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Abstract. Many approaches to object recognition are founded on prob-
ability theory, and can be broadly characterized as either generative or
discriminative according to whether or not the distribution of the image
features is modelled. Generative and discriminative methods have very
different characteristics, as well as complementary strengths and weak-
nesses. In this chapter we introduce new generative and discriminative
models for object detection and classification based on weakly labelled
training data. We use these models to illustrate the relative merits of the
two approaches in the context of a data set of widely varying images of
non-rigid objects (animals). Our results support the assertion that nei-
ther approach alone will be sufficient for large scale object recognition,
and we discuss techniques for combining the strengths of generative and
discriminative approaches.

1 Introduction

In recent years many studies, both in machine learning and computer vision
areas, have focussed on the problem of object recognition. The key challenge is
to be able to recognize any member of a category of objects in spite of wide
variations in visual appearance due to changes in the form and colour of the
object, occlusions, geometrical transformations (such as scaling and rotation),
changes in illumination, and potentially non-rigid deformations of the object
itself. Since detailed hand-segmentation and labelling of images is very labour
intensive, learning object categories from ‘weakly labelled’ data has been studied
in recent years. Weakly labelled data means that training images are labelled
only according to the presence or absence of each category of object. A major
challenge presented by this problem is that the foreground object is accompanied
by widely varying background clutter, and the system must learn to distinguish
the foreground from the background without the aid of labelled data.
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Many of the current approaches to this problem rely on the use of local fea-
tures obtained from small patches of the image. One motivation for this is that
local patches can give information about an object even it is occluded. An other
motivation is that the variability of small patches is much less than that of whole
images and so there are much better prospects for generalization, in other words
for recognizing that a patch from a test image is similar to patches in the training
images. However, the patches must be sufficiently variable, and therefore suffi-
ciently large, to be able to discriminate between the different object categories
and also between objects and background clutter. A good way to balance these
two conflicting requirements is to determine the object categories present in an
image by fusing together partial ambiguous information from multiple patches.
Probability theory provides a powerful framework for combining such uncertain
information in a principled manner, and will form the basis for our research. We
will also focus on the detection of objects within images by combining informa-
tion from a large number of patches of the image.

Local features are obtained from small patches which are extracted from the
local neighbourhood of interest points obtained in the image. Some of the in-
terest point operators such as saliency [8], Difference of Gaussian (DoG) [11]
and Harris-Laplace (HL) [12] are invariant to location, scale and orientation,
and some are also affine invariant [12] to some extent. For the purposes of this
chapter we shall consider the use of such generic operators. We will use some
very common operators (Section 2) and feature description methods and will
compare their effect in learning performance (Section 5).

Also, the locations of the patches which provide strong evidence for an object
can give an indication of the location and spatial extent of that object. The
probabilistic model of Fergus et al. [5] performed the localization of the object
in an image by learning jointly the appearances and relative locations of a small
set of parts whose potential locations are determined by the saliency detector
[8]. Since their algorithm is computationally complex, the number of parts has to
be kept small. In [10] a discriminative framework for the classification of image
regions by incorporating neighborhood interactions is presented. But for two
class classification only. In [4], the spatial relationship between patches was not
considered but informative features (i.e. object features) were selected based on
information criteria such as likelihood ratio and mutual information. However, in
this supervised approach, hundreds of images were hand segmented. Finally, [19]
extended the Gaussian Mixture Model (GMM) based approach of [4] to a semi-
supervised case where a multi-modal GMM was trained to model foreground
and background feature together. In their study, some uncluttered images of
foreground were also used for the purpose of training their model. In this chapter,
we do not attempt to model the spatial relationship between patches but instead
focus on the comparison of generative with discriminative methods in the context
of local patch labelling.

The object recognition problem is basically a classification problem and there
are many different modelling approaches for the solution. These approaches can
be classified into two main categories such as generative and discriminative. To
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understand the distinction between discriminative and generative approaches,
consider a scenario in which an image described by a vector X (which might
comprise raw pixel intensities, or some set of features extracted from the image)
is to be assigned to one of K classes k = 1, . . . , K. From basic decision theory [2]
we know that the most complete characterization of the solution is expressed in
terms of the set of posterior probabilities p(k|X). Once we know these probabil-
ities it is straightforward to assign the image X to a particular class to minimize
the expected loss (for instance, if we wish to minimize the number of misclassi-
fications we assign X to the class having the largest posterior probability).

In a discriminative approach we introduce a parametric model for the posterior
probabilities, p(k|X), and infer the values of the parameters from a set of labelled
training data. This may be done by making point estimates of the parameters
using maximum likelihood, or by computing distributions over the parameters
in a Bayesian setting (for example by using variational inference).

