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Abstract. Mammogram classification is directly related to computer-aided di-
agnosis of breast cancer. Traditional methods requires great effort to annotate
the training data by costly manual labeling and specialized computational mod-
els to detect these annotations during test. Inspired by the success of using deep
convolutional features for natural image analysis and multi-instance learning for
labeling a set of instances/patches, we propose end-to-end trained deep multi-
instance networks for mass classification based on whole mammogram without
the aforementioned costly need to annotate the training data. We explore three
different schemes to construct deep multi-instance networks for whole mammo-
gram classification. Experimental results on the INbreast dataset demonstrate the
robustness of proposed deep networks compared to previous work using segmen-
tation and detection annotations in the training.

Keywords: Deep multi-instance learning, whole mammogram classification, max
pooling-based multi-instance learning, label assignment-based multi-instance learn-
ing, sparse multi-instance learning

1 Introduction

According to the American Cancer Society, breast cancer is the most frequently diag-
nosed solid cancer and the second leading cause of cancer death among U.S. women.
Mammogram screening has been demonstrated to be an effective way for early detec-
tion and diagnosis, which can significantly decrease breast cancer mortality [17]. How-
ever, screenings are usually associated with high false positive rates, high variability
among different clinicians, and over-diagnosis of insignificant lesions [17]. To address
these issues, it is important to develop fully automated robust mammographic image
analysis tools that can increase detection rate and meanwhile reduce false positives.

Traditional mammogram classification requires extra annotations such as bounding
box for detection or mask ground truth for segmentation. These methods rely on hand-
crafted features from mass region followed by classifiers [20]. The main barrier to use
hand-crafted features is the associated cost of time and effort. Besides, these features
have potential poor transferability for use in other problem settings because they are
not data driven. Other works have employed different deep networks to detect region
of interest (ROI) and obtained mass boundaries in different stages [7]. However, these
methods require training data to be annotated with bounding boxes and segmentation
ground truths which require expert domain knowledge and costly effort to obtain.
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Fig. 1. The proposed deep multi-instance network framework. First, we use Otsu’s segmentation
to remove the background and resize the mammogram to 224 × 224. Second, the deep multi-
instance network accepts the resized mammogram as input to the convolutional layers. Third,
linear regression with weight sharing is employed for the malignant probability of each position
from the convolutional neural network (CNN) feature maps of high channel dimensions. Then the
responses of the instances/patches are ranked. Lastly, the learning loss is calculated using max
pooling loss, label assignment, or sparsity loss for the three different schemes.

Due to the high cost of annotation, we intend to perform classification based on
a raw, un-annotated whole mammogram. Each patch of a mammogram can be treated
as an instance and a whole mammogram is treated as a bag of instances. The whole
mammogram classification problem can then be thought of as a standard multi-instance
learning problem. Thus, we propose three different schemes, i.e., max pooling, label
assignment, and sparsity, to perform deep multi-instance learning for the whole mam-
mogram classification task.

The framework for our proposed end-to-end deep multi-instance networks for mam-
mogram classification is shown in Fig. 1. To fully explore the power of deep multi-
instance network, we convert the traditional multi-instance learning assumption into a
label assignment problem. Specifically, we also propose a more efficient, label assign-
ment based deep multi-instance network. As a mass typically composes only 2% of a
whole mammogram (see Fig. 2), we further propose sparse deep multi-instance network
which is a compromise between max pooling-based and label assignment-based multi-
instance networks. The proposed deep multi-instance networks are shown to provide
robust performance for whole mammogram classification on the INbreast dataset [16].
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(a) (b) (c) (d)

Fig. 2. Histograms of mass width (a) and height (b), mammogram width (c) and height (d). Com-
pared to the size of whole mammogram (1, 474× 3, 086 on average after cropping), the mass of
average size (329× 325) is tiny, and takes about 2% of a whole mammogram.

