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a b s t r a c t 

Background and objective: Automatic detection and classification of the masses in mammograms are still a 

big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose 

a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, 

a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although 

most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can 

handle detection and classification simultaneously in one framework. 

Methods: The proposed CAD system contains four main stages: preprocessing of mammograms, feature 

extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classi- 

fication using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammo- 

grams from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 

2,400 with the information of the masses and their types in training and testing our CAD. The trained 

YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. 

Results: Our results with five-fold cross validation tests show that the proposed CAD system detects 

the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and 

malignant lesions with an overall accuracy of 97%. 

Conclusions: Our proposed system even works on some challenging breast cancer cases where the masses 

exist over the pectoral muscles or dense regions. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is one of the most leading cancers for women.

n 2016, about 246,660 women were diagnosed with breast cancer

hich is considered as the highest level of 29% among other kinds

f cancers [1] . For the expected deaths, breast cancer is the second

ighest in women which alone accounts 14% against other can-

er types [1] . Early detection with correct diagnosis is extremely

mportant to increase the survival rate. In clinical practice, mam-

ography is a widely used diagnostic tool to screen breast can-

er. To correctly detect and diagnose breast cancer (i.e., benign or
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alignant), radiologists face challenges due to the large amount

f breast images they have to examine daily and the difficulty of

eading them (i.e., detecting the breast masses and correctly diag-

osing them). Thus, computer-aided detection and diagnosis (CAD)

re essential through which a second opinion can be provided to

hysicians to aid and support their decisions. 

Several studies have been conducted to build CAD systems uti-

izing conventional recognizers which are attempted to differenti-

te the breast lesions. In 2016, J. Virmani et al. developed a CAD

ystem to recognize the breast densities [2] . They extracted dif-

erent statistical texture features from the mass ROIs with dif-

erent length of Laws’ texture energy masks. The dimensionality

f these feature vectors was reduced using Principal Component

nalysis (PCA). The first four components of the texture features

ere employed for classification. The results of this CAD system

as achieved using Support Vector Machine (SVM) and Probabilis-

ic Neural Network (PNN) classifiers with classification accuracies

f 94.4% and 92.5%, respectively. In 2016, C. Muramatsu et al. uti-
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lized texture attributes to distinguish between benign and malig-

nant masses [3] . They proposed an ROI-based feature technique

called Radial Local Ternary Patterns (RLTP) which represent the ori-

entation of edge pattern from the center of mass. These RLTP fea-

ture sets were compared to ordinary Local Ternary Patterns (LTP),

Rotation Invariant Uniform (RIU) LTP, wavelet features, and texture

attributes from the Gray Level Co-occurrence Matrix (GLCM). Their

CAD system performance of NN overcame Random Forest (RF) and

SVM classifiers by 0.9, 0.895, and 0.881 in terms of areas under the

receiver operating characteristic curves (AUC), respectively. In 2017,

H. Li et al. developed a CAD system based on local contour features

to classify benign and malignant masses [4] . They converted the

2D contour of the masses into 1D vector of feature s. Four different

subsections were generated by segmenting the whole 1D signature.

New features of Root Mean Square (RMS) slope, describing the con-

tour roughness, were extracted from each subsection besides the

fractal dimension and the mean to standard deviation ratio fea-

tures. Higher classification accuracy of 99.66% was achieved using

SVM compared with 99.60% and 92.47% in the case of NN and k-

Nearest Neighbors (KNN), respectively. In 2017, S. A. Taghanak et al.

proposed a deep auto-encoder network for multi-objective opti-

mization [5] . Their goal was to reduce the dimensionality of fea-

tures. They extended the conventional auto-encoder to get an op-

timal solution with more prominent features which in results min-

imized both mean squared reconstruction and classification errors.

Their auto-encoder achieved the classification accuracy of 98.45%

for 12 classes. Most of these CAD systems require manual detection

of the masses before extracting the features where proper features

need to be identified by an expert. This makes any CAD system

manual or semi-automatic under clinical settings. Also, these CAD

systems could not support detection and classification issues in a

single framework. As an alternative to conventional classifiers that

utilize hand-crafted features, deep learning techniques can learn

prominent features from the entire data [6,7] . 

