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Abstract: This paper addresses the problem of recognizing
three-dimensional (3D) objects in photographs and image
sequences. It revisits viewpoint invariants as a local rep-
resentation of shape and appearance, and proposes a uni-
fied framework for object recognition where object models
consist of a collection of small (planar) patches, their in-
variants, and a description of their 3D spatial relationship.
This approach is applied to two fundamental instances of
the 3D object recognition problem: (1) modeling rigid 3D
objects from a small set of unregistered pictures and rec-
ognizing them in cluttered photographs taken from uncon-
strained viewpoints, and (2) recognizing non-uniform tex-
ture patterns despite appearance variations due to non-rigid
transformations and changes in viewpoint. It is validated
through several experiments, and extensions to the analysis
of video sequences and the recognition of object categories
are briefly discussed.

1 Introduction
We address the problem of recognizing 3D objects in pho-
tographs and image sequences. Today, the most pop-
ular approaches to object recognition are probably the
appearance-based techniques [4, 10, 27, 46, 52], first pro-
posed by Turk and Pentland [50] in the face recognition
domain and by Murase and Nayar [31] in a more gen-
eral context. They are directly related to classical meth-
ods from statistical pattern recognition [12]. In this frame-
work, objects are typically represented by feature vectors,
and the recognition problem is framed as one of super-
vised learning—training a classifier given a set of positive
and negative examples. The problem explicitly addressed
in this case is that of variability within a class. In most
cases, issues arising from the systematic variation in the
appearance of a 3D object due to varying viewpoint and
illumination are dealt with implicitly if at all (see, how-
ever, [3, 31, 46]). In contrast, purely geometric approaches
to 3D object recognition explicitly account for changes in
viewpoint [17, 26, 48]. They are somewhat robust under
changes in illumination since they typically discard the im-
age brightness information in favor of binary features such
as edges, but they are (mostly) limited to rigid objects ob-
served in images with little or no clutter where segmenta-
tion is easy. Within-class variability is mostly addressed
using structural object descriptions in terms or simple 3D
geometric primitives [8, 33] with limited success in clut-
tered scenes with unconstrained viewpoint [55].

Viewpoint invariants (or invariants for short) provide a
natural indexing mechanism for matching tasks as well
as a bridge between appearance-based and geometric ap-
proaches to recognition. Unfortunately, although planar
objects and certain simple shapes (e.g., bilaterally sym-
metric ones) admit invariants [32, 38], general 3D shapes
do not [9], which is the main reason why invariants have
fallen out of favor after an intense flurry of activity in the
early 1990s [29, 30].

We propose to revisit invariants as a local representation
of shape and appearance: Although smooth surfaces are
almost never planar in the large, they are always planar in
the small—that is, sufficiently small surface patches can al-
ways be thought of as being comprised of coplanar points.
Thus, we propose a unified framework for object recogni-
tion where object models consist of a collection of small
(planar) patches, their invariants, and a description of their
3D spatial relationship. Specifically, the local invariants
used in our work are the affine-invariant descriptions of the
image brightness pattern in the neighborhood of salient im-
age features (“interest points” [15]) recently developed by
Lindeberg and Gårding [24, 23] and by Mikolajczyk and
Schmid [28]. These affine-invariant patches provide us
with a normalized representation of the local object appear-
ance, invariant under viewpoint and illumination changes,
that can be used as a local measure of image, part, or ob-
ject similarity. Depending on the recognition problem at
hand, we propose different models of the spatial relation-
ship between local invariants to represent the global object
structure and drive the matching process. As shown in the
rest of this presentation, these range from “hard” geometric
consistency constraints in rigid object recognition tasks to
“soft” models of the distribution of similar-looking patches
in non-rigid texture classification tasks.

We apply the proposed framework to two concrete object
recognition problems: (1) modeling rigid 3D objects from
a small set of unregistered pictures and recognizing them
in cluttered photographs taken from unconstrained view-
points, and (2) recognizing non-uniform texture patterns
despite appearance variations due to non-rigid transforma-
tions and changes in viewpoint. Our approach is validated
through several experiments, and extensions to the analysis
of video sequences and the recognition of object categories
are briefly discussed. The interested reader is refered to
[21, 22, 41] for more details.



