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Abstract. Most image segmentation algorithms optimize some mathematical
similarity criterion derived from several low-level image features. One possible
way of combining different types of features, e.g. color- and texture features on
different scales and/or different orientations, is to simply stack all the individ-
ual measurements into one high-dimensional feature vector. Due to the nature of
such stacked vectors, however, only very few components (e.g. those which are
defined on a suitable scale) will carry information that is relevant for the actual
segmentation task. We present an approach to combining segmentation and adap-
tive feature selection that overcomes this relevance determination problem. All
free model parameters of this method are selected by a resampling-based stability
analysis. Experiments demonstrate that the built-in feature selection mechanism
leads to stable and meaningful partitions of the images.

1 Introduction

The goal of image segmentation is to divide an image into connected regions that are
meant to be semantic equivalence classes. In most practical approaches, however, the
semantic interpretation of segments is not modeled explicitly. It is, rather, modeled
indirectly by assuming that semantic similarity corresponds with some mathematical
similarity criterion derived from several low-level image features. Following this line
of building segmentation algorithms, the question of how to combine different types of
features naturally arises. One popular solution is to simply stack all different features
into a high-dimensional vector, see e.g [1]. The individual components of such a fea-
ture vector may e.g. consist of color frequencies on different scales and also on texture
features both on different scales and different orientations. The task of grouping such
high-dimensional vectors, however, typically poses two different types of problems: on
the technical side, most grouping algorithms become increasingly instable with growing
input space dimension. Since for most relevant grouping criteria no efficient globally
optimal optimization algorithms are known, this “curse of dimensionality” problem is
usually related to the steep increase of local minima of the objective functions. Apart
from this technical viewpoint, the special structure of feature vectors that arise from
stacking several types of features poses another problem which is related to the rele-
vance of features for solving the actual segmentation task. For instance, texture features
on one particular scale and orientation might be highly relevant for segmenting a textile
pattern from an unstructured background, while most other feature dimensions will ba-
sically contain useless “noise” with respect to this particular task. Treating all features
equally, we cannot expect to find a reliable decomposition of the image into mean-
ingful classes. Whereas the “‘curse of dimensionality”-problem might be overcome by
using a general regularization procedure which restricts the intrinsic complexity of the
learning algorithm used for partitioning the image, the special nature of stacked feature



vectors particularly emphasizes the need for an adaptive feature selection or relevance
determination mechanism.

In supervised learning scenarios, feature selection has been studied widely in the
literature. Selecting features in unsupervised partitioning scenarios, however, is a much
harder problem, due to the absence of class labels that would guide the search for rel-
evant information. Problems of this kind have been rarely studied in the literature, for
exceptions see e.g. [2, 9, 15]. The common strategy of most approaches is the use of an
iterated stepwise procedure: in the first step a set of hypothetical partitions is extracted
(the clustering step), and in the second step features are scored for relevance (the rele-
vance determination step). A possible shortcoming is the way of combining these two
steps in an “ad hoc” manner: firstly, standard relevance determination mechanism do not
take into account the properties of the clustering method used. Secondly, most scoring
methods make an implicit independence assumption, ignoring feature correlations. It is
thus of particular interest to combine feature selection and partitioning in a more prin-
cipled way. We propose to achieve this goal by combining a Gaussian mixture model
with a Bayesian relevance determination principle. Concerning computational problems
involved with selecting “relevant” features, a Bayesian inference mechanism makes it
possible to overcome the combinatorial explosion of the search space which consists of
all subsets of features. As a consequence, we are able to derive an efficient optimization
algorithm. The method presented here extends our previous work on combining cluster-
ing and feature selection by making it applicable to multi-segment problems, whereas
the algorithms described in [13, 12] were limited to the two-segment case.

Our segmentation approach involves two free parameters: the number of mixture
components and a certain constraint value which determines the average number of
selected features. In order to find reasonable settings for both parameters, we devise
a resampling-based stability model selection strategy. Our method follows largely the
ideas proposed in [8] where a general framework for estimating the number of clusters
in unsupervised grouping scenarios is described. It extends this concept, however, in one
important aspects: not only the model order (i.e. the number of segments) but also the
model complexity for a fixed model order (measured in terms of the number of selected
features) is selected by observing the stability of segmentations under resampling.

