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Abstract. The chapter describes visual classification by a hierarchy of
semantic fragments. In fragment-based classification, objects within a
class are represented by common sub-structures selected during train-
ing. The chapter describes two extensions to the basic fragment-based
scheme. The first extension is the extraction and use of feature hier-
archies. We describe a method that automatically constructs complete
feature hierarchies from image examples, and show that features con-
structed hierarchically are significantly more informative and better for
classification compared with similar non-hierarchical features. The sec-
ond extension is the use of so-called semantic fragments to represent
object parts. The goal of a semantic fragment is to represent the differ-
ent possible appearances of a given object part. The visual appearance
of such object parts can differ substantially, and therefore traditional
image similarity-based methods are inappropriate for the task. We show
how the method can automatically learn the part structure of a new do-
main, identify the main parts, and how their appearance changes across
objects in the class. We discuss the implications of these extensions to
object classification and recognition.

Introduction

Object classification involves two main stages: feature extraction, and then us-
ing these features to classify a novel image. Many different features have been
proposed in the past, ranging from simple local ones such as Wavelets or Gabor
filters [23], to complex features such as geons [3],[13] which are view-invariant
3-D primitive shapes. Most of the features used in the past, from the simple to
the more complex, were usually generic in the sense that the same limited set of
features was used for all objects and object classes.

In several recent classification schemes, objects are represented as a combi-
nation of informative image parts [1],[6],[9],[21]. This approach was shown to
be effective for various classification problems. Unlike previous schemes, these
features are class-specific: different features are extracted automatically for dif-
ferent classification tasks from the training data. The present work extends this
approach in two directions: the use of hierarchical features, and the representa-
tion of object parts by equivalence classes of features, called ‘semantic features’.
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The idea of representing objects in a class by their informative parts can be
extended recursively: the informative object parts can themselves be represented
as an arrangement of informative sub-parts, the sub-parts can then be split into
smaller parts and so on. This general scheme raises a number of questions, related
to the creation of such a hierarchy: a method for selecting the best parts and sub-
parts, a stopping rule for decomposing the features, and the optimal selection
of parameters such as the size of search region for each part. There are also
questions related to the use of the hierarchy: how to perform classification using
this structure, and how to best detect sub-parts of the object using their context.
We discuss these questions in Part 2 of the chapter.

Each object part and sub-part (say, an eye) can be represented not just by a
single representative image fragment, but by a collection of semantically equiv-
alent fragments, representing different appearances of the part, such as an open
eye, closed eye, or eyes of different shapes. Questions related to this issue include:
how to extract such sets of semantically equivalent fragments, and how to use
them for classification. These issues are discussed in Part 3.

The two components discussed above, hierarchical representation and seman-
tic features, can be used independently, but can also be used naturally in a
combined manner. Taken together, they give rise to the following feature or-
ganization: an object or a class are represented by a hierarchy of parts and
sub-parts. This hierarchy can be represented as a tree, with semantic fragments
at each node, as as illustrated schematically in Figure 1. In the remaining of this
chapter we will discuss how this hierarchy of semantic fragments is constructed
and used. The chapter is divided into three parts. The first briefly summarizes
the extraction of informative features, the second describes the construction of

Fig. 1. Representing a class by a hierarchy of semantic fragments. A face is represented
as an arrangement of parts such as nose, eyes, ear and mouth. Each of these parts is
represented as a semantic equivalence set. The parts are represented in turn in terms
of their sub-parts. For simplicity, only the sub-parts of the eye part are shown.
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feature hierarchies, and the third describes the extraction and use of semantically
equivalent parts. We conclude with a discussion of using the feature hierarchies
and semantic equivalence sets together.

1 Informative Classification Fragments

In this section we describe the algorithm for extracting informative images frag-
ments and learning their associated parameters, such as the detection thresh-
old for each fragment. This family of features proved to be highly effective for
classification. An empirical comparisons with other classification features can be
found in [22].

Fragments are selected from the training data using the the procedure in
[21]. The process proceeds by identifying fragments that deliver the maximal
amount of information about the class. A large number (tens of thousands) of
candidate fragments are extracted from the training images at multiple locations
and sizes. For each fragment, the optimal detection threshold is computed as
explained below. This detection threshold indicates the minimal visual similarity
that a fragment must have within an image, to be detected. Normalized cross-
correlation was used in the past as a similarity measure, but other similarity
measures, such as SIFT [12], can also be used. A binary variable can then be
associated with each fragment depending on its presence in the image I:

fi(I, θi) =
{

1, if S(I, fi) > θi

0, otherwise
(1)

S(I, fi) is the maximal visual similarity between fragment fi and image I, θi is
the threshold associated with fi. The class variable variable C(I) is defined as 1
if the image belongs to the class being detected, and 0 otherwise. We can then
derive the mutual information between the two binary variables:

MI(fi(θi); C) =
∑
fi, C

p(fi, C) log
p(fi, C)

p(fi)p(C)
(2)

The mutual information in this expression depends on the detection threshold θi.
If the threshold is too low, the information delivered by the fragment about the
class will be low, because the fragment will be detected with high frequency in
both the class and non-class images. A high threshold will also yield low mutual
information, since the fragment will be seldom detected in both the class and
non-class images. At some intermediate value of threshold, the mutual informa-
tion reaches a maximum. The value θi of threshold yielding maximal information
for the fragment fi is therefore associated with the fragment. The most infor-
mative fragments are selected successively, using the following max-min proce-
dure. After finding the first fragment with the highest mutual information score,
the search identified the next fragment that delivered the maximal amount of
additional information. At iteration i the fragment fi is selected to increase the
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mutual information of the fragment set by maximizing the minimal addition in
mutual information with respect to each of the first i-1 fragments.