2 Recognizing Rigid 3D Objects
We address in this section the problem of recognizing rigid
3D objects in photographs. We use the affine-invariant
patches introduced by Lindeberg and Gårding [24, 23] and
Mikolajczyk and Schmid [28] to represent local surface ap-
pearance and select promising matches between pairs of
images or an object model and an image. We use geometric
consistency constraints related to the multi-view geometry
studied in the structure-from-motion literature [49] to rep-
resent the global object structure, retain correct matches,
and discard incorrect ones. The experiments presented
later in this section show that rigid object models can be
acquired automatically from a few images, and effectively
used in recognition tasks [41]. It would of course be inter-
esting to generalize these results to the analysis of image
sequences that contain articulated objects; we will come
back to this issue in Section 4.
2.1 Affine-Invariant Patches
We use an implementation of the affine-invariant region de-
tector proposed by Mikolajczyk and Schmid [28] to capture
local appearance information. In this approach, the depen-
dency of an image patch’s appearance on affine transforma-
tions is eliminated by an iterative rectification process us-
ing (a) the second-moment matrix computed in the neigh-
borhood of a point to normalize the shape of the corre-
sponding image patch in an affine-invariant manner; (b) the
local extrema of the normalized Laplacian over scale to de-
termine the characteristic scale of the local brightness pat-
tern; and (c) an affine-adapted Harris detector to determine
the patch location. The output of the affine-invariant region
detection/rectification process is a set of image patches in
the shape of ellipses, together with the (affine) transforma-
tion mapping these ellipses onto a unit circle centered at
the origin. This transformation is only defined up to a rota-
tional ambiguity (this is intuitively obvious since a planar
affine transformation is defined by six independent param-
eters but an ellipse is only defined by five parameters). We
use image gradient information to eliminate this ambiguity.
This allows us to turn the shape of an affine-invariant patch
from an ellipse to a parallelogram, and to determine the
six degrees of freedom of an affine rectifying transforma-
tions R that maps this corresponding parallelogram onto
a square with unit edge half-length centered at the origin
(Figure 1).
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Figure 1: Geometric interpretation of the rectification matrix R and its
inverse S .

The rectified patch is a normalized representation of
the local surface appearance that is invariant under pla-
nar affine transformations. We will assume from now

on an affine—that is, orthographic, weak-perspective, or
paraperspective—projection model. Under this model, our
normalized appearance representation is invariant under
arbitrary changes in viewpoint. For Lambertian patches
and distant light sources, it can also be made invariant to
changes in illumination (ignoring shadows) by subtracting
the mean patch intensity from each pixel value and normal-
izing the sum of squared intensity values to one (or equiv-
alently using normalized correlation to compare patches).
The rectifying transformation associated with a planar
patch and its inverse can be represented by two 2 × 3 ma-
trices R and S that map homogeneous (affine) plane co-
ordinates onto non-homogeneous ones (Figure 1). These
transformations play a fundamental role in the rest of this
section. Let us first note that the columns vectors of the
matrix S admit a simple geometric interpretation: Since
they are respectively the images of the vectors (1, 0, 0)T ,
(0, 1, 0)T , and (0, 0, 1)T under that mapping, the third col-
umn c of S is the (non-homogeneous) coordinate vector of
the patch center c, and its first two columns h and v are
respectively the (non-homogeneous) coordinate vectors of
the “horizontal” and “vertical” vectors joining c to the sides
of the patch. The second key (and new) insight is that a rec-
tified patch can also be thought of as a fictitious view of the
original surface patch, and the inverse mapping S can thus
be decomposed into an inverse projectionN [13] that maps
the rectified patch onto the corresponding surface patch,
followed by a projection M that maps that patch onto its
(true) image projection, i.e., S = MN . Note that in the
affine projection setting chosen here, we can write

M = [A b ] and N =
[ B

(0, 0, 1)

]
,

where A and B are respectively 2 × 3 and 3 × 3 matrices,
and b is a vector in IR2.3 The columns of the matrix B ad-
mit a geometric interpretation related to that of the matrix
S: Namely, the first two are the (non-homogeneous) coor-
dinate vectors of the “horizontal” and “vertical” axes of the
surface patch, and the third one is the (non-homogeneous)
coordinate vector of its center C.
In particular (and not surprisingly), a match between m ≥
2 images of the same affine-invariant patches contains ex-
actly the same information as a match between m triples
of points. It is thus clear that all the machinery of structure
from motion [49] and pose estimation [17, 26] from point
matches can be exploited in modeling and object recogni-
tion tasks. Reasoning in terms of multi-view constraints
associated with the matrix S provides a unified and conve-
nient representation for all stages of both tasks.
2.2 Object Modeling
Let us assume for the time being that we are given n
patches observed in m images, together with the corre-
sponding 2 × 3 matrices Rij and Sij for i = 1, . . . , m and