By contrast, in a generative approach we model the joint distribution p(k,X)
of images and labels. This can be done, for instance, by learning the class prior
probabilities p(k) and the class-conditional densities p(X|k) separately. The re-
quired posterior probabilities are then obtained using Bayes’ theorem

p(k|X) =
p(X|k)p(k)∑
j p(X|j)p(j)

(1)

where the sum in the denominator is taken over all classes.
Each modelling approach has some advantages as well as disadvantages. There

are many recent studies dealing with the comparison of these two approaches
with the final goal of combining the two in the best way. In [14] it was concluded
that although the discriminative learning has lower asymptotic error, a genera-
tive classifier approaches its higher asymptotic error much faster. Very similar
results were also obtained by [3] but they showed on a simulated data that this
is only true when the models are appropriate for the data, i.e. the generative
model models the data distribution correctly. Otherwise, if a mis-matched model
was selected then generative and discriminative models behaved similarly, even
with a small number of data points. In both [3] and [14] it was observed that
as the number of data points is increased the discriminative model performs
better. In [3] and [7] discriminative and generative learning were combined in
an ad-hoc manner using a weighting parameter and the value of this parameter
defines the extend to which discriminative learning is effective over generative
learning. In [18] discriminative learning was performed on a generative model
where background posterior probability was modelled with a constant.

In this chapter we will provide two different models, one from each approach,
which are able to provide labels for the individual patches, as well as for the
image as a whole, so that each patch is identified as belonging to one of the
object categories or to the background class. This provides a rough indication
of the location of the object or objects within the image. Again these individual
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patch labels must be learned on the basis only of overall image class labels. Our
training set is weakly labelled where each image is labelled only according to the
presence or absence of each category of object. Our goal in this chapter is not
to find optimal object recognition system, but to compare alternative learning
methodologies. For this purpose, we shall use a fixed data set. In particular,
we consider the task of detecting and distinguishing cows and sheep in natural
images. This set is chosen for the wide variability of the objects in order to
present a non-trivial classification problem. We do not have any data set for
background only. Various features used in this study are explained in Section
2. Our discriminative and generative models are introduced in Sections 3 and 4
respectively.

We use tn to denote the image label vector for image n with independent
components tnk ∈ {0, 1} in which k = 1, . . .K labels the class. In our case
K = 3 where the classes are cow, sheep and background. Each class can be
present or absent independently in an image, and we make no distinction be-
tween foreground and background classes within the model itself. Xn denotes
the observation for image n and this comprises as set of Jn patch vectors {xnj}
where j = 1, . . . , Jn. Note that the number Jn of detected interest points will in
general vary from image to image.

We shall compare the two models in various aspects. First we will investigate
how the models behave with weakly labelled data and then we will test how
strongly labelled (i.e. images are segmented as foreground and background) and
weakly labelled data can be used together in training the models. Experiments
and results for this is given in Section 5.1. Secondly, we will test the models with
various types of feature as inputs to see how feature type effects the models.
Experiments and results for this is given in Section 5.2. Finally, as many previous
studies did, we will see how training data quantity affects learning in the two
different model types. Experiments and results for this is given in Section 5.3.

2 Feature Extraction

Due to the reasons that we have mentioned in the previous section,we will follow
several recent approaches and use interest point detectors to focus attention on
a small number of local patches in each image. This is followed by invariant
feature extraction from a neighbourhood around each interest point.

We choose to work with Harris-Laplace (HL) [12] and Difference of Gaussian
(DoG) [11] interest point operators because they are invariant to orientation and
scale changes. In our earlier study [16] we have used DoG interest point detector
with SIFT (Scale Invariant Feature Transform) descriptor. SIFT is invariant
to illumination and affine (to some degree) changes and very suitable for DoG
interest point detectors. However SIFT, being a 128 dimentional vector, brings
a high computational load for model learning. Thus, in this chapter we will use
15 dimensional Local Jet (LJ) descriptor instead [9,6].

For the purpose of comparison, we will train our models using different feature
types and see how they are effected by these choices. The two feature point
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operators, HL and DoG, will be used with the same feature descriptor (LJ). In
Figure 1 a cow image is shown together with with HL and DoG feature point
detectors in order to give more insight into these two types of operators. Here
only feature points which have scale grater than 5 pixels are shown. As can be
observed from the images, the DoG operator extracts uniform regions (leftmost
image in Figure 1) and HL extracts corners (middle image in the figure) where
the number of features extracted by HL is usually less than DoG.

The feature descriptor may be concatenated with colour information. The
colour information is extracted from each patch based on [1]. Averages and stan-
dard deviations of (R, G, B), (L, a, b) and (r = R/(R+G+B), g = G/(R+G+B))
constitute the colour part of the feature vector. Lab is a device-independent
colour space that attempts to uniformly represent colour as we perceive it. L is
the lightness value, a is the red/green opponency and blue/yellow is represented
on the b axis. As a result, if colour is also used as a feature descriptor then we
will have a 31 dimensional feature vector.