2 Image Segmentation by Mixture Models

As depicted in figure 1 we start with extracting a set of N image-sites, each of which
is described by a stacked feature vector xi ∈ R

d with d components. The stacked
vector usually contains features from different cues, like color histograms and texture
responses from Gabor filters, [10]. For assigning the sites to classes, we use a Gaussian
mixture model with K mixture components sharing an identical covariance matrix Σ.
Under this model, the data log-likelihood reads

lmix =
∑N

i=1
log

(∑K
ν=1

πνφ(xi;µν , Σ)
)

, (1)

where the mixing proportions πν sum to one, and φ denotes a Gaussian density. It is
well-known that the classical expectation-maximization (EM) algorithm, [3], provides
a convenient method for finding both the component–membership probabilities and the



model parameters (i.e. means and covariance) which maximize lmix. Once we have
trained the mixture model (which represents a parametric density on R

d) we can easily
predict the component–membership probabilities of sites different from those contained
in the training set by computing Mahalonobis distances to the mean vectors.
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Fig. 1. Image-sites and stacked feature vectors (schematically).

2.1 Gaussian Mixtures and Bayesian Relevance Determination

In order to incorporate the feature selection mechanism into the Gaussian mixture
model, the M-step of the EM-algorithm undergoes several reformulations. Following
[5], the M-step can be carried out by linear discriminant analysis (LDA) which uses
the “fuzzy labels” estimated in the preceding E-step. LDA is equivalent to an optimal
scoring problem (cf. [6]), the basic ingredient of which is a linear regression procedure
against the class-indicator variables. Since space here precludes a more detailed discus-
sion of the equivalence of the classical M-step and indicator regression, we refer the
interested reader to the above references and we will concentrate in the following on
the aspect of incorporating the feature selection method into the regression formalism.

A central ingredient of optimal scoring is the “blurred” response matrix Z̃, whose
rows consist of the current membership probabilities. Given an initial (K × K − 1)
scoring matrix Θ, a sequence of K − 1 linear regression problems of the form

find θj ,βj which minimize ‖Z̃θj −Xβj‖
2

2
, j = 1, . . . ,K − 1 (2)

is solved. X is the data matrix which contains the stacked feature vectors as rows. We in-
corporate the feature selection mechanism into the regression problems by specifying a
prior distribution over the regression coefficients β. This distribution has the form of an
Automatic Relevance Determination (ARD) prior: p(β|ϑ) ∝ exp[−

∑d
i=1

ϑiβ
2

i ]. For
each regression coefficient, the ARD prior contains a free hyperparameter ϑi, which
encodes the “relevance” of the i-th variable in the linear regression. Instead of ex-
plicitly selecting these relevance parameters, which would necessarily involve a search
over of all possible subsets of features, we follow the Bayesian view of [4] which con-
sists of “averaging” over all possible parameter settings: given exponential hyperpriors,
p(ϑi) = γ

2
exp{−γϑi

2
}, one can analytically integrate out the relevance-parameters



from the prior distribution over the coefficients. Switching to the maximum a poste-
riori (MAP) solution in log-space, this Bayesian marginalization directly leads to the
following `1–constrained regression problems:

minimize ‖Z̃θj −Xβj‖
2

2
subject to ‖βj‖1 < κ , j = 1, . . . ,K − 1, (3)

where ‖βj‖1 denotes the `1 norm of the vector of regression coefficients in the j-th
regression problem. This model is known as the LASSO, see [14]. A highly efficient
algorithm for optimizing the LASSO model can be found in [11].

According to [5], in the optimal scoring problem the regression fits are followed by
finding a sequence of optimal orthogonal scores Θ̂ which maximize trace{Θ>Z̃>XB},
where the matrix B contains the optimal vectors β̂

1
, . . . , β̂K−1

as columns. In the un-
constrained case described in [5], this maximization amounts to finding the K − 1
largest eigenvectors vi of the symmetric matrix M ≡ Θ>Z̃>XB. The matrix B
is then updated as B ← BV . In our case with active `1 constraint, the matrix M
is no longer guaranteed to be symmetric. Maximization of the symmetrized problem
Msym ≡ 1/2 ·M>M , however, may be viewed as a natural generalization. We thus
propose to find the optimal scores by an eigen-decomposition of Msym.

