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Recognition by Linear Combinations of Models 
Shimon Ullman and Ronen Basri 

Abstract- Visual object recognition requires the matching of 
an image with a set of models stored in memory. In this paper, 
we propose an approach to recognition in which a 3-D object is 
represented by the linear combination of 2-D images of the object. 
IfJLk{M1,.” .Mk} is the set of pictures representing a given 
object and P is the 2-D image of an object to be recognized, then 
P is considered to be an instance of M  if P= C~=,aiMi for 
some constants (pi. We show that this approach handles correctly 
rigid 3-D transformations of objects with sharp as well as smooth 
boundaries and can also handle nonrigid transformations. The 
paper is divided into two parts. In the first part, we show that 
the variety of views depicting the same object under different 
transformations can often be expressed as the linear combinations 
of a small number of views. In the second part, we suggest how 
this linear combination property may be used in the recognition 
process. 

Index Terms-Alignment, linear combinations, object recogni- 
tion, recognition, 3-D object recognition, visual recognition. 

I. MODELING OBJECTS BY THE 
LINEAR COMBINATION OF IMAGES 

A. Recognition by Alignment 

V ISUAL OBJECT recognition requires the matching of 
an image with a set of models stored in memory. 

Let M  = {Ml, . , M,} be the set of stored models and 
P be the image to be recognized. In general, the viewed 
object, depicted by P, may differ from all the previously 
seen images of the same object. It may be, for instance, the 
image of a three-dimensional object seen from a novel viewing 
position. To compensate for these variations, we may allow the 
models (or the viewed object) to undergo certain compensating 
transformations during the matching stage. If 7 is the set 
of allowable transformations, the matching stage requires the 
selection of a model A4, E M  and a transformation T E 7, 
such that the viewed object P and the transformed model TM, 
will be as close as possible. The general scheme is called 
the alignment approach since an alignment transformation is 
applied to the model (or to the viewed object) prior to, or 
during, the matching stage. Such an approach is used in [S], 
[7], [8], [12], [16], [20], and [23]. Key problems that arise in 
any alignment scheme are how to represent the set of different 
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models M, what is the set of allowable transformations 7, 
and for a given model 44, E M, how to determine the 
transformation T E 7 to minimize the difference between 
P and TMi. For example, in the scheme proposed by Basri 
and Ullman [3], a model is represented by a set of 2-D 
contours, with associated depth and curvature values at each 
contour point. The set of allowed transformations includes 3-D 
rotation, translation, and scaling, followed by an orthographic 
projection. The transformation is determined as in [12] and 
[23] by identifying at least three corresponding features (points 
or lines) in the image and the object. 

In this paper, we suggest a different approach, in which each 
model is represented by the linear combination of 2-D images 
of the object. The new approach has several advantages. First, 
it handles all the rigid 3-D transformations, but it is not 
restricted to such transformations. Second, there is no need 
in this scheme to explicitly recover and represent the 3-D 
structure of objects. Third, the computations involved are often 
simpler than in previous schemes. 

The paper is divided into two parts. In the first (Section I), 
we show that the variety of views depicting the same object 
under different transformations can often be expressed as the 
linear combinations of a small number of views. In the second 
part (Section II), we suggest how this linear combination 
property may be used in the recognition process. 

B. Using Linear Combinations of Images to Model 
Objects and Their Transformations 

The modeling of objects using linear combinations of im- 
ages is based on the following observation. For many continu- 
ous transformations of interest in recognition, such as 3-D 
rotation, translation, and scaling, all the possible views of 
the transforming object can be expressed simply as the linear 
combination of other views of the same object. The coefficients 
of these linear combinations often follow in addition to certain 
functional restrictions. In the next two sections, we show that 
the set of possible images of an object undergoing rigid 3-D 
transformations and scaling is embedded in a linear space and 
spanned by a small number of 2-D images. 

The images we will consider are 2-D edge maps produced 
in the image by the (orthographic) projection of the bounding 
contours and other visible contours on 3-D objects. We will 
make use of the following definitions. Given an object and a 
viewing direction, the rim is the set of all the points on the 
object’s surface whose normal is perpendicular to the viewing 
direction [13]. This set is also called the contour generator 
[17]. A silhouette is an image generated by the orthographic 
projection of the rim. In the analysis below, we assume that 
every point along the silhouette is generated by a single rim 
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view of the object may  be given by two linear combinations: 
one for the z  coordinates and the other for the y  coordinates. 
In addition, certain functional restrictions may  hold among 
the different coefficients. 

(4 (b) 

Pi 0 

To introduce the scheme, we first apply it to the restricted 
case of rotation about the vertical axis and then examine more 
general transformations. 

I) 3-D Rotation Around the Vertical Axis: Let PI and P2 be 
two images of an object 0 rotating in depth around the vertical 

C’ 
axis (Y axis). P2 is obtainedAfrom PI following a rotation by 

. ? an angle LY (a # AX). Let P be a third image of the same 
. Q  . object obtained from PI by a rotation of an angle 8 around 

“’ P the vertical axis. The projections of a point p = (CC. y. z) E 0 
in the three images are given by 

v  
(cl 

v 
(d) 

Pl = (a. Yl) = (2, Y) E Pl 

P2 = (22TY2) = ( xcosa + zsin0.y) E P2 

fi = (i, 6) = (xcosH + zsinO.y) E P. 

Claim: Two scalars n and b exist, such that for every point 
PC0 

i = ax1 + bx2. 
before 

(e) 
af?er 

(f) 

Fig. 1. Changes in the rim during rotation: (a) Bird’s eye view of a  cube; 
(b) cube after rotation. In both (a) and (b) points p, Q lie on  the rim; (c) bird’s 
eye view of an  ellipsoid; (d) ellipsoid after rotation. The rim points p, Q in 
(c) are replaced by p’, Q’ in (d); (e) ellipsoid in a  frontal view; (f) rotated 
ellipsoid (outer), super imposed on  the appearance of the rim as a  planar space 
curve after rotation by the same amount  (inner) (from [3]). 

point. An edge map of an object usually contains the silhouette, 
which is generated by its rim. 

W e  will examined two cases below: the case of objects with 
sharp edges and the case of objects with smooth boundary 
contours. The difference between these two cases is illustrated 
in Fig. 1. For an object with sharp edges, such as the cube 
in Fig. l(a) and (b), the rim is stable on the object as long 
as the edge is visible. In contrast, a rim that is generated by 
smooth bounding surfaces, such as in the ellipsoid in Fig. l(c) 
and (d) is not fixed on the object but changes continuously 
with the viewpoint. 

In both cases, a small number of images M;, with known 
correspondence, will constitute the object’s model. Given a 
new image P, the problem is then to determine whether P 
belongs to the same object represented by the Mi’S. W e  will 
not directly address here the problem of segmentation, i.e., 
separating an object or a part of it from the image of a scene. 

C. Objects with Sharp Edges 

In the discussion below, we examine the case of objects with 
sharp edges undergoing different transformations followed by 
an orthographic projection. In each case, we show how the 
image of an object obtained by the transformation in question 
can be expressed as the linear combination of a small number 
of pictures. The coefficients of this combination may  be 
different for the x  and y coordinates, that is, the intermediate 

The coefficients a and b are the same for all the points, with 

a2+b2+2abcosa=1 

Proof: The scalars a and b are given explicitly by 

sin(a - 0) a=- 
sin (Y 

b+. 

Then 

sin(a - 0) ’ 
ax1 + bx2 = 

sin i2 
3.+e(xcosru+zsina) 

sin (Y 
=xcos19+zsinB=i. 