For that reason, recently, deep learning is gaining a lot of atten-

tion in the field of machine learning. It has been also employed in

the field of CAD for breast cancer to overcome some of the limita-

tions of the conventional CAD systems mentioned above. It is con-

sidered that deep learning methods can learn a set of high-level

attributes and provide a high recognition accuracy instead of us-

ing handcrafted features. In 2016, Z. Jiao et al. developed a CAD

system based on Convolutional Neural Network (CNN) to classify

benign and malignant masses of breast cancer. They utilized the

combination of low and high level deep features from two differ-

ent CNN layers to train their model [6] . Their CAD system suc-

ceeded to classify the breast masses with classification accuracy

of 96.7%. In 2016, J. Arevalo et al. developed a CNN framework to

address the mass lesions of mammograms [7] . The ability of CNN

model was investigated against the Histogram of Oriented Gradient

(HOG) and Histogram Gradient Divergence (HGD) methods which

extracted the features from the histogram. Their CAD system per-

formance achieved AUC of 0.86 compared with 0.796 and 0.793 in

the cases of HOG and HGD, respectively. In 2015, N. Dhungel et al.

developed an algorithm using a cascade of deep learning and RF

to detect the suspicious regions in mammograms [8] . Their algo-

rithm consisted of multi-scale Deep Belief Network (DBN) to select

all potential suspicious regions, CNN to keep the correct candidates

of those regions, and RF to reduce false positive of the detected re-

gions. Their approach achieved 96% of the true positive cases and

87% of the false positive cases. In 2017, N. Dhungel et al. proposed

a total system for detection, segmentation, and classification of the

breast masses [9] . They utilized the detected masses from [8] to

segment the contours of the actual masses via a deep learning

structure followed by Conditional Random Field (CRF). Thereafter,

the segmented masses were refined using the Chan–Vese active

contour model. Finally, a classical CNN classifier was pre-trained
or regressing hand-crafted features and subsequently fine-tuned

he pre-trained model. Their system showed an overall segmenta-

ion accuracy of 85%. Meanwhile, the performance of their system

chieved 91% and 76% in terms of classification accuracy and AUC,

espectively. In 2016, T. Kooi et al. employed a deep CNN to clas-

ify ROIs for malignant masses [10] . They investigated the power

f CNN against the experiences of four radiologists. CNN exhibited

ts effective ability to recognize the malignant lesions with AUC of

.87 against 0.84 in the case of radiologists. In 2016, M. Al-antari

t al. developed a CAD system utilizing a DBN classifier to distin-

uish between three different regions of breast cancer (i.e., nor-

al, benign, and malignant), whereas these masses are automat-

cally classified [11] . The capability of DBN was presented against

raditional predictors and produced the recognition rate of 92.33%.

n 2016, A.-B. Ayelet et al. developed a region-based CNN (R-CNN)

ethod to address the issue of tumor detection and classification

12] . In their work, the mammograms were first preprocessed by

emoving pectoral muscles and extracting the fibro-glandular. The

ntire images were divided into multiple overlapped parts. Then,

heir R-CNN was trained to detect the tumor region and to classify

he tumor as benign or malignant. Their results achieved accuracy

f 72% and 77% in terms of tumor detection and classification, re-

pectively. In 2017, Y. Qiu et al. built a traditional CAD system to

lassify the breast masses into benign or malignant [13] . They uti-

ized three convolutional layers to extract the features from 560

esampled ROIs. These features are connected to a multiple layer

erceptron classifier with only one hidden layer and one logistic

egression layer. Their proposed CAD system produced an over-

ll AUC of 79%. In 2017, G. Carneiro et al. developed an auto-

ated deep learning model to examine the two-view of unregis-

ered mammographic images (i.e., CC and MLO) [14] . Both views

f each breast image with the segmented maps of their mammo-

ram lesions (i.e., micro-calcifications and masses) were fed in the

onvolutional network model. Their system achieved 90% and 70%

n term of volume under the ROC surface for both semi-automated

nd fully automated technique, respectively. 