fi = arg max
fk∈Ki

min
fj∈Si

(MI(fk, fj ; C) − MI(fj; C)) (3)

Ki is the set of candidate fragments, Si is the set of already selected fragments
at iteration i, fi is the new fragment to be selected at iteration i. The update
rule for the fragment sets is:

Ki+1 = Ki\{fi}
Si+1 = Si ∪ {fi}

(4)

The initial K0 is the set of all candidate fragments; S0 is the set containing a
single fragment with the highest mutual information with the class. The itera-
tions end when adding new fragment to the set S makes only a small increment
to the mutual information, less than some small threshold ε. Once the set of
informative fragments is determined, the optimal size of the region of interest
(ROI) for each selected fragment is computed. The ROI defines the area in novel
images where the fragment is searched for. For each fragment f , the amount of
information it delivers about the class depends on the size of its ROI. When
the ROI is too small, the information is low, because in many class images the
fragment will fall outside the search region, and therefore will not be detected. If
the size of the ROI is too large, the number of false detections will increase. At
some intermediate size of the ROI, the mutual information reaches a maximum
(Figure 6). The algorithm therefore evaluates different ROI sizes from zero to
half the size of the full search window, and identifies the size that brings the
MI to its maximum. The full search window is a fixed region within the input
image, where the algorithm looks for the entire object. This window was set in
the experiments described in this chapter to size 200x200 pixels. To detect an
object within a larger image, the search window can either scan the image, or
move only to selected salient locations [10]. The locations of the ROIs of the
informative fragments are defined relative to the center of the search window.

2 Feature Hierarchies for Object Classification

In this part we describe a method for extracting complete feature hierarchies
from training examples. The method includes the construction of the feature hi-
erarchies, and learning the required parameters, such as the combination weight
for each part. We briefly discuss a method of using the feature hierarchy for
classification. Experimental comparisons with other classification features illus-
trate the advantages offered by the use of feature hierarchies compared with
non-hierarchical features.

2.1 Construction of Hierarchical Features

The search for useful sub-fragments is similar to the search of useful top-level
classification features. The top-level features are selected based on their useful-
ness for detected class examples. In an analogous manner, useful sub-fragments
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should appear with high frequency in regions containing the ‘parent’ feature, but
infrequently elsewhere. As for the top-level fragments, a useful selection criterion
is the mutual information between the sub-fragment and its parent fragment. To
evaluate this information, we need for each ‘parent’ fragment f a set of positive
examples, namely, image regions containing the fragment f , and a set of negative
examples, where the detection of f should be avoided. The positive examples for
the fragment f are provided by identifying all the locations in the class images
where the fragment f was detected. This set is then increased, since the goal of
the fragment decomposition is to successfully detect additional examples, which
were not captured by the fragment f alone. The positive set is increased by
lowering the detection threshold of the fragment f , yielding examples where f
is either detected or almost detected. The reduced threshold was determined to
increase the positive set by 20%. This amount of increase was chosen to add a
significant number of almost-detected examples, and avoid examples that are dis-
similar to f . A set of negative examples was similarly derived from the non-class
images. Negative examples are selected from non-class images that give “false
alarms”, and therefore supply negative instances which lie close to the boundary
between class and non-class instances. The reduced detection threshold used for
the positive examples is applied here as well, to obtain non-class examples where
the feature was incorrectly detected, or almost detected.

In terms of the positions of the fragment examples within the training im-
ages, examples come from regions in class images where the parent feature was
detected or almost detected within its ROI, and negative examples come from
regions in the non-class images where the feature was detected. In this case, the
feature position in the training images was determined by the computation of
optimal positions of all the hierarchy nodes together (Part 2.2) so that at most
one example was taken from each training image.

Once the positive and negative examples of the feature f are established, sub-
fragments are selected by exactly the same information maximization procedure
used at the first level. The candidate sub-fragments in this case are the sub-
images with their center point within the parent fragment, and having an area
up to 1/4 of the parent’s area. Sub-features are added to the tree, until the addi-
tional information falls below a threshold (0.08). Experimentally, fragments with
smaller contributions did not improve significantly the detection of the parent
feature. If the decomposition of f into simpler features increased the information
delivered by the entire hierarchy, the same decomposition was also applied to
f ’s sub-features. Each of the sub-fragments is considered in turn a parent frag-
ment, positive and negative examples are found and the set of its informative
sub-fragments is selected. Otherwise, the decomposition is terminated, with f
considered an atomic fragment. Atomic fragments were usually simple, typically
containing edges, corners or lines. Hierarchy examples are shown in Figure 4.
Examples of atomic fragments are shown in Figure 5.

During the classification stage, only the atomic features are directly correlated
with the input image, and their responses are combined using weights learned
at the training stage (Part 2.2).
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2.2 Optimizing the Parameters of the Hierarchy

For each hierarchy node (fragment or sub-fragment), a region of positional tol-
erance is extracted, which is the feature’s region of interest (ROI) (as in Part
1). The locations of the ROIs of sub-fragments in every image are determined
relative to the detected position of their parent fragment. The dimensions of the
ROI for all the sub-fragments are adjusted during learning to maximize the in-
formation delivered by the feature hierarchy. During the hierarchy construction,
the initial ROI size of a sub-fragment is set to the size of its parent. After the
hierarchy is completed, additional optimization of the ROI sizes is performed
in a top-down manner: first, the ROI of the uppermost node is optimized to
maximize the mutual information between the class variable and hierarchy’s de-
tection variable, while all other ROIs are fixed. A similar process is then applied
to its sub-fragments, and the optimization proceeds down the hierarchy, where
at each stage the ROIs of the higher levels are kept fixed.

