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Abstract. We describe a method for automatically obtaining object representations suitable for retrieval from
generic video shots. The object representation consists of an association of frame regions. These regions provide
exemplars of the object’s possible visual appearances.
Two ideas are developed: (i) associating regions within a single shot to represent a deforming object; (ii) associating
regions from the multiple visual aspects of a 3D object, thereby implicitly representing 3D structure. For the
association we exploit temporal continuity (tracking) and wide baseline matching of affine covariant regions.
In the implementation there are three areas of novelty: First, we describe a method to repair short gaps in tracks.
Second, we show how to join tracks across occlusions (where many tracks terminate simultaneously). Third, we
develop an affine factorization method that copes with motion degeneracy.
We obtain tracks that last throughout the shot, without requiring a 3D reconstruction. The factorization method is
used to associate tracks into object-level groups, with common motion. The outcome is that separate parts of an
object that are not simultaneously visible (such as the front and back of a car, or the front and side of a face) are
associated together. In turn this enables object-level matching and recognition throughout a video.
We illustrate the method on the feature film “Groundhog Day.” Examples are given for the retrieval of deforming
objects (heads, walking people) and rigid objects (vehicles, locations).

Keywords: 3D object retrieval in videos, tracking affine covariant regions, independent motion segmentation,
robust affine factorization

1. Introduction

In image and video retrieval applications it is usual to
specify a query by an image of the object of interest.
Such queries enable retrieval of objects with a limited
degree of generalization over viewpoint and deforma-
tion — but specifying the front of a car as a query will
not retrieve shots of the rear of the car. However, shots
in a video do contain examples of objects undergoing
viewpoint changes and deformations. Our objective in
this paper is to use such multiple instances of an object
in a shot in order to enable true object-level retrieval,
including: (i) deformable objects, e.g. a face changing
expression; and (ii) multiple visual aspects of a 3D ob-
ject, e.g. a vehicle seen from the front, side, and back.

Figure 1 shows example shots of a deforming object,
and of multiple visual aspects of a 3D object.

The approach we take is to automatically asso-
ciate regions of frames of the shot into object-level
groupings. This is carried out using both motion
and appearance consistency throughout the shot.
The technology we employ is that of affine covari-
ant regions (Matas et al., 2002; Mikolajczyk and
Schmid, 2002; Schaffalitzky and Zisserman, 2002;
Tuytelaars and Van Gool, 2000). These regions deform
with viewpoint so that their pre-image corresponds to
the same surface patch.

To achieve object-level grouping we have devel-
oped the state of the art in two areas: first, the affine
covariant regions are used to repair short gaps in



190 Sivic, Schaffalitzky and Zisserman

Figure 1. Two example shots from the film ‘Groundhog Day’ [Ramis, 1993]. (a) Frames from a shot of an actor turning her head and speaking.
Tracks of affine covariant regions are used to associate multiple exemplars of the face (from different viewpoints and with different expressions)
for retrieval. (b) Frames from a shot where the camera pans to follow a van passing by. Tracks are used to associate the three visual aspects
(back, side and front) of the van which are never visible simultaneously in a single frame.

tracks (Section 3), and also to associate a set of tracks
when the object is partially or totally occluded for
a period (Section 6). The result is that regions are
matched throughout the shot whenever they appear.
Second, we develop a method of independent motion
segmentation using robust affine factorization (Sec-
tion 5) which is able to handle degenerate motions
(Torr et al., 1998) in addition to the usual problems of
missing and mis-matched points (Aanaes et al., 2002;
De la Torre and Black, 2003; Jacobs, 1997; Shum et al.,
1995).

The task we carry out differs from that of layer ex-
traction (Torr et al., 2001), or dominant motion detec-
tion where generally 2D planes are extracted, though
we build on these approaches. Here the object may be
3D, and we pay attention to this, and also it may not
always be the foreground layer as it can be partially or
totally occluded for part of the sequence.

Approaches for matching and representing 3D ob-
jects using local patches include that of Rothganger
et al. (2003) where a 3D object model is built from
still images and that of Lowe (2001) and Ferrari
et al. (2004a), where a 3D object is modelled as a
collection of images with known multiple view region
correspondences. In our case we do not enforce global
3D consistency — the 3D object is represented implic-
itly by a set of exemplar images and this loose coupling
allows a degree of deformation (e.g. for facial expres-
sions). Also, we build this object model automatically
from video shots despite background clutter. Recently,
a similar idea of object model building from video
has appeared in Rothganger et al. (2004) but the fo-
cus is more on model building rather than matching,

recognition and retrieval, and only rigid objects are
considered.

Other approaches to building appearance models
from video include that of Mahindroo et al. (2002),
where optic-flow based motion segmentation is used to
extract objects from video, and that of Wallraven and
Bulthoff (2001) where an object is modelled by select-
ing keyframes (using point tracking) from sequences
of single objects (some of which are artificial).

The rest of the paper is organized as follows: Sec-
tions 2 and 3 review affine region detection and de-
scribe the region tracking algorithm. We then give two
retrieval applications. First, Section 4, using region
tracks alone to associate exemplars for a deforming
object — this enables retrieval of the deforming ob-
ject (a person talking and turning their head). Sec-
ond, Section 7, using region tracks and independent
motion segmentation to associate exemplars for dif-
ferent aspects of a 3D object — this enables object-
level retrieval. The independent motion segmentation
requires a rigidity grouping, and an algorithm for this
is described in Section 5. Section 6 shows how wide
base-line matching is used to associate repeated ap-
pearances of an object within a shot. The performance
of the object-level retrieval is assessed against ground
truth in Section 7.1. Finally, in Section 8 the proposed
method and its possible extensions are discussed.

