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Generic Object Recognition with Boosting

Andreas Opelt, Axel Pinz, Member, IEEE, Michael Fussenegger, and Peter Auer

Abstract—This paper explores the power and the limitations of weakly supervised categorization. We present a complete framework
that starts with the extraction of various local regions of either discontinuity or homogeneity. A variety of local descriptors can be applied
to form a set of feature vectors for each local region. Boosting is used to learn a subset of such feature vectors (weak hypotheses) and to
combine them into one final hypothesis for each visual category. This combination of individual extractors and descriptors leads to
recognition rates that are superior to other approaches which use only one specific extractor/descriptor setting. To explore the limitation
of our system, we had to set up new, highly complex image databases that show the objects of interest at varying scales and poses, in
cluttered background, and under considerable occlusion. We obtain classification results up to 81 percent ROC-equal error rate on the
most complex of our databases. Our approach outperforms all comparable solutions on common databases.

Index Terms—Boosting, object categorization, object localization.

1 INTRODUCTION

OB]ECT recognition has been a long standing goal of
computer vision research. Many significant contribu-
tions discuss the recognition of specific, individual objects
from images. Generic object recognition is the task of
classifying an individual object to belong to a certain
category, thus also termed object categorization. While humans
are quite good in categorization tasks—they often perform
even better than in the recognition of individuals, the
opposite is true for today’s artificial vision systems. Only
very recently, first success has been reported in object
categorization. This success is strongly related to new
algorithms which efficiently describe local, salient regions
in images. At the same time, a number of common databases
have been established for the sake of comparison of the
emerging categorization algorithms.

There are many possible approaches to generic object
recognition: Learning of constellations of local features from
still images [8], [41] integration of motion cues and local
features [38], and more complex geometric models (e.g.,
pictural structures [7]), to mention just a few. Another
important issue is the amount of supervision which is
supplied during the training of a recognition system. To
give an example, Agarwal and Roth [1] present small
rectangular regions which contain just the object of interest
(a car viewed from the side). The selection of training and
test images is a further, more implicit source of supervision.
Most existing databases for object categorization show the
objects at prominent scales, often with little background
clutter, occlusion, or variance in object pose.

This paper sets out to explore the limits of weakly
supervised object categorization from still images. To keep
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this effort tractable, we have to assume a number of boundary
conditions. Most important, we focus on local descriptors of
regions of discontinuity or homogeneity, without taking any
spatial relations into account. Furthermore, we assume that
the performance of individual descriptors might be category-
specific. Thus, we use Boosting as a learning technique that
can elegantly form category-specific vectors of very diverse
descriptors. Finally, we define the tolerable amount of
supervision by labeling the training images of the database.
The system knows whether a training image contains an
instance of a certain category, or not. But, it has to learn all
other relevant information without further supervision
(object pose, scale, and localization) and to deal with potential
occlusion, varying illumination and background clutter.

The paper sheds light on the following questions: Is the
performance of individual descriptors category specific? To
what extent do combinations of diverse descriptors improve
the categorization performance? What is learned by the
system, in terms of category description and object localiza-
tion? We also compare our approach with others based on the
use of common databases. The major contributions of the
paper are: 1) We present a complete framework for weakly
supervised categorization. 2) We have designed publicly
available new and complex databases. 3) We give experi-
mental results for the combination of diverse local descriptors
and their localization with respect to object/background in
the image. Further contributions include a new similarity-
measure-based segmentation algorithm and the specific
application of Boosting as a popular learning technique.

The paperis organized as follows: We discuss related work
in Section 2. Section 3 gives a detailed overview of our
approach and explains the differences between our new data
set and existing databases for object categorization. In
Section 4, we present the various methods of region detection
used in our framework focusing on the new Similarity-
Measure-Segmentation. The local descriptors of these regions
are described in Section 5. Section 6 presents our general
learning approach and the combination of various kinds of
description vectors. Section 7 describes our experimental
setup, presents experimental results, and compares them
with other approaches for object recognition. Section 8
concludes with a discussion and an outlook on further
extensions.

Published by the IEEE Computer Society
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2 RELATED WORK

Taking a closer look at the extensive body of literature on
object recognition, each approach has its specific merits and
limitations. In general, common approaches use image
databases which show the object of interest at prominent
scales and with only little variation in pose (e.g., [8], [1], [20]).
Others presegment the object manually (e.g., [6], [37]) to
reduce complexity. Subsequently, we discuss some of the
most relevant and most recent results related to our approach
and point out the differences to our method. One main
extension of our approach to the existing solutions is that we
do not use just one technique of information extraction, buta
combination of various methods.

Boosting was successfully used by Viola and Jones [38] as
the learning ingredient for a fast face detector. The weak
hypotheses were the thresholded average brightnesses of
collections of up to four rectangular regions. Recently, Viola
et al. [39] extended this approach by also incorporating
motion information. We also use different sources of
information in one system, but instead of motion, we combine
various region description methods in one classifier. Further-
more, Viola’s work requires manually presegmented objects
in their training sequences, whereas our training images are
highly complex and no object segmentation is given.
Schneiderman and Kanade [33] use Boosting to improve an
already complex classifier. Contrary to them, we are using
Boosting to combine rather simple classifiers by selecting the
most discriminative features. Additionally, Schneiderman
and Kanade undertake rather specific object recognition as
they train each object from different viewpoints.

Also, a wide variety of other learning techniques has been
used to solve the task of object recognition. For example,
Agarwal and Roth [1] use Winnow as the underlying
learning algorithm for the recognition of cars from side
views. For this purpose, images are represented as binary
feature vectors. These feature vectors encode which image
patches from a “codebook” appear in an image. The bits of
such a feature vector can be seen as the result of weak
classifiers, one weak classifier for each position in the binary
vector. For learning, it is required that the output of all weak
classifiers is calculated a priori. In contrast, Boosting only
needs to find the few weak classifiers which actually appear
in the final classifier. This substantially speeds up learning, if
the space of weak classifiers carries a structure that allows
the efficient search for discriminative weak classifiers. A
simple example is a weak classifier which compares a real
valued feature against a threshold. For Winnow, one weak
classifier needs to be calculated for each possible threshold a
priori,' whereas for Boosting the optimal threshold can be
determined efficiently when needed. The idea of Agarwal
and Roth was picked up by Leibe et al. [20], who use this
codebook of appearance and add an implicit shape model.
This gives good classification results as well as the
segmentation of the object. But, in their approach, as in the
work of Agarwal and Roth, the authors manually crop out
the objects for training to reduce complexity.

Wallraven et al. [40] use support vector machines
combined with local features for object recognition. But,
they perform a rather specific recognition task on images of
lower complexity without any background clutter.