An additional set of hierarchy parameters used for classification is the com-
bination weights of the sub-features responses. The optimization of the combi-
nation weights is described below together with the use of these weights in the
classification process.

The classification performance of the hierarchy was evaluated using a network
model similar to HMAX [16], with layers performing maximization and weighted
sum operations. For a given feature, the maximal response of each sub-feature
is taken over the sub-feature’s ROI, and then the responses of all sub-features
are combined linearly:

r = w0 +
n∑

i=1

wisi (5)

where r is the combined response, si the maximal response of sub-feature i within
its ROI, wi are the weights of the combination, and n the number of sub-features.
For the atomic sub-features, the response was equal to the maximal normalized
cross-correlation between the sub-feature and the image within the ROI. The
final response sp of the parent feature was obtained by a sigmoid function,

sp =
2

1 + e−r
− 1 (6)

which normalizes sp to the range [-1,1].
The response of the topmost node of the hierarchy, which determines the pres-

ence or absence of the entire object, is then compared to a detection threshold.
The amount of information about the class carried by the hierarchy is defined as
the mutual information between the class variable C and the hierarchy detection
variable H , which is equal to 1 when the response of the topmost node is higher
than threshold and 0 otherwise.

The combination weights are adjusted during training using iterative opti-
mization that alternates between optimizing positions and weights, as described
below. First, the weights are initialized randomly in the range (0,1). The scheme
then alternates between the following two steps.
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Positions Step: fix the weights, optimize feature positions. For every position
of the parent fragment within its ROI the positions of sub-fragments (within
their relative ROIs) that maximize the responses of the sub-fragments are found.
Then, the position of the parent fragment that maximizes its response sp is cho-
sen. This routine can be implemented efficiently using Dynamic Programming.

Weights Step: fix feature positions, optimize weights. The combination weights
of the features are optimized using the standard Back-Propagation algorithm
with batch training protocol. The algorithm ends when no feature changes its
position during the Positions Step.

This weight selection procedure can be shown to converge to a local minimum
of classification error. Experimentally, we found that the algorithm converged in
less than 10 iterations, average just 3 iterations. The obtained optimum was
found to be stable, since starting from multiple random initial weights the algo-
rithm terminated with similar performance.

2.3 Experiments

Empirical testing was used to test two main aspects of the hierarchical scheme.
First, we compared the classification performance of the hierarchical features with
similar features used in a holistic, non-hierarchical manner. Second, we compared
the use of adaptive against a uniform hierarchy. The adaptive hierarchy adjusted
the center positions and individual ROI for all the features as described above.
The uniform hierarchy used instead a hierarchy where both ROI sizes and the
sub-fragments were chosen in a fixed manner on a uniform grid.

In comparing the adaptive with a fixed grid hierarchy, the fixed ROI size was
set at each hierarchy level to the average size of the units in the adaptive scheme,
which simulations showed to be a good average size. Comparisons were averaged
for all units with more than a single hierarchical level. To compare a fixed-grid
hierarchy with the adaptable scheme above, each parent feature was divided
into k sub-features, where k was set to the average number of sub-features in
the adaptive hierarchy (6 for faces, airplanes, 9 for cows). The horizontal and
vertical dimensions of the sub-features were similarly set at each level to the
average dimensions in the adaptive hierarchy, shown by simulations to be a
good average size.

Training images for features extraction contained 200 faces, 95 cows, 320 air-
planes. The images were grey-level, 120-210 pixels in each dimension. Non-class
images included a random collection of landscape, fruits, toys, etc., with a sim-
ilar grey-level range. Feature detection experiments were performed on a new
set of 1770 images (800 faces, 220 cows, 750 airplanes), repeated by randomly
partitioning the full set into training and test images.

In computing the ROC curves [8] of a feature, the hits and false alarms were
defined by using the feature as a single feature classifier. That is, test images
were classified based on the feature in question; hits corresponded to class image
identified correctly, false alarms to non-class images identified incorrectly. By
varying the classification threshold, the complete ROC curves were obtained.
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2.4 Summary of the Results

We first compared the non-hierarchical top level fragments with the same frag-
ments detected in a hierarchical manner, in terms of information supplied and
classification performance. The information supplied by the first-level hierarchi-
cal features increased in the test set for all fragments (n=150, 3 classes), and was
significantly higher compared with the corresponding holistic features (average
increase 46.6%, s.d. 30.5%, p < 10−9 one-tailed paired t-test). The holistic and
hierarchical features were also compared using their complete ROC curves, show-
ing a significant advantage of the hierarchical detection over the entire range,
(0-90% false alarm, n=150, p < 0.000001, Figure 3b). These comparisons clearly
show that hierarchical features are more informative and produce better classi-
fication.

Further decomposition into a multi-level hierarchy provided additional sig-
nificant gain in information (n=97 features, average increase 10.0%, s.d. 10.7%
p < 10−9 one-tailed paired t-test). The ROC detection curves also improved
significantly (example in Figure 3a).

The full hierarchy also proved considerably more robust than holistic features.
This is of interest particularly when the feature hierarchies are considered as
a possible biological model for object processing. A biological system cannot
be expected to converge to the exact optimal parameters, but we found that
introducing size and position errors (13%, 25% of feature size) reduced the MI
on average by 10.8% for the full hierarchy, compared with 35.3% for holistic
features (n =41, p < 10−10, paired t-test).