We illustrate the method on objects in the feature
film ‘Groundhog Day’ [Ramis, 1993]. The film has
145K frames and 752 shots. This object-level matching
naturally extends the frame based matching of ‘Video
Google’ (Sivic and Zisserman, 2003). This paper is an
extended version of Sivic et al. (2004).
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2. Region Detection and Basic Tracking

In this section we describe how regions are detected
and tracked (associated) through a shot. Affine covari-
ant regions are detected independently in each frame.
The tracking then proceeds sequentially, looking at
only two consecutive frames at a time. The objective
is to obtain correct matches between the frames which
can then be extended to multi-frame tracks. Two match-
ing constraints are used here: first, incorrect matches
can be removed by requiring consistency with multi-
ple view geometric relations, second, the regions can be
matched on their appearance. The first matching con-
straint is based on the motion of rigid objects, and the
robust estimation of these relations for point matches
is mature (Hartley and Zisserman, 2000). The con-
straint is applied here to the region centroids. The sec-
ond matching constraint is on the image appearance
within the segmented region. It is here that we ben-
efit significantly from using affine covariant regions.
This constraint is far more discriminating and tolerant
to viewpoint change than the usual cross-correlation
over a square window used in interest point trackers,
since the correct support for the cross-correlation is
used here.

2.1. Affine Covariant Regions

Two types of affine covariant region detector are used:
one based on interest point neighbourhoods (Mikola-
jczyk and Schmid, 2002), the other based on the “Max-
imally Stable Extremal Regions” (MSER) approach of
Matas et al. (2002). In both cases the detected region
is represented by an ellipse. The region segmentation
is designed so that the pre-image of the region cor-
responds to the same surface region, i.e. their image
shape is not fixed, but automatically adapts based on
the underlying image intensities so as to always cover
the same physical surface. The regions are called affine
covariant because the segmentation commutes with
the viewpoint transformation between images (and
the transformation is locally an affinity). Implemen-
tation details of these two methods are given in the
citations.

It is beneficial to have more than one type of re-
gion detector because in some imaged locations a
particular type of feature may not occur at all. Here
we have the benefit of region detectors firing both at
points where there is signal variation in more than
one direction (e.g. near “blobs” or “corners”), as well

Figure 2. Example of affine covariant region detection. (a) Frame
20 from the van shot. (b) Ellipses formed from 722 affine covariant
interest points. (c) Ellipses formed from 1269 MSER regions. Note
the large number of regions detected in a single frame, and also that
the two types of region detectors fire at different and complementary
image locations.

as at high contrast extended regions. These two im-
age areas are quite complementary. Their union pro-
vides a good coverage of the image provided it is at
least lightly textured, as can be seen in Fig. 2. The
number of regions and coverage depends of course
on the visual richness of the image. Typically a total
of between 1000 and 2000 regions are obtained per
frame.
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Figure 3. Region tracking: (a) six frames from the van shot. The camera is panning right, and the van moves independently. (b) Frames with
the basic region tracks superimposed (before repair). Each frame shows affine covariant regions tracked in that frame. For each tracked region
shown, the tracked path of its centroid over the whole life time of the track (i.e. backwards and forwards in time) is shown by its (x, y) position.
The path of the region centroid indicates the temporal extent of the track. (c) After short range repair. Note the much longer tracks on the van
after applying this repair. For presentation purposes, only tracks lasting for more than 10 frames are shown. Note that the background is not
tracked in the middle of the shot due to severe motion blur. A detail of a single region track is shown in Fig. 6.

2.2. Tracker Implementation

In a pair of consecutive frames, detected regions in
the first frame are putatively matched with all detected
regions in the second frame, within a disparity thresh-
old of 50 pixels. Many of these putative matches will
be wrong and an intensity correlation computed over
the area of the elliptical region removes all putative
matches with a normalized cross correlation below
0.90. The 1-parameter (rotation) ambiguity between
regions is assumed to be close to zero, because
there will be little cyclo-torsion between consecutive

frames. All matches that are ambiguous, i.e. those that
putatively match several features in the other frame,
are eliminated.

Finally epipolar geometry is fitted between the two
views using RANSAC (Fischler and Bolles, 1981)
with an inlier threshold of 3 pixels. This step is very
effective in removing outlying matches whilst not
eliminating the independent motions which occur
between the two frames.

The results of this tracking on a shot from the movie
‘Groundhog Day’ are shown in Fig. 3b. This shot is
used throughout the paper to illustrate the stages of the
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Figure 4. Histograms of track lengths for (a) the face shot, (b) the van shot shown of Fig. 1 for the basic tracking (Section 2) before and after
short range track repair (Section 3). Note the improvement in track length after repair. In both cases the weight of the histogram shifts to the
right after repair. The step at around frame 45 after repair in (b) is due to the rich background of trees which lasts for about 45 frames at the
beginning of the shot.

object-level grouping. Note that the tracks have very
few outliers.

It is worth remarking on how this approach compares
to the more conventional method of tracking interest
points alone. There are two clear advantages in the re-
gion case: first, the appearance is a strong disambigua-
tion constraint, and consequently far fewer outliers are
generated at every stage; second, far more of the image
can be tracked using (two types of) regions than just
the area surrounding an interest point. The disadvan-
tage is the computational cost, but this is not such an
issue in the retrieval situation where most processing
can be done off-line.