3This is an affine instance of the characterization of homographies in-
duced by planes given in Faugeras, Luong and Papadopoulo [13, Prop.
5.1].



j = 1, . . . , n (i and j serving respectively as image and
patch indices). Following Tomasi and Kanade [49], we can
take the center of mass of the observed patches’ centers as
the origin of the world coordinate system, and the center
of mass of these points’ projections as the origin of every
image coordinate system. In this case, the vectors bi are
equal to zero, and we have Sij = AiBj , or equivalently,
Ŝ = ÂB̂, where

Ŝ def
=

[ S11 . . . S1n

. . . . . . . . .
Sm1 . . . Smn

]
, Â def

=

⎡
⎣ A1

...
Am

⎤
⎦ , B̂ def

= [B1 . . . Bn ] .

In particular, Ŝ has at most rank 3, a fact that can be used as
a matching constraint when at least two matches are visible
in at least two views. Alternatively, singular value decom-
position can be used as in Tomasi and Kanade [49] to factor
Ŝ and compute estimates of the matrices Â and B̂ that min-
imize the squared Frobenius norm of the matrix Ŝ − ÂB̂.
Again, two views of two matches are sufficient to bring this
constraint to bear on the matching process.
Image matching requires two key ingredients: (a) a mea-
sure of appearance similarity between two images of the
same patch, and (b) a measure of geometric consistency be-
tween n matches M1, . . ., Mn established across m images
(a match is an m-tuple of image patches). For the former
we use normalized correlation between rectified patches.
For the latter, we use the method described in the previ-
ous section to estimate (when m, n ≥ 2) the matrices Â
and B̂, and define d(M1, . . . , Mn) = |Ŝ − ÂB̂|/√3mn as
a measure of consistency among matches. In our current
implementation, we only match patches across pairs of im-
ages (m = 2), and follow a strategy similar to that used
in the range data domain by Johnson and Hebert [18] with
spin images. Given a patch in one image, we first select
its most promising matches in the second image based on
normalized correlation of the rectified patches. We then
discard the matches M such that the number of consistent
matches M ′ (i.e., matches such that d(M, M ′) is less than
some preset threshold) is less than some fixed percentage
of the total number of candidate matches. At this point, we
find groups of consistent matches as follows: For each one
of the surviving p < n matches, we initialize the group G
to that match M , we then find the match M ′ minimizing
d(G, M ′) (naturally defined as d(M1, . . . , Mk, M ′) when
G = (M1, . . . , Mk)). If d(G, M ′) is smaller than a preset
threshold, we add M ′ to G and continue. This results in
the construction of p groups. Finally, we discard all groups
smaller than a last threshold. The remaining matches are
judged to be correct. The implementation of this matching
strategy is determined by the choice of several thresholds;
we will come back to this point later in this paper.

Results. The proposed matching strategy can be used in
modeling tasks to match successive pairs of views of the
same object. When some of the patches are only observed
in some of the frames (the usual case), the data can be
split into overlapping blocks of two or more frames, us-

ing all the patches visible in all images of the same block
to run the factorization technique, then using the points
common to overlapping blocks to register the successive
reconstructions in a common frame. In principle, it is suf-
ficient to have blocks that overlap by four points. Once
all blocks are registered, the initial estimates of the vari-
ables Mi and Nj can be refined through a few non-linear
least-squares iterations. When three or more views are
available, it is then a simple matter to compute the cor-
responding Euclidean weak-perspective projection matri-
ces (assuming the aspect-ratios are known) and recover the
Euclidean structure of the scene [37]. Figure 2 shows the
results of some modeling experiments. The modeling pro-
cess is fully automatic, and 16 to 29 images of each object
have been used to construct the six models shown in the
figure.

Figure 2: Model gallery: sample input images and renderings of the
corresponding models.