In this paper, a novel CAD system is proposed for breast masses

etection and classification by employing a novel regional convo-

utional neural network called You Only Look Once (YOLO) [15] .

e augmented the original database of 600 cases by rotating the

riginal mammograms using three different angles for training and

esting. YOLO offers a powerful functionality in that it can learn

OIs and their background at the same time. Thus, our proposed

AD system can achieve both detection and classification of breast

asses in a single framework. We evaluate the proposed YOLO-

ased CAD system through using two different datasets (i.e., orig-

nal and augmented datasets). Our proposed system exhibits an

verall accuracy of detection and classification of 99.7% and 97%,

espectively. 

This paper proceeds as follows. First, we present the overall sys-

em with the information of original and augmented databases for

raining and testing. Second, the details of YOLO-based CAD system

or detection and diagnosis of breast cancer masses is explained.

hen, we evaluate the performance of our proposed CAD system

hroughout five-fold cross validation. Finally, we discuss about the

esults against other CAD works employing classifiers such as DBN

nd CNN. Finally, conclusion of this work is given. 

. Materials and methods 

.1. Our proposed YOLO-based CAD system 

Schematic diagram of the proposed CAD system is demon-

trated in Fig. 1 . Our proposed YOLO-based CAD system for si-

ultaneous breast masses detection and classification consists of

our main stages: mammogram preprocessing, feature extraction
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Fig. 1. Scheme of the proposed YOLO-based CAD system. 
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tilizing multi convolutional deep layers, mass detection with con-

dence model, and fully connected neural network (FC-NN) for

reast mass classification. 

.2. Original database 

In this study, we utilized a database of mammograms from Dig-

tal Database for Screening Mammography (DDSM) [16] to train

nd test our YOLO-based CAD system. The DDSM database is cre-

ted by the University of South Florida and it has been widely uti-

ized in breast research purposes [6,11,17] . It contains 2620 cases

hich are organized in 43 volumes. Four mammograms are col-

ected for each case with two different views: mediolateral oblique

MLO) and craniocaudal (CC). Each mammogram contains suspi-

ious lesions associated with information of the ground truth. In

his work, we have randomly selected a set of 600 mammograms

rom DDSM database which are equally categorized to benign and

alignant cases. 

.3. Augmented database 

In fact, deep learning requires large amount of data for proper

raining. However, small size of medical dataset is one of the most

hallenging to handle deep learning approaches. Due to this, we

sed a technique of augmentation to increase the training data.

ugmentation is a process that generates new instances from the

riginal data using different transformation methods such as ro-

ation, translation, and scale [6,18,19] . In order to minimize the

verfitting problems, that may appear when small size of dataset

s utilized via deep learning techniques, we have augmented our

ataset three times by rotating the mammograms with angles of

0 °, 180 °, and 270 ° as successfully applied in [6,14,18,19] . Thus, a

otal of 2400 mammograms (i.e., the original mammograms along

ith their augmented data) are used to train and test the proposed

OLO-based CAD system. The half of mammograms represents the

enign and the other half for the malignant. All original and aug-

ented mammograms are randomly mixed together in order to

void any classification bias of our CAD system. 
.4. Data preprocessing 

In this work, mammograms and their ROIs (i.e., masses) must

e learned by YOLO. In preparation of input data, we first applied

he multi-threshold peripheral equalization technique [20,21] to

emove the effect of breast compression that occurred during the

xamining stage [22] . The peripheral density correction is achieved

y the following steps. First, the mask containing breast region is

enerated using the Otsu thresholding technique. Then, the mask

mage is multiplied with the blurred image which is produced by

pplying 2D Gaussian low pass filter to original breast image. Then,

he normalized thickness profile (NTP) is derived using different

hreshold values. These threshold values are computed with re-

pect to the average of blurred image. Finally, the peripheral den-

ity correction image is achieved by dividing the original mammo-

ram over the NTP image [23] . This procedure improves the char-

cteristics of the mammograms by eliminating the background and

rrelevant data as presented in the previous work [11,23] . In order

o achieve a high performance of CAD system, training and test-

ng datasets are normalized in the range of [0, 1] as presented in

6,24] . In DDSM, the mammograms exist with different image sizes

16] , hence training and testing datasets are resized to a size of

48 × 448 as in [15] . 

.5. What is YOLO? 