Using the optimal ROI sizes adds significantly to the MI compared with a fixed
ROI size, that was optimized for each level separately (average 8.1% s.d. 13.7%
p < 0.0055), and different subunits had different optimal ROI size. Adapting the
relative positions of the subunits is also significant: if the subunits’ centers were
arranged on a uniform grid, rather than selecting their optimal locations during
training, the MI decreases (N=153, average 43% s.d. = 35% p < 10−10 paired
t-test), and the detection performance of the units decreases (Figure 3a).

These results can be used to compare the use of hierarchical and holistic
features in both computer vision and biological modelling. Most computational
models of recognition and classification in the past did not use hierarchical fea-
tures. This is in contrast to the primate visual system where objects are analyzed
by a hierarchy of features. Our analysis and testing shows that hierarchical fea-
tures are significantly more informative and better for classification than holistic
features. It also shows that this improvement requires the learning of positions
and sizes; without this the hierarchical scheme is not significantly better than a
single layer of top-level features.

Some previous biological models ([11],[16]) used a hierarchy of features, to
simulate the cortical structure. However, these models used fixed uniform archi-
tecture in contrast with the adaptive scheme used here, and which proved valu-
able to the construction of a successful hierarchy. The method of selecting the
features, based on the information they contribute, also proved to produce better
results than either fixed features [16], or features extracted by back-propagation
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Fig. 2. Informative fragments (examples on the left) and their optimal sub-fragments
(right), selected automatically from three object classes by maximizing mutual infor-
mation

neural network model [11]. See [5] for more details on experimental comparisons
with other types of features.

3 Semantically Equivalent Features

In this part we consider the problem of detecting semantically equivalent parts
of objects belonging to the same class. By ‘semantic’ equivalence we mean parts
of the same type in similar objects, often having the same part name, such as
a nose in a face, an animal’s tail, a car’s headlight and the like. The aim is to
identify such parts, although their visual appearance can be highly dissimilar.
The input to the algorithm is a set of images belonging to the same object class,
together with an image patch (called below a “root fragment”), depicting a part
of an object. The output is a set of image patches from the input images, con-
taining object parts which are semantically equivalent to the one depicted in
the root fragment. Examples of semantically equivalent fragments are shown in
Figure 7. In each row, the leftmost image contains the root fragment, the other
images are semantically equivalent fragments discovered by the algorithm. The
identification of equivalent object parts has two main goals. First, the correct
detection and identification of object parts is important on its own right, and
can be useful for various applications that depend on identifying parts, such as
recognizing facial expressions, visual aid for speech recognition, visual inspection,
surveillance and so on. Second, the correct identification of semantically equiva-
lent object parts improves the performance of object recognition algorithms. In
several recent object recognition schemes [1],[6],[9],[21] image fragments depict-
ing object components are used as classification features. Our results show that
the performance of such schemes can be improved when an object component
is represented not by a single fragment, but by a set of semantically equivalent
fragments.

The general idea behind our approach is to use common context to identify
equivalent parts. Given an image fragment F depicting a part of an object, we
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(a) (b)

Fig. 3. Comparing recognition by hierarchical and holistic features. (a) ROC of a single
fragment comparing detection by a holistic feature (third from top), optimal decompo-
sition into sub-features (second from top), full hierarchical decomposition (top curve),
and decomposition on a fixed grid (lowest curve). y-axis: percent correct identification
of class images by the fragment (hits), x-axis: percent incorrect identification of non-
class images (false alarms). (b) Average gain in ROC, vertical axis: increase in hit rate,
horizontal: false alarm rate (n = 150 fragments). See text for further details.

Fig. 4. Examples of full feature hierarchies, (bottom nodes are atomic features)

E B T/C X

Fig. 5. Atomic features, derived from three classes. Most are tuned to oriented edges
(E), bars (B), terminations/corners (T/C); some are more complex (X).
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Fig. 6. Increase in mutual information as a function of search region size, for one sub-
feature (inset). Color code: increase in mutual information, horizontal axes: ROI size,
(size of parent feature is taken as ‘1’). Optimal x-size: 0.27, y-size: 0.43.

Fig. 7. Examples of semantically equivalent fragments, extracted by the algorithm.
The leftmost image in each set is the input root fragment, the others are equivalent
parts identified by the algorithm (horse torso with forelegs, car wheels). The algorithm
identifies semantically similar parts that can have markedly different appearance in the
image.
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look for a context C, defined as a collection of image fragments that co-occur
with F consistently and in a stable geometric configuration. When such context is
found, we look for all images where the context fragments are detected, and infer
from their positions the location of fragments that are likely to be semantically
equivalent to F (Figure 8).

3.1 Description of the Algorithm

In this section, we describe the algorithm for the detection of semantically equiv-
alent image fragments. The main stages of the algorithm are the identification of
common context (3.1) and the use of context to extract equivalent parts (3.1).
We begin with describing visual similarity matching used as a pre-processing
step.

Visual Similarity Matching. The input to the algorithm consists of a set
of images of different objects within a class, Ik, and a single fixed fragment F
(the “root fragment”). We first identify in each of the input images Ik the image
patch with the maximal similarity to F . We used the value of normalized cross–
correlation as a similarity measure, but other image-based similarity measure can
be used as well. To improve the performance of visual similarity-based matching,
the images are filtered with Difference of Gaussians (DoG) filter [12] before
computing the NCC. This filter emphasizes the gradients in images and removes
small noise. The combination of DoG filtering with computation of NCC is called
below DNCC.