2.3 Object Recognition
Let us now assume that the method proposed in the pre-
vious section has been used to construct an object model
consisting of affine-invariant patches and the correspond-
ing Bj matrices. Let us also assume that n ≥ 2 affine-
invariant patches found in a test image have been matched
to n patches from this model, and derive consistency con-
straints that must be satisfied by these matches. Let S1,
. . ., Sn denote the inverse rectification matrices associated
with the corresponding patches in the test image. As be-
fore, we can always pick the center of mass of the n patch
centers in the test image as the origin of its coordinate sys-
tem, and change the origin of the world coordinate sys-
tem so that it coincides with the center of mass of their



Figure 3: Object recognition experiments. The three rows of this figure show (respectively) input images, model patches matched to these images, and
recognized models rendered in their estimated pose. Note that the teddy bear in the leftmost column is in a pose quite different from those used to acquire
its model. Also note the significant amount of clutter and occlusion in each image.

matches in the model. With this convention, the projection
matrix can be written as M = [A 0 ] and we can write
as before Sj = ABj . We have therefore A = SjB−1

j for
j = 1, . . . , p. Note that the value of Bj is available from
the modeling stage in the coordinate system attached to the
model. If C denotes the (known) position of the center of
mass of the patch centers in the original coordinate system,
it is easy to see that the value of Bj in the new coordi-
nate frame is obtained by subtracting C(0, 0, 1) from its
old value. Given n ≥ 2 patches, we write

B̌AT = Š, where B̌ def=

⎡
⎣BT

1

. . .
BT

n

⎤
⎦ , and Š def=

⎡
⎣ST

1

. . .
ST

n

⎤
⎦ ,

which allows us to compute AT as the solution of a lin-
ear least-squares problem. As in the image matching case,
an appropriate measure of consistency is the normalized
residual error |Š − B̌AT |/√3n, that can once again be in-
terpreted in terms of image distances.

Results. A matching strategy similar to the one used in
object modeling can be used in object recognition tasks.
In this case, we use the method described in the previous
section to estimate (when n ≥ 2) the matrix AT and use

d′(M1, . . . , Mn) def= |Š−B̌AT |/3n as a measure of consis-
tency among matches. Figure 3 shows several recognition
results.

3 Recognizing Non-rigid Texture Classes
The strong geometric consistency constraints presented in
Section 2 are appropriate for modeling and recognizing
rigid and (as will be argued in Section 4) articulated ob-
jects. Here we take a first step toward recognizing object
classes, where objects within the same class may not be re-
lated by any parametric transformation (think of two chairs,
or a piece of cloth). In this context, it is still possible to
represent objects locally by affine-invariant patches (non-
rigid transformations are affine in the small, see the dis-

cussion below) and globally by the spatial relationship be-
tween these patches, but the geometric constraints involved
have to be relaxed (see, for example, [1, 47, 53] for related
work). We address in this section the (somewhat) simpler
problem of representing and recognizing non-rigid textures
observed from arbitrary viewpoints. We will come back
to the general problem of category-level object recognition
in Section 4, where we will propose using stronger spatial
constraints (graphical descriptions of affine-invariant patch
patterns) to represent the salient parts of objects.

Recent approaches to texture recognition [25, 36, 54] per-
form impressively well on datasets as challenging as the
Brodatz database [7]. Unfortunately, these schemes rely
on restrictive assumptions about their input (e.g., the tex-
ture must be stationary) and are not generally invariant un-
der 2D similarity and affine transformations, much less 3D
transformations caused by camera motions and non-rigid
deformations of textured surfaces. In addition, most exist-
ing approaches to texture analysis use a dense representa-
tion where some local image descriptor is computed over a
fixed neighborhood of each pixel. Affine-invariant patches
can be used to address the issues of spatial selection—
finding a sparse set of texture descriptors at “interesting”
image locations—and shape selection—computing shape
and scale characteristics of the descriptors—(see [44] for
related work). In addition, they afford a texture represen-
tation that is invariant under any geometric transformation
that can be locally approximated by an affine model: Local
affine invariants are capable of modeling not only global
affine transformations of the image, but also perspective
distortions and non-rigid deformations that preserve the lo-
cally flat structure of the surface (e.g., the bending of paper
or cloth). In this context, it is appropriate to combine the
affine-invariant patches based on the Harris interest point
detector and used in the previous section with the affine-
adapted Laplacian blob detector proposed by Lindeberg
and Gårding [24]. The two feature detectors are dubbed H



(for Harris) and L (for Laplacian) in the rest of this paper,
and they provide two description “channels” for local im-
age patterns. Their output on two sample images is shown
in Figure 4. Intuitively, the two detectors provide comple-
mentary kinds of information: H responds to corners and
other regions of “high information content” [28], while L
produces a perceptually plausible decomposition of the im-
age into a set of blob-like primitives.