1. More efficient techniques for Winnow like using virtual threshold
gates [24] do not improve the situation much.
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A different approach to object class recognition is pre-
sented by Fergus et al. [8]. The authors use the constellation
model first proposed by Leung et al. [21] and the EM-type
learning framework of Weber et al. [41] to learn this
probabilistic model, but they add scale invariance to the
framework. In [9], the same authors extend the constellation
model to include heterogeneous parts consisting of curve
segments and appearance patches. The parts and their
constellations can be learned without supervision and from
cluttered images. In contrast, we use a model-free approach
and propose Boosting as a very different learning algorithm
compared to EM.

Recently, LeCun et al. [19] studied the use of various
popular learning techniques for the categorization of
images with complex variabilities (clutter, varying pose,
and lighting). They pointed out the limits of nearest
neighbor methods and support vector machines on difficult
data. Additionally, they presented promising results on a
complex data set using convolutional networks. In contrast
to their work, we use Boosting as learning technique. We
also use local description methods instead of their global
image representation via PCA.

Another object recognition approach was introduced by
Dorko and Schmid [6]. It is based on the construction and
selection of scale-invariant object parts. These parts are
subsequently used to learn a classifier. The authors show a
robust detection under scale changes and variations in
viewing conditions, but in contrast to our approach, the
objects of interest are manually presegmented. This drama-
tically reduces the complexity of distinguishing between
relevant patches on the objects and background clutter.

Ferrari et al. [10] present an approach where object
recognition works even if aggravating factors like back-
ground clutter, scale variations, or occlusion are very
strong. Based on a model of a specific object, an iterative
approach is applied. Starting with a small initial set of
corresponding features good results are obtained. While
this work presents a powerful concept of an iterative “active
exploration” approach, it is based on a model for a specific
object which is learned from noncluttered representations of
the object. Another interesting approach was introduced by
Selinger and Nelson [34] who perform object recognition in
cluttered backgrounds. But, their approach also deals with
specific objects rather than generic object categories.

A new possibility of describing objects for categorization is
introduced by Thureson and Carlsson in [37]. It is based on
histograms of qualitative shape indices. These indices are
calculated from the combinations of triplets of location and
gradient directions of the samples. The object categories are
represented by a set of the histogram representations of the
training images. For each new test image, the inner products
of the representation vector (histogram) with all trained
histograms are calculated. The smallest of these products and
a threshold are used to categorize this certain image. This
approach is based on a matching of image representations,
whereas we compute a classifier from all the training images.
This solution also requires a manual presegmentation of the
relevant object to reduce complexity.

Carbonetto et al. [3] present an approach for contextual
object recognition based on a segmented image. They attach
labels to image regions and learn a model of spatial
relationships between them. We also use segments as
image representations, but we can cope with more complex
images using our model-free approach.
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Fig. 1. Our framework for generic object recognition starts from a labeled image database. Regions of discontinuity and homogeneity are extracted
and described by local descriptors forming a feature vector. Learning by AdaBoost [12] leads to a final hypothesis which consists of several weak
hypotheses. The solid arrows show the training procedure, the dotted ones the testing procedure.

3 MEeTHOD AND DATA

To learn a category, the learning algorithm is provided with a
set of labeled training images. A positive label indicates thata
relevant object appears in the image. The objects are not
presegmented, theirlocationin theimages and the viewpoints
are unknown. As output, the learning algorithm delivers a
final classifier (further on also called “final hypothesis”)
which predicts if a relevant object is present in a new image.
Thelearning procedure in our framework (see Fig. 1) works as
follows: The labeled images are put through a preprocessing
step that transforms them to gray scale.” Then, two kinds of
regions are detected. On the one hand, regions of disconti-
nuity are extracted. These are regions around salient points
normalized to quadratic patches. They are extracted with
various existing methods. On the other hand, we extract
regions of homogeneity which are obtained by using two
differentimage segmentation methods: We compare the well-
known Mean-Shift-segmentation [5] with our similarity-
measure-segmentation. This new segmentation method
allows the segmentation of nonconnected regions. It performs
equally well or better than several other methods with respect
to object recognition in our experiments. Next, we calculate
local descriptors of regions of discontinuity and homogeneity.
Having various descriptions of the content of animage allows
us to combine various kinds of regions with various
descriptions in one learning step. We use Boosting [12] as
learning technique. Boosting is a technique for combining
several weak classifiers into a final strong classifier. The weak
classifiers are calculated on different weightings of the
training examples. This is done to emphasize differentaspects
of the training set. Since any classification function can
potentially serve as a weak classifier, we can use classifiers
based on arbitrary and diverse sets of image features. A
further advantage of Boosting is that weak classifiers are
calculated when needed instead of calculating unnecessary
hypotheses a priori. The result of the training procedure is
saved as the final hypothesis.

Existing data sets for object recognition used by other
research groups (e.g., [8], [1]) show the objects with just
small variations in scale and objects are generally viewed at
similar poses. To be comparable with other state-of-the-art

2. Note that we do not use color information in this work. This might be a
possible area of future improvement.

approaches, we also carried out experiments on the well-
known Caltech® and the University of Illinois* databases.
Fig. 2 shows some examples of the Caltech database of the
categories cars (rear), motorbikes, and airplanes. On such
databases, other previous approaches work well, because of
the prominent objects. However, we require far more
complex images to be able to demonstrate the advantages
of our approach. The objects should be shown with high
variation of their location in the image, at different scales,
viewed from several positions. Additionally, the images
should contain high background clutter. Therefore, we had
to build up our own more complex database. This database”
(further on termed GRAZ-01) that was used in [30], contains
450 images of category person (P), 350 of category bike (B),
and 250 of category “counter-class” (N, meaning it contains
no bikes and no persons). Fig. 3 shows some example images
of each category.

Based on our localization results (see Section 7.3), which
reveal that certain methods tend to emphasize context (i.e.,
the final classifier contains many background features), we
have set up a second database (see footnote 5, further on
termed GRAZ-02). This database has been carefully balanced
with respect to background, such that similar backgrounds
occur for all categories. Furthermore, we increased the
complexity of the object appearances and added a third
category of images. This challenging database contains
311 images of category person (P), 365 of category bike (B),
420 of category car (C), and 380 of a counter-class (N, meaning
it contains no bikes, no persons, and no cars). Fig. 4 shows
some example images. Our approach should cope with a high
amount of occlusion and with significant scale changes. The
images include all these difficulties with occlusions up to
50 percent. Also, the scale of the objects varies around 5 times
of their average size.