Just for comparison purposes, we will also use square random patches as
interest regions which are selected at random sizes and random positions all
over the image. Since the size of a patch can vary between 1 pixel to the full
size of the image, the patches will be scaled to 16 by 16 size. If each pixel’s
colour information is used directly to form a feature vector, this makes a feature
vector of size 768 (16 × 16 × 3) and it is impossible to use this directly in our
models (especially in the generative model). Thus, we compute first 15 Principle
Component Analysis (PCA) coefficients for the gray scale patch and we obtain
the colour feature as described in the previous paragraph. Again this makes a
31 dimensional feature vector. The number of random patches is selected to be
approximately the same as the number of patches found by other interest point
operators, which is around 100 for each image. In the rightmost image in Figure 1
the cow image with some of the random patches is also shown. We only show
10 random patches here. In Section 5.2, comparison of the two models when
used with different features will be given in terms of patch labelling and image
labelling. We will compare HL and DoG operators with LJ and colour feature,
and random patches with PCA coefficients and colour feature.

, ,

Fig. 1. Different interest point operators. Feature point locations are the centers of the
squares and the size of a square shows the scale of that feature point. The three images
show (left to right) DoG interest points, HL interest points and random patches.
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3 The Discriminative Model with Patch Labelling

In a discriminative setting, the purpose is to learn the posterior probabilities.
Since our goal is to determine the class membership of individual patches also, we
associate with each patch j in an image n a binary label τnjk ∈ {0, 1} denoting
the class k of the patch. For the models developed in this chapter we shall
consider these labels to be mutually exclusive, so that

∑K
k=1 τnjk = 1, in other

words each patch is assumed to be either cow, sheep or background. Note that
this assumption is not essential, and other formulations could also be considered.
These components can be grouped together into vectors τnj . If the values of
these labels were available during training (corresponding to strongly labelled
images) then the development of recognition models would be greatly simplified.
For weakly labelled data, however, the {τnj} labels are hidden (latent) variables,
which of course makes the training problem much harder.

We now introduce a discriminative model, which corresponds to the directed
graph shown in Figure 2.

JnJn

xnjxnj

w

tntn

N

�nj�nj

Fig. 2. Graphical representation of the discriminative model for object recognition

Consider for a moment a particular image n (and omit the index n to keep the
notation uncluttered). We build a parametric model yk(xj ,w) for the probability
that patch xj belongs to class k. For example we might use a simple linear-
softmax model with outputs

yk(xj ,w) =
exp(wT

k xj)∑
l exp(wT

l xj)
(2)

which satisfy 0 � yk � 1 and
∑

k yk = 1. More generally we can use a multi-layer
neural network, a relevance vector machine, or any other parametric model that
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gives probabilistic outputs and which can be optimized using gradient-based
methods. The probability of a patch label τ j is then given by

p(τ j |xj) =
K∏

k=1

yk(xj ,w)τjk (3)

where the binary exponent τjk simply pulls out the required term (since y0
k = 1

and y1
k = yk).

Next we assume that if one, or more, of the patches carries the label for a
particular class, then the whole image will. For instance, if there is at least one
local patch in the image which is labelled ‘cow’ then the whole image will carry a
‘cow’ label (recall that an image can carry more than one class label at a time).
Thus the conditional distribution of the image label, given the patch labels, is
given by

p(t|τ ) =
K∏

k=1

⎡
⎣1 −

J∏
j=1

[1 − τjk]

⎤
⎦

tk
⎡
⎣ J∏

j=1

[1 − τjk]

⎤
⎦

1−tk

. (4)

In order to obtain the conditional distribution p(t|X) we have to marginalize
over the latent patch labels. Although there are exponentially many terms in
this sum, it can be performed analytically for our model due to the factorization
implied by the graph in Figure 2 to give

p(t|X) =
∑
τ

⎧⎨
⎩p(t|τ )

J∏
j=1

p(τ j |xj)

⎫⎬
⎭

=
K∏

k=1

⎡
⎣1 −

J∏
j=1

[1 − yk(xj ,w)]

⎤
⎦

tk
⎡
⎣ J∏

j=1

[1 − yk(xj ,w)]

⎤
⎦

1−tk

. (5)

This can be viewed as a probabilistic version of the ‘noisy OR’ function [15].
Given a training set of N images, which are assumed to be independent, we

can construct the likelihood function from the product of such distributions, one
for each data point. Taking the negative logarithm then gives the following error
function

E (w) = −
N∑

n=1

C∑
k=1

{tnk ln [1 − Znk] + (1 − tnk) lnZnk} (6)

where we have defined

Znk =
Jn∏
j=1

[1 − yk (xnj ,w)] . (7)

The parameter vector w can be determined by minimizing this error (which cor-
responds to maximizing the likelihood function) using a standard optimization
algorithm such as scaled conjugate gradients [2]. More generally the likelihood
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function could be used as the basis of a Bayesian treatment, although we do not
consider this here.