Figure 4: From left to right: building and flower images, H-detector
output, L-detector output.

3.1 Intensity-Domain Spin Images
The affine-invariant patches found by the H and L region
detectors can be thought of as the projections of ellipses
drawn on the surface [24, 28]. Turning these ellipses into
the parallelograms used in Section 2 is only possible when
distinctive image gradient information is available. This is
usually not the case for regions associated with extrema of
the Laplacian since the image response is fairly uniform in
these regions. In this case, the rectification process does
not achieve a complete registration between two affinely
transformed versions of the same texture patch, and a rota-
tional ambiguity remains. This has motivated us to intro-
duce a novel rotation-invariant descriptor of the local image
brightness pattern, inspired by the spin images introduced
by Johnson and Hebert [18] in the range data domain.
The intensity-domain spin image is a two-dimensional his-
togram encoding the distribution of brightness values in an
affine-normalized patch (Figure 5).

Normalized patch Spin image
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Figure 5: The construction of an intensity-domain spin image—three
samples from a normalized patch are mapped onto their spin images.

The two dimensions of the histogram are d, the distance
from the center or the origin of the normalized coordinate
system of the patch, and i, the intensity value. The “slice”
of the spin image corresponding to a fixed d is the his-

togram of the intensity values of pixels located at a dis-
tance d from the center. Since the d and i parameters are
invariant to orthogonal transformations, intensity-domain
spin images offer exactly the right degree of invariance for
representing affine-normalized patches. To achieve invari-
ance to affine transformations of the image intensity func-
tion (that is, transformations of the form I �→ aI + b), we
use standard techniques to normalize the range of the inten-
sity function within the support region of the spin image.
The spin image is implemented as a “soft histogram”, as
advocated by Koenderink and Van Doorn [20], to reduce
aliasing effects.

3.2 Images Signatures
This section demonstrates the power of affine-invariant
patches and intensity-domain spin images as image de-
scriptors in texture classification tasks. Our approach is
illustrated by Figure 6, where the following process is ap-
plied to each image in the database using both the H and L
feature detectors: (1) find the affine-invariant patches; (2)
construct an affine-invariant description of these patches
(the need for this step will be justified in the next section);
and (3) find the most significant clusters of similar descrip-
tions and use them to construct the signature [43] of the
image. At the end of this process, all pairs of signatures
are compared using the Earth Mover’s Distance (EMD).

� � �

1. Extract affine
regions

2. Compute affine-
invariant descriptors

3. Find clusters
and signatures

4. Compute EMD
matrix

Image 1

Image n

�1

�n

d (�i , )�j

Figure 6: Architecture of the proposed texture recognition system.

Like most approaches to texture analysis, ours relies on
clustering to discover a small set of basic primitives in the
initial collection of candidate texture elements. We use
a standard agglomerative clustering algorithm that itera-
tively merges clusters until either the desired target num-
ber of clusters is reached (10 to 15 in our implemen-
tation), or the distance between clusters exceeds a pre-
specified threshold. Agglomerative clustering takes as
input not the descriptors (spin images) themselves, but
only a dissimilarity matrix that records the distance be-
tween each pair of descriptors found in a particular im-
age. After the clustering stage is completed, we form
the final representation for the image: a signature of the
form {(m1, u1), (m2, u2), . . . , (mk, uk)}, where mi is the
medoid [19] (the most centrally located element of the ith
cluster) and ui is the relative weight of the cluster (the size
of the cluster divided by the total number of descriptors ex-
tracted from the image). Signatures have been introduced
by Rubner et al. [43] as representations suitable for match-
ing using the Earth Mover’s Distance (EMD). For our ap-
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Class H L H + L
T0 0.98 0.89 0.98
T1 0.76 0.71 0.83
T2 0.87 0.90 0.95
T3 1.00 0.93 1.00
T4 0.43 0.52 0.47
T5 1.00 0.93 1.00
T6 0.97 0.84 0.95
T7 0.74 0.71 0.84
T8 0.89 0.63 0.85
T9 0.98 0.91 0.99