Regarding different region detection and description
techniques shown in Fig. 1, we experimentally evaluate two
kinds of methods. First, we perform various experiments for
one region extraction with one kind of local description
technique. We do not experiment with all possible combina-
tions, but we focus on methods with high performance based
on results reported in [29] and [30]. The second method is the
combination of various kinds of region detections with

3. Available at http://www.vision.caltech.edu/html-files /archive html.
4. Available at http:/ /12r.cs.uiuc.edu/~cogcomp /index_research.html.
5. Available at http:/ /www.emt.tugraz.at/~pinz/data/.
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Fig. 2. Sample images from the Caltech database, categories cars
(rear), motorbikes, and airplanes, used e.g., by [8].

different description techniques in one learning step (using
the “combination” module shown in Fig. 1).°

The performance is measured by the commonly used
receiver-operating-characteristic(ROC)-equal error rate (for
details, see [1]). In some cases, we also report the ROC-AuC
rate (area under ROC curve).

4 REGION DETECTION

Using all the information of the whole image leads to a very
high-computational complexity of the learning procedure.
Therefore, a reduction of information is necessary. This can be
achieved usingsalientinformation extraction techniques. But,
we also want to be capable of learning many object categories
without restrictions to shape or appearance of the objects.
Each category might be characterized by different descrip-
tors. For some objects, salient point techniques might be the
best way to extract their essential information. For other
objects, segments might be more relevant for recognition.
Hence, an approach for generic object recognition would be
limited if the images were described by just one method.
While all existing approaches (e.g., [9], [1], [37]) use just one
kind of description method for local image regions, we
combine multiple information extraction methods. This
should capture the essential characteristics of various object
categories (e.g., persons, cars, etc). Complementing our
approach, Viola et al. [39] use motion information as a second
source of information, whereas we use various techniques to
describeimage intensity information. The increased complex-
ity is justified by the gain of generalization in our approach.

There are two main branches of information extraction in
our framework. The first one is to select regions of
discontinuity. We use various well-known interest point
extraction techniques and simply crop out a region (of a
scale dependent size) around each point. The other branch
is the extraction of regions of homogeneity. This means
information reduction by a representation through image
segments. We use our new similarity-measure-segmenta-
tion and compare it with Mean-Shift-segmentation.

4.1 Regions of Discontinuity

As mentioned, regions of discontinuity are regions around
interest points. There is a variety of work on interest point

6. Note that, even if the combination seems more interesting, we also
want to compare the performance of the various methods separately.

419

detection at fixed (e.g., [17], [18], [36], [42]) and at varying
scales (e.g., [22], [26], [27]). Based on the evaluation of interest
point detectors by Schmid et al. [31], we decided to use the
scale invariant Harris-Laplace detector [26] and the affine
invariant interest point detector [27], both by Mikolajczyk
and Schmid. In addition, we use Lowe’s DoG (difference of
Gaussian) keypoint detector [23] which is strongly related to
SIFTs as local descriptors. As these techniques are state-of-
the-art, we do not describe them in detail here. The interested
reader is referred to the given references. We used the same
parameter settings as the authors in their experiments. For
the Harris-Laplace detector and the affine invariant interest
point detector, we normalized the regions around the interest
points to square patches with a side length of w = 6 - o7 (ajar
to the value used by Mikolajczyk and Schmid in [27]). Our
framework calculates local descriptors from square patches
of size [ x I. Scale normalization is achieved by smoothing
and subsampling in cases of | < w and by linear interpolation
otherwise. For illumination normalization, we use homo-
morphic filtering (see e.g., [14], chapter 4.5). For DoGs, we
used the binary of Lowe that already exports the local
descriptors (SIFTs) of a circular region with a radius of eight
pixels around the detected interest points.

4.2 Regions of Homogeneity

Regions of homogeneity can either be regions with a limited
difference of intensity values or regions with homogeneous
texture. These homogeneous regions are found with region-
based segmentation algorithms. There is an extensive body of
literature that deals with region-based segmentation algo-
rithms and their applications. Many of them (e.g., [4] and [35])
are trying to split images into background and prominent
foreground objects. Barnard et al. [2] use these segmentation
methods to learn object categories. The advantage of this
approach is the reduced complexity because there are only a
few regions in each training image. The drawback is the
difficulty to describe large and complex regions. Therefore,
we prefer to use algorithms, which deliver more and smaller
regions. These regions can be sufficiently well represented by
simple descriptors (see Section 5).

We also have developed a new algorithm—*"Similarity-
Measure-Segmentation” (first presented in [13])—which is
subsequently described in detail. We compare its perfor-
mance for object categorization with the well-known Mean-
Shift algorithm by Comaniciu and Meer [5]. In our frame-
work, we use the code from “The Robust Image Under-
standing Laboratory.”” Note that we just briefly compare
the qualitative results of these segmentation methods. Then,
we rather focus on their performance within our recognition
framework.

4.2.1 Similarity-Measure-Segmentation

Similar to other segmentation algorithms (see [4] and [35]),
we calculate several features for each pixel of the image, in a
first processing step. But, in contrast to others, we use a
similarity measure SM to describe pixel similarity for
segmentation purpose:

n 56
. 270y
i=1 %€

SM:Z - 0<SM <. (1)
Doig i

7. Available at http://www.caip.rutgers.edu/riul/research/code.html.
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Fig. 3. Some example images from our database GRAZ-01. The first column shows examples of the category bikes (B). In the second column, there
are images of the category person (P). The right-most column shows images of the counter-class (N). All these images were correctly classified

using our approach (for details, see Section 7).

Fig. 4. Some example images from our database GRAZ-02. The first column shows examples of the category bikes (B). In the second column, there
are images of the category person (P) followed by images of the category cars (C) in the third column. The right-most column shows some images of
the counter-class (N). The complexity increased compared with the database GRAZ-01. Also, the appearances of the background of the images
(category and counter-class) are rather balanced. All these images were correctly classified using our approach (for details, see Section 7).

This similarity is used to split images into regions. SC;
defines an element of the similarity-criteria vector SC. This
can be seen as the distance of two pixels corresponding to a
defined pixel feature. The parameter a; can be set between 0
and 1 to change the weight of the similarity-criterion SC;

and o; is used to change the sensitivity. For example, on
images with a small intensity variation, a small o; is used to
enhance the sensitivity of the intensity similarity-criterion.

Our Similarity-Measure Grouping algorithm consists of
the following steps:
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Fig. 5. Two detail views of the “Grazer Clocktower” segmented with
Similarity-Measure segmentation (images in the middle) and Mean-Shift
segmentation (images on the right).

1. Take any unlabeled pixel in an image, define a new
region R;, and label this pixel with RL;.

2. Calculate the similarity measure to all other unlabeled
pixels in the neighborhood, defined by a radius 7.

3. Each pixel that has a similarity above a threshold ¢
(0 <t < 1)is also labeled with RL;. Go back to Step 2
for each newly labeled pixel.