Therefore, an image of an object rotating around the vertical 
axis is always a linear combination of two model images. It is 
straightforward to verify that the coefficients a and b satisfy 
the above constraint. It is worth noting that the new view p is 
not restricted to be an intermediate view (that is, the rotation 
angle r9 may  be larger than CZ). Finally, it should be noted that 
we do not deal at this stage with occlusion; we assume here 
that the same set of points is visible in the different views. 
The issue of occlusion and self-occlusion will be discussed 
further below. 

2) Linear Transformations in 3-D Space: Let 0 be a set of 
object points. Let PI, P2, and P3 be three images of 0 obtained 
by applying 3 x  3 matrices R, S, and T  to 0, respectively. 
(In particular, R can be the identity matrix, and S, T  can be 
two rotations producing the second and third views.) Let P 
be a fourth image of the same object obtained by applying 
a different 3 x  3 matrix U to 0. Let ~1, si, tl, and ~1 be 
the first row vectors of R, S, T, and U, respectively, and let 
~2, ~2, t2 and u2 be the second row vectors of R, S, T, and 
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U, respectively. The positions of a point p E 0 in the four 
images are given by 

Pl =  (Xl, Yl) =  (TlP, 72P) 

P2 =  (52, Y2) =  (SlP, SPP) 

p3 = (X3,Y3) = (hPrk?P) 

I; =  (CB) =  (UlPr U2P). 

Claim: If both sets (~1, si, tr} and (~2, ~2, ta} are linearly 
independent, then there exist scalars al, aa, a3, and bl, b2, b3 
such that for every point p E 0, it holds that 

P = a121 + a222 + a323 

6 = hw + b2y2 + km. 

Proof: { ~1, si , ti} are linearly independent. Therefore, 
they span ‘R3, and there exist scalars al, a2, and as such that 

211 = a1r1 + a2s1 + ast1. 

Since 

2 = u1p 

it follows that 

2 = alrIp +  a2s1p +  a3t1p. 

Therefore 

P = a151 + a252 + asxa. 

In a similar way, we obtain that 

B = hm + hi2 + bw. 

Therefore, an image of an object undergoing a linear trans- 
formation in 3-D space is a linear combination of three model 
images. 

3) General Rotation in 3-D Space: Rotation is a nonlinear 
subgroup of the linear transformations. Therefore, an image 
of a rotating object is still a linear combination of three 
model images. However, not every point in this linear space 
represents a pure rotation of the object. Indeed, we can show 
that only points that satisfy the following three constraints 
represent images of a rotating object. 

Claim: The coefficients of an image of a rotating object 
must satisfy the three following constraints: 

l la1r1 +  a251 + ast1I( = 1 

llblr2 + b2~2 + b&II = 1 

(alrl + ~251 + astl)(blrz + bzs2 + b&) = 0 

Proof: U is a rotation matrix. Therefore 

lblll = 1 
IIu2ll = 1 
u1up = 0 

and the required terms are obtained directly by substituting 
ZG~ and u2 with the appropriate linear combinations. It also 
follows immediately that if the constraints are met, then 
the new view represents a possible rotation of the object, 

that is, the linear combination condition together with the 
constraints provide necessary and sufficient conditions for 
the novel view to be a possible projection of the same 3-D 
object. 

These functional constraints are second-degree polynomials 
in the coefficients and therefore span a nonlinear manifold 
within the linear subspace. In order to check whether a 
specific set of coefficients represents a rigid rotation, the values 
of the matrices R, S, and T  can be used. These can be 
retrieved by applying methods of “structure from motion” to 
the model views. Ullman [21] showed that in case of rigid 
transformations, four corresponding points in three views are 
sufficient for this purpose. An algorithm that can be used to 
recover the rotation matrices using mainly linear equations has 
been suggested by Huang and Lee [ll]. (The same method 
can be extended to deal with scale changes in addition to the 
rotation). 

It should be noted that in some cases, the explicit computa- 
tion of the rotation matrices will not be necessary. First, if the 
set of allowable object transformations includes the entire set 
of linear 3-D transformations (including nonrigid stretch and 
shear), then no additional test of the coefficients is required. 
Second, if the transformations are constrained to be rigid but 
the test of the coefficient is not performed, then the penalty 
may  be some “false positives” misidentifications. If the image 
of one object happens to be identical to the projection of 
a (nonrigid) linear transformation applied to another object, 
then the two will be confuseable. If the objects contain a 
sufficient number of points (five or more), the likelihood of 
such an ambiguity becomes negligible. Finally, it is worth 
noting that it is also possible to determine the coefficient of 
the constraint equations above without computing the rotation 
matrices, by using a number of additional views (see also 
Section I-C-5). 

Regarding the independence condition mentioned above, for 
many triplets of rotation matrices R, S, and T  both {~r,sl, tl } 
and (~2, ~2, t2) will in fact be linearly independent. It will 
therefore be possible to select a nondegenerate triplet of views 
(PI, P2, and Pa) in terms of which intermediate views are 
expressible as linear combinations. Note, however, that in the 
special case that R is the identity matrix, S is a pure rotation 
about the X axis, and T  is a pure rotation about the Y axis, 
the independent condition does not hold. 

4) Rigid Transformations and Scaling in 3-D Space: W e  
have considered above the case of rigid rotation in 3-D space. 
If, in addition, the object is allowed to undergo translation and 
a scale change, novel views will still be the linear combinations 
of three 2-D views of the object. More specifically, let 0 be a 
set of object points, and let PI, P2, and P3 be three images of 
0, which are obtained by applying the 3 x  3 rotation matrices 
R, S, and T  to 0, respectively. Let P be a fourth image of 
the same object obtained by applying a 3 x  3 rotation matrix 
U to 0, scaling by a scale factor s, and translating by a vector 
(tZ,tY). Let ~1, ~1, tl, and ui again be the first row vectors 
of R, S, T, and U and ~2, sp, t2, and u2 the second row 
vectors of R, S, T, and U, respectively. For any point p E 0, 
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its positions in the four images are given by 

Pl = (215 Yl) =  (w, w) 

p2 = (52, y2) = (w, S2P) 

P3 = (23,Y3) = (mt2P) 

fi = (236) = (su1p + t,, su2p + ty). 

Claim: If both sets {ri,.si,ti} and {ra,sa, ta} are lin- 
early independent, then there exist scalars al, aa, as, a4 and 
bi, b2, b3, bd, such that for every point p E 0, it holds that 

i =  al21 +a222 fa323fa4 

D = hm + km + k/3 +  b4  

with the coefficient satisfying the two constraints 

llalrl + W I + w51Il = llhv +  be2  + W 2 1 1  
(aIrI + am + adl)(blrz + b2s2 + bd2) = 0. 

W e  can view each of the above equations as a linear 
combination of three images and a fourth constant vector. 
(Instead of a constant vector, one can take a fourth image 
generated internally by shifting one of the three images.) 
The proof is almost identical to the one in Section I-C-3 and 
therefore will not be detailed. As for the constraints on the 
coefficients, since U is a rotation matrix 

IId = 1 

II-11 = 1 
UlU2 = 0  

it follows that 

lblll = lb2II 
(W)(S~2) = 0 

and the constraints are obtained directly by substituting the 
appropriate linear combinations for sul and su2. 

5) Using Two Views Only: In the scheme described above, 
any image of a given object (within a certain range of 
rotations) is expressed as the linear combination of three fixed 
views of the object. For general linear transformations, it is 
also possible to use instead just two views of the object. (This 
observation was made independently by T. Poggio and R. 
Basri.) 