3. Short Range Track Repair

The simple region tracker of the previous section can
fail for a number of reasons most of which are common
to all such feature trackers: (i) no region (feature) is
detected in a frame — the region falls below some
threshold of detection (e.g. due to motion blur); (ii) a
region is detected but not matched due to a slightly
different shape; and (iii) partial or total occlusion.

The causes (i) and (ii) can be overcome by short
range track repair using motion and appearance, and
we discuss this now. Cause (iii) can be overcome by
wide baseline matching on motion grouped objects
within one shot, and discussion of this is postponed
until Section 6.

3.1. Track Repair by Region Propagation

The goal of the track repair is to improve tracking
performance in cases where region detection or the

first stage tracking fails. The method will be explained
for the case of a one frame extension, the other short
range cases (2–5 frames) are analogous.

The repair algorithm works on pairs of neighbouring
frames and attempts to extend already existing tracks
that terminate in the current frame. Each region which
has been successfully tracked for more than n (=3)
frames and for which the track terminates in the current
frame is propagated to the next frame. The propagat-
ing transformation is estimated from a set of k (=5)
spatially neighbouring tracks. In the case of successive
frames only translational motion is estimated from the
neighbouring tracks. In more detail, the tx and ty com-
ponents of the translation are estimated as median val-
ues of the k translations txi and tyi suggested by the k
spatially nearest tracks i continuing to the next frame.
Figure 5 shows an example. In the case of more sepa-
rated frames the full affine transformation imposed by
each tracked region should be employed.

The refinement algorithm of Ferrari et al. (2003) is
used to fit the propagated region locally in the new
frame (this searches a hypercube in the 6D space of
affine transformations by a sequence of line searches
along each dimension). If the refined region correlates
sufficiently with the original region in the previous
frame the region track should continue to the new
frame. It is here that the advantage of regions over
interest points is manifest: this verification test takes
account of local deformations due to viewpoint change,
and is very reliable.

The standard ‘book-keeping’ cases then follow: (i)
no new region is instantiated (e.g. the region may be
occluded in the frame); (ii) a new region is instantiated,



194 Sivic, Schaffalitzky and Zisserman

Figure 5. Illustration of the track repair by region propagation. A region track finishing in frame (a) is extended to the following frame (b).
The region from the first frame (close-up shown in (c)) is first transformed to the next frame (dashed ellipse in (d)) and then aligned to the image
intensities (solid ellipse in (d)). The initial propagation transformation (translation in this case) is estimated from the five (spatially) nearest
already existing basic stage tracks. These are shown in (e) and (f). The lines in (e) show the centroid motion of each of the five tracked regions.
See text for more details.

in which case the current track is extended; (iii) if the
new instantiated region matches (correlates with) an
existing region in its (5 pixel) neighbourhood then this
existing region is added to the track; (iv) if the matched
region already belongs to a track starting in the new
frame, then the two tracks are joined.

Figure 4 gives the ‘before and after’ histogram of
track lengths for the two example shots of Fig. 1. The
results of this repair are shown in Figs. 3 and 8. Detail
of a single region track after the repair stage is shown
in Fig. 6.

As can be seen, there is a dramatic improvement in
the length of the tracks — as was the objective here.
The success of this method is due to the availability
and use of two complementary constraints — motion
and appearance.

Note also that the region propagation can develop
tracks on deforming objects where the between-frame
region deformation can be modelled by an affine
geometric transformation. Figure 9 shows an exam-
ple of such a track on the mouth of a speaking
person.
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Figure 6. Detail of a single region track after repair. Note the significant change in viewpoint. Top row: Five frames from the shot of Figure 3
with the tracked affine covariant region superimposed. Bottom row: Corresponding close-ups of the tracked region. The solid line denotes
regions detected by the affine covariant region detector. The dashdot line denotes regions filled-in by propagation. This particular track extends
over 52 frames and consists of 4 basic tracks (a total of 18 detected regions) connected by 34 filled-in regions (including 4 regions which were
detected but not associated with any basic track).

4. Application I: Using Multiple Exemplars
for Retrieval

The goal here is for a user to be able to specify an
object of interest in a single frame, by defining a query
region delineating the object, and this to be suffi-
cient input to retrieve all shots containing instances
of that object throughout the movie, even though
the object may deform or be imaged from a differ-
ent visual aspect than that of the query frame (see
Section 7).

To achieve this, tracks of affine covariant regions
throughout the shot are used to automatically asso-
ciate multiple image exemplars of the object — query
regions in other frames — and use the associated ex-
emplars to enhance the original user specified query.
The idea is illustrated in Fig. 7.

In detail a query region is ‘transported’ from the
query frame to other frames in the shot as follows: the
set of affine covariant regions enclosed by the query
region is determined; the tracked regions then deter-
mine a corresponding set in each frame of the shot; in
turn the rectangular bounding box (or union) of this set
determines a query region for that frame. Matching is
then carried out for all query regions using the Video
Google method (reviewed below).

Figure 10 shows an example of an enhanced query.
A user outlines a query rectangle in a single frame, as
shown in Fig. 10a (top). Tracks on affine covariant re-
gions passing through the user outlined rectangle then
define associated query rectangles in other frames. The
tracks are shown in Fig. 8. Tracking objects with a lim-
ited amount of deformation is possible since the region
tracking described in Sections 2 and 3 allows a covari-
ant region to undergo affine geometric transformation
between consecutive frames of the video. A detail of a

Figure 7. Conceptually, we extend the standard paradigm of image
based retrieval (a), where the query is defined by a region within a
single image, to retrieval at an object-level (b) where an object is
defined over multiple images. A query region in the (shaded) query
frame acts as a portal to all the keyframes and search regions within
a shot associated by the tracked affine regions.

single region track on a deforming mouth is shown in
Fig. 9.