4. If there aren’t any newly labeled pixels, start again
with Step 1, until all pixels have a region number RL;,.

5. Search all regions smaller than a minimum value
regmin and merge each region with the nearest region
larger than regy, (same process as for Mean-Shift
segmentation [5]).

The radius r can be varied between 1 and 7,,,,. The
maximum radius 7,,,, depends on a positional sensitivity o,
and on a threshold ¢:

t
Tz = 1N (Z?_lai (n 1)) (—27mo,). (2)

If we use r = 1, we have a region growing algorithm using
the similarity-measure as homogeneity function. If we set the
radius > 1 (generally, r = 7,,,,), we have a new segmenta-
tion method, that delivers not connected “regions” ;. While
this is in contradiction to the classical definition of segmenta-
tion, treating these R; as entities for the subsequent learning
process has shown recognition results, which are superior to
results based on connected regions. We consider thisnew way
of looking at disconnected segments a possibility to aggregate
larger entities which are well-suited to describe local
homogeneities. These descriptions maintain salient local
information and suppress spurious information which would
lead to oversegmentation in other segmentation algorithms.

Fig. 5 shows two detail views segmented with similarity-
measure and with Mean-Shift segmentation. The first
example shows a rail that disappears with Mean-Shift
segmentation but is maintained with similarity-measure
segmentation. The rail is disconnected because of some
similarities between rail parts and the background, in both
algorithms. The Mean-Shift algorithm merges the maintain-
ing rail parts with the background considering its two
constraints that regions have to be connected and must be
larger than reg,;,. The Similarity-Measure algorithm treats
the disconnected parts as one region, which is larger than
regmin- The second example shows a part of a bush. The
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bush is split into 11 small regions with Mean-Shift
segmentation. Similarity-Measure segmentation leads to
five disconnected regions surrounded by two large regions.
This behavior is desirable for our purpose because it turns
out that a representation by not connected regions leads to a
better performance of our categorization approach.

5 LocAL DESCRIPTION

For the learning step, each region has to be represented by
some local descriptors. We use different description
methods for the two region types.

For regions of discontinuity, local descriptors have been
researched quite well (e.g. [11], [23], [32], [15]). We selected
four local descriptors for these regions, namely: Subsampled
gray values, basic intensity moments, moment invariants
[15], and SIFTs [23]. This choice was partly based on the
performance evaluation of local descriptors done by Miko-
lajczyk and Schmid [28]. For regions of homogeneity, we
chose two description techniques: intensity distributions [16]
and invariant moments [25]. The remaining part of this
section gives a very brief explanation of these techniques.

Our first descriptor is simply a vector of all pixels in a patch
subsampled by two. The dimension of this vector is f , which
is rather high and increases computational complexity. As a
second descriptor, we use intensity moments M; =
[, i@, y)"aPy? dx dy with a as the degree and p + ¢ as the
order, up to degree 2 and order 2. Without using the moments
of degree 0, we get a feature vector of dimension 10. This
reduces the computational costs dramatically.

According to [15], we selected first and second order
moment invariants. We chose four first order affine and
photometric invariants. Additionally, we took all five
second order invariants described in [15]. Since the
invariants require two contours, the whole region (square
patch) is taken as one contour and rectangles corresponding
to one half of the patch are used as a second contour. All
four possibilities of the second contour are calculated and
used to obtain the invariants. The dimension of the moment
invariants description vector is 9.5

As shown in [23], the description of the patches with
SIFTs is done by multiple representations in various
orientation planes. A local descriptor with a dimension of
128 is obtained.

The last two methods are used to represent regions of
homogeneity. The first one describes the intensity values
and their distribution in a region. It contains their mean,
variance, coefficient of variation, smoothness, skewness,
kurtosis, and the gray value energy (for details, see [16]).
The second one contains invariant moments (see [25]),
which are invariant with respect to scaling, rotation, and
translation. They are calculated from basic moments of
inertia. Using basic moments of order up to three results in
seven invariant moments for this description method.

Table 1 gives an overview of the various description
methods in our framework and their dimension.

6 LEARNING MODEL
Our learning model is based on the AdaBoost algorithm
[12]. This algorithm was adapted by adding the possibility

8. Note that, we skip description vectors here, which have more than five
entries equal to zero. This improved our results using moment invariants.
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TABLE 1
An Overview of the Description Methods in Our Framework and Their Dimension (for a Region Size of [ = 16 x 16 pixels)

- Regions of discontinuity

Regions of homogeneity

Fort=1,..,T
1) Get a weak hypothesis h; in respect
Hypotheses-Finder.

m
2) Calculate € = M
k=1 Wk

1—¢

3) Choose 3; = °

1—¢

- else
4) Update wy, «— wy, - % MUx) for k=1,
Output the final hypothesis (classifier):

+1
-1

H(I)

else.

Method Subsampled grayval. | Basic moments | Moment Invariants | SIFTs || Intensity distribution | Invariant moments
Dimension 64 10 9 128 7 7
Input: Training images (I1,¢1), ..., (Inm, {m).
Initialization: Set the weights w; = --- = w,,, = 1.

if Y0, (In 8y)he(I) > thaga,

to the weights wy,...,w,, from the Weak-

and Ek 75 ht([k)

ce, M.

Fig. 6. Modified AdaBoost algorithm [12] for object categorization tasks.

of putting different weights on positive and negative
training images. We set up a new weak-hypotheses-finder
that selects the most discriminant description vector in each
iteration of the AdaBoost algorithm. This weak-hypotheses-
finder is extended to be capable of using various description
methods in one learning step.

We need to learn a classifier for recognizing objects of a
certain category in still images. For this purpose, the learning
algorithm delivers a classifier that predicts whether a given
image contains an object from this category or not. As training
data, labeled images (11, ¢1), ..., (In, {m) are provided for the
learning algorithm where /), = 41 if I; contains a relevant
object and ¢, = —1 if I; contains no relevant object. The
learning algorithm delivers a function H : I/ which
predicts the label of image 1.

6.1 AdaBoost

To calculate this classification function H, we use an
adaptation of the classical AdaBoost algorithm [12]. Ada-
Boost puts weights wy, on the training images and requires the
construction of a weak hypothesis h which has some
discriminative power with respect to these weights, i.e.,

m

>

ke=1,h(I)=t;

m

>

k=1,h(I;)

Wy > W (3)

such that more images are correctly classified than misclassi-
fied, relative to the weights wy. Such a hypothesis is called
weak sinceitneeds to satisfy only this very weak requirement.
The process of putting weights and constructing a weak
hypothesis is iterated for several rounds ¢t = 1,...,7T, and the
weak hypotheses h; of each round are combined into the final
hypothesis H (for details, see Fig. 6). We use a threshold th 44,
(in [12], the authors use a signum function which means

thade = 0) to get the final classification result. To generate
various points on the ROC curve, one can train a classifier and
then use varying values for the threshold th.44,.