Mean 0.86 0.80 0.89

Figure 7: Top: Samples of the ten texture classes used in our experiments. Bottom: Retrieval and classification results [22].

plication, the signature/EMD framework offers several im-
portant advantages. A signature is more descriptive than
a histogram, and it does not require global clustering of
the descriptors found in all images. In addition, EMD can
match signatures of different sizes, and it is not very sensi-
tive to the number of clusters—that is, if one cluster is split
into several clusters with similar medoids, the magnitude
of the EMD is not greatly affected. This is a very impor-
tant property, since the automatic selection of the number
of clusters remains a largely unsolved problem. Finally,
recall that the proposed texture representation is designed
to work with multiple channels corresponding to different
affine-invariant region detectors (here, the H and L opera-
tors). Each channel generates its own signature representa-
tion for each image in the database, and therefore its own
EMD value for any pair of images. We have experimented
with several methods of combining the EMD matrices of
the separate channels to arrive at a final estimate of the dis-
tance between each pair of images. Empirically, simply
adding the distances produces the best results.

Results. We have implemented the proposed approach
and conducted experiments with a dataset consisting of
200 images—20 samples each of ten different textured sur-
faces. Figure 7(top) shows three sample images of each
texture. Significant viewpoint changes and scale differ-
ences are featured within each class. Several of the classes
include additional sources of variability: inhomogeneities
in the texture patterns, non-rigid transformations, illumi-
nation changes, and unmodeled viewpoint-dependent ap-
pearance changes. Figure 7(bottom, left) shows retrieval
results using intensity-domain spin images as local im-
age descriptors. Notice that for this dataset, the H chan-
nel is more discriminative than the L channel. Adding
the EMD estimates provided by the two channels results
in improved performance. Figure 7(bottom, center) shows
the results obtained using the Gabor-like filters commonly

used as image descriptors in texture analysis [45, 51] in-
stead of intensity-domain spin images. Figure 7(bottom,
right) summarizes the classification results obtained by us-
ing five samples from each class as training images. The
classification rate for each class provides an indication of
the “difficulty” of this class for our representation. The
mean classification rate is 89% with two classes achiev-
ing 100%, showing the robustness of our system against a
large amount of intra-class variability. Performance is very
good for the rather inhomogeneous textures T5 and T6, but
class T4 is not recognized very well, which is probably
explained by the lack of an explicit model for viewpoint-
dependent appearance changes caused by non-Lambertian
reflectance and fine-scale 3D structure.

3.3 Generative Models
The previous section demonstrated the adequacy of our im-
age descriptors in simple texture classification tasks. Here
we go further and introduce generative models for the dis-
tribution of these descriptors, along with co-occurrence
statistics for nearby patches. We use the EM algorithm to
learn the generative model, which allows us to incorporate
unsegmented multi-texture images into the training set. At
recognition time, initial probabilities computed from the
generative model are refined using a relaxation step that in-
corporates co-occurrence statistics learnt at modeling time.
As mentioned above, the EM framework for learning tex-
ture models provides a natural way of incorporating un-
segmented multi-texture images into the training set. Our
approach is inspired by the work of Nigam et al. [34], who
have proposed several techniques for using unlabeled data
to improve the accuracy of text classification. Suppose we
are given a multi-texture image annotated with the set L of
class indices that it contains—that is, each feature vector
x extracted from this image has an incomplete label of the
form CL = {C�|� ∈ L}. We model the class-conditional
density of the feature vectors x given the class labels �



as p(x|C�) =
∑M

m=1 p(x|c�m) p(c�m), where the compo-
nents c�m, m = 1, . . . , M , are thought of as sub-classes.
Each p(x|c�m) is assumed to be a Gaussian with mean µ�m

and covariance matrix Σ�m. We estimate a single mixture
model with L×M components using the EM algorithm to
estimate the parameters of the model, including the mixing
weights p(c�m). We limit the number of free parameters in
the optimization by using spherical Gaussians with covari-
ance matrices of the form Σ�m = σ2

�mI . This restriction
also helps prevent the covariance matrices from becoming
singular.
The estimation process starts by selecting some initial
values for the parameters of the model (means, co-
variances, mixing weights). During the expectation or
E-step, we use the parameters to compute probabilis-
tic sub-class membership weights given the feature vec-
tors x and the incomplete labels CL: p(c�m|x, CL) ∝
p(x|c�m) p(c�m|CL), where p(c�m|CL) = 0 for all � /∈ L
and