Let 0 be again a rigid object (a collection of 3-D points). Pi 
in a 2-D image of 0, and let P2 be the image of 0 following 
a rotation by R (a 3 x  3 matrix). W e  will denote by rl, ~2, ~3 
the three rows of R and by el, e2, ea the three rows of the 
identity matrix. For a given 3-D point p in 0, its coordinates 
(xlTyl) in th e rs image view are x1 = elp, y1 = e2p. Its fi t 
coordinates (22, ya) in the second view are given by 22 = rip, 
~2 = r2p. 

Consider now any other view obtained by applying another 
3 x 3 matrix U to the points of 0. The coordinates (i, 6) of 
p in this new view will be 

P = u1p, $ = U2P 

(where ui, ~2, are the first second rows of U, respectively). 

I --..--- -, -_-. .--- -.. 

Assuming that el, ea and r1 span R3 (see below), then 

UI = ale1 + a2e2 + u3rl 

for some scalars al! a2, ua. Therefore 

i = ulp = (ale1 + a2e2  + a3rl)p 

=  alxl +  @??/I + a322. 
This equality holds for every point p in 0. Let 21 be the 

vector of all the z  coordinates of the points in the first view, 22 
in the second, ai: in the third, and y1 the vector of y  coordinates 
in the first view. Then 

Here 21, yr, and 22 are used as a basis for all of the views. 
For any other image of the same object, its vector 5 of x  
coordinates is the linear combination of these basis vectors. 

Similarly, for the y  coordinates 

G  = blxl + bzyl + b3x2. 

The vector $ of y  coordinates in the new image is therefore 
also the linear combination of the same three basis vectors. 
In this version, the basis vectors are the same for the z  and 
y coordinates, and they are obtained from two rather then 
three views. One can view the situation as follows. Within an 
n-dimensional space, the vectors 21, yl, 22 span a three- 
dimensional subspace. For all the images of the object in 
question, the vectors of both the x  and y coordinates must 
reside within this three-dimensional subspace. 

Instead of using (ei, ea: ~1) as the basis for R3, we could 
also use (el. ea. ra). One of these bases spans R3, unless the 
rotation R is a pure rotation around the line of sight. 

The use of two views described above is applicable to 
general linear transformations of the object, and without 
additional constraints, it is impossible to distinguish between 
rigid and linear but not rigid transformations of the object. 
To impose rigidity (with possible scaling), the coefficients 
(ai, ~2, ua! bl) b2, b3) must meet two simple constraints. Since 
U is now a rotation matrix (with possible scaling) 

u1u2 = 0  

lblll = IIUZII. 

In terms of the coefficients ui. bi. ui, ua = 0 implies 

albl +a&2 +a& +(alb3 +aybl)rll + 
(a2b3 + u3bz)m = 0. 

The second constraint implies 

UT + a; +  ai - bq -b; - b; = 2(blb3 - aa3b-11 
+ 2(bd3 - a2a3)T12. 

A third view can therefore be used to recover, using two lin- 
ear equations, the values of t-11 and ~12. (ail and r12 can in fact 
be determined to within a scale factor from the first two views; 
only one additional equation is required.) The full scheme 
for rigid objects is, then, the following. Given an image, 
determine whether the vectors ?,i, are linear combinations 
of xi, y1 and x2. Only two views are required for this stage. 

_--,  -  -...-..- ~-, -  . . ..-- ‘-“‘D--“’ I 
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Using the values of ~11 and ria, test whether the coefficients 
ui, bi, (i = 1: 2,3) satisfy the two constraints above. 

It is of interest to compare this use of two views to structure- 
from-motion (SFM) techniques for recovering 3-D structure 
from orthographic projections. It is well known that three 
distinct views are required; two are insufficient [21]. Given 
only two views and an infinitesimal rotation (the velocity 
field), the 3-D structure can be recovered to within depth- 
scaling [22]. It is also straightforward to establish that if the 
two views are separated by a general affine transformation of 
the 3-D object (rather than a rigid one), then the structure of 
the object can be recovered to within an affine transformation. 

Our use of two views above for the purpose of recognition 
is thus related to known results regarding the recovery of 
structure from motion. Two views are sufficient to determine 
the object’s structure to within an affine transformation, and 
three are required to recover the full 3-D structure of a rigidly 
moving object. Similarly, the linear combination scheme uses 
in the match two (for general linear transformation) or three 
views (for rigid rotation and scaling). The matching does 
not require, however, the full 3-D model. Instead, linear 
combinations of the 2-D images are used directly. 

Finally, it can also be observed that an extension of the 
scheme above can be used to recover structure from motion. 
It was shown how the scheme can be used to recover ~11 
and 7-12. ~21 and raa can be recovered in a similar manner. 
Consequently, it becomes possible to recover 3-D structure 
and motion in space based on three orthographic views, using 
linear equations. (For alternative methods that use primarily 
linear equations, see [15] and [ll]). 

6) Summary: In this section, we have shown that an object 
with sharp contours, undergoing rigid transformations and 
scaling in 3-D space followed by an orthographic projection, 
can be expressed as the linear combination of three images of 
the same object. In this scheme, the model of a 3-D object 
consists of a number of 2-D pictures of it. The pictures are 
in correspondence in the sense that it is known which are 
the corresponding points in the different pictures. Two im- 
ages are sufficient to represent general linear transformations 
of the object; three images are required to represent rigid 
transformations in 3-D space. 

The linear combination scheme assumes that the same object 
points are visible in the different views. When the views are 
sufficiently different, this will no longer hold due to self- 
occlusion. To represent an object from all possible viewing 
directions (e.g., both “front” and “back”), a number of different 
models of this type will be required. This notion is similar to 
the use of different object aspects suggested by Koenderink 
and Van Doorn [13]. (Other aspects of occlusion are examined 
in the final discussion and Appendix C.) 

The linear combination scheme described above was imple- 
mented and applied first to artificially created images. Fig. 2 
shows examples of object models and their linear combina- 
tions. The figure shows how 3-D similarity transformations 
can be represented by the linear combinations of four images. 

D. Objects with Smooth Boundaries 

The case of objects with smooth boundaries is identical to 

(4 

(b) 

(4 
Fig. 2. (a) Three model pictures of a cube. The second picture was obtained 
by rotating the cube by 30’ around the X axis and then by 30” around the 
Y axis. The third picture was obtained by rotating the cube by 30’ around 
the Y axis and then by 30’ around the X axis; (b) three model pictures of 
a pyramid taken with the same transformations as the pictures in (a); (c) two 
linear combinations of the cube model. The left picture was obtained using 
the following parameters: the I coefficients are (0.343, -2.618,2.989,0), and 
the y coefficients are (0.630, -2.533,2.658,0), which correspond to a rotation 
of the cube by 10, 20, and 4.5’ around the X, Y, and Z axes, respectively. 
The right picture was obtained using the following parameter: s coefficients 
(0.455,3.392, -3.241,0.25) and y coefficients (0.542,3.753, -3.343, -0.15). 
These coefficients correspond to a rotation of the cube by 20, 10, and -4P 
around the X, Y and Z axes, respectively, followed by a scaling factor 1.2 and 
a translation of (25, - 15) pixels; (d) two linear combinations of the pyramid 
model taken with the same parameters as the picture in (c). 

the case of objects with sharp edges as long as we deal with 
translation, scaling, and image rotation. The difference arises 
when the object rotates in 3-D space. This case is discussed 
in [3], where we have suggested a method for predicting 
the appearance of such objects following 3-D rotations. This 
method, called “the curvature method,” is summarized briefly 
below. 

