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Abstract

We present methods for recognizing object categories which are able to
combine various feature types (e.g. image patches and edge boundaries). Our
objective is to detect object instances in an image, as opposed to the easier
task of image categorization. To this end, we investigate two algorithms for
learning and detecting object categories which both benefit from combining
features. The first uses a naive combination method for detectors each em-
ploying only one type of feature, the second learns the best features (from a
pool of patches and boundaries).

In experiments we achieve comparable results to the state of the art over a
number of datasets, and for some categories we even achieve the lowest errors
that have been reported so far. The results also show that certain object cate-
gories prefer certain feature types (e.g. boundary fragments for airplanes).

1 Introduction
Much of the recent research into object category recognition has developed models fo-
cussed on one type of feature – either appearance patches or edge fragments [1, 4, 5,
7, 8, 12, 14, 17, 20]. This is not ideal as some classes cannot be distinguished by one
feature type alone (e.g. discriminating between zebras and horses just by their shape),
and more generally it loses the possibility of using feature types which are particularly
discriminating for a category.

In this paper we investigate two algorithms which are variations on methods of com-
bining different types of features. In each case the algorithms: (i) learn the best fitting
features, (ii) use complementary features, and (iii) are able to detect objects instead of cat-
egorizing images. The first algorithm (named “CM” for “Combined-Models”) combines
models for different feature types, and the second (called “SF” for “Selected-Features”)
learns a single model using a mixture of the available feature types. As a foundation
model for the two algorithms we choose the Boundary-Fragment-Model (BFM) from
Opelt et al. [17], though other similar models would work equally well, for example
[3, 14, 20].

The benefits of using different types of features (detectors or descriptors) is well il-
lustrated by the evolution of the Implicit Shape Model of Leibe et al. [14]. In its original
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form only one type of feature (patches around interest points) was used, but it has now
been extended to other types of features (shape context, SIFT) by Seemann et al. [19] with
a corresponding increase in performance. Mixed/complementary feature types have been
used previously [9, 16, 22], though, for the most part, these have been used for image
classification rather than detection. For example, Opelt et al. [16] presented an algorithm
which learns suitable category descriptors from a pool of different types of descriptors for
appearance regions, and Zhang et al. [22], used complementary descriptors (PCA-SIFT
and shape context). Fergus et al. [10] investigated detection with mixed types of features
and this is the most similar to our work in terms of the used features (regions and edge
boundaries), however their algorithm does not learn which features to use.

2 An Overview...
. . . of the basic model from Opelt et al.[17]: As mentioned we use the Boundary Frag-
ment Model from [17]. This is essentially a combination of the geometric model from
[14] with a discriminative codebook influenced by the idea of Sali and Ullman [18]. The
BFM consists of a set of curve fragments representing the edges of the object, both in-
ternal and external (silhouette), with additional geometric information about the object
centroid (in the manner of [14]). A BFM is learnt in two stages. First, random bound-
ary fragments are extracted from the training images. Then costs are calculated for each
fragment on a validation set. Low costs are achieved for boundary fragments that match
well on the positive validation images, not so well on the negative ones, and have good
centroid predictions on the positive validation images. Second, combinations of k = 2
boundary fragments are learnt as weak detectors (not just classifiers) within an AdaBoost
[11] framework. Note that this learning procedure does not need pre-segmented training
data as in similar methods (e.g. [14]), but requires only bounding boxes. Detecting in-
stances of the object category in a new test image is done by applying the weak detectors
and collecting their votes in a Hough voting space. An object is detected if a mode (ob-
tained using Mean-Shift mode estimation) is above a detection threshold. Following the
detection, boundary fragments that contributed to that mode are back-projected into the
test image and provide an object segmentation. An overview of the detection method is
shown in figure 1. Invariance to translation is given by the nature of the mode search in
the Hough space. Scale invariance is achieved by using re-scaled versions of the model.
Each model votes in a separate Hough space and then maxima are searched over these
Hough spaces.

. . . of our Combined-Model (CM) algorithm: In figure 2 we show the general idea of
the combination of two feature types (appearance regions and fragments of the boundary).
We train two separate models. First, as shown at the top of figure 2, we train a geometric
model using boundary fragments as features as proposed by Opelt et al. [17]. Second, as
shown at the bottom of figure 2, we use the same learning method to obtain a model which
is based on a different feature type, namely intensity regions around salient points. The
salient points are extracted on the same training and validation data as for the model which
is based on shape features. Then, these region based features are described by vectors
which can be obtained by various description techniques (e.g. SIFT [15]). Evaluating
these feature vectors on the validation set results in a discriminative codebook of regions.
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Figure 1: Overview of the BFM from Opelt et al. [17].