The deforming and rotating object (actor’s head talk-
ing and turning) is represented automatically by mul-
tiple exemplars (instances over multiple frames within
one shot). The following sub-sections give implemen-
tation details.

4.1. Retrieval on a Single Image Query — Video
Google

This is a brief overview of the Video Google
shot retrieval method described in Sivic and Zisser-
man (2003). The goal is to efficiently and accurately
match the object specified by a query region through-
out a video. The object is represented by the set of
affine covariant regions within the query region (their
appearance and position).

In order to match affine covariant regions effi-
ciently each region is first represented as a 128-
dimensional vector using the SIFT descriptor devel-
oped by Lowe (1999). The SIFT descriptors are then
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Figure 8. Tracking deforming objects. (a) Eight frames (of 133) for the head turning shot. (b) Tracked viewpoint covariant regions on the
actor’s head. The tracks are selected in one frame by a user query (see text). Only tracks longer than 10 frames are shown here. A detail of the
mouth track is given in Fig. 9.

Figure 9. Detail of a region track in 10 consecutive frames covering the deforming mouth whilst the actor speaks. This track extends over
28 frames.

vector quantized using K-means clustering. The clus-
ters are computed from 474 frames of the video,
with 6,000 clusters for regions based on interest point
neighbourhoods (Schaffalitzky and Zisserman, 2002;
Mikolajczyk and Schmid, 2002), and 10,000 clus-
ters for Maximally Stable Extremal Regions (Matas
et al., 2002). All the descriptors for each frame of the
video are assigned to the cluster centre nearest to their
SIFT descriptor. Vector quantizing brings a huge com-
putational advantage because descriptors in the same
clusters are considered matched, and no further match-
ing on individual descriptors is then required.

The retrieval proceeds in two stages, first keyframes
(every 25th frame) are ranked based on the histograms
of occurrences of the quantized descriptors, and the

top ranked set selected. This set is then re-ranked by a
local spatial consistency check which requires that spa-
tially close regions in the query frame map to spatially
close regions in the retrieved frame. This spatial consis-
tency requires that a putative affine region match has a
supporting match within its nearest spatial neighbours
(Schmid, 1997; Sivic and Zisserman, 2003). The num-
ber of supporting matches defines the similarity score
between two frames. This is quite a loose spatial con-
straint, and allows object deformation between frames.

4.2. Collating Search Results from Multiple Queries

The goal here is to collate search results from multiple
associated query frames representing the object level
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Figure 10. Retrieving a deformable object using multiple exemplars. (a) The user outlined query region (top) in a single frame, and (bottom)
5 (out of 19) automatically associated keyframes and query regions from within the same shot. The associated query regions are obtained as
rectangular bounding boxes of the tracks (shown in Fig. 8) passing through the user outlined rectangle in the query frame. Note that full profile
views, three quarter views and frontal views with different expressions are associated with the original query frame. (b) The top row shows
example of retrieved frames from different shots by searching on only the user outlined query region. The bottom two rows show example
retrieved frames by searching on the associated query regions as well. Note that the extended query enables the retrieval of full profile views
which would be almost impossible by the original user outlined query. In the first twenty retrieved shots there are five mismatches for other
faces and one mismatch for a non-face.

query in order to return a ranked list of shots. In more
detail we want to compute a retrieval score �l for shot
l, given a set of query frames Sq = {qi} (with query
regions), the set of keyframes Sl = {kj} belonging to
shot l and keyframe scoring function φ(q, k) returning
similarity score between the query region of the query
frame q and keyframe k (as explained in Section 4.1).

Two strategies are used for collating results from
multi image queries: (i) votes for a particular shot are
accumulated across all the associated query frames and
retrieved keyframes, i.e.

�l =
|Sq |∑

i=1

|Sl |∑

j=1

φ(qi , k j ), (1)

or (ii) the best matching keyframe from each shot is
used to score the whole shot

�l = max
i, j

φ(qi , k j ). (2)

The advantage of the first method (Eq. (1)) is that a
shot can accumulate votes from multiple query frames,
whereas false positives tend not to be consistent. For
example, if both the query and retrieved shots have
profile and frontal view of a face, then the face shot
can accumulate votes from both the profile and frontal
query frames whereas the false positives would not be
the same for the frontal and profile views and would
therefore receive lower score. The advantage of the
second strategy (Eq. (2)) is that it does not overcount
scores for longer shots. In the matching examples of
Figs. 10, 21 and 24 the first strategy was used. In the
matching example of Fig. 25 the second strategy was
used.

5. Object Extraction by Robust Sub-Space
Estimation

The previous section used tracked affine covariant re-
gions to associate multiple exemplars of an object.
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However, the method is limited in that it can’t ‘see
around corners.’ For example, if we select the three-
quarter view of the van in Fig. 3(a) (second row), only
the side and front of the van will be associated, not
the back of the van, because only tracks originating in
the original three-quarter view are used. In this sec-
tion we take the grouping a stage further and partition
the tracks into groups with coherent motion. In other
words, things that move together are assumed to belong
together. For example, in the shot of Fig. 3 the ideal
outcome would be the van as one object — grouping
the front, side and back even though these are not visi-
ble simultaneously in any single frame. We would also
expect to obtain several groupings of the background.

