can never be less than one, since we must take an integral
number of trials.Kmin is still O(n2/m2) in this case, since we
must havem= O(n) for recognition to succeed.
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