You Only Look Once (YOLO) is one of the state-of-the-art deep

earning techniques [15] . It is able to detect and classify objects

n the entire images at the same time. Unlike previous detec-

ion techniques that applied the classifier to multiple regions of

he image [8] , YOLO utilizes a single convolutional neural network

o the whole image. This approach divides the input image into

ub-regions and predicts multiple bounding boxes with their class

robabilities for each region. Unlike traditional R-CNN that requires

any networks for all the extracted regions, YOLO utilizes the en-

ire mammograms so that the contextual information of the pre-

ictors and their aspect are completely encoded with a single net-

ork in both training and testing time [15] . YOLO has several ad-

antages over other detection systems. This is due to that YOLO
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Fig. 2. The structures of proposed YOLO-based CAD system. 
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looks the image once and does not require a complex pipeline, it

is extremely fast and its predictions are informed by global context

in the data. 

2.6. YOLO architecture 

YOLO is a unified system that is able to detect the potential

ROIs and directly predict their class probabilities from an entire

whole image [15,25] . Our proposed YOLO-based CAD highlights

two main issues of finding out the mass locations and classifica-

tion their types of benign or malignant. 

YOLO starts with dividing an input mammogram into N × N

non-overlapped grid cells. Thus, each grid cell is responsible to de-

tect the potential mass belonging to that cell. As successfully ap-

plied in [15] , two bounding boxes with their confidence scores are

utilized to represent each grid cell. Confidence is expressed as the

probability of the existing mass multiplied with the percentage of

the intersections over union (IOU) between the ground truth and

the predicted boxes as follows: 

Confidence = Prob ( mass ) × IOU 

ground truth 

predicted 
. (1)

Also, the detected mass is recognized as benign or malignant

depending on the conditional class probability Prob(Class i | mass)

for the corresponding cell [15] . Then, the confidence score for each

specific class is estimated as follows: 

Confidence score = Prob ( Clas s i | mass ) × Confidence 

= Prob ( Class i ) × IOU 

ground truth 

predicted 
, (2)

where confidence score interprets model confidence in order to

represent the mass that is involved in the predicted box and also

how accurate of that mass is. This confidence score becomes zero

when the grid cell does not contain any objects. YOLO is trained

utilizing the entire breast image with its ROIs’ information. For

training, we prepare the training data with the ROI position and

size information: the information of training data contains the cen-

ter position ( x, y ), width ( w ), height ( h ), and class label of the

masses. 

In this study, we use 24 convolutional layers with different ker-

nel sizes, max-pooling layers with a size of 2 × 2, activation func-

tions, and two fully-connected layers as inspired by [15,26] . The

details of our proposed YOLO-based CAD structure is shown in

Fig. 2 . Deep based feature maps are extracted from each convolu-

tional layer by applying different filter types (i.e., different kernels
 ). The main role of using convolutional filters is to extract differ-

nt features from the entire mammograms and then generates the

eature maps. Convolution operation of Y k 
L 

that represents the k th

eature map of layer L is computed as follows, 

 

k 
L = φ

(
W 

k 
L ∗ Y 

k 
L −1 + b k L 

)
, (3)

here φ( • ), ‘ ∗’, and b k 
L 

are the activation function, convolution op-

rator, and bias for each feature map, respectively. In order to re-

uce the dimensionality of the features and select the proper fea-

ures at each layer of the network, downsampling by max-pooling

ethod is applied. Thus, only a maximum value from a 2 × 2 win-

ow is considered as an input for the next layer. In order to en-

ure that the features information is not lost, max-pooling fil-

er size should not be large [6,15,27,28] . A pixel stride of two is

tilized with all convolutional and pooling layers. The final ag-

regated deep features, which are produced by the convolutional

nd pooling layers, are passed to the fully-connected network (FC-

N). Linear leaky rectified activation function is used for all lay-

rs [15] and the Rectified Linear Unit (ReLU), φ(z) = max(0, z ), is

nly used for the final layer [6,29,30] . The leaky rectified activation

unction is defined to represent the linear transformation model of

n input z as follows, 

( z ) = 

{
z, if z > 0 

0 . 1z , otherwise . 
(4)