∑
�∈L

∑M
m=1 p(c�m|CL) = 1. During the maximiza-

tion or M-step, we use the computed weights to re-estimate
the parameters by maximizing the expected likelihood of
the data in the standard fashion [5].
At this stage, each region in the training image is assigned
the sub-class label that maximizes the posterior probability
p(c�m|x, CL). Next, we need to a method for computing
the neighborhood of a given region centered at pixel loca-
tion p0 and described by the local shape matrix M . The
simplest approach is to define the neighborhood as the set
of all points p such that (p− p0)T M(p− p0) ≤ α, where
α is a constant factor. However, in practice this definition
produces poor results: points with small ellipses get too
few neighbors, and points with large ellipses get too many.
A better approach is to “grow” the ellipse by adding a con-
stant absolute amount (15 pixels in the implementation) to
the major and minor axes, and to let the neighborhood con-
sist of all points that fall inside this enlarged ellipse. In
this way, the size and shape of the neighborhood still de-
pends on the affine shape of the region, but the neighbor-
hood structure is more balanced.
Once we have defined a neighborhood structure for the
affine regions contained in an image, we can effectively
turn this image into a directed graph with arcs emanating
from the center of each region to other centers that fall
within its neighborhood. The existence of an arc from a
region with sub-class label c to another region with label c ′

is a joint event (c, c′) (note that the order is important since
the neighborhood relation is not symmetric). For each pos-
sible pair of labels, we estimate p(c, c′) from the relative
frequency of its occurrence, and also find the marginal
probabilities p̂(c) =

∑
c′ p(c, c′) and p̌(c′) =

∑
c p(c, c′).

Finally, we compute the values

r(c, c′) =
p(c, c′) − p̂(c) p̌(c′)[(

p̂(c) − p̂2(c)
) (

p̌(c′) − p̌2(c′)
)] 1

2

representing the correlations between the events that the
labels c and c′, respectively, belong to the source and des-

tination nodes of the same arc. The values of r(c, c ′) must
lie between −1 and 1; negative values indicate that c and
c′ rarely co-occur as labels at endpoints of the same edge,
while positive values indicate that they co-occur often.
In our experiments, we have found that the values of
r(c, c′) are reliable only in cases when c and c′ are sub-
class labels of the same class C. Part of the difficulty in
estimating correlations across texture classes is the lack
of data in the training set. Even if the set contains multi-
texture images, only a small number of edges actually fall
across texture boundaries. Unless the number of texture
classes is very small, it is also quite difficult to create a
training set that would include samples of every possible
boundary. Moreover, since we do not make use of “ground-
truth” segmented images, the boundaries found in multi-
texture images are not reliable. For these reasons, when-
ever c and c′ belong to different classes, we set r(c, c′) to a
constant negative value that serves as a “smoothness con-
straint” in the relaxation algorithm described next.
We have implemented the probability-based iterative relax-
ation algorithm described in the classic paper by Rosenfeld
et al. [40] to enforce spatial consistency. The initial esti-
mate of the probability that the ith region has label c, de-
noted p

(0)
i (c), is obtained from the learned Gaussian mix-

ture model as the posterior probability p(c|x i). Note that
since we run relaxation on unlabeled test data, these proba-
bilities must be computed for all L × M sub-class labels
corresponding to all possible classes. At each iteration,
new probability estimates p

(t+1)
i (c) are obtained by updat-

ing the current values p
(t)
i (c) using the equation

p
(t+1)
i (c) =

p
(t)
i (c)

[
1 + q

(t)
i (c)

]
∑

c p
(t)
i (c)

[
1 + q

(t)
i (c)

] ,

q
(t)
i (c) =

∑
j

wij

[∑
c′

r(c, c′) p
(t)
j (c′)

]
. (1)

The scalars wij are weights that indicate how much influ-
ence region j exerts on region i. We treat wij as a binary
indicator variable that is nonzero if and only if the jth re-
gion belongs to the ith neighborhood. Note that the weights
are required to be normalized so that

∑
j wij = 1 [40].

It should be noted that the relaxation process iterating (1)
has no convergence guarantees, though the constraints built
into the update equation do ensure that the p

(t)
i (c) stay non-

negative and sum to 1 [40]. Despite the lack of a formal
convergence proof, we have found the relaxation algorithm
to behave well on our data. In practice, we run relaxation
for 200 iterations.