2 Related Work

2.1 Mammogram Classification

Beura et al. designed co-occurrence features and used wavelet transform for breast can-
cer detection [4]. Several works have used deep networks to perform mammogram
mass classification [11,6,25]. However, those methodologies require annotated mass
ROI and/or segmentation ground truth. Dhungel et al. trained a detector and segmen-
tation network on the training set first, and then used CNN to perform mass classifica-
tion [7]. The training procedure still requires detection ROI and boundary ground truth,
which is costly. In addition, multi-stage training cannot fully explore the power of the
deep network. Thus, an end-to-end approach for whole mammogram classification is
preferred for this problem.

2.2 Deep Multi-instance Learning

Dietterich et al. first proposed multi-instance learning problem [8]. There are various
other multi-instance related work in the machine learning literature. Andrews et al. gen-
eralized support vector machine for the multi-instance problem [1]. Kwok and Cheung
employed marginalized kernel to solve the instance label ambiguity in multi-instance
learning [14]. Zhou et al. extended multi-instance learning to multi-class classification
problems [23].

Due to the great representation power of deep features [24], combining multi-instance
learning with deep neural networks is an emerging topic. Wu et al. combined CNN with
multi-instance learning to auto-annotate natural images [21]. Kotzias et al. incorporated
CNN features into multi-instance cost function to do sentiment analysis [12]. Yan et al.
used a deep multi-instance network to find discriminative patches for body part recogni-
tion [22]. Patch based CNN added a new layer after the last layer of deep multi-instance
network to learn the fusion model for multi-instance predictions [10]. The above ap-
proaches used max pooling to model the general multi-instance assumption which only
considered the patch of max probability. In this paper, a more effective task-related deep
multi-instance models are explored for whole mammogram classification.
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3 Deep Multi-instance Networks for Whole Mammogram Mass
Classification

Leveraging the insights from recent successful deep convolution networks used for nat-
ural image processing, we design end-to-end trained deep multi-instance networks for
the task. Fig. 1 shows the proposed network architecture which has multiple convolu-
tional layers, one linear regression layer, one ranking layer, and one multi-instance loss
layer. We employ three schemes for combining multiply instances, 1) the max pooling-
based multi-instance learning takes only the largest element from the ranking layer; 2)
label assignment-based multi-instance learning utilizes all the elements; and 3) sparse
multi-instance learning adds sparse constraints for elements to the ranking layer. The
details of these schemes will be detailed later.

The rest of this section is organized as follows. We first briefly introduce the com-
mon part of the deep multi-instance networks to make the paper self-contained. Then we
introduce the max pooling-based deep multi-instance network in section 3.1. After that,
we convert the multi-instance learning into a label assignment problem in section 3.2.
Lastly section 3.3 describes how to inject the priori knowledge that a mass comprises
small percentage of a whole mammogram into the deep multi-instance network.

CNN is a successful model to extract deep features from images [15]. Unlike other
deep multi-instance network [22,10], we use a CNN to efficiently obtain features of all
patches (instances) at the same time. Given an image I , we can get a much smaller
feature map F of multi-channels Nc after multiple convolutional layers and max pool-
ing layers. The (F )i,j,: represents deep CNN features for a patch Qi,j in I , where i, j
represents the pixel row and column indices respectively, and : denotes the channel
dimension.

The goal of our work is to predict whether a whole mammogram contains a malig-
nant mass (BI-RADS ∈ {4, 5, 6} as positive) or not, which is a standard binary class
classification problem. We add a logistic regression with weights shared across all the
pixel positions following F . After that, an element-wise sigmoid activation function is
applied to the output. The malignant probability of feature space’s pixel (i, j) is

ri,j = sigmoid(a · Fi,j,: + b), (1)

where a is the weights in logistic regression, and b is the bias, and · is the inner product
of the two vectors a and Fi,j,:. The a and b are shared for different pixel position i, j.
We can combine ri,j into a matrix r = (ri,j) of range [0, 1] denoting the probabilities of
patches being malignant masses. The r can be flattened into a one-dimensional vector
as r = (r1, r2, ..., rm) corresponding to flattened patches (Q1,Q2, ...,Qm), where m
is the number of patches.