Summing up. For feature selection, we ideally would like to estimate the value of
a binary selection variable: Si equals one, if the i-th feature is considered relevant for
the given task, and zero otherwise. Taking into account feature correlations, however,
estimation of S involves searching the space of all possible subsets of features. In the
Bayesian ARD formalism, this combinatorial explosion of the search space is overcome
by relaxing the binary selection variable to a real-valued relevance parameter. Follow-
ing a Bayesian inference principle, we introduce hyper-priors and integrate out these
relevance parameters, and we finally arrive at a sequence of `1–constrained LASSO
problems, followed by an eigen-decomposition to find the optimal scoring vectors. It is
of particular importance that this method combines the issues of grouping and feature
selection in a principled way: both goals are achieved simultaneously by optimizing the
same objective function, which is simply the constrained data log-likelihood.

3 Model Selection and Experimental Evaluation

Our model has two free parameters, namely the number of mixture components and the
value of the `1–constraint κ. Selecting the number of mixture components is referred
to as the model order selection problem, whereas selecting the number of features can
be viewed as the problem of choosing the complexity of the model. We now describe a
method for selecting both parameters by observing the stability of segmentations.
Selecting the model complexity. We will usually find many potential splits of the data
into clusters, depending on how many features are selected: if we select only one fea-
ture, it is likely to find many competing hypotheses for splits, since most of the feature
vectors vote for a different partition. Taking into account the problem of noisy mea-
surements, the finally chosen partition will probably tell us more about the exact noise
realization than about meaningful splits. If, on the other hand, we select too many fea-
tures, many of them will be irrelevant for the actual task, and with high probability, the
EM-algorithm will find suboptimal solutions. Between these two extremes, we can hope



to find relatively stable splits, which are robust against noise and also against inherent
instabilities of the optimization method. For a fixed model order, we use the following
algorithm for assessing the value of κ:

1. Sampling: draw randomly 100 datasets (i.e. sets of sites), each of which contains
N sites. For each site extract the stacked feature vector.

2. Stability analysis: for different constraint values κ repeat:
(a) Clustering: For each set of sites, train a mixture model with K modes. Assign

each of the the sites in the i-th set to one of K groups, based on the estimated
membership probabilities. Store the labels li and the model parameters pi.

(b) For each pair (i, j), i 6= j of site sets do
Prediction: use the i-th mixture model (we have stored all parameters in pi) to
predict the labels of the j-th sample. Denote these labels by l

j
i ;

Distance calculation: calculate the permutation–corrected Hamming distance
between original and predicted labels by minimizing over all permutations π:

dHamming
i,j = minπ

∑N
k=1

1− δ{lj(k), π(lji (k))}, (4)

(δ denotes the Kronecker symbol), and store it in the (100 × 100) matrix D.
The minimization over all permutations can be done efficiently by using the
Hungarian method for bipartite matching with time complexity O(K3), [7].

(c) Partition clustering & prototype extraction: use Wards agglomerative method
to cluster the matrix D. Stop merging partition-clusters if the average within-
cluster Hamming distance exceeds a threshold ε = γ · (1− 1/K) proportional
to the expected distance in a random setting (for random labellings we ex-
pect an average distance of (1 − 1/K)). In the experiments we have chosen
γ = 0.05 = 5%. In each partition-cluster, select the partition which is nearest
to the cluster centroid as the prototypical partition.

Selecting the model order. In order to select a suitable number K of mixture com-
ponents, we repeat the whole complexity selection process for different values of K.
We consider that K-value as the most plausible one, for which the percentage of parti-
tions in the individual partition clusters attains a maximum. Since in most unsupervised
grouping problems there is more than one “interesting” interpretation of the data, we
might, however, gain further insights by also studying other K-values with high but not
maximal stability, see figure 4 for an example.