The grouping constraint used here is that of common
rigid motion, and we assume an affine camera model
so the structure from motion problem reduces to lin-
ear subspace estimation. For a 3-dimensional object,
our objective would be to determine a 3D basis of tra-
jectories bi

k, k = 1, 2, 3, (to span a rank 3 subspace)
so that (after subtracting the centroid) all the trajecto-
ries xj

i associated with the object could be written as
(Zelnik-Manor and Irani, 1999):

xi
j = (

bi
1, bi

2, bi
3

)
(X j , Y j , Z j )

�

where xi
j is the measured (x, y) position of the jth point

in frame i, and (Xj, Yj, Zj) is the 3D affine structure.
The maximum likelihood estimate of the basis vec-

tors and affine structure could then be obtained by
minimizing the reprojection error

∑

i j

∥∥ni
j

(
xi

j − (
bi

1, bi
2, bi

3

)
(X j , Y j , Z j )

�)∥∥2
(3)

where ni
j is an indicator variable to label whether the

point j is (correctly) detected in frame i, and must also
be estimated. This indicator variable is necessary to
handle missing data.

It is well known (Torr et al., 1998) that directly
fitting a rank 3 subspace to trajectories is often unsuc-
cessful and suffers from over-fitting. For example, in a
video shot the inter-frame motion is quite slow so us-
ing motion alone it is easy to under-segment and group
foreground objects with the background.

We build in immunity to this problem from the start,
and fit subspaces in two stages: first, a low dimensional
model (a projective homography) is used to hypothe-
size groups — this over-segments the tracks. These
groups are then associated throughout the shot using

track co-occurrences. The outcome is that trajectories
are grouped into sets belonging to a single object. In
the second stage 3D subspaces are sampled from these
sets, without over-fitting, and used to merge the sets
arising from each object. These steps are described in
the following sub-sections. The complete algorithm is
summarized in Fig. 19. This approach differs funda-
mentally from that of Aanaes et al. (2002) and De la
Torre and Black (2003) where robustness is achieved
by iteratively re-weighting outliers but no account is
taken of motion degeneracy.

5.1. Basic Motion Grouping Using Homographies

To determine the motion-grouped tracks for a partic-
ular frame, both the previous and subsequent frames
are considered. The aim is then to partition all tracks
extending over the three frames into sets with a com-
mon motion. To achieve this, homographies are fitted
to each pair of frames of the triplet using RANSAC.
In each RANSAC iteration, a four-tuple of tracks ex-
tending over the three frames is sampled and three
homographies (H12, H13, H23) are computed. The set
of inlying tracks is computed based on image repro-
jection error averaged over the three frames. The inlier
threshold is set to a generous number of pixels (around
3 here). The inlying set is removed, and RANSAC is
then applied to the remaining tracks to extract the next
largest motion grouping, etc. This procedure is applied
to all triplets of consecutive frames in the shot, i.e. the
neighbouring triplets share two frames. In the next step
motion groups are linked throughout the shot into an
object.

5.2. Aggregating Segmentation over Multiple
Frames

The problem with fitting motion models to pairs or
triplets of frames are twofold: (i) a phantom motion
cluster corresponding to a combination of two indepen-
dent motions grouped together can arise (Torr, 1995),
and (ii) an outlying track will be occasionally, but not
consistently, erroneously grouped together with one of
the motion groups. In our experience these ambigui-
ties tend not to be stable over many frames, but rather
occasionally appear and disappear. To deal with these
problems we devise a voting strategy which groups
tracks that are consistently segmented together over
multiple frames.



Object Level Grouping for Video Shots 199

Figure 11. Aggregating segmentation over multiple frames. (a) The track co-occurrence matrix for a ten frame block of the shot from Fig. 3.
White indicates high co-occurrence. (b) The thresholded co-occurrence matrix re-ordered according to its connected components (see text). (c)
(d) The sets of tracks corresponding to the two largest components (of size 1157 and 97). The other components correspond to 16 outliers.

The basic motion grouping of Section 5.1 provides
a track segmentation for each triplet of consecutive
frames. The goal is to pull out sets of tracks which
are consistently grouped together over a wider base-
line. This is achieved by a simple clustering algorithm
which operates on a track-to-track similarity matrix,
where the track-to-track similarity is based on tempo-
ral consistency between the two tracks, i.e. the number
of frames over which the two tracks co-occur together
in one motion segment (which is given by the basic
homography based motion grouping).

In more detail the shot is divided into blocks of
frames over a wider baseline of n frames (n = 10 for ex-
ample) and a track-to-track co-occurrence matrix W is
computed for each block. The element wij of the matrix
W accumulates a vote for each frame where tracks i and
j are grouped together. Votes are added for all frames in
the block. In other words, the similarity score between
two tracks is the number of frames (within the 10-frame
block) in which the two tracks were grouped together.
The task is now to segment the track voting matrix
W into temporally coherent clusters of tracks. This is
achieved by finding connected components of a graph

corresponding to the thresholded matrix W. To prevent
under-segmentation the threshold is set to a value larger
than half of the frame baseline of the block, i.e. 6 for
the 10 frame block size. This guarantees that each track
cannot be assigned to more than one group. Only com-
ponents exceeding a certain minimal number of tracks
are retained. Figure 11 shows an example of the voting
scheme applied on a ten frame block from the shot of
Figure 3. This simple scheme segments the matrix W
reliably and overcomes the phantoms and outliers.