A model is represented by a set of 2-D contours. Each point 
p = (x, y) along the contours is labeled with its depth value 
z  and a curvature value r. The curvature value is the length 
of a curvature vector at p, r = II(rZ, rY) I]. (r, is the surface’s 
radius of curvature at p in a planar section in the X direction, 
ry in the Y direction.) This vector is normal to the contour at 
p. Let V, be an axis lying in the image plane and forming an 
angle 4 with the positive X direction, and let r4 be a vector 
of length T# = ry cos 4 - r, sin 4 and perpendicular to I$,. 
When the object is rotated around Vd, we approximate the 
new position of the point p in the image by 

p’ = R( p - r+) + rm (1) 

where R is the rotation matrix. The equation has the following 
meaning. When viewed in a cross section perpendicular to the 
rotation axis V& the surface at p can be approximated by a 

I 
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circular arc with radius r+ and center at p - r$. The new 
rim point p’ is obtained by first applying R to this center of 
curvature (p - r+), then adding the radius of curvature r+. 
This expression is precise for circular arcs and gives a good 
approximation for other surfaces provided that the angle of 
rotation is not too large (see [3] for details). The depth and 
the curvature values were estimated in [3], using three pictures 
of the object, and the results were improved using five pictures. 
In this section, we show how the curvature method can also be 
replaced by linear combinations of a small number of pictures. 
In particular, three images are required to represent rotations 
around a fixed axis and five images for general rotations in 
3-D space. 

I) General Rotation in 3-D Space: In this section, we first 
derive an expression for the image deformation of an object 
with smooth boundaries under general 3-D rotation. W e  then 
use this expression to show that the deformed image can be 
expressed as the linear combination of five images. 

a) Computing the transformed image: Using the curvature 
method, we can predict the appearance of an object undergoing 
a general rotation in 3-D space as follows. A rotation in 3-D 
space can be decomposed into the following three successive 
rotations: a rotation around the Z  axis, a subsequent rotation 
around the X axis and a final rotation around the Z  axis by 
angles cy, /3, and y, respectively. Since the Z  axis coincides 
with the line of sight, a rotation around the Z  axis is simply an 
image rotation. Therefore, only the second rotation deforms the 
object, and the curvature method must be applied to it. Suppose 
that the curvature vector at a given point p = (x, y) before 
the first Z  rotation is (rz,ry). Following the rotation by o, 
it becomes r(, = r,coso - r,sino and rh = r,sincr + 
rY COSQ. The second rotation is around the X axis, and 
therefore, the appropriate r+ to be used in (1) becomes rb = 
r, sin Q  + ry cos Q. The complete rotation (all three rotations) 
therefore takes a point p = (2, y) through the following 
sequence of transformations: 

(z,y) + (xcosa - ysina,xsina: + ycoscu) + 

(xcoso - ysino,(xsino + ycosa)cosp - zsin,B 

+(r,sino+rycoso)(l-cosp)) --t 
((x cos 0. - y  sin o) cos y  - ((x sin cy + y  cos a) cos p 

- 2 sin p + (rz sin (Y + rY cos a)( 1 - cos /?)) sin y: 

(xcoso - ysina)siny + ((xsina + ycoscy)cosp - zsinp 
+ (rz sin ck + rY cos a)( 1 - cos /3)) cos y) . 

(The first of these transformations is the first Z  rotation, the 
second is the deformation caused by the X rotation, and the 
third is the final Z  rotation). 

This is an explicit expression of the final coordinates of 
a point on the object’s contour. This can also be expressed 
more compactly as follows. Let R = {r;j} be a 3 x  3 rotation 
matrix. Let Q, ,/3, and y  be the angles of the Z-X-Z rotations 
represented by R. W e  construct a new matrix R’ = { rij} of 
size 2 x  5 as follows: 

R’ = 
m rl2 rl3 - sina(1 - cos/3)sinr 
r21 r22 r23 sin o( 1 - cos p) cos y  

- coscr(l - cos,f?)sinr 

> cosa(l - cosp)cosy . 

Let p = (x, y) be a contour point with depth z  and curvature 
vector (r,,rY), and let fi = (x, y,z,r,,rY). Then, the new 
appearance of p after a rotation R is applied to the object is 
described by 

p’ = RI@. (2) 

This is true because (2) is equivalent to (1) in Section I-D 
with the appropriate values for r@. 

b) Expressing the transformed image as a linear combi- 
nation: Let 0 be a set of points of an object rotating in 
3-D space. Let PI, P2, Pa, P4, and Ps be five images of 0, 
which are obtained by applying a rotation matrix RI, . . . , R5 
respectively. p is an image of the same object obtained by 
applying a rotation matrix fi to 0. Let Ri , . . . , Rb, k’ be the 
corresponding 2 x  5 matrices representing the transformations 
applied to the contour points according to the curvature 
method. Finally, let ri, . . . , rg, i denote the first row vectors 
of Ri,...,RI,,& and s1,...,s5,g the second row vectors 
R’,,..., Rb, R’, respectively. The positions of a point p = 
(X,Y) E 0, 13 = ( x~y~z,r,,ry) in the six pictures is then 
given by 

pi = (x,, Y;) = (ri13, sil?) E Pz, l<i<5 

6 = (?, 3) = (@, 86) E P,. 

Claim: If both sets {rl,...,rs} and {sl,...,ss} are 
linearly independent vectors, then there exist scalars al, . . . , a5 
and bl;.. , b5 such that for every point p E 0, it holds that 

5 

9= 
c 

&Xi 

i=l 

ij = C biyi. 
i=l 

Proof: {rl,. . . , rg} are linearly independent. Therefore, 
they span R5, and there exist scalars al, . . . ! a5 such that 

Since 

Then 

that is 

t= IfI air;. 
i=l 

g= 
5 - Grip 
i=l 

i= 
5 azx;. 
i=l 

I 
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In a similar way, we obtain that 

i=l 

In addition, for pure rotation, the coefficients of these lin- 
ear combinations satisfy seven functional constraints. These 
constraints, which are second-degree polynomials, are given 
in Appendix A. The coefficients of these polynomials can be 
found (by linear equations) using additional views. 

Again, one may  or may  not actually test for these additional 
constraints. Assuming that different objects in memory  differ 
by more than just a linear transformation, if the test is omitted, 
the probability of a false-positive misidentification is slightly 
increased. 

As in our case of sharp boundaries, it is possible to use 
mixed z and y coordinates to reduce the number of basic 
views for general linear transformations (Section I-C-5). For 
example, one can use five basis vectors (~1, x2, 1cg,yl,y2) 
taken from these distinct views as the basis for the ic and y 
coordinates in all other views. 

2) Rigid Transformation and Scaling in 3-D Space: SO far, we 
have shown that an object with smooth boundaries represented 
by the curvature scheme and undergoing a rotation in 3-D 
space can be represented as a linear combination of 2-D views. 
The method can again be easily extended to handle translation 
and scaling. The linear combination scheme for objects with 
smooth bounding contours is thus a direct extension of the 
scheme in Section I-C for objects with sharp boundaries. In 
both cases, object views are expressed as the linear combina- 
tion of a small number of pictures. The scheme for objects with 
sharp boundaries can be viewed as a special case of the more 
general one when T, which the radius of curvature, vanishes. 
In practice, we found that it is also possible to use the scheme 
for sharp boundaries that uses a smaller number of views in 
each model for general objects, provided that T  is not too large 
(and at the price of increasing the number of models). 

3) Summary:  In this section, we have shown that an object 
with smooth boundaries undergoing rigid transformations and 
scaling in 3-D space followed by an orthographic projection 
can be expressed (within the approximation of the curvature 
method) as the linear combination of six images of the object. 
Five images are used to represent rotations in 3-D space, 
and one additional image (or, alternatively, a constant vector) 
is required to represent translations. (In fact, although the 
coordinates are expressed in terms of five basis vectors, 
only three distinct views are needed for a general linear 
transformation.) The scaling does not require any additional 
image since it is represented by a scaling of the coefficients. 
This scheme was implemented and applied to images of 3-D 
objects. 