The final strong detector is trained using that discriminative codebook and, again, the
validation set. The part shown in the centre of figure 2 illustrates how detection can be
improved using these two models learnt from complementary features: A new test image
is put into the detection procedure of each model and then we form a linear combination
of the resulting probabilistic Hough voting spaces. The influence of each model can be
controlled by a weight vector f (each entry fτ of the vector contains the weight for a
certain model of feature type τ). Finally the decision on whether there is enough evidence
for the appearance of an object is made on that combined voting space.

. . . of our Selected-Features (SF) algorithm: The combination of different feature types
as proposed above increases the number of categories for which this approach is suitable.
However, training a new model for each type of feature for each category often requires
needless effort. A suitable algorithm should not have to train a separate model for each
feature type but select on its own what types of features are suitable for that category.
Figure 3 illustrates the general idea. In the same manner as above a discriminative code-
book is learnt jointly for all available feature types. Then the second stage learns a strong
detector from weak detectors using features from this codebook.

3 The combined model (CM)
This algorithm sets out to explore how the evidence of detection of two models which
were learnt using different types of features can be combined. First we need to explain
how the model from [17] was extended to regions around salient points which are de-
scribed by a feature vector. Subsequently, we explain how the models are combined.

Scoring of regions: We extract Fi features from each grayscale image Ii (we do not
use colour information). In our evaluation we use the Harris-Laplace combined with
the Hessian-Laplace implementation from [13]. But our implementation is flexible and
could use other techniques, e.g. Affine-Harris, as well. The regions are scale normalized
and described by a SIFT descriptor [15]. Here we use the binary from [13] generally
enabling our framework to use a variety of different techniques (e.g. Gloh, PCA-Sift,
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Figure 2: Overview of the CM algorithm: Combining models trained using different
types of features. Top: a shape based model is trained (for cars-side). Bottom: training a
model based on descriptors of local regions. In the centre (surrounded by the red dashed
box) it is shown how these two models are then used to detect objects in new images.

shape context). Hence, each image Ii (training images and positive and negative validation
images) is represented by a set of feature vectors v j with j = 1 . . .Fi.

Then we calculate costs on a validation set. Low costs are achieved for patches that
match well in their appearance on the positive validation images, match poorly on the
negative validation images and give a good average centroid prediction (in the manner of
[17]). As a distance function between feature vectors describing regions we use:

distance(vi, Ip) = min
j=1...Fp

√√√√ |vi|
∑
q=1

(vi(q)− v j(q))2 (1)

denoting the minimum Euclidean distance of a certain feature vector vi to all feature
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Figure 3: Overview of the SF algorithm: In the training procedure all feature types are
used (here we use regions and boundary fragments). Boosting selects a combination of
weak detectors of different type to form a suitable strong detector for a category.

vectors of a certain validation image Ip. With that distance function the costs are calcu-
lated in the same manner as in [17]. To be robust to matches in background clutter we
use the 10 best matches (with distance below a threshold tM , 500 in our implementation)
for the calculation of the matching costs (the lowest costs are taken). Thus, we have
calculated costs for each feature vector on the validation set.

Learning an incremental codebook of regions: Each codebook entry is formed by a
feature vector describing a region. Additionally each entry contains location information
for centroid(s), and the costs it achieved on the validation set. The distance between en-
tries is here just the Euclidean distance for the feature vectors of those entries. Codebook
entries are clustered using a threshold on the costs θC (250 in our implementation).

Figure 4 shows examples of entries from an alphabet incrementally learnt on the cat-
egory cars-side (UIUC). Note that patches might come from different positions in the
training images (e.g. front wheel and back wheel of the cars) and thus clustering updates
the geometric information of each alphabet entry (if necessary).

Figure 4: Examples of a region based alphabet. Each entry shows one element of the
alphabet learnt for the category cars-side from the UIUC database. One entry consists of
a scale normalized region (on the top) and the geometric information (blobs denoting the
centroid vectors) shown on the bottom of each entry.
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A strong detector of regions: Matching single regions separately is often sidetracked
by matches in the background clutter. Hence, we build weak detectors of combinations of
k = 2 regions. A weak detector is valid if both regions match and agree in their prediction
for the object’s centroid (with an uncertainty distance dc = 10 pixels). Additionally this
prediction of the centroid has to be within a radius of r = 15 pixels of the true object cen-
troid of the positive validation images. This is done in the same manner for the boundary
fragments and for the regions where the search for matches is restricted to the detected
interest points.