Figures 2 and 3 show the results of the model selection process for an artificial
image with five segments. Two of the segments are solely defined in terms of differ-
ent grey value distributions without any texture information. Two other segments, on
the other hand, contain the same texture pattern in different orientations which makes
them indistinguishable in the terms of grey values. In order to capture both types of
information, at each site we stacked 12 grey value histogram bins and 16 Gabor coef-
ficients on different scales and orientations into a 28-dimensional feature vector. The
features are normalized to zero mean and unit variance across the randomly chosen set
of image-sites. The right panel of figure 2 depicts the outcome of the model-order selec-
tion process. The stability curve shows a distinct maximum for 5 mixture components.
83% of all partitions found in 100 resampling experiments are extremely similar: their
average divergence is less than 5% of the expected divergence in a random setting.



Figure 3 gives more insight into the model-complexity selection process for this
most stable number of mixture components. For small values of the `1 constraint κ
only very few features are selected which leads to highly fluctuating segmentations.
This observation is in accordance with our expectation that the selection of only a few
single features would be highly sensitive to the sampling noise. The full model contain-
ing all features also turns out to be rather instable, probably due to the irrelevance of
most feature dimensions. For the task of separating e.g. the two segments which contain
the same texture in different orientations, all color features are basically uninformative
noise dimensions. Between these two extremes, however, we find a highly stable seg-
mentation result. On average, 13 features are automatically selected. More important
than this average number, however, is the fact that in each of the 4 regression fits (we
have K = 5 mixture components and thus K−1 = 4 fits) the features are selected in an
adaptive fashion: in one of the regression problems almost exclusively grey-value fea-
tures are selected, whereas two other regression fits mainly extract texture information.
By combining the 4 regression fits the model is able to extract both types of information
while successfully suppressing the irrelevant noise content.
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Fig. 2. Model-order selection by resampling: stability of segmentations (measured in terms of
percentage of highly similar partitions) vs. number of mixture components. Right: input image.
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Fig. 3. Selecting the model-complexity
for fixed number of mixture compo-
nents K = 5. Solid curve: stability
vs. `1 constraint κ. Dashed curve: num-
ber of selected features

Real word examples. We applied our method to several images from the corel
database. Figure 4 shows the outcome of the whole model selection process for an
image taken from the corel “shell-textures” category, see figure 5. The stability curve



for assessing the correct model order favors the use of two mixture components. In
this case, the most stable partitions are obtained for a highly constrained model which
employs on average only 2 features (left panel). A closer look on the partition clusters
show that there is a bimodal distribution of cluster populations: 44 partitions found in
100 resampling experiments form a cluster that segments out the textured shell from
the unstructured environment (only texture features are selected in this case), whereas
in 37 partitions only color features are extracted, leading to a bipartition of the image
into shadow and foreground.
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Fig. 4. A shell image from the corel database: model selection by resampling.

Fig. 5. The shell image and the
three-component segmentation solu-
tion

Both possible interpretations of the image are combined in the three-component
model depicted in the right panel. The image is segmented into three classes that corre-
spond to “shell”, “coral” and “shadow”. The most stable three-component model uses
a combination of five texture and three color features. This example demonstrates that
due to the unsupervised nature of the segmentation problem, sometimes there are more
than one “plausible” solutions. Our feature selection process is capable of exploring
such ambiguities, since it provides the user not only with a single optimal model but
with a ranked list of possible segmentations. The reader should notice that also in this
example the restriction of the model complexity enforced by the `1 constraint is cru-
cial for obtaining stable segmentations. We applied our method to several other images
from the corel database, but due to space limitations we refer the interested reader to
our web-page www.inf.ethz.ch/˜vroth/segments dagm.html.



4 Discussion
In image segmentation, one often faces the problem that relevant information is spread
over different cues like color and texture. And even within one cue, different scales
might be relevant for segmenting out certain segments. The question of how to com-
bine such different types of features in an optimal fashion is still an open problem. We
present a method which overcomes many shortcomings of “naively” stacking all fea-
tures into a combined high-dimensional vector which then enters a clustering procedure.
The main ingredient of the approach is an automatic feature selection mechanism for
distinguishing between “relevant” and “irrelevant” features. Both the process of group-
ing sites to segments and the process of selecting relevant information are subsumed
under a common likelihood framework which allows the algorithm to select features
in an adaptive task-specific way. This adaptiveness property makes it possible to com-
bine the relevant information from different cues while successfully suppressing the
irrelevant noise content. Examples for both synthetic and natural images effectively
demonstrate the strength of this approach.
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