Figs. 3 and 4 show the application of the linear combina- 
tion (LC) method to complex objects with smooth bounding 
contours. Since the rotation was about the vertical axis, three 
2-D views were used for each model. The models were created 
by taking three images and producing their edge maps (only 
edges that appeared in all three images were maintained). Since 
the rotation was around the vertical axis, a simple correspon- 

(b) 

(d) 

Fig. 3. (a) Three model  pictures of a  V W  car for rotations around the vertical 
axis. The second and the third pictures were obtained from the first by rotations 
of zk30° around the Y axis; (b) two linear combinations of the V W  model.  
The s coefficients are (0.556,0.463, -0.018) and (0.582, -0.065,0.483), 
which correspond to a  rotation of the first model  picture by &lj”. These 
artificial images, which are created by linear combinations of the first three 
views rather than actual views; (c) real images of a  V W  car; (d) matching 
the linear combinations to the real images. Each contour image is a  linear 
combinat ion super imposed on  the actual image. The agreement is good within 
the entire range of ~t30’; (e) matching the V W  model  to pictures of the Saab 
car. 

dence scheme was used to match points along the same scan 
line. The matching accuracy was sufficient for unambiguous 
discrimination in the presence of unavoidable noise, e.g., in 
image formation, edge detection, and correspondence. The 
figure shows a good agreement between the actual image and 
the appropriate linear combination. Although the objects are 
similar, they are easily discriminable by the LC method within 
the entire 60” rotation range. 

Finally, it is worth noting that the modeling of objects by 
linear combinations of stored pictures is not limited only to 
rigid objects. The method can also be used to deal with various 
types of nonrigid transformations, such as articulations and 
nonrigid stretching. For example, in the case of an articulated 
object, the object is composed of a number of rigid parts linked 
together by joints that constraint the relative movement of the 
parts. W e  saw that the x  and y coordinates of a rigid part are 
constrained to a 4-D subspace. Two rigid parts reside within 
an 8-D subspace, but because of the constraints at the joints, 
they usually occupy a smaller subspace (e.g., 6-D for a planar 
joint). 
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(b) 

Cd) 

(4 
Fig. 4. (a) Three model  pictures of a  Saab car taken with approximately 
the same transformations as the V W  model  pictures; (b) two linear com- 
binations of the Saab model.  The z coefficients are (0.601,0.471, -0.072) 
and (0.754, -0.129,0.375), which correspond to a  rotation of the first model  
picture by &15”; (c) real images of a  Saab car; (d) matching the linear 
combinations to the real images; (e) matching the Saab model  to pictures 
of the V W  car. 

II. DETERMINING THE ALIGNMENT COEFFICIENTS 

In the previous section, we have shown that the set of 
possible views of an object can often be expressed as the 
linear combination of a small number of views. In this section, 
we examine the problem of determining the transformation 
between a model and a viewed object. The model is given 
in this scheme as a set of Ic corresponding 2-D images 
{Ml, . . . , Mk}. A viewed project P is an instance of this 
model if there exists a set of coefficients {al,. . . , ak} (with a 
possible set of restrictions F(ar, . . . , ok) = 0) such that 

P = CLlMl + . . . + Ukibfk. (3) 

In practice, we may  not obtain a strict equality. W e  will 
attempt to minimize, therefore, the difference between P and 
alhill + ... + akMk. The problem we face is how to deter- 
mine the coefficients {al, . . , ok}. In the following sub- 
sections, we will discuss three alternative methods for 
approaching this problem. 

A. Minimal Alignment: Using a Small Number 
of Corresponding Features 

The coefficients of the linear combination that align the 

model to the image can be determined using a small number 
of features, which are identified in both the model and the 
image to be recognized. This is similar to previous work in 
the framework of the alignment approach [8], [12], [16], [23]. 
It has been shown that three corresponding points or lines are 
usually sufficient to determine the transformation that aligns a 
3-D model to a 2-D image [23], [12], [19], assuming the object 
can undergo only rigid transformations and uniform scaling. In 
previous methods, 3-D models of the object were stored. The 
corresponding features (lines and points) were then used to 
recover the 3-D transformation separating the viewed object 
from the stored model. 

The coefficients of the linear combination required to align 
the model views with the image can be derived in principle, as 
in previous methods, by first recovering the 3-D transforma- 
tions. They can also be derived directly, however, by simply 
solving a set of linear equations. This method requires k  points 
to align a model of k  pictures to a given image. Therefore, 
four points are required to determine the transformation for 
objects with sharp edges and six points for objects with smooth 
boundaries. In this way, we can deal with any transformation 
that can be approximated by linear combinations of pictures 
without recovering the 3-D transformations explicitly. 

The coefficients of the linear combination are determined 
by solving the following equations. W e  assume that a small 
number of corresponding points (the “alignment points”) have 
been identified in the image and the model. Let X be the 
matrix of the z  coordinates of the alignment points in the 
model, that is, xi3 is the x  coordinate of the jth point in 
the ith model-picture. p, is the vector of z  coordinates of the 
alignment points in the image, and a is the vector of unknown 
alignment parameters. The linear system to be solved is then 
Xa = p,. The alignment parameters are given by a = X-‘p, 
if an exact solution exists. W e  may  use an overdetermined 
system (by using additional points), in which case, a = X+p, 
(where X+ denotes the pseudo-inverse of X). The matrix X+ 
does not depend on the image and can be precomputed for the 
model. The recovery of the coefficients therefore requires only 
a multiplication of p, by a known matrix. Similarly, we solve 
for Yb = p, to extract the alignment parameters b in the y  
direction from Y (the matrix of y  coordinates in the model) 
and p, (the corresponding y  coordinates in the image). The 
stability of the computation in the face of noise will depend on 
the condition number of the matrices XXT and YYT. These 
matrices depend on the model images only, and this raises the 
possibility of selecting the model images in a manner that will 
increase the stability of the computation during matching. 

It is also worth noting that the computation can proceed 
in a similar fashion in the basis of correspondence between 
straight-line segments rather than points. In this case, due to 
the “aperture problem” [18], only the perpendicular component 
(to the contour) of the displacement can be measured. This 
component can be used, however, in the equations above. In 
this case, each contour segment contributes a single equation 
(as opposed to a point correspondence, which gives two 
equations). 

As a possible model of object recognition by a human being, 
one question that may  arise in this context is whether the 
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Fig. 5. Aligning a  model  to images using corresponding features: (a) Two 
images of a  Saab car and one of the six model  pictures; (b) corresponding 
points used to align the model  to the images. The correspondence was 
determined using apparent motion, as explained in the text; (c) transformed 
model;  (d) transformed model  super imposed on  the original images. 

visual system can be expected to reliably extract a sufficient 
number of alignment features. Two comments are noteworthy. 
First, this difficulty is not specific to the linear combination 
scheme but applies to other alignment schemes as well. 
Second, although the task is not simple, the phenomenon of 
apparent motion suggests that mechanisms for establishing 
feature correspondence do, in fact, exist in the visual system. 

It is interesting to note in this regard that the correspon- 
dence established during apparent motion appears to provide 
sufficient information for the purpose of recognition by linear 
combinations. For example, when the car pictures in Fig. 5(a) 
are shown in apparent motion, the points marked on the 
right in Fig. 5(b) appear perceptually to move and match 
the corresponding points marked on the pictures on the right. 
These points, with the perceptually established match, were 
used to align the model and images in Fig. 5, that is, the 
coordinates of these points were used in the equations above 
to recover the alignment coefficients. The model contained six 
pictures of a Saab car in order to cover all rigid transformations 
for an object with smooth boundaries. As can be seen, a 
close agreement was obtained between the image and the 
transformed model. (The model contained only a subset of 
the contours: the ones that were clearly visible in all of the 
different pictures.) 