We use AdaBoost [11] to select a number of possible candidates for weak detectors by
iteratively choosing the one with the best detection performance on the current weighting
of the validation images. Figure 5 shows some of the weak detectors learnt to form the
final strong detector based on region descriptions.

Figure 5: Examples of weak detectors using regions learnt from the alphabet of cars-
side (UIUC). Obviously but notably the wheels appear as the strongest cue using appear-
ance based regions for this category. The centroid is denoted by the red cross.

We have now learnt a region-based strong detector and additionally we learn a shape
based BFM (in the manner of [17]). Thus, complementary information is available for the
subsequent detection procedure.

Detection using regions and shape, separately: Detection is performed with each
model learnt for a special type of information τ separately. In our case this is one model
for shape and one for regions. This results in two voting spaces with the votes of the
corresponding weak detectors. As recently shown in [21] this can be seen as probability
distributions of the sums of the weak detectors beliefs in object evidences in the image.
The evidence from various models can simply be combined by fusing these probabilis-
tic voting spaces. Given Q different models, the confidence for an object appearing at
position xn can be defined as:

con f (xn) =
∑τ∈Q fτ ∑T

i p(c,hτ
i )

∑τ fτ
(2)

with hτ
i denoting a certain weak detector i of information type τ , c denotes a certain

category, T the numbers of weak detectors in a model, and fτ the weight of each model in
the combination. The object instances then correspond to modes in this combined space,
and these are obtained using Mean-Shift-Mode estimation [6].

4 The selective algorithm (SF)
This algorithm combines various feature types in one model. The learning algorithm
selects weak detectors of different feature types from a discriminative codebook which
contains a mixed pool of features.
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Learning the mixed codebook: Learning a mixed codebook is done in a similar man-
ner to learning a discriminative codebook for just one type of features. Sequentially each
feature type is processed, costs on the validation set are calculated, features with low costs
are selected and then similar codebook entries are merged. Because of the differences in
the distances and feature dimensions we need two thresholds for each feature type τ . First
thτ

K sets a threshold on the costs where features with lower costs are selected. A second
threshold thτ

C is used for merging similar codebook entries. Small variations in those
thresholds do not have much impact. Still the rough selection of meaningful thresholds
for reach feature type is obviously crucial to achieve good results. This mixed codebook
consists now of entries where each entry has a feature type, a description and localization
information for the object centroid.

Learning the mixed strong detectors: As a basis for our Boosting procedure we form
combinations of k = 2 elements of the same feature type from the mixed codebook. Weak
detectors are built in the manner of [17], independent of the feature type. From that pool
of possible weak detectors AdaBoost [11] is used to learn a set of T weak detectors hτ

i .
Figure 6 illustrates the first 10 weak detectors of such mixed strong detectors for some
categories.

Figure 6: The first ten weak detectors from the mixed detectors in each row for the cate-
gories: carsSide(UIUC); CarsRear, Airplanes, Motorbikes and Faces (Caltech).

Detection using the mixed detector: Given a new test image we have to compute the
features of the different types (here edge representation and SIFT descriptors of salient
points). Then each weak detector hτ

i of the strong detector of a category is evaluated on
the corresponding representation of the image. For example if τ = {edges,regions} then
for hedges

i we evaluate this weak detector on the edge representation of the test image. If
a weak detector fires on the test image it votes in a joint Hough Voting space. As before
Mean-Shift mode estimation is used to search for maxima in this voting space.
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5 Experiments
The experiments illustrate three main issues: First, that an additional source of informa-
tion increases the performance of an approach. Second, that our selective learning pro-
cedure often achieves comparable results using just one model with mixed feature types
instead of a separate model for each feature type (as in the CM algorithm). Finally, certain
object categories prefer certain feature types.

We measure the performance as RPC-equal error rates and count a detection as correct
if the detected bounding box BBdet and the ground truth bounding box BBgt have an
overlap of: area(BBdet

⋂
BBgt )

area(BBdet
⋃

BBgt )
≥ 0.5. Additional detections of the same object are counted

as false positives.
The parameters for the shape based BFM are set as the ones reported by Opelt et al. [17].