Image patches at all locations in Ik are examined, and the patch P (Ik, F )
with highest DNCC score is selected. If the cross-correlation between P (Ik, F )
and F exceeds a pre-defined threshold, then F is detected in Ik, and P (Ik, F )
is called the patch corresponding to F in image Ik. The set of all the images
Ik where corresponding patches P (Ik, F ) are detected is denoted by D(F ). The
detection threshold for candidate context patches was chosen automatically as
explained in Part 1.

Context Retrieval. After determining the set D(F ), containing the images
where F was detected , the next goal is to identify context fragments that consis-
tently co-occur with F and its corresponding patches P (Ik, F ). Reliable context
fragments should meet two criteria: the context fragment f and root fragment F
should have high probability of co-occurrence, and their spatial relations should
be stable. We next describe the selection based on these criteria.

The search for good context fragment starts by pairing the root F with patches
fi in each image in D(F ) at multiple sizes and positions. These patches are the
candidate context patches for F . In practice, we limited the search to patch sizes
ranging from 50% of F size up to 150% in each dimension, with scaling step of
1.5. For each patch size, we examine patches in positions placed on a regular grid
with step equal to 1/4 of the size of a patch. The exact position and size of a
context patch is eventually optimized as described later in this section. For every
candidate patch f , we find the set D(f) of images containing patches visually
similar to f , as described in Part 3.1.
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The first context condition above was high co-occurrence, that is, a good con-
text fragments should satisfy p(F |f) > p(F ). We also want to focus on context
fragments that appear together with F at least some minimal number of times,
and therefore require:

P (f |F ) > θp p(F |f) > p(F ) (7)

The value of θp was computed automatically by sampling a set of candidate
patches from D(f), computing their probabilities of co-occurrence with F , and
setting the threshold to average co-occurrence probability plus one standard
deviation.

Second, F and f should appear in a stable spatial configuration. If the vari-
ations in scale and orientation between the images are assumed to be small,
then the relative location of F and f when they are detected together should be
similar. We therefore test the variance of coordinate differences:

V ar(Fx − fx) < θV arX V ar(Fy − fy) < θV arY (8)

Here Fx and fx are vectors of x-coordinates of the centers of image patches
corresponding to F and f , respectively, in images from D(F ) ∩ D(f) , similarly
for Fy and fy. The thresholds θV arX and θV arY determine the flexibility of
the geometric model of the object. These thresholds are also set automatically
by computing the values of V ar(Fx − fx) and V ar(Fy − fy) for the sampled
fragments, for which P (f |F ) > θp and setting the thresholds to the average of
these values plus one standard deviation.

To identify the best context fragments, we first remove from the set of can-
didates all fragments that do not meet requirements (7) and (8). We next se-
lect from the remaining set the fragments with the highest probability of co-
occurrence with F , and smallest variances of coordinate differences (indicating a
stable geometric relation with the root F ). To combine these criteria, we compute
a ‘consistency weight’, wf :

wf = P (f |F ) · 1
1 +

√
max(V ar(Fx − fx), V ar(Fy − fy))

(9)

The fragment with the highest wf is then selected as a context fragment. Since
the initial search for context fragments was limited to a fixed grid, we refine
the optimal position and size of the context fragment by searching locally for
the best fragment position and size that maximize wf . We add the optimized
fragment to the set of context fragments.

To avoid redundancy, and prefer conditionally independent context fragments
(see Part 3.1 for details), we remove from the set of remaining candidates all
the fragments that intersect the selected one by more than 25% of their area,
and repeat the process until no candidates are left. The final context set con-
tains fragments fi that have high co-occurrence with F , and with stable relative
positions. Typically this set contains between 6 and 12 fragments.
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Fig. 8. Left: a root fragment (mouth) together with context fragments (ear and eye).
Right: the same context detected in another image; a semantically equivalent part is
identified by the context.

Identifying Semantically Equivalent Parts. After the set of context frag-
ments has been selected, they are used to infer the positions of fragments that
are semantically equivalent to the root fragment F . Using a probabilistic model,
we identify for each image Ik, in which at least one context fragment has been
detected, the most likely position of Fk, a semantically equivalent fragment to F .

Assume for simplicity first that our context set consists of a single fragment C.
Our modelling assumption is that if C is detected in some image Ik at coordinates
(xc, yc); then the probability density of F being found at coordinates (x, y) is
2D Gaussian centered at (x̂c, ŷc), where x̂c and ŷc are the expected coordinates
of the root fragment’s center, predicted by context fragment C. The values of x̂c

and ŷc are computed as:

x̂c = xc + Δxc ŷc = yc + Δyc (10)

where Δxc and Δyc are the mean coordinate differences between the centers of
F and C, estimated during training.

P (F (x, y)|C) = P (F |C) · N(x − x̂c, y − ŷc; Σc) (11)

where Σc is the covariance matrix of coordinate differences between the centers
of fragments F and C, estimated during training.

If the context fragment C is not detected in the image Ik, we assume 2D
uniform probability density of F being found at coordinates (x, y):

P (F (x, y)|C̄) = P (F |C) · U(W, H) (12)

here the distribution bounds W and H are set to the width and height of the
image.