Once the optimal value wML is found, the corresponding functions yk(x,wML)
for k = 1, . . . , K will give the posterior class probabilities for a new patch feature
vector x. Thus the model has learned to label the patches even though the
training data contained only image labels. Note, however, that as a consequence
of the ‘noisy OR’ assumption, the model only needs to label one foreground
patch correctly in order to predict the image label. It will therefore learn to pick
out a small number of highly discriminative foreground patches, and will classify
the remaining foreground patches, as well as those falling on the background, as
‘background’ meaning non-discriminative for the foreground class. This will be
illustrated in Section 5.1.

3.1 Soft Discriminative Model

In our discriminative model with probabilistic noisy OR assumption, if only
one patch is labelled as belonging to a class, then the whole image is labelled as
belonging to that class. We can soften this assumption by modelling the posterior
probability of the image label using the logistic sigmoid function

p (tk = 1|X) =
1

1 + e−Zk
(8)

where Zk is the sum over all patches

Zk =
J∑

j=1

yk (xj ,w) (9)

where
yk(xj ,w) = wT

k xj (10)

so that we are adding the log odds. It follows that the conditional distribution
of target labels is given by

p (tk|X) =
(

1
1 + e−Zk

)tnk (
1 − 1

1 + e−Zk

)1−tk

. (11)

The distribution for the vector of target variables is then given by

p (t|X) =
K∏

k=1

p (tk|X) . (12)

However outputs of this model can not be directly used as patch label probabil-
ities because they are not normalized and they don’t satisfy

∑
k yk = 1. This does

not cause a problem in finding the most probable patch label. We can directly use
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the model outputs and choose the biggest one as patch label. However, when we
need patch label probabilities then we need to normalize the model outputs over
all possible patches and labels.

The error function for this soft discriminative model is given by the negative
log likelihood, and takes the form

E (w) = −
N∑

n=1

K∑
k=1

{
Znk (tnk − 1) − ln

(
1 + e−Znk

)}
. (13)

With this soft version, an improvement in both patch labelling and image la-
belling is obtained. Comparative results for the two discriminative models (prob-
abilistic noisy OR and soft) are given in Section 5.1.

4 The Generative Model with Patch Labelling

Next we turn to a description of our generative model, whose graphical repre-
sentation is shown in Figure 3. The structure of this model mirrors closely that

JnJn

xnjxnj

tntn

�

�

�

N

�nj�nj

Fig. 3. Graphical representation of the generative model for object recognition

of the discriminative model. In particular, the same class-label variables τnj are
associated with the patches in each image, and again these are unobserved and
must be marginalized out in order to obtain maximum likelihood solutions.

In the discriminative model we represented the conditional distribution p(t|X)
directly as a parametric model. By contrast in the generative approach we model
p(t,X), which we decompose into p(t,X) = p(X|t)p(t) and then model the two
factors separately. This decomposition would allow us, for instance, to employ
large numbers of ‘background’ images (those containing no instances of the ob-
ject classes) during training to determine p(X|t) without concluding that the
prior probabilities p(t) of objects is small.
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Again, we begin by considering a single image n. The prior p(t) is specified
in terms of K parameters ψk where 0 � ψk � 1 and k = 1, . . . , K, so that

p(t) =
K∏

k=1

ψtk

k (1 − ψk)1−tk . (14)

In general we do not need to learn these from the training data since the prior
occurrences of different classes is more a property of the way the data was
collected than of the real world frequencies. (Similarly in the discriminative
model we will typically wish to correct for different priors between the training
set and test data using Bayes’ theorem.)

The remainder of the model is specified in terms of the conditional probabili-
ties p(τ |t) and p(X|τ ). The probability of generating a patch from a particular
class is governed by a set of parameters πk, one for each class, such that πk � 0,
constrained by the subset of classes actually present in the image. Thus

p(τ j |t) =

(
K∑

l=1

tlπl

)−1 K∏
k=1

(tkπk)τjk . (15)

Note that there is an overall undetermined scale to these parameters, which may
be removed by fixing one of them, e.g. π1 = 1.

For each class k, the distribution of the patch feature vector x is governed by
a separate mixture of Gaussians which we denote by φk(x; θk), so that

p(xj |τ j) =
K∏

k=1

φk(xj ; θk)τjk (16)

where θk denotes the set of parameters (means, covariances and mixing coeffi-
cients) associated with this mixture model, and again the binary exponent τjk

simply picks out the required class.
If we assume N independent images, and for image n we have Jn patches

drawn independently, then the joint distribution of all random variables is
N∏

n=1

p(tn)
Jn∏
j=1

[p(xnj |τnj)p(τ nj |tn)] . (17)

Since we wish to maximize likelihood in the presence of latent variables,
namely the {τnj}, we use the EM algorithm. The expected complete-data log
likelihood is given by

N∑
n=1

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(
K∑

l=1

tnlπl

)}
. (18)

In the E-step the expected values of τnkj are computed using

〈τnjk〉 =
∑

{τ nj}
τnjkp(τnj |xnj , tn) =

tnkπkφk(xnj)
K∑

l=1

tnlπlφl(xnj)

. (19)
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Notice that the first factor on the right hand side of (15) has cancelled in the
evaluation of 〈τnjk〉.