3.1 Max Pooling-based Multi-instance Learning

The general multi-instance assumption is that if there exists an instance that is positive,
the bag is positive. The bag is negative if and only if all instances are negative [8].
For whole mammogram classification, the equivalent scenario is that if there exists a
malignant mass, the mammogram I should be classified as positive. Likewise, negative
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mammogram I should not have any malignant masses. If we treat each patch Qi of I
as an instance, the whole mammogram classification is a standard multi-instance task.

For negative mammograms, we expect all the ri to be close to 0. For positive mam-
mograms, at least one ri should be close to 1. Thus, it is natural to use the maximum
component of r as the malignant probability of the mammogram I

p(y = 1|I,θ) = max{r1, r2, ..., rm}, (2)

where θ is the parameters of deep networks.
If we sort r first in descending order as illustrated in Fig. 1, the malignant probabil-

ity of the whole mammogram I is the first element of ranked r as

{r′1, r′2, ..., r′m} = sort({r1, r2, ..., rm}),
p(y = 1|I,θ) = r′1, and p(y = 0|I,θ) = 1− r′1,

(3)

where r′ = (r′1, r
′
2, ..., r

′
m) is descending ranked r. The cross entropy-based cost

function can be defined as

Lmaxpooling = −
N∑

n=1

log(p(yn|In,θ)) +
λ

2
‖θ‖2 (4)

where N is the total number of mammograms, yn ∈ {0, 1} is the true label of malig-
nancy for mammogram In, and λ is the regularizer that controls model complexity.

Typically, a mammogram dataset is imbalanced, (e.g., the proportion of positive
mammograms is about 20% for the INbreast dataset). In lieu of that, we introduce a
weighted loss defined as

Lmaxpooling = −
N∑

n=1

wyn
log(p(yn|In,θ)) +

λ

2
‖θ‖2, (5)

where wyn
is the empirical estimation of yn on the training data.

One disadvantage of max pooling-based multi-instance learning is that it only con-
siders the patch Q′1 (patch of the max malignant probability), and does not exploit
information from other patches. A more powerful framework should add task-related
priori, such as sparsity of mass in whole mammogram, into the general multi-instance
assumption and explore more patches for training.

3.2 Label Assignment-based Multi-instance Learning

For the conventional classification tasks, we assign a label to each data point. In the
multi-instance learning scheme, if we consider each instance (patch)Qi as a data point
for classification, we can convert the multi-instance learning problem into a label as-
signment problem.

After we rank the malignant probabilities r = (r1, r2, ..., rm) for all the instances
(patches) in a whole mammogram I using the first equation in Eq. 3, the first few
r′i should be consistent with the label of whole mammogram as previously mentioned,
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while the remaining patches (instances) should be negative. Instead of adopting the gen-
eral multi-instance learning assumption that only considers theQ′1 (patch of malignant
probability r′1), we assume that 1) patches of the first k largest malignant probabilities
{r′1, r′2, ..., r′k} should be assigned with the same class label as that of whole mammo-
gram, and 2) the rest patches should be labeled as negative in the label assignment-based
multi-instance learning.

After the ranking layer using the first equation in Eq. 3, we can obtain the malignant
probability for each patch

p(y = 1|Q′i,θ) = r′i, and p(y = 0|Q′i,θ) = 1− r′i. (6)

The weighted cross entropy-based loss function of the label assignment-based multi-
instance learning can be defined as

Llabelassign. =−
N∑

n=1

( k∑
j=1

w′yn
log(p(yn|P ′j ,θ))

+

m∑
j=k+1

w′0 log(p(y = 0|P ′j ,θ))
)
+
λ

2
‖θ‖2,

(7)

where w′yn
is the empirical estimation of yn based on patch labels

w′1 =
k ×Npos

m×N
, and w′0 = 1− w′1, (8)

whereNpos is the number of positive mammograms andN is the total number of mam-
mograms.

One advantage of the label assignment-based multi-instance learning is that it ex-
plores all the patches to train the model. Essentially it acts a kind of data augmenta-
tion which is an effective technique to train deep networks when the training data is
scarce. From the sparsity perspective, the optimization problem of label assignment-
based multi-instance learning is exactly a k-sparse problem for the positive data points,
where we expect {r′1, r′2, ..., r′k} being 1 and {r′k+1, r

′
k+2, ..., r

′
m} being 0. The dis-

advantage of label assignment-based multi-instance learning is that it is hard to estimate
the hyper-parameter k. In our experiment, we choose k based on cross validation. Thus,
a relaxed assumption for the multi-instance learning or an adaptive way to estimate the
hyper-parameter k is preferred.