When the context consists of several fragments, we assume conditional inde-
pendence between them given the detection of F at position (x, y):

P (C1, ..., CN |F (x, y)) =
N∏

i=1

P (Ci|F (x, y)) (13)
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The modelling assumption of the conditional independence is motivated by the
observation that if geometric relation between fragments is stable, the positions
of the context fragments are determined by the position of the root fragment.
The fluctuations of the positions are due to noise, which is assumed to be inde-
pendent for the context fragments. Modelling of higher-order geometric relations
between fragments is also possible, but we found in testing that it did not make
a significant contribution. Applying Bayes rule to (13):

P (F (x, y)|C1, ..., CN ) =
P (F (x, y))

P (C1, ..., CN )

N∏
i=1

P (Ci|F (x, y)) (14)

We assume the prior probability P (F (x, y)) of finding F at the coordinates (x, y)
to be uniform, consequently not depending on x and y. It is also straightforward
to use non-uniform prior. The probability P (C1, ..., CN ) similarly does not de-
pend on (x, y). Therefore, we can write:

P (F (x, y)|C1, ..., CN ) ∝
N∏

i=1

P (Ci|F (x, y)) (15)

For the individual factors P (Ci|F (x, y)) we use equations (11) or (12), depending
on whether or not the context fragment Ci was detected in the image. Applying
the Bayes rule again, if Ci was detected in the image:

P (Ci|F (x, y)) =
P (Ci) · P (F (x, y)|Ci)

P (F (x, y))
=

P (Ci) · P (F |Ci) · N(x − x̂ci, y − ŷci; ΣCi)
P (F (x, y))

(16)

If Ci was not detected in the image:

P (Ci|F (x, y)) =
(1 − P (Ci)) · P (F (x, y)|C̄i)

P (F (x, y))
=

(1 − P (Ci)) · P (F |Ci) · U(W, H)

P (F (x, y))
(17)

Now we can find the values of coordinates x and y that maximize (15), i.e. find a
Maximum Likelihood solution for the coordinates of the center of the fragment
F :

(x, y) = argmax
∏

i

N(x − x̂ci, y − ŷci; Σci) (18)

where each 2D Gaussian can be explicitly written in terms of its parameters:
mean position and covariance matrix. Note that the product is taken over only
the detected context fragments. Taking the log of the product, differentiating
with respect to x and y, and setting the derivatives to zero, yields a system of
equation of the form:

xA − yB + C = 0 yD − xB + E = 0 (19)
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where
A =

∑
i

1
(1−ρ2

xyi)σ
2
xi

B =
∑
i

ρxyi

σxiσyi

C =
∑
i

(ρxyi(yci+Δyci)
σxiσyi

− xci+Δxci

(1−ρ2
xyi)σ

2
xi

)

D =
∑
i

1
(1−ρ2

xyi)σ
2
yi

E =
∑
i

(ρxyi(xci+Δxci)
σxiσyi

− yci+Δyci

(1−ρ2
xyi)σ

2
yi

)

(20)

σxi =
p

V ar(x − xci), σyi =
p

V ar(y − yci), ρxyi =
CoV ar((x − xci), (y − yci))

σxiσyi

Solving (19), we obtain:

y =
AE + BC

B2 − AD
x =

By − C

A
(21)

After obtaining the maximal likelihood solution for the coordinates (x, y), we
extract a fragment centered at (x, y) with size equal to the size of F , and add it
to the set of fragments semantically equivalent to F .

The set of semantically equivalent fragments constructed in this manner is
called the “equivalence set” of the part. We next sort it by measuring the strength
of the evidence used to select the fragments. This is obtained by setting the op-
timal values found for (x, y) into (15) and taking the log. The resulting quantity
is equal to the log-likelihood of the optimal solution plus a constant factor. This
value is then used to sort the equivalence set: the log-likelihood will be smaller
when only a few context fragments are detected in a particular image, or when
their evidence was inconsistent, i.e. they predict different locations of a semantic
fragment. The decision regarding the number of fragments from the equivalence
set to be used is application-dependent. For the object recognition experiments
we used the upper 30% of the sorted equivalence set. For the part detection
experiments we used the entire set and counted the number of errors.

The section above describes the main computation; its accuracy can be im-
proved by incorporating a number of additional steps. We used in particular
simple criteria to reject outliers, based on the fact that they will be detected at
highly variable image locations. We therefore computed the average value of co-
ordinate differences between the detected positions of F and f, and removed the
farthest outliers, until the variance of coordinate differences is below threshold.
The same procedure for outlier rejection is used when performing the Maximum
Likelihood estimation, since some of the context fragments can correspond to
false detections.

3.2 Experimental Results

Object Parts Detection. We selected first for testing 7 root fragments de-
picting different parts of the human face (shown in Table 1), and applied the
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algorithm described in Section 3.1 to detect semantically equivalent parts in new
face images independently for each root fragment. For comparison, we applied
the algorithm for detecting face parts based on their visual similarity to the root
fragment, as described in Section 3.1, using the same input image set and root
fragments. The visual similarity for testing was computed using two different
measures - DNCC and SIFT [12]. We applied both algorithms to a database
of 1000 face images (about 150x200 pixels in size, roughly the same scale and
orientation) and counted the number of images where all the parts were simul-
taneously detected correctly. The numbers of face images where all 7 fragments
were simultaneously detected correctly were 379 using semantic equivalence, 5
using DNCC visual similarity and 7 using SIFT visual similarity. As can be seen,
the method is successful in recovering a large number of correct part configu-
rations, that cannot be identified by their visual similarity. The percentage of
correctly identified matches, verified by humans, for semantic equivalence and
DNCC visual similarity was also computed for each individual part, yielding the
results in Table 1. Using the SIFT similarity measure produced similar results
to DNCC. See [4] for the details of the experiments on other object classes.