B. Searching for the Coeficients 

An alternative method to determine the best linear combina- 

tion is by a search in the space of possible coefficients. In this 
method, we choose some initial values for the set {al, . . . . uk} 
of coefficients, we then apply a linear combination to the 
model using this set of coefficients. W e  repeat this process 
using a different set of coefficients and take the coefficient 
values that produced the best match of the model to the image. 

The most problematic aspect of this method is that the 
domain of coefficients might be large; therefore, the search 
might be prohibitive. W e  can reduce the search space by first 
performing a rough alignment of the model to the image. 
The identification of general features in both the image and 
the model, such as a dominant orientation, the center of 
gravity, and a measurement of the overall size of the imaged 
object, can be used for compensating roughly for image 
rotation, translation, and scaling. Assuming that this process 
compensates for these transformations up to a bounded error 
and that the rotations in 3-D space covered by the model are 
also restricted, then we could restrict the search for the best 
coefficients to a limited domain. Moreover, the search can 
be guided by an optimization procedure. W e  can define an 
error measure (for instance, the area enclosed between the 
transformed model and the image) that must be minimized 
and use minimization techniques such as gradient descent to 
make the search more efficient. The preliminary stage of rough 
alignment may  help preventing such methods from reaching a 
local minimum instead of the global one. 

C. Linear Mappings 

The linear combination scheme is based on the fact that a 
3-D object can be modeled by the linear combination of a 
small number of pictures, that is, the set of possible views of an 
object is embedded in a linear space of a low dimensionality. 
W e  can use this property to construct a linear operator that 
maps each member  of such a space to a predefined vector, 
which identifies the object. This method is different from 
the previous two in that we do not explicitly recover the 
coefficients (al 1 . . , an) of the linear combination. Instead, 
we assume that a full correspondence has been established 
between the viewed object and the stored model. W e  then use 
a linear mapping to test whether the viewed object is a linear 
combination of the model views. 

Suppose that a pattern P is represented by a vector p of its 
coordinates (e.g., (‘cl, y1 1 22. ~2. . . . :rnyn)). Let PI and P2 
be two different patterns representing the same object. W e  can 
now construct a matrix L that maps both pl and p2 to the 
same output vector q, that is, Lpi = Lp2 = q. Any linear 
combination npl + bpp will then be mapped to the same out- 
put vector q multiplied by the scalar n + b. W e  can choose, for 
example q = pl, in which case any view of the object will be 
mapped by L to a selected “canonical view” of it. 

W e  have seen above that different views of the same object 
can usually be expressed as linear combinations C nipi of 
a small number of representative views P,. If the mapping 
matrix L is constructed in such a manner that Lp, = q for 
all the views P, in the same model, then any combined view 
6 = 1 n,p, will b e mapped by L to the same q (up to a 
scale) since Lfi = (C ai)q. 
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L can be constructed as follows. Let {PI. .pk} be k  
linearly independent vectors representing the model pictures 
(we can assume that they are all linearly independent since a 
picture that is not is obviously redundant). Let {pk+l. . . , p,} 
be a set of vectors such that {PI. . . . .p,} are all linearly 
independent. W e  define the following matrices: 

P= (PI.... rPkrPk+l*....Pn) 

& = (4,.“,Q.Pk_tl~...,P,) 

W e  require that 

LP=Q. 

Therefore 

L = QP-‘. 

Note that since P is composed of n linearly independent 
vectors, the inverse matrix P-l exists; therefore, L can always 
be constructed. 

By this definition, we obtain a matrix L that maps any linear 
combination of the set of vectors (~1. . . . , pk} to a scaled 
pattern cyq. Furthermore, it maps any vector orthogonal to 
{Pl.... ~ pk} to itself. Therefore, if fi is a linear combination of 
{pl,....pk} with an additional orthogonal noise component, 
it would be mapped by L to q combined with the same amount 
of noise. 

In constructing the matrix L, one may  use more than just 
k  vectors pi, particularly if the input data is noisy. In this 
case, a problem arises of estimating the best k  dimensional 
linear subspace spanned by a larger collection of vectors. This 
problem is treated in Appendix B. 

In our implementation, we have used Lpi = 0 for all the 
view vectors p, of a given object. The reason is that if a new 
view of the object fi is given by c  nip, with c  ai = 0, then 
Lfi = 0. This means that the linear mapping L may  send a 
legal view to the zero vector, and it is therefore convenient 
to choose the zero vector as the common output for all the 
object’s views. If it is desirable to obtain at the output level a 
canonical view of the object such as pl rather than the zero 
vector, then one can use as the final output the vector pl - Lfi. 

The decision regarding whether or not 1; is a view of the 
object represented by L can be based on comparing llL@jl 
with 11$11. If fi is indeed a view of the object, then this ratio 
will be small (exactly 0 in the noise-free condition). If the 
view is “pure noise” (in the space orthogonal to the span of 
(Pl.... ,pk)), then this ratio will be equal to 1. 

Fig. 6 shows the application of the linear mapping to two 
models of simple geometrical structures: a cube (a) and a 
pyramid (b). For each model, we have constructed a matrix 
that maps any linear combination of the model pictures to the 
first model picture that serves as its ‘canonical view.’ Consider 
the cube images in Fig. 6(a) first. The left column depicts two 
different views of the cube. Applying the cube matrix to these 
views yields in both cases the canonical view, as shown in 
the middle column. When the input to the cube matrix was a 
pyramid rather than a cube, the output was different from the 
canonical view (right column). In this manner, different views 
of the cubes can be identified by comparing the output to the 

(4 

(b) 
Fig. 6. (a) Applying cube and pyramid matrices to the cubes of Fig. 2; 
(b) applying pyramid and cube matrices to the pyramids of Fig. 2. Left col- 
umn  of pictures-the input images. Middle column-the result of applying 
the appropriate matrix to the images (these results are identical to the first 
model  pictures, which serve as canonical views). Right column-the result 
of applying the wrong matrix to the images (these results are not similar to 
the canonical views). 

canonical cube. Fig. 6(b) shows similar results obtained for 
the pyramid. 

III. GENERAL DISCUSSION 

W e  have proposed above a method for recognizing 3-D 
objects from 2-D images. In this method, an object-model is 
represented by the linear combinations of several 2-D views 
of the object. It was shown that for objects with sharp edges 
as well as with smooth bounding contours, the set of possible 
images of a given object is embedded in a linear space spanned 
by a small number of views. For objects with sharp edges, the 
linear combination representation is exact. For objects with 
smooth boundaries, it is an approximation that often holds over 
a wide range of viewing angles. Rigid transformations (with or 

without scaling) can be distinguished from more general linear 
transformations of the object by testing certain constraints 
placed on the coefficients of the linear combinations. 

W e  have proposed three alternative methods for determining 
the transformation that matches a model to a given image. 
The first method uses a small set of corresponding features 
identified in both the model and the image. Alternatively, 
the coefficients can be determined using a search. The third 
method uses a linear mapping as the main step in a scheme that 
maps the different views of the same object into a common 
representation. 

The development of the scheme so far has been primarily 
theoretical, and initial testing on a small number of objects 
shows good results. Future work should include more exten- 
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sive testing using natural objects, as well as the advancement 
of the theoretical issues discussed below. 

In the concluding section, we discuss three issues. First, we 
place the current scheme within the framework of alignment 
methods in general. Second, we discuss possible extensions. 
Finally, we list a number of general conclusions that emerge 
from this study. 