For the M-step we first set the derivative with respect to one of the parameters
πk equal to zero (no Lagrange multiplier is required since there is no summation
constraint on the {πk}) and then re-arrange to give the following re-estimation
equations

πk =

⎡
⎣ N∑

n=1

Jntnk

(
K∑

l=1

tnlπl

)−1
⎤
⎦
−1

N∑
n=1

Jn∑
j=1

〈τnjk〉. (20)

Since these represent coupled equations we perform several (fast) iterations of
these equations before proceeding with the next EM cycle (note that for this
purpose the sums over j can be pre-computed since they do not depend on the
{πk}).

Now consider the optimization with respect to the parameters θk governing
the distribution φk(x; θk). The dependence of the expected complete-data log
likelihood on θk takes the form

N∑
n=1

Jn∑
j=1

〈τnjk〉 lnφk(xnj ; θk) + const. (21)

This is easily maximized for each class k separately using the EM algorithm
(in an inner loop), since (21) simply represents a log likelihood function for a
weighted data set in which patch (n, j) is weighted with 〈τnjk〉. Specifically, we
use a model in which φk(x; θk) is given by a Gaussian mixture distribution of
the form

φk(x; θk) =
M∑

m=1

ρkmN (x|µkm, Σkm). (22)

The E-step is given by

γnjkm =
ρkmN (xnj |µkm, Σkm)∑

m′ ρkm′N (xnj |µkm′ , Σkm′)
(23)

while the M-step equations are weighted by the coefficients 〈τnjk〉 to give

µnew
km =

∑
n

∑
j〈τnjk〉γnjkmxnj∑

n

∑
j〈τnjk〉γnjkm

Σnew
km =

∑
n

∑
j〈τnjk〉γnjkm(xnj − µnew

km )(xnj − µnew
km )T∑

n

∑
j〈τnjk〉γnjkm

ρnew
km =

∑
n

∑
j〈τnjk〉γnjkm∑

n

∑
j〈τnjk〉 .

If one EM cycle is performed for each mixture model φk(x; θk) this is equiva-
lent to a global EM algorithm for the whole model. However, it is also possible
to perform several EM cycle for each mixture model φk(x; θk) within the outer
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EM algorithm. Such variants yield valid EM algorithms in which the likelihood
never decreases.

The incomplete-data log likelihood can be evaluated after each iteration to
ensure that it is correctly increasing. It is given by

N∑
n=1

Jn∑
j=1

{
ln

(
K∑

k=1

tnkπkφk(xnj)

)
− ln

(
K∑

l=1

tnlπl

)}
.

Note that, for a data set in which all tnk = 1, the model simply reduces to
fitting a flat mixture to all observations, and the standard EM is recovered as a
special case of the above equations.

This model can be viewed as a generalization of that presented in [19] in which
a parameter is learned for each mixture component representing the probability
of that component being foreground. This parameter is then used to select the
most informative N components in a similar approach to [4] and [17] where the
number N is chosen heuristically. In our case, however, the probability of each
feature belonging to one of the K classes is learned directly.

Inference in the generativemodel is more complicated than in the discriminative
model. Given all patches X = {xj} from an image, the posterior probability of the
label τ j for patch j can be found by marginalizing out all other hidden variables

p (τ j |X) =
∑
t

∑
τ /τ j

p (τ ,X, t)

=
∑
t

p (t)
1(∑K

l=1 πltl

)J

K∏
k=1

(πktkφk (xj))
τjk

∏
i�=j

[
K∑

k=1

πktkφk (xi)

]
(24)

where τ = {τ j} denotes the set of all patch labels, and τ/τ j denotes this set
with τ j omitted. Note that the summation over all possible t values, which must
be done explicitly, is computationally expensive.

For the inference of image label we require the posterior probability of image
label t, which can be computed using

p (t|X) ∝ p (X|t) p (t) (25)

in p(t) is computed from the coefficients {ψk} for each setting of t in turn, and
p (X|t) is found by summing out patch labels

p (X|t) =
∑
τ

J∏
j=1

p (X, τ j |t) =
Jn∏
j=1

∑K
k=1 tkπkφk (xj)∑K

l=1 tlπl

. (26)

5 Experiments and Results

In this chapter, we have used a test bed of weakly labelled images each contain-
ing either cows or sheep, in which the animals vary widely in terms of number,
pose, size, colour and texture. There are 167 images in each class, and 10-fold
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cross-validation is used to measure performance. For the discriminative model we
used a two-layer nonlinear network having 10 hidden units with ‘tanh’ activation
functions. The network had 31 inputs, corresponding to the LJ or PCA coefficient
with colour feature as discussed in Section 2 and 3 outputs (cow, sheep, back-
ground). For the generative model we used a separate Gaussian mixture for cow,
sheep and background, each of which has 10 components with diagonal covariance
matrices. In our earlier study [16] we used input vector of size 144 which consists
of SIFT and colour features. Using a smaller feature vector this time brings com-
putational benefit such as speed and computable covariance matrixes.