Throughout the training phase, the training weights are up-

ated through the fully-connected neural network layers utilizing

raining set images. According to [15] a batch size of 64 and learn-

ng rate of 0.001 are utilized to build our proposed CAD system. Fi-

ally, tensor of prediction (ToP) with size of N × N × (5 × M + C)

s generated, where N × N, M, and C are the number of grid cells,

ounding boxes, and classes (i.e., benign and malignant), respec-

ively. All of these parameters are selected as follows. Since we

ave two classes (i.e., benign and malignant), we set C = 2. Mean-

hile, each grid cell becomes a unit which is responsible for detec-

ion and classification [15] . One can utilize different sizes, but we

ave chosen a size of 7 × 7 (i.e., N = 7) which gave the best per-

ormance compared to other sizes as investigated in [15] . To get

he best predicted box among the inner and outer boundary of the

bject in the mammogram, we have selected M = 2. The bound-

ng box with the highest confidence score was selected as the pre-

icted box. Thus, the final output of the YOLO network represents

 3D matrix of ToP with size of 7 × 7 × 12 as illustrated in Fig. 2 .
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i  
ach grid cell of the entire mammogram is expressed by 12 ele-

ents in the tensor. The first five elements are corresponding to

he predictions of the first bounding box, while the second five el-

ments are for the second bounding box. For each box, these ele-

ents represent the prediction information of the mass locations

hich are x, y, w, h , and confidence probability. The last two el-

ments (i.e., Pr Benign and Pr Malignant ) in the ToP represent the con-

dence scores of the class probabilities for both benign and ma-

ignant cases, respectively. These class probabilities are considered

or the highest confidence probability (i.e., the highest IOU with

round truth) among the bounding boxes. Thus, YOLO predicts only

ne bounding box for each grid cell which is responsible to detect

he mass location and assign its appropriate class. Finally, among

ll of the potential predicted masses in each mammogram, YOLO

nly selects the boxes with confidence scores greater than a par-

icular threshold. The Darknet framework is utilized for all training

nd testing processes [31] . 

.7. Training and testing 

In this paper, we have trained and tested our proposed CAD

ystem using two different datasets (i.e., original and augmented

atasets). All results of both detection and classification the breast

bnormalities are obtained by training YOLO with the augmented

ataset. In one exception, we compare the effect of data augmen-

ation against the case of using the original dataset in Section 3.4 .

o avoid any bias in training and testing, we first optimized the pa-

ameters of the proposed YOLO-based CAD system using only the

raining dataset (i.e., 80% of the data). Then, the final system per-

ormance was evaluated using only the testing dataset (i.e., 20% of

he data) [32] . It is shown that the concept of transfer learning is

ffective in training a deep net as in [14,15,33–35] . As this trans-

er learning was applied to DDSM in [6,14] , we trained our YOLO-

ased CAD system with the pre-trained weights with a large com-

uter vision ImageNet dataset [36] . Subsequently, it was fine-tuned

i.e., re-trained) with the training augmented mammograms. 

To validate our results, we performed a k -fold cross validation

 k = 5) to ensure that every mammogram in our dataset gets to be

n a test set exactly once and to minimize the bias error that may

ccur during the classification stage. The dataset is randomly di-

ided into five subsets where each subset is formed by 10% benign

nd 10% malignant cases. One of the subsets (i.e., 20% of dataset) is

tilized as a testing set while the other subsets (i.e., 80% of dataset)

re considered together as a training set. This means we trained

ur YOLO-based CAD system five times to get the performance of

he CAD system. For each k -fold, the computation time took almost

our days to perform the training stage. However, the decoding (i.e.,

etection and classification) for each mammogram takes only less

han three seconds. Thus, the proposed CAD system seems to be

easible and reliable to apply in the future for clinical applications.

his wok was conducted on a PC Intel Core(TM) i5-3550 with 16

B RAM, clock speed or frequency of CPU @ 3.30 GHz, and GPU of

VIDIA GeForce GTX 960. In addition, we utilized Python 2.7.6 and

 ++ as programming languages on operating system of Ubuntu

4.04. The results for both masses detection and classification are

valuated as an average of the 5-fold cross validation results. 