A. Classes of Alignment Schemes 

The schemes discussed in this paper fall into the gen- 
eral class of alignment recognition methods. Other alignment 
schemes have been proposed by [2], [S], [7], [8], [lo], [16], 
and [20]. In an alignment scheme, we seek a transformation 
T, out of a set of allowed transformations and a model M  
from a given set of models that minimizes a distance measure 
d(M, T,? p) (where p is the image of the object). T, is 
called the alignment transformation because it is supposed to 
bring the model M  and the viewed object p into an optimal 
agreement. 

The distance measure d typically contains two contribu- 
tions: 

d(M,Ta,p) = dl(Te>M,p) + W ”cc). 

The first term dl(T,, M, p) measure the residual distance 
between the picture p and the transformed model T, M  follow- 
ing the alignment, and dp(T,) penalizes for the transformation 
T, that was required to bring M  into a close agreement with 
p. For example, it may  be possible to bring M  into a close 
agreement with p by stretching it considerably. In this case 
dl (T,, M, p) will be small, but if large stretches of the object 
are unlikely, dz(T,) will be large. W e  will see below that 
different classes of alignment schemes differ in the relative 
emphasis they place on dl and dz. 

Alignment approaches can be subdivided according to the 
method used for determining the aligning transformation T,. 
The main approaches used in the past can be summarized by 
the following three categories. 

1) Minimal Alignment: In this approach, T, is determined 
by a small number of corresponding features in the model and 
the image. Methods using this approach assume that the set 
of possible transformations is restricted (usually to rigid 3-D 
transformations with possible scaling or a Lie transformation 
group [6]) so that the correct transformation can be recovered 
using a small number of constraints. 

This approach has been used by Faugeras and Hebert 
[7], Fischler and Bolles [8], Hutteniocher and Ullman [12], 
Shoham and Ullman [19], Thompson and Mundy [20], and 
Ullman [23]. In these schemes, the term d2 above is usually 
ignored since there is no reason to penalize for a rigid 3-D 
aligning transformation, and the match is therefore evaluated 
by dl only. 

The correspondence between features may  be guided in 
these schemes by the labeling of different types of features, 
such as cusps, inflections, blob-centers, etc. [12], [23] by 
using pairwise constraints between features [lo] or by a more 
exhaustive search (as in [14], where possible transformations 
are precomputed and hashed). 

Minimal alignment can be used in the context of the linear 
combination scheme discussed in this paper. This method was 
discussed in Section II-A. A small number of corresponding 
features is used to determine the coefficients of the linear 
combination. The linear combination is then computed, and 
the result is compared with the viewed image. 

2) Full Alignment: In this approach, a full correspondence 
is established between the model and the image. This corre- 
spondence defines a distortion transformation that takes M  into 
P. The set of transformations is not restricted in this approach 
to rigid transformations. Complex nonrigid distortions are 
included as well. In contrast with minimal alignment, in the 
distance measure d above, the first term dl(T,, M, P) does 
not play an important role since the full correspondence forces 
T,M and P to be in close agreement. The match is therefore 
evaluated by the plausibility of the required transformation T,. 
Our linear mapping scheme in Section II-C is a full alignment 
scheme. A full correspondence is established to produce a 
vector that the linear mapping can then act upon. 

3) Alignment Search: In contrast with the previous ap- 
proaches, this method does not use feature correspondence 
to recover the transformation. Instead, a search is conducted 
in the space of possible transformations. The set of possible 
transformations {T,} is parametrized by a parameter vector 
cy, and a search is performed in the parameter space to 
determine the best value of a. The deformable template 
method [2.5] is an example for this approach. Section II-B 
described the possibility of performing such a search in the 
linear combination approach to determine the value of the 
required coefficients. 

B. Extensions 

The LC recognition scheme is restricted in several ways. It 
will be of interest to extend it in the future in at least three 
directions: relaxing the constraints, dealing effectively with 
occlusions, and dealing with large libraries of objects. W e  limit 
the discussion below of brief comments on these three issues. 

I) Relaxing the Constraints: The scheme as presented as- 
sumes rigid transformation and an orthogaphic projection. 
Under these conditions, all the views of a given object are 
embedded in a low-dimensional linear subspace of a much 
larger space. What happens if the projection is perspective 
rather than orthographic or if the transformations are not 
entirely rigid? The effect of perspecitivity appears to be quite 
limited. W e  have applied the LC scheme to objects with ratio 
of distance-to-camera to object-size down to 4:l with only 
minor effects on the results (less than 3% deviation from the 
orthographic projection for rotations up to 45”). 

As for nonrigid transformations, an interesting general ex- 
tension to explore is where the set of views is no longer a linear 
subspace but still occupies a low-dimensional manifold within 
a much higher dimensional space. This manifold resembles 
locally a linear subspace, but it is no longer “globally straight.” 
By analogy, one can visualize the simple linear combinations 
case in terms of a 3-D space, in which all the orthographic 
views of a rigid object are restricted to some 2-D plane. In 
the more general case, the plane will bend to become a curved 
2-D manifold within the 3-D space. 
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This appears to be a general case of interest for recognition 
as well as for other learning tasks. For recognition to be 
feasible, the set of views {V} corresponding to a given object 
cannot be arbitrary but must obey some constraints, e.g., in the 
form F(Vi) = 0. Under general conditions, these restrictions 
will define locally a manifold embedded in the larger space. 
Algorithms that can learn to classify efficiently sets that form 
low-dimensional manifolds embedded in high dimensional 
spaces will therefore be of general value. 

2) Occlusion: In the linear combination scheme, we as- 
sumed that the same set of points is visible in the different 
views. What happens if some of the object’s points are 
occluded by either self-occlusion or by other objects? 

As we mentioned in Section I-C-5, self-occlusion is handled 
by representing an object not by a single model but by a 
number of models covering its different “aspects” [13] or 
“characteristic views” [24]. 

As for occlusion by other objects, this problem is handled 
in a different manner by the minimal alignment and the 
full alignment versions of the LC scheme. In the minimal 
alignment version, a small number of corresponding features 
are used to recover the coefficients of the linear combination. 
In this scheme, occlusion does not present a major special 
difficulty. After computing the linear combination, a good 
match will be obtained between the transformed model the 
visible part of the object, and recognition may  proceed on 
the basis of this match. (Alignment search will behave in a 
similar manner.) 

In the linear mapping version, an object’s view is repre- 
sented by a vector n, of its coordinates. Due to occlusion, some 
of the coordinates will remain unknown. A way of evaluating 
the match in this case in an optimal manner is suggested in 
Appendix C. 

Scene clutter also affects the computation by making the 
correspondence more difficult, that is, model features (points 
or lines) may  be incorrectly matched with spurious data in the 
image. This effect of clutter on model-to-image correspon- 
dence is discussed e.g., in Grimson [9]. 

3) Multiple Models: W e  have considered above primarily 
the problem of matching a viewed object with a single model. 
If there are many candidate models, a question arises regarding 
the scaling of the computational load with the number of 
models. 

In the LC scheme, the main problem is in the stage of 
performing the correspondence since the subsequent testing 
of a candidate model is relatively straightforward. The linear 
mapping scheme is particularly attractive in this regard: Once 
the correspondence is known, the testing of model requires 
only a multiplication of a matrix by a vector. 

With respect to the correspondence stage, the question 
is how to perform correspondence efficiently with multiple 
models. This problem remains open for future study; we just 
comment here on a possible direction. The idea is to use 
prealignment to a prototype in the following manner. Suppose 
thatM1;‘. ! Mk  is a family of related models. A single model 
M  will be used for representing this set for the purpose of 
alignment. The correspondence Ti between each Mi in the 
set and M  is precomputed. Given an observed object P, a 

single correspondence T: M  -+ P is computed. The individual 
transformations Mi -+ P are computed by the composit ions 
T  0 Ti. 