Results. We have implemented the proposed approach
(Figure 8). In our experiments, individual regions are clas-
sified in the obvious way, by assigning them to the class
that maximizes pi(C�) =

∑M
m=1 pi(c�m). To perform

classification and retrieval at the image level, we need to
define a “global” score for each texture class. In our exper-
iments, the score for class C� is computed by summing the
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Figure 8: Segmentation/classification results. From top to bottom: Sample images of texture classes from an indoor scene; ROC curves
(positive detection rate vs. false detection rate) for retrieval in the test set of 45 multi-texture images; four successful indoor image segmentation
experiments (not that the two marble patches with different orientations are correctly classified in the second experiment), along with an
unsuccessful one; animal image classification examples See [21] for additional results.



probability of C� over all N regions found in the image:∑N
i=1

∑M
m=1 pi(c�m), where the pi(c�m) are the probabil-

ity estimates following relaxation. Classification of single-
texture images is carried out by assigning the image to the
class with the highest score, and retrieval for a given tex-
ture model proceeds from highest scores to lowest.
Our first data set contains seven different textures present
in a single indoor scene. Figure 8(top) shows two sam-
ple images of each texture. The data set is partitioned as
follows: 10 single-texture training images of each class;
10 single-texture validation images of each class; 13 two-
texture training images; and 45 multi-texture test images.
The next row of the figure show classification results in the
form of ROC curves that plot the positive detection rate
(the number of correct images retrieved over the total num-
ber of correct images) against the false detection rate (the
number of false positives over the total number of negatives
in the data set). Typical classification/segmentation results
are shown next to illustrate the qualitative behavior of our
algorithm. Our second data set consists of unsegmented
images of three kinds of animals: cheetahs, giraffes, and
zebras. The training set contains 10 images from each
class, and the test set contains 20 images from each class,
plus 20 “negative” images not containing instances of the
target animal species. To account for the lack of segmen-
tation, we introduce an additional “background” class, and
each training image is labeled as containing the appropri-
ate animal and the background. Typical classification ex-
amples are show in Figure 8(bottom). Overall, our system
appears to learn very good models for cheetahs and zebras,
but not for giraffes [21].

4 Going Further
We have presented a new framework for object recognition
where object models consist of a collection of small (pla-
nar) patches, their invariants, and a description of their 3D
spatial relationship. We believe that our experiments with
3D rigid object recognition and non-rigid texture recogni-
tion demonstrate the promise of this approach. To go fur-
ther, we plan to attack two other fundamental object recog-
nition problems: recognizing articulated objects in image
sequences, with applications to the identification of shots
that depict the same scene (shot matching) in video clips;
and learning and recognizing part-based descriptions of 3D
object classes in photographs and video clips.
Solving the first of these problems involves overcoming
several challenges, including motion segmentation [6, 11,
14] in the difficult case where both the camera and parts
of the scene may be moving independently, and matching
3D models acquired from different video clips. Figure 9 il-
lustrates our preliminary efforts, with 3D models of a teddy
bear extracted from two video sequences and matched with
each other.
The second problem—learning and recognizing object
class models from images—remains largely unsolved de-
spite 40 years of efforts. Several recent approaches to
category-level object recognition use machine learning

Figure 9: Modeling and recognizing objects in video sequences. Top:
bear models constructed from two video clips, along with the recovered
camera trajectories; Bottom: matching results.

techniques to acquire part models from training images,
then train a classifier to recognize objects using the spatial
layout of these parts in an image. This paradigm has been
successfully applied to the recognition of cars [1, 47, 53],
faces [16, 42, 47], and human beings [35, 39] in complex
imagery. However, the image descriptors used in these
methods enjoy very limited invariance properties (mostly
translational invariance, see [1, 53] for example), which
severely limits the range of admissible viewpoints that they
can handle. We propose using graphical models of the
characteristic patterns formed by affine-invariant patches
to describe salient object parts. Figure 10 illustrates this
idea with matches found between face images using the
output of the L operators and a variant of affine alignment
[2]. In these examples at least, the patch patterns are stable
despite large viewpoint variations and appearance changes.
We are in the process of assessing the true potential of this
approach.
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Figure 10: Matching faces.
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