In the test phase of both discriminative and generative models, we input
the patch features to the models and obtain the posterior probabilities of the
patch labels as the outputs using (2) for probabilistic noisy OR discriminative
model or (10) with normalization for soft discriminative model and (24) for the
generative model. The posterior probability of the image label is computed as
in (5) for probabilistic noisy OR model or (12) for the soft discriminative model
and (25) for the generative case. We can therefore investigate the ability of the
models both to predict the class labels of whole images and of their constituent
patches. The latter is important for object localization.

5.1 Combining Strongly Labelled and Weakly Labelled Data for
Training

Initial results with the generative model showed that with random initialization
of the mixture model parameters it is incapable of learning a satisfactory solution
[16]. We conjectured that this is due to the problem of multiple local maxima in
the likelihood function (a similar effect was found by [19]). To test this, we used
some segmented images for initialization purposes (but not for optimization) in
our earlier study [16]. 30 cow and 30 sheep images were hand-segmented, and
a patch which has any foreground pixel was labelled as foreground and a patch
which has no foreground pixel was labelled as background. Features obtained
from the patches belonging to each class were clustered using the K-means al-
gorithm and the component centers of a class mixture model were assigned to
the cluster centers of the respective class. The mixing coefficients were set to
the number of points in the corresponding cluster divided by the total number
of points in that class. Similarly, covariance matrices were computed using the
data points assigned to the respective center.

In this chapter, we use these segmented images also for training optimization
in order to give both models the same chance. In the generative case, including
the segmented data into learning requires only a slight change in the expected
complete-data log likelihood which becomes partially expected in this case:

∑
n∈US

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(
K∑

l=1

tnlπl

)}

+
∑
n∈S

Jn∑
j=1

{
K∑

k=1

τnjk ln [tnkπkφk(xnj)] − ln

(
K∑

l=1

tnlπl

)}
(27)
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where S and US denote segmented and unsegmented image sets respectively. For
segmented images n ∈ S, τnkj values are already known. Including the segmented
data to the generative model is very easy where we only need to assign known
patch labels instead of their expected labels in the outer E step (19) mentioned
in Section 4.

For the probabilistic noisy OR discriminative model, the error function be-
comes

E (w) = −
∑

n∈US

K∑
k=1

{tnk ln [1 − Znk] + (1 − tnk) lnZnk}

−
∑
n∈S

Jn∑
j=1

K∑
k=1

τnjk ln(yk(xnj ,w)) (28)

where the first term on the right hand side of the error function includes unseg-
mented images and is the image labelling error, while the second term includes
segmented images and is the patch labelling error.

Similarly, for the soft discriminative model, the error function (29) consists
of two parts: one with unlabelled data and the other with labelled data. These
two parts need to be treated differently during all optimization steps.

E (w) = −
∑

n∈US

K∑
k=1

{
Znk (tnk − 1) − ln

(
1 + e−Znk

)}

−
∑
n∈S

Jn∑
j=1

K∑
k=1

(yk(xnj ,w) − τnjk) (29)

To test the effect of labelled data on the generative model, we train the same
generative model with and without labelled data and compared the results.
When only unlabelled data is used (i.e. no initialization is performed) overall
correct rate (ocr) for image labelling is obtained to be 46.50% which is worse
than random labelling. When segmented data is used for initialization only then
there is a significant increase in the performance where ocr becomes 59.37%.
When the segmented data is used for training as well the performance is not
effected much where ocr stays at 59.37%. In Figure 4 examples for generative
model patch labelling are given for different situations where most probable label
is assigned for each patch. Patch centers are shown by coloured dots where colour
denotes the class (red, white, green for cow, sheep and background respectively).
As can be observed from the image, without initialization patch labelling is as
random (top image of the figure). Image labelling result for this particular sheep
image is t = [1 0 1] for this sample run which means that this is a cow image.
With initialization, most of the patches are labelled correctly (middle image in
the figure). Image label for the same sheep is t = [1 1 1] this time which means
there are both cow and sheep (as well as background) present in the image.
When segmented data is also used for training (bottom image) patch labelling
performance becomes better and sheep image is labelled correctly as t = [0 1 1].
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Using segmented data for the probabilistic noisy OR discriminative model
brings some problems. When labelled data is also used for training, although the
patch labelling performance increases significantly image labelling performance
degrades. For example, in Figure 4 patch labelling results during a sample run are
given where the most probable label is assigned to each patch. Top image is an
example which is obtained when segmented data is not used in training and ocr
for this case is 62.50%. Image labelling result is correct for this particular cow with
t = [0.99 0.50 1] which becomes t = [1 0 1] when 0.5 is used as a threshold for image
label probability. Middle image is obtained when segmented data is used for train-
ing the model and ocr for this case is very low, 30%. In this case patch labelling is
better but image label for this particular cow image is t = [1 0.83 1] which means
that there is a high probability of sheep also. This is caused by a white (sheep)
patch in the cow image. The bottom image is when the soft discriminative model is
trained with segmented data where ocr becomes 78.1%. Patch labelling is as good
as the previous case but this time image labelling is also correct t = [1 0 1] for this
particular cow image although there are two white (sheep) patches. This shows
that when we use segmented data and force the probabilistic noisy OR discrim-
inative model to learn those patches as they are labelled then the discriminative
power decreases because those patches may not be that discriminative. However
this is not the case for soft discriminative model.