In each round t, the weight wy is decreased if the
prediction for I, was correct (h¢(I;) = ¢;) and increased if
the prediction was incorrect. Different to the standard
AdaBoost algorithm, we vary the calculation of the factor j;
which AdaBoost uses for its weight update after each
iteration. We add a possibility to trade off precision and
recall. We set

==-n if £y = +1 and 4. # hy(1})

B =

else

with ¢ being the error of the weak hypothesis in this round
and 7 as an additional weight factor to control the update of
falsely classified positive examples.

Here, two general comments are in place. First, it is
intuitively quite clear that weak hypotheses with high
discriminative power—with a large difference of the sums
in (3)—are preferable and, indeed, this is shown in the
convergence proof of AdaBoost [12]. Second, the adaptation
of the weights w; in each round performs some sort of
adaptive decorrelation of the weak hypotheses: If an image
was correctly classified in round ¢, then its weight is
decreased and less emphasis is put on this image in the next
round. As a result, this yields quite different hypotheses h;
and %" and it can be expected that the first few weak
hypotheses characterize the object category under considera-
tion quite well. This is particularly interesting when a sparse
representation of the object category is needed.

9. In fact, AdaBoost sets the weights in such a way that b, is not
discriminative with respect to the new weights. Thus, 1 is in some sense
oblivious to the predictions of h;.
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1. F, (wy).

type 7 in the training images.

diygj = min

over all images I;

Jj=1

threshold @ is set to

Input: Labeled representations (R (1), ), k = 1,...
(1): Distance functions: Let d.(-,-) be the distance in respect to the description vectors of

(2): Minimal distance matrix: For all description vectors (7 s, vy ;) and all images I;

calculate the minimal distance between vy ; and description vectors in [},

1<g<Fyimj,g=Tk, f

(3): Sorting: For each k, f let 7y, ¢(1),..., 7 (m) be a permutation such that

dic fom 1) < 0 <k gy p(m) -

(4): Select best weak hypothesis (Scanline): For all description vectors (7 ¢, vy, ¢) calculate

Max Y | e, ,(j)lm, 1) -

and select the description vector (7 r, vy, r) where the maximum is achieved.

(5): Select threshold 0: With the position s where the scanline reached a maximum sum the

,m, R(I1) = {(Tepsvep)lf =

di,f (Uk,f7 U]?g) -

4

_ e f i p(s) t Do s (s41)

“This does not necessarily minimize the error, if d s x, s = Ay, 5,3, F(sH+1)-

Fig. 7. Weak-hypotheses-finder using various description methods at a time.

Obviously, AdaBoost is a very general learning technique
to obtain classification functions. To adapt for a specific
application, suitable weak hypotheses have to be constructed.
For the purpose of object recognition, we need to extract
suitable description vectors from images and use these
descriptors to construct the weak hypotheses. Since Ada-
Boost is a general learning technique, we are free to choose
any type of description method we like, as long as we are able
to provide an effective weak-hypotheses-finder which
returns discriminative weak hypotheses based on this set of
descriptors. The chosen description vectors should be able to
represent the content of images, at least with respect to the
object category under consideration.

Since we can choose several types of description vectors,
we represent an image I by a set of pairs R(I) = {(7,v)},
where 7 denotes the type of a descriptor and v denotes a
value of this descriptor, typically, a vector of reals. Then, for
AdaBoost, a weak hypothesis is constructed from the
representations R(I;), labels ¢;, and weights w; of the
training images.

6.2 Weak-Hypotheses-Finder
Using one type of description vector at a time is the basic
functionality of our learning algorithm. But, it is also
possible to use multiple description methods in one
learning procedure. Then, the challenge of the learning
algorithm is not only the selection of the most discriminant
description vector with respect to the current weighting but
also the choice of a description type 7.

An image I is represented by a list of descriptors
(Th,psVnp), f =1,..., Fj.. The weak hypotheses for AdaBoost

are calculated from these descriptors. Fig. 7 shows the
weak-hypotheses-finder using multiple description meth-
ods. For object recognition, we have chosen weak hypoth-
eses which indicate if certain description vectors appear in
images. That is, a weak hypothesis h has to select a feature
type 7 and its value v and a similarity threshold . The
threshold @ decides if an image contains a description vector
vy ¢ that is sufficiently similar to v. The similarity between
vps and v is calculated by the Mahalanobis distance for
moment invariants, basic intensity moments and the
descriptors for the regions of homogeneity. Euclidean
distance is used for the SIFTs and the subsampled gray
values due to the high dimension of the feature space. The
weak-hypotheses-finder (Fig. 7, Step 4) searches for the
optimal weak hypotheses—given labeled representations of
the training images (R(I1),%1),...,(R(Im),4n) and their
weights w, ..., w, calculated by AdaBoost—among all
possible description vectors and corresponding thresholds.
Our learning algorithm is simplified if various description
methods 7 are used separately.

The main computational burden is the calculation of
the distances between v,y and v;, (see Fig. 7, Step 2)
because they both range over all description vectors that
appear in the training images. We arrange the minimum
distances from each description vector to each image in a
matrix, where we sort the distances in each column. Given
these sorted distances, which can be calculated prior to
Boosting, the remaining calculations are relatively inex-
pensive. In detail, we first calculate the optimal threshold
for the description vector vy in time O(m) by scanning
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Influence of the weight factor n
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Fig. 8. The diagram shows the influence of the additional factor  for the
weight-update of incorrectly positive classified examples. The recall
increases faster than the precision drops until a factor of 1.8 (for the
GRAZ-01 data set with affine invariant regions and moment invariants).
The optimal value of this factor varies on different data sets.

through the weights wi,...,w, in the order of the
distances dj. s ;. Subsequently, we search over all descrip-
tion vectors. This calculation of the optimal weak hypoth-
esis takes O(F - m) time, with F' being the average number
of features in an image.

To give an example of the total computation times, we use
a data set of 150 positive and 150 negative images. Each image
has an average number of approximately 400 description
vectors. After preprocessing and using SIFTs, one iteration of
Boosting requires about 10 seconds computation time on a P4
(2.4GHz PC). Obviously, the computational complexity is
increasing with every additional kind of feature used.

7 EXPERIMENTS AND RESULTS

The experimental evaluation is split into three parts. The
first part (Section 7.1) specifies the parameter settings. Our
classification results are discussed in detail in Section 7.2,
showing that this approach clearly outperforms current
state-of-the-art techniques. We investigate the performance
using various features separately. The benefits of using
multiple features in one learning procedure are also pointed
out there. Section 7.3 presents a qualitative evaluation of
localization performance. It shows the distribution of
learned information that is directly related with the object
and the learned contextual information.