Object Recognition. The classifier we used for the experiments is an exten-
sion of a classifier described in [21]. Briefly, an object from a general class is
represented by a collection of object parts. A set of fragments (either visually
similar or semantically equivalent) selected automatically, is used to represent
each part. An object part is detected in the image if one of the fragments rep-
resenting it is detected within a detection window. Each fragment is assigned a
weight wi determined by the log-likelihood ratio:

wi = log
P (Fi|C = 1)
P (Fi|C = 0)

(22)

where C is a class variable (1 in images containing an object, 0 otherwise) and
Fi is a fragment variable (1 when the fragment was detected, 0 otherwise). Final
detection is based on a Bayesian decision,

∑
i

wiFi > θ (23)

where θ is decision threshold; by varying θ complete ROC curves are obtained
(Figure 9).

Face detection performance was compared using 7 face parts, shown in Table 1.
Each part was then represented by 20 representative image fragments selected to
optimize performance. The two schemes we compared used an identical classifier,
but differed in the selection of the image fragments representing each part. In
the ‘semantic’ scheme, each part was represented by a set of 20 semantically
equivalent fragments, selected by the algorithm described in Part 3.1. In the
‘visual similarity’ scheme, each part was represented by 20 representative image
fragments, selected from the set of visually similar fragments so as to optimize
performance.
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The selection of representative fragments for each face part was done in a
greedy fashion, using a mutual information criterion: the fragment delivering
the highest information between the classifier response and the true class was
selected first. Next, all the remaining fragments were examined, to determine the
fragment contributing the largest amount of additional information when added
to the first one. The process was repeated until 20 fragments have been selected.
An identical selection procedure was used to select the best representatives from
the set of visually similar fragments.

The image set was divided randomly into a training set (300 images) and test
set (700 images), and the computation was repeated 50 times. The results are
presented in Figure 9. Figure 9a shows the comparison of ROC curves of a single
root fragment (the mouth in Table 1): the ROC curve of the classifier based on
this fragment alone (line with circles), the ROC curve of the classifier based on
visually similar fragments (dashed line) and the ROC curve of the classifier based

(a) (b)

(c) (d)

Fig. 9. Comparing recognition by semantic equivalence and visual similarity. (a) ROC
curves for a single part (mouth); (b) classification by 7 parts; (c) average gain in ROC
between semantic and visual similarity for single parts; (d) average gain in ROC for
classification by 7 parts, using semantic vs. visual similarity. See text for further details.
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Table 1. Percentage of correctly identified fragments representing object parts in three
classes: faces, car rear views and toy cars. See text for further details.

Root fragment Semantic equivalence Visual similarity (DNCC)

94% 33%

92% 39%

92% 71%

89% 20%

90% 29%

88% 51%

84% 26%

65% 41%

55% 18%

64% 25%

71% 59%

42% 32%

on semantic equivalence class (solid line). Figure 9b shows the performance of
7 root fragments, compared to the performance of visually similar and semantic
fragments, where each of 7 parts was represented by a set of 20 fragments.
The graph also shows the performance based on the selection of 140 individual
fragments. Figure 9c shows the mean difference between the ROC curves of the
classifier based on visually similar fragments, and the classifier that uses semantic
equivalence classes for single parts. Figure 9d shows the mean difference between
the ROC curves of the classifier based on the group of 7 parts, represented by
semantically equivalent fragments, compared with the performance of 7 root
fragments used together.

Image similaritywas based in the scheme above on normalized cross-correlation.
Other, more robust image comparison measures can be used to compensate for
scale changes, affine transformations, and small local distortions (see [15] for a re-
view). Comparisons in [14] have shown that in the absence of scale changes and
affine transformations, the performance of normalized cross-correlation is compa-
rable to the performance of the SIFT descriptor [12] and better than the results
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obtained with other measures. Since we tested the algorithm under these condi-
tions, the use of DNCC was appropriate. We also compared the performance of
DNCC and SIFT, in the following way. For each face image, the fragment semanti-
cally equivalent to the root and the fragment most visually similar to the root were
determined by the algorithm (only the images where both fragments were found by
the algorithms were considered). The images where the computed semantic frag-
ment was correct (as determined by an observer), but the fragment selected by vi-
sual similarity was incorrect, were chosen for comparison. For each image, we then
normalized the three fragments (the root, the semantically equivalent and the most
visually similar) by an affine transform to a normal form [15], and compared the
SIFT distance between the root and semantic fragment, to the SIFT distance be-
tween the root and the visually similar fragment. In 74.6% of the cases, the SIFT
made the incorrect selection: the visually similar fragment was closer to the root
fragment than the semantic fragment. We conclude that the SIFT distance did not
overcome the incorrect choice of the visually similar fragment made by the DNCC.

3.3 Other Methods of Obtaining Equivalent Fragments

The scheme described above identifies sets of semantically equivalent fragments
in the training images. These semantically equivalent fragments depict corre-
sponding parts in different objects of the same class, such as different hairlines,
aircraft wings, car wheels and the like. They can also identify different views
of the same object part under different conditions, such as a smiling vs. neutral
mouth, or open vs. closed eye. Other methods have been developed in the past for
identifying the same object part under changes in viewing conditions, in particu-
lar, changes in viewing direction and illumination conditions. These equivalence
relations then play a crucial part in identifying specific objects under different
conditions. We briefly review in this section past methods for identifying such
equivalent fragments, and comment in the final discussion on their use in object
identification.

Motion-Based Fragment Equivalence. Motion can serve as a powerful cue
for identifying the same object part under different viewing conditions. If an
image region transforms in a smooth continuous manner over time, then its
image at different times are likely to represent the same part under different
conditions. In particular, when the object moves rigidly in space, such motion-
based equivalence can be used to identify different appearances of an object
part from different viewing directions. Motion-based equivalence has been used
to deal with the problem of position invariance [7] as well as more complex
transformations [17],[19],[20].