3.3 Sparse Multi-instance Learning

From the mass distribution, the mass typically comprises about 2% of the whole mam-
mogram on average (Fig. 2), which means the mass region is quite sparse in the whole
mammogram. It is straightforward to convert the mass sparsity to the malignant mass
sparsity, which implies that {r′1, r′2, ..., r′m} is sparse in the whole mammogram clas-
sification problem. The sparsity constraint means we expect the malignant probability
of part patches r′i being 0 or close to 0, which is equivalent to the second assumption
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in the label assignment-based multi-instance learning. Analogously, we expect r′1 to be
indicative of the true label of mammogram I .

After the above discussion, the loss function of the sparse multi-instance learning
problem can be defined as

Lsparse =

N∑
n=1

(
− wyn

log(p(yn|In,θ)) + µ‖r′n‖1
)
+
λ

2
‖θ‖2, (9)

where p(yn|In,θ) can be calculated in Eq. 3, wyn
is the same as that in the max pool-

ing based multi-instance learning, rn = (r′1, r
′
2, ..., r

′
m) for mammogram In, ‖ · ‖1

denotes the L1 norm, µ is the sparsity factor, which is a trade-off between the sparsity
assumption and the importance of patchQ′1.

From the discussion of label assignment-based multi-instance learning, this learn-
ing is a kind of exact k-sparse problem which can be converted to L1 constrain. One
advantage of sparse multi-instance learning over label assignment-based multi-instance
learning is that it does not require assign label for each patch which is hard to do for
patches where probabilities are not too large or small. The sparse multi-instance learn-
ing considers the overall statistical property of r.

Another advantage of sparse multi-instance learning is that, it has different weights
for general multi-instance assumption (the first part loss) and label distribution within
mammogram (the second part loss), which can be considered as a trade-off between
max pooling-based multi-instance learning (slack assumption) and label assignment-
based multi-instance learning (hard assumption).

3.4 Whole Mammogram Classification using the Learned Model

From the above discussion of the three deep multi-instance variants, we always assume
the largest probability r′1 should be consistent with the malignant label of whole mam-
mogram I . In the inference, we can take p′1 as predicted malignant probability for
whole mammogram I

p(y = 1|I,θ) = r′1. (10)

4 Experiments

We validate the proposed model on the most frequently used mammographic mass clas-
sification dataset, INbreast dataset [16], as the mammograms in other datasets, such as
DDSM dataset [5] and mini-MIAS dataset [19], are of low quality. The INbreast dataset
contains 410 mammograms of which 94 contains malignant masses. These 94 mammo-
grams with masses are defined as positive mammograms. Five-fold cross validation is
used to evaluate model performance. For each testing fold, we use three folds mam-
mograms for training, and one fold for validation to tune the hyper-parameters in the
model. The performance is reported as the average of five testing results obtained from
the cross-validation.

For preprocessing, we first use Otsu’s method to segment the mammogram [18] and
remove the background of the mammogram. To prepare the mammograms for follow-
ing CNNs, we resize the processed mammograms to 224× 224. We employ techniques



8 W. Zhu et al.

Table 1. Accuracy Comparisons of the proposed deep multi-instance networks and related meth-
ods on test sets.

Methodology Dataset Set-up Accu.(%) AUC(%)
Ball et al. [3] DDSM Semi-auto. 87 N/A

Varela et al. [20] DDSM Semi-auto. 81 N/A
Domingues et al. [9] INbr. Manual 89 N/A
Pretrained CNN [7] INbr. Semi-auto. 84±0.04 69±0.10

Pretrained CNN+RF [7] INbr. Semi-auto. 91± 0.02 76±0.23
AlexNet INbr. Auto. 78.30±0.02 66.80±0.07

Pretrained AlexNet INbr. Auto. 80.50±0.03 73.30±0.03
AlexNet+Max Pooling MIL INbr. Auto. 83.66±0.02 73.62±0.05