7.1 Parameter Setting

The results were obtained using the same set of parameters
for each experiment. For the regions of discontinuity (scale
and affine invariant interest point detector), we used a
threshold of cornerness th = 30, 000 to reduce the number of
salient points. Also, the points with the smallest characteristic
scale were skipped (the neglectable influence of these points
was shownin [29]). The side of the squared region size around
the scaled and the affine interest points was normalized to
[ = 16 pixels. Vector quantization was used to reduce the
number of interest points obtained with the difference of
Gaussian (DoG) point detector [23]. Initially, we took all

TABLE 2
Relative Error on Data Set Cars (Rear) (Caltech Database)
and Bikes (of GRAZ-01 and GRAZ-02) for One Point on the
ROC Curve (n = 1.0, with th4, = 0)

Cars(rear) (Caltech)

Method regmin = 50|regmin = 250
Mean-Shift 15 18.3
Similarity-M. 8.3 11.7
Bikes (GRAZ-01)

Method 7€Gmin = 50|reGmin = 250
Mean-Shift 18.3 233
Similarity-M. 15 20
Bikes (GRAZ-02)

Method regmin = 90|re€Gmin = 250
Mean-Shift 26.0 25.0
Similarity-M. 25.6 25.3

We compare similarity-measure-segmentation with Mean-Shift-seg-
mentation. We used two different minimum region sizes of reg,,, =
50 and regni, =250. In all cases, except for category bikes of
GRAZ-02 with reg,,, = 250, categorization results are better for
similarity-measure-segmentation.

points into account but then we clustered the SIFT description
vectors of each image. As a clustering algorithm, we used
“k-means.” The number of cluster centers cl was set to 100 (for
the experiments on the GRAZ-02 database, we used
cl = 300'°) using a maximum number of 40 rounds in the k-
means. For the extraction of the regions of homogeneity, we
used a minimum region size reg,,;, = 50 for Mean-Shift-
segmentation and similarity-measure-segmentation. We
used the standard parameter set of the available binary for
Mean-Shift-segmentation. For the similarity-measure-seg-
mentation, we used a combination of intensity, position,
and high-pass. We introduce o, for the intensity, o, for the
position, and o; for the high-pass similarity criteria. o
depends on the contrast of the image. It is proportional to
the variance of the image o7. The exact parameters used were:
0c =153, 0, =1.2, 0, =0.5, and a threshold of ¢ =0.83.
With these parameters, we obtain 7,,,, = 6. The learning
procedure was run using 7" = 100.

Fig. 8 shows the influence of the additional weight factor
on recall and precision. In this test on the bike category of the
GRAZ-01 data set, with affine invariant interest point
detection and moment invariants, the optimal value is at
n=1.8. Up to this 7, the recall increases faster than the
precision drops. This optimal point depends on the descrip-
tion type and the data set. For all other experiments, we
generally set n=1.0 (standard AdaBoost), because this
significantly accelerates the learning. If 1 # 1.0, we mention
it separately.

The power of our new similarity-measure-segmentation
with respect to object categorization is shown in Table 2. It
outperforms Mean-Shift-segmentation in all cases, except for
category bikes of GRAZ-02 with reg,,;, = 250, where they
performed nearly equal. Thus, for the remaining experi-
ments, we focused on regions of homogeneity obtained by
similarity-measure-segmentation.

10. These numbers were experimentally evaluated and depend on the
image complexity, for details, see [29].



OPELT ET AL.: GENERIC OBJECT RECOGNITION WITH BOOSTING

TABLE 3
Shows the ROC-Equal Error Rates on the Caltech Database
and on Cars Side from the University of lllinois

Dataset || (1) | (2) | [8] Others

Motorbikes|[94.3[92.2(92.594.0 [20], 88 [41], 93.2 [37]
Airplanes (/97.5/88.9|90.2 -

Faces 100{93.5|96.4 93.5 [41]
Cars(side) || 100 |83.0/88.5 97.5 [20], 79 [1]
Cars(rear) || 100 91.1]90.3 93.9 [20], 86.5 [41]

The results in the first column (1) are obtained using regions of
homogeneity extracted with the similarity-measure-segmentation and
the description method based on the intensity distribution (withn = 1.4).
The second column (2) shows the results using the affine invariant
interest point detection and Moment Invariants. The last two columns
show results for comparison.

7.2 Classification Results

7.2.1 Reference Data Set

To be comparable with existing approaches, we first
evaluated our method on the Caltech database and “cars
side” from the University of Illinois. We took regions of
homogeneity extracted with the similarity-measure-segmen-
tation and the description method based on the intensity
distributions. We trained this combination on 60 images
containing the object as positive training images and
60 images from the counter-class as negative training images.
The tests were carried out on 60 new images half belonging to
the learned class and half to the counter-class.'" The results
are shown in the first column of Table 3. The second column
shows the results of our approach obtained with regions of
discontinuity extracted with the affine invariant interest
point detector and moment invariants as description method.
Here, we trained this combination on 100 images containing
the object as positive training images and 100 images from the
background set as negative training images. We took 100 test
images half belonging to the category and half not. In the last
two columns, we compare our results with other state-of-the-
art approaches ([1], [41], [8], [20], [37]). This comparison
shows that our best results are superior to the classification
performances of all the other approaches mentioned in the
table. Note that, in the case of cars (side), we compare ROC-
equal-error rates with the RPC-equal-error rates of other
approaches. The other approaches face the harder task of also
detecting multiple objects in one image. Whereas our model
free approach cannot detect multiple instances of an object
category in an image, but just reliably classify the whole
image. Especially similarity-measure-segmentation-based
region detection yields a very significant improvement on
this data set.

7.2.2 GRAZ-01 Data Set

Having demonstrated the good performance of our approach
on reference data sets (Caltech, Illinois), we proceed with
experiments on our own GRAZ-01 database. We first took

11. The images are chosen sequentially from the database. This means,
e.g., for this experiment, we took the first 90 image from the images of an
object class and took out every third image for the test set.
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TABLE 4

Comparison of ROC-Equal Error Rates (Eq.Err.) and
ROC-AuC (Area under Curve) Rates on GRAZ-01 Achieved
with Three Specific Combinations: Affine Invariant Interest

Point Detection with Moment Invariants, DoG Keypoint

Detection Combined with SIFT as Description Method,

and Similarity-Measure-Segmentation (SM)
Described by Intensity Distributions

‘ Dataset H Moment Invariants ‘ SIFTs ‘ SM ‘

Bikes

H eq.err. ‘ AuC ‘ eq.err. ‘ AuC ‘ eq.err. ‘ AuC ‘

73.5
63.0

76.5
68.7

78.0
76.5

86.5
80.8

83.5
56.5

89.6
59.1

Persons

100 images from the category bike (or person) as positive
training images and 100 images of the counter-class (N) as
negative training set. For the tests, we used 100 new images
half containing the object (bike or person) and half not
containing the object (category N).'* On this set of images, we
performed three experiments: First, we used regions of
discontinuity extracted with the affine invariant interest
point detection combined with moment invariants as descrip-
tion method. In the second experiment, we used regions of
discontinuity obtained with the DoG keypoint detector
combined with the SIFT description method. The number of
cluster centers of the k-means was set to 100 in this
experiment. Finally, we carried out an experiment using
regions of homogeneity with intensity distributions as
description method. Table 4 shows the ROC-equal error rates
of each experiment for the categories bike and person.
Considering the complexity of the data the results are very
good. The best classification is obtained using Similarity-
Measure-Segmentation (SM) described by intensity distribu-
tions for category bike and with DoG points and SIFTs for
persons. This result shows that each category of objects is best
represented by a specific description method. Fig. 9 shows the
recall-precision curves of these experiments.