.8. Performance evaluation measures 

In this study, we used objective measures to evaluate the per-

ormance of our YOLO-based CAD system. Fig. 3 shows our evalu-

tion logic during the testing phase of detecting the mass location

n the mammogram and classifying its type into benign or malig-

ant. According to this logic, if the confidence probability scores of

he detected boxes are less than a particular threshold, the corre-

ponding predicted ROIs or masses are considered as undetectable
ases as shown in Fig. 3 . This means that these cases are excluded

uring the next classification and detection stages. In contrast, the

redicted masses which have confidence probability scores equal

r greater than this threshold are considered for the next classifi-

ation and detection assessment processes. For detection assess-

ent, the mass location is properly detected if and only if IOU

quals or exceeds 50% comparing with its ground truth. In the

ase of false mass detection, as long as the condition of threshold

robability is satisfied, the final decision to distinguish the type of

hese masses is achieved utilizing the capability of the classifier. 

To quantitatively present the capability of the proposed tech-

ique, confusion matrix is utilized to show how the proposed CAD

s able to distinguish between benign and malignant classes [17] .

eanwhile, the curve of receiver operator characteristic (ROC) with

ts area under curve (AUC) are used for classification evaluation

urposes as well. AUC of ROC shows the performance of the clas-

ifiers where AUC value close to 1.0 represents the highly accurate

iagnostic rate while AUC value close to 0.5 indicates the unreli-

ble performance. ROC curve definition is as follows [6,17] , 

ensitivity = 

TP 

TP + FN 

, (5) 

pecificity = 

TN 

TN + FP 

, (6) 

here, TP and FN denote the true positive and false negative cases,

espectively. TN and FP contain the true negative and false positive

ases, respectively. The overall classification accuracy of the system

s defined as, 

verall accuracy = 

TP + TN 

TP + FN + TN + FP 

. (7) 

In addition, the accuracy of the detected masses in mammo-

rams compared to the ground truth is quantitatively evaluated us-

ng free response operating characteristic (FROC) curve [14,37,38] .

ROC curve is a function which represents the true positive detec-

ion rate versus the false positive rate per image. 

. Results 

.1. Class probability threshold 

As aforementioned, the confidence score for each grid cell rep-

esents the class probability of the highest confidence among the

wo bounding boxes. Therefore, the proposed YOLO-based CAD sys-

em generates many potential ROIs for each testing mammogram.

e attempted to find the appropriate threshold that avoids the un-

anted ROIs with too small class probability. For instance, all po-

ential ROIs are shown on the mammogram in the case of zero

hreshold as shown in Fig. 4 (a). In order to maintain the testing

ata (i.e., less number of undetectable data as explained in Fig. 3 ),

hreshold should not be large. Thus, we investigated the appropri-

te threshold that achieves the minimum number of undetectable

ata. Fig. 4 (b) and (c) show the potential ROIs with class probabil-

ty threshold of 0.01 and 0.2, respectively. Boxes with higher con-

dence are illustrated with thicker border. In this study, we exper-

mentally determined a probability threshold to be 0.2. As it is ex-

lained above, this threshold controls the number of potential ROIs

hrough each testing mammogram. With the probability threshold

f 0.2, at least one potential ROI was provided while ignoring all

ndesirable ROIs with too small class probability. A proper thresh-

ld must provide enough detected ROIs for further classification. 

.2. Mass detection via the YOLO-based CAD 

The results of the proposed CAD system on the ability of detect-

ng the location of the benign and malignant masses are shown in
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Fig. 3. Present study evaluation approach for both mass detection and classification. 

Fig. 4. Potential ROIs with a threshold probability of (a) zero, (b) 0.01, and (c) 0.2. The ROI with the highest confidence has the thickest border. 

Fig. 5. Mass detection. (a) and (b) show the ground-truth mass and detected from new proposed method for a benign case, while (c) and (d) for a malignant case. 
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Table 1 

5-fold cross validation performance of the mass detection via the proposed YOLO-based CAD system. 