The motion clusters extracted in the neighbouring
10 frame blocks are then associated based on the com-
mon tracks between the blocks. This is achieved by
gradually progressing through frame blocks in the shot
starting from the first block and associating motion
clusters which are connected by a significant num-
ber of tracks. Significance is measured relative to the
number of tracks in both the motion clusters, i.e. two
motion clusters in the neighbouring blocks have to
share at least 50% tracks to be associated. The result
is a set of connected clusters of tracks which corre-
spond to independently moving objects throughout the
shot.



200 Sivic, Schaffalitzky and Zisserman

Figure 12. Motion grouping example I: Four dominant objects extracted from the van shot of Fig. 3. (a), (b) The first two objects corresponds
to the van before (a) and after (b) the occlusion by the post. Note the billboard post right behind the van in the top left image of (b). This post
partially occludes the van in 21 frames. (c), (d) The other two objects correspond to the background at the beginning (a) and the end (b) of the
shot. The background in the middle of the shot was not tracked due to severe motion blur.

5.3. Object Extraction

The previous track clustering step usually results in no
more than 10 dominant (measured by the number of

tracks) motion clusters larger than 20 tracks. The goal
now is to identify those clusters that belong to the same
moving 3D object. This is achieved by grouping pairs
of track-clusters over a wider baseline of m frames (m >
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Figure 13. The sparsity pattern of the tracked features (after the
short range track repair) in the van shot of Fig. 5. The tracks are
sorted according to the frame they start in and coloured according to
the independently moving objects, that they belong to, as described
in Section 5. The two gray blocks (track numbers 1-1808 and 2546-
5011) correspond to the two background objects. The red and green
blocks (1809-2415 and 2416-2545 respectively) correspond to the
van object before and after the occlusion.

10 here). To test whether to group two clusters, tracks
from both sets are pooled together and a RANSAC
algorithm is applied to all tracks intersecting the m
frames. The algorithm robustly fits a rank 3 subspace
as described in Eq. (3).

In each RANSAC iteration, four tracks are selected
and full affine factorization is applied to estimate
the three basis trajectories which span the three
dimensional subspace of the (2m dimensional)
trajectory space. All other tracks that are visible in
at least five views are projected onto the space. A
threshold (1.5 pixels) is set on reprojection error
to determine the number of inliers. To prevent the
grouping of inconsistent clusters a high number
of inliers (90%) from both sets of tracks is re-
quired. When no more clusters can be paired, all
remaining clusters are considered as separate objects.

Figure 14. Trajectories following object-level grouping. Top: A
selection of 110 region tracks (out of a total of 429 between these
frames) shown by their centroid motion. Bottom: Five region tracks
shown as spatio-temporal “tubes” in the video volume. The frames
shown are 68 and 80. Both figures clearly show the foreshortening
as the car recedes into the distance towards the end of the shot. The
number and quality of the tracks is evident: the tubes are approaching
a dense epipolar image (Bolles et al., 1987), but with explicit corre-
spondence; the centroid motion demonstrates that outlier ‘strands’
have been entirely ‘combed’ out, to give a well conditioned track set.
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Figure 15. Motion grouping example II: object-level grouping for a 35 frame shot. Top row: The original frames of the shot. Middle and
bottom row: The two dominant (measured by the number of tracks) objects detected in the shot. The number of tracks associated with each
object is 721 (car) and 2485 (background).

The rigidity based grouping is currently applied only
to pairs of track-clusters. Complex objects made of
more than two track-clusters could be handled by iter-
ative merging pairs of clusters into larger groups.

5.4. Object Extraction Results

Figure 12 shows the four grouped objects for this ex-
ample shot. Two of the objects correspond to the van
(before and after the occlusion by the post, see Fig. 20
in Section 6) and two correspond to the backgrounds
at the beginning and end of the shot. The number
of tracks associated with each object are 607 (van
pre-occlusion), 130 (van post-occlusion), 1808 (back-
ground start) and 2466 (background end). The sparsity
pattern of the tracks belonging to different objects is
shown in Fig. 13. Each of the background objects is
composed of only one motion cluster. The van (pre-
occlusion) object is composed of two motion clusters
of size 580 and 27 which are joined at the object ex-
traction RANSAC stage. The quality and coverage of
the resulting tracks is visualized in the spatio-temporal
domain in Fig. 14.

Two additional examples of rigid object extraction
from different shots are given in Figs. 15 and 16. Fig-
ures 17 and 18 show examples of slowly deforming
objects. This deformation is allowed because at the
first homography based stage rigidity is only applied
over a short baseline of three frames.
Computation time: To give some idea of how long the
object-level grouping takes we have recorded compu-
tation times for the example van shot of Fig. 3. This

shot has a total of 187 frames. The region detection and
descriptor computation took on average 11 seconds per
frame. The basic tracking took 16 minutes (∼5 seconds
per frame). The track repair by region propagation took
304 minutes (∼97 seconds per frame). The track repair
is currently implemented in Matlab and is the bottle-
neck of the algorithm. The motion grouping algorithm
took 56 minutes of which stage 4a took 12 mins, 4b 23
mins and 4c 21 mins. The different stages refer to the
algorithm summary in Fig. 19. The motion grouping
algorithm is also entirely implemented in Matlab. All
timings are on a 2 GHz machine.

6. Long Range Track Repair

The object extraction method described in the previ-
ous section groups objects that are temporally coherent.
The aim now is to connect objects that appear several
times throughout a shot, for example an object that dis-
appears for a while due to occlusion. Typically a set of
tracks will terminate simultaneously (at the occlusion),
and another set will start (after the occlusion). The sit-
uation is like joining up a cable (of multiple tracks)
that has been cut.