Pretrained AlexNet+Max Pooling MIL INbr. Auto. 86.10±0.01 81.51±0.05
AlexNet+Label Assign. MIL INbr. Auto. 84.16±0.03 76.90±0.03

Pretrained AlexNet+Label Assign. MIL INbr. Auto. 86.35±0.02 82.91±0.01
Pretrained AlexNet+Sparse MIL INbr. Auto. 87.11±0.03 83.45±0.05

Pretrained AlexNet+Sparse MIL+Bagging INbr. Auto. 90.00±0.02 85.86± 0.03

to augment our data. For each training epoch, we randomly flip the mammograms hori-
zontally, shift within 0.1 proportion of mammograms horizontally and vertically, rotate
within 45 degree, and set 50×50 square box as 0. In experiments, the data augmentation
is essential for us to train the deep networks.

For the CNN network structure, we use AlexNet and remove the fully connected
layers [13]. Through the CNN, the mammogram of size 224× 224 becomes 256 6× 6
feature maps. Then we use steps in Sec. 3 to do multi-instance learning (MIL). We use
Adam optimization with learning rate 0.001 for training from scratch and 5× 10−5 for
training models pretrained on the Imagenet [2]. The λ for max pooling-based and label
assignment-based multi-instance learning are 1 × 10−5. The λ and µ for sparse multi-
instance learning are 5×10−6 and 1×10−5 respectively. For the label assignment-based
deep multi-instance network, we select k from {4, 8, 12, 16} based on the validation set.

We firstly compare our methods to previous models validated on DDSM dataset
and INbreast dataset in Table 1. Previous hand-crafted feature-based methods required
manually annotated detection bounding box or segmentation ground truth [3,20,9]. Pre-
trained CNN used two CNNs to detect the mass region and segment the mass, followed
by a third CNN pretrained by hand-crafted features to do the actual mass classification
on the detected ROI region [7]. Pretrained CNN+RF further used random forest and
obtained 7% improvement. These methods are either manually or semi-automatically,
while our methods are totally automated and do not reply on any human designed fea-
tures or extra annotations.

From Table 1, we observe the models pretrained on Imagenet, Pretrained AlexNet,
Pretrained AlexNet+Max Pooling MIL, and Pretrained AlexNet+Label Assign. MIL,
improved 2%, 3%, 2% for AlexNet, max pooling-based deep multi-instance learning
(AlexNet+Max Pooling MIL) and label assignment-based deep multi-instance learning
(AlexNet+Label Assign. MIL) respectively. This shows the features learned on natural
images are helpful for the learning of mammogram related deep network. The label
assignment-based deep multi-instance networks trained from scratch obtains better per-
formance than the pretrained CNN using 3 different CNNs and detection/segmentation
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(a) (b)

Fig. 3. The ROC curve on fold 2 (a) and fold 4 (b) using pretrained AlexNet, pretrained AlexNet
with max pooling multi-instance learning, pretrained AlexNet with label assigned multi-instance
learning, pretrained AlexNet with sparse multi-instance learning. The proposed deep multi-
instance networks improve greatly over the baseline pretrained AlexNet model.

annotation in the training set. This shows the superiority of our end-to-end deep multi-
instance networks for whole mammogram classification. According to the accuracy
metric, the sparse deep multi-instance network is better than the label assignment-based
multi-instance network, and label assignment-based multi-instance network is better
than the max pooling-based multi-instance network. This result is consistent with our
previous discussion that the label assignment assumption is more efficient than max
pooling assumption and sparsity assumption benefited from not having the hard con-
straints of the label assignment assumption. We obtained different models by using
different validation sets for each test fold and used bagging (voting or average different
models’ predictions) alleviating overfitting to boost the accuracy. Competitive perfor-
mance to random forest-based pretrained CNN is achieved.

Due to the imbalanced distribution of the dataset where malignant mammograms
are only 20% of total mammograms, the receiver operating characteristic (ROC) curve
is a better indicator of performance. We compare the ROC curve on test sets fold 2 and
fold 4 in Fig. 3 and calculate the averaged area under curve (AUC) of the five test folds
in Table 1.