As we mentioned in Section 3.1 outputs are linear for our soft discriminative
model and this means that outputs can take any real value. Thus, normalization
is required for this model when we need patch label probabilities.

5.2 Comparison with Different Feature Types

In this section we will provide comparative results between our generative (G)
and soft discriminative (D) model when they are used with different types of fea-
tures such as HL operator with LJ and colour feature (HL-LJ+C), DoG opera-
tor with LJ and colour (DoG-LJ+C) and random patches with PCA coefficients
and colour feature (R-PCA+C). Usually DoG feature point operator finds more
points than HL operator does when applied on the same image. In the random
selection case we define the number of feature points and their local extension.
In order to eliminate the effect of data quantity in the comparison, we arranged
the feature point extraction algorithms so that they produce roughly the same
amount of feature points (around 100) for each image. Means and standard de-
viations of overall correct rate results over 10 fold runs are given in Table 1.
Columns are for different feature types and rows are for different models.

As can be observed from the table, ocr for discriminative model is not effected
much when different feature types are used. The best overall correct rate for the
discriminative model is obtained by DoG-LJ+C feature and R-PCA+C feature
causes the worst performance. The generative model produces highly different
overall correct rates with different feature types. The best performance for the
generative model is obtained by the random patches. With DoG-LJ+C and HL-
LJ+C the performance is worse than the random patches.
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Fig. 4. Patch labelling results (red, white, green for cow, sheep and background re-
spectively). Left column: Labelling results for the generative model where the most
probable label is assigned to each patch. Patch labelling result in the top image is
obtained when the generative model is trained without initialization. The middle im-
age is when labelled data is used only for initializing the model. The bottom image
is when the segmented images are used for both initializing and training the model.
Right column: Labelling results for discriminative models where the most probable
label is assigned to each patch. Top image is obtained when segmented data is not
used in training of probabilistic noisy OR discriminative model. Middle row is when
segmented data is used for training the same model. The bottom row is when the soft
discriminative model is trained with segmented data.

It is also interesting to investigate the extent to which the discriminative and
generative models correctly label the individual patches. In order to make a
comparison in terms of patch labelling we use 12 hand segmented test images
for each class. These segmented images are different from those we have used for
initializing and training the models. Patch labels are obtained by (24) for the
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Table 1. Means (M) and standard deviations (SD) of overall correct image label rate
for different feature types: HL with LJ and colour (HL-LJ+C), DoG with LJ and colour
(DoG-LJ+C) and random patches with PCA coefficients and colour (R-PCA+C)

HL-LJ+C DoG-LJ+C R-PCA+C
D (M)(%) 80.63 89.38 78.13
D (SD)(%) 7.13 4.74 3.83
G (M)(%) 56.25 56.25 75.62
G (SD)(%) 6.25 9.88 2.61

generative model and by (10) for the soft discriminative model. Normalization is
required for the discriminative model in order to obtain patch label probabilities.
Various thresholds are used on patch label probabilities in order to produce ROC
curves for the generative model and the soft discriminative model, as shown in
Figure 5.

As can be observed from the plots the generative model patch labelling is
better than the discriminative model patch labelling for all types of features and
patch labelling with DoG operator with LJ and colour feature is better than
other feature types.

Some examples of patch labelling for test images are given in Figure 6 for
random patches and for DoG patches, and in Figure 7 for HL patches. In these
figures each patch is assigned to the most probable class and patch centers are
given with coloured dots where colour denotes the patch label.

5.3 Comparison for Training Data Quantity

We trained our models with various number of training data. We used 50 to
150 images with 25 intervals from each class for training and plot overall correct
rate versus number of images used in training for both models in Figure 8.
The left figure corresponds to the use of random patches, while the right figure
corresponds to the use of DoG patches.