The set of tracks is joined by applying standard wide
baseline matching (Matas et al., 2002; Schaffalitzky
and Zisserman, 2002; Tuytelaars and Van Gool, 2000)
to a pair of frames that each contain the object. There
are two stages: first, epsilon-nearest neighbour search
on a SIFT descriptor (Lowe, 1999) for each region,
is performed to get a set of putative region matches,
and second, this set is disambiguated by a local spatial
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Figure 16. Motion grouping example III: Object-level grouping for a 153 frame shot where the camera is tracking a van followed by another
car. (a) Seven frames of the shot. (b)—(d) The three extracted objects correspond to (b) the van (1108 tracks), (c) the background (4481 tracks)
and (d) the other car (210 tracks). The trajectory of the regions is not shown here in order to make the clusters visible.

consistency constraint: a putative match is discarded
if it does not have a supporting match within its k-
nearest spatial neighbours (Schmid, 1997; Sivic and
Zisserman, 2003). Since each region considered for
matching is part of a track, it is straightforward to
extend the matching to join tracks. The two objects
are deemed matched if the number of matched tracks
exceeds a threshold. Figure 20 shows two examples
of long range repair on shots where the object was
temporarily occluded.

7. Application II: Object-Level Video Matching

The objective here is to retrieve shots within the film
containing the object, even though the object may be
imaged from a different visual aspect than in the query
image region.

Having computed object-level groupings for shots
throughout the film, we are now in a position to re-
trieve object matches given only one visual aspect of
the object as a query region. As in the application en-
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Figure 17. Motion grouping example IV: object-level grouping for a 83 frame shot. Top row: The original frames of the shot. Middle and
bottom row: The two dominant (measured by the number of tracks) objects detected in the shot. The number of tracks associated with each
object is 225 (landlady) and 2764 (background). The landlady is an example of a slowly deforming object.

Figure 18. Motion grouping example V: object-level grouping for a 645 frame shot. Top row: The original frames of the shot where a
person walks across the room while tracked by the camera. Middle and bottom row: The two dominant (measured by the number of tracks)
objects detected in the shot. The number of tracks associated with each object is 401 (the walking person) and 15,053 (background). The object
corresponding to the walking person is a join of three objects (of size 114, 146 and 141 tracks) connected by a long range repair using wide
baseline matching, see Fig. 20b. The long range repair was necessary because the tracks are broken twice: once due to occlusion by a plant
(visible in frames two and three in the first row) and the second time (not shown in the figure) due to the person turning his back on the camera.
The trajectory of the regions is not shown here in order to make the clusters visible.

gineered in Section 4, a query region in one frame acts
as a portal to a set of associated query regions — but
here the association is on common 3D motion as de-
scribed in Section 5. (In fact since the object has been
segmented it is only necessary for the user to ‘click’
on the object in one frame).

The associated query regions form an implicit rep-
resentation of the 3D structure, and are sufficient for
matching when different visual aspects or parts of the

object are seen in different frames of the shot. As shown
in Figs. 21 and 24, associated frames naturally span the
object’s visual aspects contained within the shot.

Examples of object-level matching throughout a
database of 5,641 keyframes of the entire movie
‘Groundhog Day’ is shown in Figs. 21, 24 and 25. In
all cases false positives were also retrieved. Retrieval
performance for two of the examples is discussed in
more detail in the following section.
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Figure 19. Object-level grouping algorithm. Associate indepen-
dently moving objects within a shot using rigid motion consistency.

7.1. Retrieval Performance

The van query: Ground truth was obtained for the
van query in Figure 21 by marking all keyframes and
shots where the van appears in the movie. In order to
be deemed present in a frame, the van was required to
be at least 100 pixels across (in frames that are 720 ×
576 pixels).

Precision-recall curves on the shot level for the
object-level matching example from Fig. 21 are shown
in Fig. 22. In the case of precision-recall curves (a) and
(b) where multiple images were used as query frames,
each query frame was used to place a separate query
and the results from all queries were then pooled to-

gether. Retrieved shots were ranked as described in
Section 4.2, Eq. (1).

Note that the user outlined query frame (curve (c) in
Fig. 22) recalls only 27% of all the ground truth shots
containing the van. This is because the query frame
contains only the side of the van (see Fig. 21(a) (top))
and therefore it is possible to retrieve only shots where
the side of the van is visible. When the object is rep-
resented by a set of keyframes naturally spanning its
visual aspects (curve (b) in Fig. 22) the recall jumps
to 73%. This is because shots containing the front and
back of the van are also retrieved. Representing the ob-
ject by all the frames in the shot (curve (a) in Fig. 22)
brings the recall to 97%. The slight improvement in
precision of curve (a) is mainly due to score accumu-
lation as described in Section 4.2.

False positives responsible for lower precision at
higher recall levels (e.g. 35% precision for 60% recall
in Fig. 22(a)) are mainly due to (i) the spatial consis-
tency check failing e.g. on the sparse textured area on
the side of the van (where there is a large spatial sepa-
ration between the individual features) (ii) motion blur,
which affects the affine covariant region matching, and
(iii) generally low number of good matches on the
van.

The precision could be improved further by the
removal of false positives based on a more thor-
ough (and more expensive) verification, e.g. by
the image exploration algorithm of Ferrari et al.
(2004b).