All images presented previously in Fig. 3 were categor-
ized correctly. Fig. 10 gives examples of incorrectly
classified images. In both cases, the images of the counter-
class result from an experiment where we trained the
category bikes.

7.2.3 GRAZ-02 Data Set

After these experiments on the GRAZ-01 data set, we
evaluated our approach using the GRAZ-02 data set. We
took a training set consisting of 150 images of the object
category as positive images and 150 of the counter-set as
negative images. The tests were carried out on 150 images
half belonging to the class and half not ."* Fig. 11 shows the
ROC curves of various specific combinations of region
extractions and description types. Table 5 shows the
resulting ROC-equal error rates. The affine invariant
interest point detection with moment invariants or basic
moments as local descriptors performs best except for the
category bikes where all combinations achieve good results.

12. The images are chosen sequentially from the database. This means,
e.g., for this experiment, we took the first 150 image from the images of an
object class and took out every third image for the test set.

13. The images are again chosen sequentially from the database. Note
that the number of training images increases with the complexity of the
data. With fewer images, our approach would not be able to fetch the
category relevant information.
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Fig. 9. Shows the recall precision curves of our approach. We compare Moment Invariants and the affine invariant interest point detection, SIFTs and
DoG interest point detection, and Similarity-Measure-Segmentation (SM) described by intensity distributions on the GRAZ-01 database. (a) Shows
the results for category bike and (b) shows the recall-precision curves for the category person.

Fig. 10. Some example images from our database GRAZ-01 that were incorrectly classified in an average test case. The first column shows
examples of the category bikes (B) classified as images not containing a bike. In the second column, there are images of the category person (P)
classified as images not containing a person. The right-most column shows images of the counter-class-set (N) that were classified as bikes (B).

Again, all the images in Fig. 4 were categorized correctly
while images in Fig. 12 represent examples, where the
classification fails. One can see that the approach can handle
quite huge scale variations (e.g., Fig. 4 second column). The
system is even able to categorize an image where the object is
occluded up to 50 percent (e.g., Fig. 4 second row, first
column). However, it seems that too severe scale changes
degrade the categorization performance (e.g., Fig. 12 first
column, second row, or first row, third column).

This qualitative visual comparison of Figs. 3 and 10 with
Figs. 4 and 12 immediately reveals the need of further

explanation. Although the overall categorization results
(regarding the highly complex data and the low supervision)
are impressive, some difficult images are categorized
correctly, while the method fails for other (sometimes
“easier”) ones. What are the limitations of the approach?
Why are certain images categorized incorrectly? Why do
certain methods perform better than others? Especially, why
is similarity-measure-segmentation a clear winner on the
Caltech and Illinois data sets and on GRAZ-01 for the category
bikes, still good on the GRAZ-02 bikes and persons, but quite
poor on persons from GRAZ-01 and cars from GRAZ-02? We
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Fig. 11. Shows the ROC curves of various specific combinations of region extractions and description methods on the three categories ((a) bikes,

(b) persons, and (c) cars) of the GRAZ-02 data set.

try to answer some of these questions in Section 7.3 in the light
of localization abilities of the various detectors.

7.2.4 Combination

Subsequently, we describe experiments performed by using
more than one type of the various region extractions with a
description method in one learning step. We evaluated three
kinds of combinations.'* In all cases, we use regions obtained
with affine invariant interest point detection, described with
moment invariants as the first method. We combine it with
regions achieved through DoG keypoints described by SIFTs
(see Table 6 (A)), regions extracted with the affine invariant
interest point detector described with basic intensity mo-
ments (see Table 6 (B)) and regions of homogeneity obtained
by the similarity-measure-segmentation and described with
intensity distributions (see Table 6 (C)). While the results of
the combinations show just slight enhancement over the
individual best result, these experiments clearly show that the

14. Combining more of our methods is just marginally improving the
results.

combination of several methods can perform significantly
better than a certain individual method (cf. ROC-equal error
rates of 81.2 versus 74.1 for persons). The main benefitis thata

TABLE 5
ROC-Equal-Error Rates of Various Specific Combinations
of Region Extractions and Description Methods on the
Three Categories of the GRAZ-02 Data Set

‘ Dataset H Moment Invariants | Basic Moments ‘ SIFTs ‘ SM ‘

Bikes 72.5 76.5 76.4 | 74.0
Persons 81.0 77.2 70.0 | 74.1
Cars 67.0 70.2 68.9 | 56.5

The first and the second column are obtained with the affine invariant
interest point detection and moment invariants or basic intensity
moments as local descriptor. The third row was achieved using DoG
keypoint detection and SIFTs as description method using 300 cluster
centers within the k-means clustering. The last column shows the results
of experiments performed using similarity-measure-segmentation and
description via intensity distributions.
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Fig. 12. Some example images from our database GRAZ-02 that were incorrectly classified in an average test case. The first column shows
examples of the category bikes (B). In the second column, there are images of the category person (P) followed by images of the category cars (C) in
the third column. All were classified as counter-class-images. The right-most column shows some images of the counter-class-set (N). These are

examples that were classified as bikes (B).

use of the combination adds a higher reliability to a classifier.
For some categories, one combination of a region extraction
and a description method performs better than others. Using
various specific combinations in one learning step ensures a
final classifier that achieves better results than the best
classifier used separately.