C. General Conclusions 

In this section, we briefly summarize a number of general 
characteristics of the linear combinations scheme. In this 
scheme, as in some other alignment schemes, significant 
aspects of visual object recognition are more low-level in 
nature and more pictorial compared with structural description 
recognition approaches (e.g., [4]). The scheme uses directly 
2-D views rather than an explicit 3-D model. The use of the 
2-D views is different, however, from a simple associative 
memory  [ 11, where new views are simply compared in parallel 
with all previously stored views. Rather than measuring the 
distance between the observed object and each of the stored 
views, a distance is measured from the observed object to the 
linear subspace (or a low-dimensional manifold) defined by 
previous views. 

The linear combination scheme “reduces” the recognition 
problem in the sense to the problem of establishing a corre- 
spondence between the viewed object and candidate models. 
The method demonstrates that if a correspondence can be es- 
tablished, the remaining computation is relatively straightfor- 
ward. Establishing a reliable correspondence between images 
is not an easy task, but it is a general task solved by the visual 
system (e.g., in motion measurement and stereoscopic vision), 
and related processes may  also be involved in visual object 
recognition. 

APPENDIX A 

In Section I-D-l, we showed that the images of an object 
with smooth surfaces rotating in 3-D space can be represented 
as the linear combination of five views and mentioned that the 
coefficients for these linear combinations satisfy seven func- 
tional constraints. In this appendix, we list these constraints. 

W e  use the same notation as in Section I-D-2. Let 
Rl,... , Rg, l?, be 3 x  3 rotation matrices and Ri. . . . , Rk, 
& be the corresponding 2 x  5 matrices defined in Section I- 
D-2. Let ~1, . . . , ~5, f be the first row vectors and ~1,. . . , ss, 
2 the second row vectors of R’,, . . . , Rk, l?‘, respectively. In 
Section I-D-2, we showed that each of the two row vectors of 
& is a linear combination of the corresponding row vectors 
of R:,Rh....:Rk, that is 

+= c airi 
i=l 

i= c his;. 
i=l 

The functional constraints can be expressed as 
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Claim: Let {Xi! . . , X,} be the lc smallest eigenvalues of 
F; then 

iI 
2=1 

Xi = Fk llD2(Vk) 

(Constraints 1, 2, and 3, are immediate. Constraints 4, 5, 6, where the minimum is taken over all the linear subspaces of 
and 7 can be verified by expressing all the entries in terms of dimension n - k. Therefore, span{uk+l! . . , u,} is the best 
the rotation angles (Y, /3, and y.) (n - Ic) dimensional space through pl , p2 > . . . ! p,. 

To express these constraints as a function of the coefficients, Proof: Let VI, be a linear subspace of dimension (n - /c). 
every occurrence of a term iii should be replaced by the W e  must establish that 
appropriate linear combination as follows: 

i=l 

ii = 2 bi(si)j. 
i=l 

Let {WI,... ,u,} be a set of orthonormal vectors in R” 
such that & = Span{Wk+l,  ... ,wu,}. V = (WI, ... ,?I,) and  
u  = (Ul, . *. , u,) are n x  n orthonormal matrices. Let 

R = UtV. 

In the case of a similarity transformations (i.e., with scale Then 
change), the first two constraints are substituted by UR=V 

72~+f;+~~=~~+~;+~~ that is 

and the sixth becomes t13 = 2 Ti3 Ui 

(?I +q2 + (i5 +q2 =  +: +?; +?;. 
i=l 

R is also orthonormal, therefore 

APPENDIX B 

In this Appendix, we describe a method to find a space of 
erfj =  crfj =  1. 
z=l j=l 

a given dimension that lies as close as possible to a given set 
of points. Now 

tit {Pl,PZ,“. , pm} be a set of points in R”. W e  would 
like to find the (n - Ic) dimensional space that lies as FIJI = F  kriiut 

( ) 
=k Tij Xi Ui 

close as possible (in the least-square sense) to the points i=l i=l 

{Pl,PZ,... ,pm}. Let P be the n x  m  matrix given by and therefore 
(Pl,PZ,... ,Pm). Let {Ul,..., u,} be a set of orthonormal 
vectors in R”, and define Uk = span{uk+r,u,}. The sum 
of the distances (squared) of the points pl, ~2, . . . , p, from 

VfFvj = ($riiui) (griikui). 

& is given by Since uiuj = Sij, we obtain that 

D2(U,!f) = & IIPtUii12. 
i=l 

IJ~FIJ~ =  2  r&Xi. 
i=l 

(since Et=, (PiUi)2 is the squared distance of pi from uk.) Therefore 
Let F  = PPt. Then 

D2(uk) = 5 llPtuil12 = 2 (P”Ui)t(PtUt) = &uIFUI’ 

D2(Vk) = $ujFuj = k  k?$k = $ 
j=l i=l 

i=l i=l i=l Let 

Any real matrix of the form XXt is symmetr ic and non- 
negative. Therefore, F  has n eigenvectors and n real nonnega- Cti = 

tive eigenvalues. Assume that the {ui: . . . , u,} above are the j=l 

eigenvectors of F  with eigenvalues X1 5 X2 5 . . . 5 X,, Then 
respectively, then Fui = Xiui, and therefore 

D2(u,) = 2 xi. 
i=l 

D2(V,) = 2 &iXi 
i=l 

where 0 5 oi 5 1 and Cy=“=, N, = Ic. 
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The claim we wish to establish is that the minimum is 
obtained when oi = 1 for i = 1.. . k, and cyi = 0 for 
i = Ic+1... n. Assume that for Vk, there exists 1 5 m  5 Ic 
such that Q, < 1, and k  + 1 5 1 5 n such that al > 0. We 
can decrease cyl and increase (Y, (by min(cq, 1 - a,)), and 
this cannot increase the value of D2(&). By repeating this 
process, we will eventually reach the value of D2(&). Since 
during this process the value cannot increase, we obtain that 

and therefore 

i=l 
Xi = I$Il D2(Vk). 

APPENDIX C 

In the linear mapping method, a matrix L was constructed 
that maps every legal view ZI of the object to a constant output 
vector. If the common output is chosen to be the zero vector, 
then Lv = 0 for any legal view of the object. 

In this Appendix, we briefly consider the case where the 
object is only partially visible. We model this situation by 
assuming that we are given a partial vector p. In this vector, 
the first k  coordinates are unknown due to the occlusion, and 
only the last n - k  coordinates are observable. (A partial 
correspondence between the occluded object and the model 
is assumed to be known.) 

In the vector p, we take the first k  coordinates to be zero. 
We try to construct from p a new vector p’ by supplementing 
the missing coordinates so as to minimize 11 Lp’ll. The relation 
between p and p’ is 

p’ = p + 5 UtUi 
i=l 

where the ci are unknown constants, and the Ui are unit vectors 
along the first k  coordinates. 

In matrix notation, we seek to complement the occluded 
view by minimizing: 

rnin IlLp + LUall 

where the columns of the matrix U are the vectors u;, and a 
is the vector on the unknown ai’s. 

The solution to this minimization problem is 

a = -[Lu]+L, 

(where H+ denotes the pseudo inverse of the matrix H). 
This means that the pseudo inverse (LU)+ will have to be 
computed. The matrix L if fixed, but U depends on the points 
that are actually visible. 

This optimal value of a can also be used to determine the 
output vector of the recognition process Lp’: 

Lp’ = (I - [Lu][Lu]+)Lp. 

p is then recognized as a legal view if this output is sufficiently 
close to zero. 
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