From Fig. 3 and Table 1, we observe that the sparse deep multi-instance network
provides the best AUC, and label assignment-based deep multi-instance network ob-
tains the second best AUC. The deep multi-instance network improves greatly over the
baseline models, pretrained AlexNet and AlexNet learned from scratch. The pretraining
on Imagenet, Pretrained AlexNet, Pretrained AlexNet+Max Pooling MIL, Pretrained
AlexNet+Label Assign. MIL, increases performance of AlexNet, max pooling-based
deep multi-instance network (AlexNet+Max Pooling MIL), and label assignment-based
deep multi-instance network (AlexNet+Label Assign. MIL) by 7%, 8% and 6% respec-
tively. This shows the effectiveness and transferability of deep CNN features learned
from natural images to medical images. Our deep networks achieves the best AUC re-
sult which proves the superior performance of the deep multi-instance networks.

The main reasons for the superior results using our models are as follows. Firstly,
data augmentation is an important technique to increase scarce training datasets and
proved useful here. Secondly, our models fully explored all the patches to train our
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(a) (b) (c) (d)

Fig. 4. The visualization of predicted malignant probabilities for instances/patches in four dif-
ferent resized mammograms. The first row is the resized mammogram. The red rectangle boxes
are mass regions from the annotations on the dataset. The color images from the second row
to the last row are the predicted malignant probability from linear regression layer for (a) to
(d) respectively, which are the malignant probabilities of patches/instances. Max pooling-based,
label assignment-based, sparse deep multi-instance networks are in the second row, third row,
fourth row respectively. Max pooling-based deep multi-instance network misses some malignant
patch for mammogram (a), (c) and (d). Label assignment-based deep multi-instance network
mis-classifies patches into malignant in (d).

deep networks thereby eliminating any possibility of overlooking malignant patches by
only considering a subset of patches. This is a distinct advantage over previous networks
that employed several stages consisting of detection and segmentation networks.

5 Discussions

To further understand our deep multi-instance networks, we visualize the responses of
linear regression layer for four mammograms on test set, which represents the malignant
probability of each patch, in Fig. 4.

From Fig. 4, we can see the deep multi-instance network learns not only the pre-
diction of whole mammogram, but also the prediction of malignant patches within the
whole mammogram. Our models are able to learn the mass region of the whole mam-
mogram without any explicit bounding box or segmentation ground truth annotation of
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the training data. The max pooling-based deep multi-instance network misses some ma-
lignant patches in (a), (c) and (d). The possible reason is that it only considers the patch
of max malignant probability in the training and the model is not well learned for all the
patches. The label assignment-based deep multi-instance network mis-classifies some
patches in (d). The possible reason is that the model sets a constant k for all the mam-
mograms, which causes some misclassification for small mass. One of the potential
applications of our work is that these deep multi-instance learning networks could be
used to do weak mass annotation automatically, which is important for computer-aided
diagnosis.

6 Conclusion

In this paper, we proposed end-to-end trained deep multi-instance networks for whole
mammogram classification. Different from previous works using segmentation or de-
tection annotations, we conducted mass classification based on whole mammogram
directly. We convert the general multi-instance learning assumption to label assignment
problem after ranking. Due to the sparsity of masses, sparse multi-instance learning is
used for whole mammogram classification. We explore three schemes of deep multi-
instance networks for whole mammogram classification. Experimental results demon-
strate more robust performance than previous work even without detection or segmen-
tation annotation in the training.

In future works, it is promising to extend the current work by: 1) incorporating
multi-scale modeling such as spatial pyramid to further improve whole mammogram
classification, 2) adaptively estimating the parameter k in the label assignment-based
multi-instance learning, and 3) employing the deep multi-instance learning to do anno-
tation or provide potential malignant patches to assist diagnoses. Our method should be
generally applicable to other bio-image analysis problems where domain expert knowl-
edge and manual labeling required, or region of interest is small and/or sparse relative
to the whole image. Our end-to-end deep multi-instance networks are also suited for the
large datasets and expected to have improvement if the big dataset is available.
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