For the region based model and the two combinatorial algorithms (CM and SF) we set the
number of iterations for the Boosting procedure T = 200. For the CM algorithm, all
weights fτ are equal (0.5), unless stated otherwise.

UIUC dataset: In table 1 we show the RPC-equal error rates for this dataset. Our
region based model achieves comparable results to state-of-the-art approaches. Directly
compared to the BFM of Opelt et al.[17], we can improve the detection performance.
The two novel algorithms (CM and SF) achieve even lower detection errors. Similar re-
sults have been reported by the boundary based method of Shotton et al. [20]. However,
Shotton et al. [20] use 10 pre-segmented training images whereas we are using bounding
boxes as the only supervision. Additional verification steps can decrease the error fur-
ther (to 2.5% in [14]) as reported by Leibe et al. [14]. But here we compare the plain
algorithms before verification. Our method would of course also benefit from the same
verification method.

Method RM CM SF Opelt[17] Fergus[8] Leibe[14] Amores[2] Shotton[20]
RPC-EER 10.5 6.2 7.0 15.0 11.5 9.0 10.0 7.2

Table 1: Comparison of the different methods: regions (RM) used separately, two models
combined (CM), and our selective learning algorithm (SF). We also compare our results
to the standard BFM from [17] and others on the UIUC car database.

Caltech dataset: We performed experiments on categories of the commonly used Cal-
tech database [8]: Airplane, CarsRear, Motorbike and Faces sticking to the testing pro-
tocol from [8]. We separate the training set into training data and a validation set, and
use the same splitting as reported in [17]. Table 2 shows the RPC-equal-error rates of
our region based model and the two novel algorithms for combining features compared
with the BFM. We achieve comparable or better detection results than the BFM and other
state-of-the-art work. For classification an image is classified as positive if it contains one
detected instance of this object category. The classification results are reported in table 3.

In general identical weights fτ improve the results. More detailed investigation of
the weight parameter shows e.g. for motorbikes that the lowest error rate of 1.3% can
be achieved at f = [0.3,0.7]. However, tuning of this parameter requires human supervi-
sion as there is often no error on the validation set (which could serve as possibility for
automatic tuning) and is thus not always useful.
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Cat. RM CM SF Opelt et al. [17] Leibe et al. [14] Shotton et al. [20]

Cars-rear 2.9 0.0 0.5 2.3 6.1 -
Airplane 22.5 4.2 13.4 7.4 - -

Motorbikes 4.0 2.0 3.7 4.4 6.0 7.6
Faces 2.4 1.0 3.2 3.6 - 6.0

Table 2: Comparison of our region based model (RM), the combination of two models
(CM) and the selective learning approach (SF). We also show how the BFM from [17]
and other state-of-the-art approaches perform on this data. Note that we report detection
results here in terms of RPC-equal-error rates.

Cat. RM CM SF Opelt[17] Fergus[8] BarHillel[3] Zhang[22]

Cars-rear 1.7 0.5 0.5 0.5 9.7 2.3 -
Airplane 10.8 2.9 7.1 2.6 7.0 10.3 5.6

Motorbikes 0.0 0.0 2.3 3.2 6.7 6.7 5.0
Faces 0.7 0.3 0.7 1.9 3.6 7.9 0.3

Table 3: Comparison of our region based model (RM), the combination of two models
(CM) and the selective learning approach (SF) for image classification. We also show
comparisons to the BFM from [17] and other state-of-the-art approaches. Note that ROC-
equal-error rates are reported.

6 Discussion
It is interesting to consider the merits and limitations of the two algorithms. The CM
algorithm is robust to the combination of a reliable with an unreliable model (i.e. one
that achieves poor detection results). This is because the method of searching modes by
Mean-Shift mode estimation in a Hough space is robust against the addition of a random
distribution (the votes of the poor model) and thus the correct modes from the reliable
model do not get too distracted by the addition of this second Hough voting space. For
the SF algorithm we would expect it to achieve at least the minimum of the error rate
that the separate models (RM and BFM) for each feature type achieve. This is generally
true. However, in the case of airplanes the SF model achieves poor results. More detailed
investigation shows that this is caused by over-fitting on the validation set, whereas re-
stricting the model to only one feature type is sufficient to prevent over-fitting in this case.
One solution that we are currently investigating is to either obtain more validation images
or to do cross-validation on the current data.
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