7.3 Localization Performance

To discuss the localization of the information learned by our
approach, we first evaluated the experiments shown in the
previous section with respect to the localization of the
hypotheses. Taking a closer look at the regions of homo-
geneity that are learned to achieve the classification results
of Table 3, we found out, that only 25 percent to 50 percent
are located on the object. The remaining hypotheses do not

TABLE 6
This Table Shows the ROC-Equal Error Rates of
Specific Combinations of Region Extractions and Description
Methods Separated and Their Performance if They Are
Combined in One Learning Step (on GRAZ-02)

‘ Dataset H Mom. Inv. ‘ method 2 ‘ combination ‘

Cars 67.0 70.2 (A) 70.5
Bikes 725 76.4 (B) 77.8
Persons 81.0 74.1 (C) 81.2

The first value is always for the moment invariants. The second column
shows the results of either basic intensity moments (A) or SIFTs (B) or
regions of homogeneity described through intensity distributions (C).
The last column shows the achieved performance using the combination
of the two methods.

learn the object category directly, but focus on contextual
(background) information for this object category. Fig. 13
shows some examples of regions of homogeneity selected as
weak hypotheses from the Caltech data set. The first row
shows four hypotheses of the category plane. The first three
regions are located on the plane whereas the last one is not.
The second row shows four hypotheses from the final
classifier of the category cars (rear). Again, the right-most
hypothesis is not located on the object. If the object category
of the data set has specific background appearances that do
not occur in the images of the counter-class, it is in the
nature of our learning approach to select also background
information. Thus, this combination of object information
and contextual information gives us a good classification
performance. On the other hand, object localization is not

Fig. 13. Some examples of weak hypotheses of regions of homogeneity.
The first row shows four hypotheses from the final classifier of the
category airplane. In the second row, weak hypotheses of the category
cars (rear) are shown.
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(@) (b)

Fig. 14. (a) Shows nine examples of regions of discontinuity selected for
the final classifier of the category motorbike. (b) Shows nine examples of
regions of discontinuity selected for the final classifier of the category
airplane.

straight forward if we use regions of homogeneity on
images with specific background appearances.

Fig. 14a shows examples of regions of discontinuity
learned as weak hypotheses for the category motorbikes.
The final classifier was trained using affine invariant interest
points and moment invariants as local description method.
The regions shown are the raw image data cropped out
around the interest point before any affine, illumination, and
size normalization. Using the same settings, Fig. 14b shows
weak hypotheses of the final classifier of the category
airplanes. With this specific combination, we obtain 80 percent
to 90 percent of the weak hypotheses located on the object.
Even if this classifier is more related to the object (instead of
containing contextual information), the classification resultin
Table 3 is lower compared to using regions of homogeneity.
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TABLE 7
This Table Shows the Percentage of the Weak Hypotheses that
Are Not Located on the Object

‘ Dataset H Moment Invariants | Basic Moments ‘ SIFTs ‘ SM ‘

Bikes 21 30 39 55
Persons 23 45 54 74
Cars 56 63 52 84

Here, we used the same combinations as in Table 5 for the GRAZ-02
data set.

Focusing on the percentage of contextual information that
islearned, compared to the information directly related to the
object, we took a closer look at the classifiers shown in Table 4
based on the GRAZ-01 data set. We observe an average of
60 percent of the weak hypotheses containing contextual
information if we use similarity-measure-segmentation
combined with intensity distributions. For DoG interest
points described by SIFTs, 50 percent of the hypotheses
contain contextual information. Using the affine invariant
interest point detector with moment invariants or basic
intensity moments decreases this percentage to 30 percent.

Table 7 shows the percentage of weak hypotheses of the
final classifier for each category of GRAZ-02 that are not
located on the object. Again, looking at Table 5 with respect to
these localization performances shows that affine invariant
interest point detection and moment invariants are most
stable in the classification performance directly related to the
object. Fig. 15 shows examples of weak hypotheses used for
the final classifier of the category bike (GRAZ-02) with
various description methods. It shows which information is
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Fig. 15. Shows examples of weak hypotheses used for the final classifier of the category bike (GRAZ-02). The first row shows hypotheses based on
the test with regions of homogeneity and intensity distributions. The middle row shows regions extracted with the affine invariant interest point
detector and described by moment invariants. Examples of weak hypotheses obtained from the experiment with DoG keypoint detection and SIFTs
are shown in the last row. These are the raw image patches before any normalization steps are carried out.
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learned and how the learned classifier represents a category
of objects. The hypotheses that contain background informa-
tion (e.g., Fig. 15 first row, last column) are often also
important for our classification. As most of the bikes occur
associated with streets, weak hypotheses representing
asphalt contain highly relevant contextual information.

In summary, these investigations lead to the following
conclusions: The Caltech database shows the object of
interest at very prominent scales, locations, and in very
specific poses. The training data of the Illinois data set is
even easier. While these constraints are significantly relaxed
with the GRAZ-01 database, the counter-class images are
quite different, which enables the algorithm to take back-
ground information (context) into account. It turns out, that
homogeneity regions (similarity-measure-segmentation)
and SIFTs tend to emphasize context more than other
discontinuity-based region detectors. This is strongly
supported by our results on the GRAZ-02 database, which
is balanced with respect to the background (i.e., similar
backgrounds for class and counter-class images).

8 DiscussSION AND OUTLOOK

We have presented a novel approach for the recognition of
object categories in still images of high complexity. Our
system uses several steps of region extraction and local
description methods, which have been previously described,
as well as a new segmentation technique, and succeeds on
rather complex images with a lot of background structure.
The only supervision we use are the image labels. We have set
up new databases where objects are shown in substantially
different poses and scales, and in many of the images the
objects (bikes, persons, or cars) cover only a small portion of
the whole image. We use Boosting as the underlying learning
technique and combine it with a weak-hypotheses-finder. In
addition to several other advantages of this approach, which
have already been mentioned, we want to emphasize that this
approach allows the formation of very diverse visual features
into a final hypothesis. This use of several specific combina-
tions of region extraction and description methods in one
learning step makes a classifier more reliable over a whole
range of different object categories. Furthermore, experi-
mental comparison on the Caltech database shows that our
approach performs better than state-of-the-art object categor-
ization on simpler images. The new similarity-measure-
segmentation turns out to be a powerful method to describe
whole image contents.

We are currently investigating extensions of our ap-
proach in several directions. Maybe the most obvious one is
the addition of more features to our image analysis. This
includes not only other local descriptors, but also new
regional features and geometric feature distributions. Also,
the localization problem will be investigated in more detail.
The different localization performances of various combi-
nations in this framework might lead to the need of a loop
within the learning procedure. There a first unsupervised
localization step (with a technique that has good localiza-
tion abilities) might be followed by the actual learning
procedure which may contain several other methods. The
new similarity-measure-segmentation should also be used
for image retrieval in further experiments.

As a further step, we will use spatial relations between
features to improve the accuracy of our object detector. Also,a

loose geometrical model could improve our approach toward
detecting multiple object instances in one image. To handle
the complexity of many possible relations between features,
we will use the features constructed in our current approach
(with parameters set for high recall) as starting points.
Boosting will again be the underlying method for learning
object representations as spatial combinations of features.
This will allow the construction of weak hypotheses for
discriminative spatial relations.
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