Figure 20. Two examples of long range repair on (a) shot from Fig. 3 where a van is occluded (by a post) which causes the tracking and
motion segmentation to fail, and (b) shot from Fig. 18 where a person walks behind a plant. First row: sample frames from the two sequences.
Second row: wide-baseline matches on regions of the two frames. The green lines show links between the matched regions. Third row: region
tracks on the two objects that have been matched in the shot.
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Figure 21. Object-level video matching I. (a) Top row: the query frame with the query region (side of the van) selected by the user. (a) Second
row: 5 (out of 6) associated frames and outlined query regions. The query frame acts as a portal to the frames (and query regions) associated
with the object by the motion-based grouping. (b) Top row: example frames retrieved from the entire movie when only the original user selected
frame with user outlined region is used. (b) Rows 2–4: Example frames retrieved from the entire movie by the object-level query (second row
of (a)). Note that views of the van from the back and front are retrieved. This is not possible with wide-baseline matching methods alone using
only the side of the van visible in the query image. In this figure, only true positives are shown. Precision recall curves for this query are shown
in Fig. 22.

Examples of frames from bottom ranked and missed
shots are shown in Fig. 23. They represent very chal-
lenging examples for the current object matching
method.
The Dining room query : Here the match is on the back-
ground location, rather than on the foreground moving
object. Ground truth for the query of Fig. 25 was ob-
tained by marking all shots in the movie which are
taken in the hotel dining room. The precision-recall
curve is shown in Fig. 26. The improved recall of

(a) and (b) over (c) is due to the object-level query
retrieving shots from the same location but with dif-
ferent background than the original query frame. The
improved performance of (a) over (b) is due to bet-
ter sampling of background in the beginning of the
shot with large camera motion where keyframes (ev-
ery 25th frame) miss some parts of the background.
A better keyframe selection technique (Osian and Van
Gool, 2004) based on motion within the shot could be
used here.
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Figure 22. Object-level video matching I. Precision recall curve
for the van query at the shot level. Examples of retrieved frames
are shown in Fig. 21. (a) All frames in the query shot are used as
query frames. (b) 6 frames in the shot are used as query frames. (c)
A single frame (the original frame with user outlined region) is used
as a query frame. Note the limited recall of (c). This is because only
shots where the side of the van is visible are retrieved.

Note that some shots from the dining room are still
not retrieved. This is because in the missed shots the
camera looks at the other side of the room which is
not covered in the query shot. To retrieve these shots
a higher level reasoning might be required e.g. the
temporal editing structure of shots can be used to group

shots into scenes (Goedeme et al., 2005; Kender and
Yeo, 1998). An alternative method of matching only
background locations using wide baseline matching is
given in Schaffalitzky and Zisserman (2003). In our
work the user has a choice of whether to search on
foreground or background object(s).

8. Discussion and Extensions

We have demonstrated that information available in
video shots can be harnessed to enable object-level
grouping and retrieval. This is different in spirit to
query enhancement techniques in text retrieval (Baeza-
Yates and Ribeiro-Neto, 1999), where the high ranked
documents are used to enhance the original query. In
our case we do not use the retrieved shots or frames
to enhance the query but rather we make use of the
temporal continuity of the shot. The enhanced query
is then performed by making a sequence of associated
queries and collating the results.

There are several other research issues: First, in the
matching stage of the current method we plan to rep-
resent the shot by entire region tracks (‘video tubes’)
rather than the set of separate query frames/keyframes
currently used. Using entire ‘video tubes’ could help to
determine the required density of association: Imagine
a close-up shot of a speaking person. Deforming region

Figure 23. Example frames from low ranked (a–c) and missed (d) shots for the van query (Fig. 21). The altered appearance due to snow in
(a, b), and partial occlusion (c, d) affects the affine covariant region extraction and matching methods.
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Figure 24. Object-level video matching II. (a) Top row: the query frame with query region selected by the user. (a) Bottom row: The associated
keyframes. Note that in the associated keyframes the person is visible from the front and also changes scale. See Fig. 18 for the corresponding
object segmentation. (b) Example frames retrieved from the entire movie by the object-level query.

Figure 25. Object-level video matching III. The goal is to retrieve shots in the same location (the hotel dining room). (a) Top row: the query
frame with the query region selected by the user. Bottom row: 5 (out of 25) associated keyframes. The object here is the extended background
from the object-level grouping example of Fig. 18. The query area in each associated frame is the union of the motion grouped background
regions. (b) Top row: Example frames from shots retrieved just by the user selected query frame. Bottom row: Example frames from shots
retrieved by the object-level query. Query by the extended background retrieves shots which are from the same location but do not share
background with the user selected query frame. The precision-recall curve for this query is shown in Fig. 26.
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Figure 26. Object-level video matching III. Precision-recall curve
for the dining room query. Examples of retrieved frames are shown
in Fig. 25. (a) Every fifth frame in the query shot is used as a query
frame (127 frames in total). (b) 25 keyframes used as query frames.
(c) A single frame (the original frame with the user outlined region)
is used as a query frame.

tracks on the person’s face would be represented by
several different appearance descriptors correspond-
ing to different expressions, e.g. open and closed eyes,
whereas region tracks on the (rigid) background would
have just one appearance descriptor. ‘Video tubes’
should provide a complete but at the same time concise
representation of video for recognition.

Second, a limitation of the current method is that
multiple aspects/deformations have to be present in
the query shot. The next step is to use available region
tracks within the (correctly) retrieved shots to perform
the associations. For example, if the user supplies a
query still image of a frontal view of an actor’s face.
Querying by this image alone will only return close to-
frontal views of the face with similar facial expressions.
However, region tracks in the retrieved shots can be
used to associate other views of the face and different
expressions, which can then be used in a second set of
queries. This process can be iterated. This would have
to be done with some care in order to avoid a ‘chain
reaction’ by matching on retrieved false positives.
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