Similar results as [14] and [3] are obtained in this chapter also. Since the
generative model performs the best with random patches (Section 5.2) we were
expecting that with less data the generative model performance should be better
than discriminative model. As can be observed from the left plots in Figure 8 the
generative model performance is much better than the discriminative one for less
data and as the quantity of data is increased discriminative model performance
increases much faster than the generative model’s performance. When DoG-
LJ+C features are used, since the generative model does not perform well with
this feature type, we were not expecting same type of behaviour. As can be seen
in the right hand plots in Figure 8, the generative and the discriminative models
behave nearly the same as we increase the data quantity but the discriminative
model performs better than the generative model all the time.
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Fig. 5. ROC curves of patch labelling. Each figure contains two curves. One for the
generative model and the other one for the discriminative model. Upper figure is for
R-PCA+C patches. Center one is for DoG-LJ+C. Bottom one is for HL-LJ+C.
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Fig. 6. Patch labelling examples for random patches (a) and for DoG patches (b).
Results are shown for discriminative model (top row) and generative model (bottom
row) for cow (left column) and sheep (right column) image. Red, white, green dots
denote cow, sheep and background patches respectively and patch labels are obtained
by assigning each patch to the most probable class.
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,

,

Fig. 7. Patch labelling examples for HL patches. Results for discriminative model (top
row) nd generative model (bottom row) for cow (left column) and sheep (right column)
image. Red, white, green dots denote cow, sheep and background patches respectively
and patch labels are obtained by assigning each patch to the most probable class.
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Fig. 8. Overall correct rate versus data number plots to show how the models behave
as the data quantity is increased. Left figure is when random patches are used and the
right figure is when DoG features are used.
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6 Discussion

In our earlier study [16], we introduced novel discriminative (probabilistic noisy
OR) and generative models. We used SIFT features only and showed that the
probabilistic noisy OR discriminative model and the generative model have com-
plementary strengths and limitations. The discriminative model is able to focus
on highly informative features, while the generative model gives high classifica-
tion accuracy, and also has some ability to localize the objects within the image.
However, the generative model required careful initialization in order to achieve
good results. Also, inference in such a generative model can be very complex. A
discriminative model, on the other hand, is typically very fast once trained.

In this chapter, we have introduced a soft version of our previous probabilistic
noisy OR discriminative model [16]. The soft discriminative model introduced
here has a better patch labelling capability than probabilistic noisy OR one.

We have compared our soft discriminative and generative models in terms of
using strongly labelled and weakly labelled data together in training. Combining
these two data types is very easy in the generative model training but needs
lots of variations in the discriminative case. The generative model, unlike the
discriminative ones, could also benefit from the use of completely unlabelled
images, although we have not conducted any experiments on this so far.

We have used several different feature point operators and feature extractors,
and experimented with the effect of different feature types on the learning capac-
ity of the models. First, we have compared the models in terms of image labelling
performance. We have observed that the discriminative model is not effected very
much when different feature types are used and the model performs the best with
DoG-LJ+C (DoG operator with local jet and colour features). Random patches
with PCA coefficients and colour features caused the worst performance for the
discriminative model, while the opposite results are observed for the generative
model. The performance of the generative model depends significantly on the
choice of feature types, and the best performance is obtained with random fea-
tures. We also compared the models in terms of patch labelling. In all cases the
generative model outperforms the discriminative model in patch labelling. But
the best patch labelling performance is obtained with DoG-LJ+C feature for
both models. This is a very reasonable result because DoG operator extracts
uniform regions as patches and in most cases a patch is either fully background
or fully foreground. However in other cases most of the time, a patch may con-
tain some foreground pixels as well as background pixels. In randomly selected
patches this is more serious.

We have also compared the two models when different number of images
are used for training. When this comparative experiment is performed using
random patches as features, we have observed that with small number of data the
generative model performs better than the discriminative model and as the data
quantity increases the performances for both models increase but this increase
is more marked for the discriminative model, so that the performance of the two
approaches is similar for large data sets. When this comparative experiment is
performed using DoG-LJ+C features, both models behaved nearly the same for
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all data quantities but the discriminative model performs better all the time as
we increase the data quantity.

Our investigations suggest that the most fruitful approaches will involve some
combination of generative and discriminative models. Indeed, this is already
found to be the case in speech recognition where generative hidden Markov
models are used to express invariance to non-linear time warping, and are then
trained discriminatively by maximizing mutual information in order to achieve
high predictive performance.

One promising avenue for investigation is to use a fast discriminative model to
locate regions of high probability in the parameter space of a generative model,
which can subsequently refine the inferences. Indeed, such coupled generative
and discriminative models can mutually train each other, as has already been
demonstrated in a simple context in [13].

One of the limitations of the techniques discussed here is the use of interest
point detectors that are not tuned to the problem being solved (since they are
hand-crafted rather than learned) and which are therefore unlikely in general to
focus on the most discriminative regions of the image. Similarly, the invariant
features used in our study were hand-selected. We expect that robust recognition
of a large class of object categories will require that local features be learned from
data.

Classifying individual patches is very hard because patches from different
classes may seem similar due to the effects of illumination, pose, noise or similar-
ity. This ambiguity can be solved by modeling the interactions between patches.
The contextual information can be used in the form of spatial dependencies in
the images. Markov Random Field models are traditional interaction models
used in vision because they can incorporate spatial relationship constraints in a
principled manner. For the purposes of this study we have ignored spatial infor-
mation regarding the relative locations of feature patches in the image. However,
most of our conclusions remain valid if a spatial model is combined with the local
information provided by the patch features.
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