In [19], the problem of obtaining fragment sets representing the same object
part under different viewing angles was considered, and a method for identifying
informative equivalent parts was developed based on motion correspondence.
The method first extracts a large pool of so-called extended fragments, which
are sets of fragments representing the same object part under different viewing
conditions, in this case different viewing directions. The correspondence between
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fragments in different views is established using motion tracking [18]. From this
initial pool of motion-related fragments, informative extended fragments are ex-
tracted based on the mutual information supplied by the extended fragments
for view-invariant recognition. The selection of informative fragments is similar
to the algorithm described in Part 1, but applied to extended fragments rather
than to individual fragments. The selection process is initialized by selecting the
extended fragment with the highest mutual information. Extended fragments
are then added one by one by the max-min procedure described above, until
the gain in mutual information is small, or a pre-selected size of fragment bank
is reached. Fragment detection is done by computing the maximal similarity
between the fragment and underlying image patch over the entire image, and
comparing it to a pre-determined threshold. The optimal thresholds were com-
puted automatically, by a procedure similar to the one described in Part 1.

In the recognition stage, the system was given a single image of a novel ob-
ject from the learned class, for example, a face in frontal view. The task was
then to identify the same object from a side view, from a large set of both
frontal and side-view faces. The identification was based on the activation of
the identified extended fragments. The main underlying assumption is that af-
ter learning, a frontal face F and a corresponding side view F ′ share the same
extended fragment. If a particular fragment f is found in the frontal view, then
its corresponding counterpart f ′ should be present in the side view. In order to
identify the corresponding side view, the activation pattern for the query frontal
view was computed. The activation pattern is a binary vector containing 1 in
n-th position if the n-th fragment in the object representation was active in the
image, and 0 otherwise. Similarly, the activation patterns were computed for all
the images in the test set. The test image, whose activation pattern was the
closest to the one of the query image, was then selected as the corresponding
side view.

Equivalence Under Arbitrary Changes in Viewing Conditions. The
motion-based correspondence of object parts proved useful for dealing with view-
invariance under changes in viewing direction. However, motion-based correspon-
dence is not always applicable for identifying the same object part under different
conditions. For example, views of the same object under different illumination
conditions are usually not related by continuous motion. In [2], a different cri-
terion for obtaining fragment equivalence sets was therefore employed, without
relying on motion correspondence. Fragment equivalence was established instead
based on the consistency in parts appearance in different objects in which these
parts are present. If two fragments, F1 and F2 represent the same object part
under different viewing conditions (such as different illuminations, or also differ-
ent viewing directions), C1 and C2, then their detections should be consistent –
namely, if F1 is detected is an image of some object O under viewing condition
C1, then F2 should also be detected in an image of O under condition C2. In
contrast, two unrelated fragments will be in general significantly less consistent.
Therefore, this consistency criterion can be used for identifying equivalent object
fragments.
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Given a set of images I11. . .I1N of N objects taken under condition C1 and
a set of images I21. . .I2N taken under condition C2, the activation patterns A1
and A2 of fragments F1 and F2 respectively can be computed. Their consistency
can be derived, for example by the simple score:

S(F1, F2) =
NCC(A1, A2) + 1

2

This is just the correlation of the activation patterns, but re-normalized to lie
between 0 and 1. To make the scheme robust to noise and to within-object
redundancy, this consistency measure was augmented with a measure based on
geometric consistency, which used a simple proximity assumption: if two object
parts are located nearby, their matching parts also should lie close to each other.
This constraint was implemented using a hierarchical representation of proximity
relations. The scheme was shown to deal effectively with changes in illumination
and pose without relying on motion correspondence.

4 Summary and Discussion

In this chapter we have presented two extensions of the fragment-based object
recognition scheme. The basic scheme uses informative image fragments as clas-
sification features. Here we proposed a hierarchical decomposition of the features
into parts and sub-parts at multiple levels. The second extension was to use se-
mantic equivalence sets of features, depicting different appearances of the same
object part. We have shown that hierarchical features are more informative and
better for classification compared with the same features used non-hierarchically.
For semantic features, we have shown how the method can automatically learn
the part structure of a new domain and extract sets of semantically equivalent
fragments. Semantic features are an example of the more general concept of
extended features, which are sets of fragments representing the same or similar
object parts under different viewing conditions. Different methods were described
above for extracting extended fragments based on common context, motion, and
consistency across transformations. Extended features are used in the proposed
scheme as the basis for making broad generalizations in object recognition, at the
level of general classification as well as specific object identification. For example,
a particular object can be recognized across changes in pose, illumination, and
complex local shape changes, based on the representation of its components in
terms of extended features. The capacity of the recognition system to deal with
large variability in appearance at the objects level is inherited in this scheme
from learning the variability at the level of common informative components.

The two aspects described above, hierarchical representation and the use of
extended fragments, can be combined into a representation using a hierarchy
of sub-parts, were each sub-part is represented by extended fragments. This
representation can be extended in several directions. For example, in terms of
the classification algorithm using this representation, instead of the bottom-
up computation described above, we have also used a full Bayesian network
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which produced a significantly better interpretation of the constituent parts. A
second general direction is the extension of the hierarchy from a single class to
a multi-class representation. The issues here include, for example, the optimal
construction of a feature hierarchy for multiple classes simultaneously, extracting
semantically equivalent fragments across different classes, sharing features across
classes at multiple levels in the hierarchy, and using the hierarchy to make fine
distinctions between similar classes. Finally, given the hierarchical nature of
objects representation in the primate visual cortex, it will be of interest to use
the computational studies of feature hierarchies and extended features to model
aspects of the human visual system.
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