Fold test Benign Malignant Total 

True False True False True False 

1st fold 240 0 240 0 480 0 

100% 0.0% 100% 0.0% 100% 0.0% 

2nd fold 237 3 239 1 476 4 

98.75% 1.25% 99.58% 0.42% 99.17% 0.83% 

3rd fold 238 2 240 0 478 2 

99.17% 0.83% 100% 0.0% 99.58% 0.42% 

4th fold 239 1 240 0 479 1 

99.58% 0.42% 100% 0.0% 99.79% 0.21% 

5th fold 240 0 240 0 480 0 

100% 0.0% 100% 0.0% 100% 0.0% 

Average (%) 99.50 0.50 99.92 0.08 99.71 0.29 
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ig. 5 . Fig. 5 (a) and (c) show the ground truth and Fig. 5 (b) and

d) show the masses detected by our YOLO-based CAD. The abnor-

alities (i.e., masses) detection performance throughout the 5-fold

est of benign and malignant is reported in Table 1 . At each fold

est, a test dataset contains 480 mammograms which are equally

ivided into benign and malignant cases. The results show the

obustness of our YOLO-based CAD on detecting the mass posi-

ion in mammograms with an overall accuracy of 99.7%. As men-

ioned above, YOLO generates confidence probability for each po-

ential ROI (indicated as a box) that represents the mass position.

n Table 1 , false detection cases represent those have the detected

oxes with confidence probability less than 0.2 or IOU less than

.5. These detection results are achieved by comparing the IOU of

ach detected boxes with the ground truth. Fig. 7 (a) shows the

etection performance of the proposed YOLO-based CAD system

hrough 2nd fold test in term of FROC curve. The potential detected

oxes are considered as successfully detected if the overlap equals

r exceeds 50% comparing with their corresponding ground truth

asses. The proposed method in Fig. 7 (a) produces a true positive

ate of 99.17% at false positive per image equals to 0.22. 

.3. Mass classification via the YOLO-based CAD 

For classification, an overall accuracy is computed using all test

ata. Only the undetectable mammograms in the detection stage

hroughout each k -fold subset are excluded from the evaluation

f masses prediction. Fig. 5 shows some representative results of

he YOLO-based CAD system in terms of detection and classifica-

ion for two cases: benign and malignant. The breast regions that

re not detected are addressed as normal tissue. Confusion ma-

rices for each k -fold subset of the YOLO-based CAD system are

resented in Table 2 . It is clearly shown that the benign cases are

orrectly classified with 100% in all k-fold subsets, while the ma-

ignant cases are in between 92.5% and 95.8%. The false positive in

he 1st fold subset represents the 18 malignant cases that are in-

orrectly classified and negatively affect the specificity. It is clear

rom Table 2 that the results of AUCs and accuracies of all k -fold

re similar to each other. This indicates the efficiency and feasibil-

ty of our proposed CAD system on diagnosis of the breast masses.

e summarize the performance of the proposed CAD system as an

verage of the 5-fold cross validation results in terms of sensitivity,

pecificity, AUC, and overall detection and classification accuracies

s follows. The YOLO-based CAD system performed an overall de-

ection and classification accuracies of 99.70% and 97.00%, respec-

ively. The sensitivity and specificity values reflect the statistical

easures of true positive and true negative rates, respectively. Our

AD system achieved sensitivity for benign cases with 100% and

pecificity for malignant cases with 94%. 

The masses that exist over the pectoral muscle or are sur-

ounded by dense tissue in the mammograms are generally known
s well-known challenges for mass detection and classification.

hese challenges are generally due to the variation in shape, tex-

ure, and size of the different masses [4] . Fig. 6 (a) and (c) show

uch cases and their results of our proposed YOLO-based CAD in

ig. 6 (b) and (d). Fig. 6 (b) and (d) illustrate the capability of our

roposed CAD to detect and predict the mass in these two chal-

enging cases. Our proposed CAD system seems to overcome these

hallenges. 

.4. The effect of the size of data sets 

In this section, we present the effect of different training

ataset sizes (i.e., original vs. augmented datasets) that are utilized

n training of our YOLO-based CAD system. The original dataset

ontains only 600 mammograms. However, the augmented dataset

nvolves all original and augmented mammograms which are 2400

ases. In general, the performance of deep learning techniques im-

roves as the size of the training dataset increases. Fig. 7 (b) illus-

rates the effect of enlarged dataset on the proposed CAD system.

t shows the improvement in term of ROC curves in the case of the

ugmented dataset against the original ones with AUCs of 96.45%

nd 87.74%, respectively. Significantly, the augmented data also af-

ects the specificity with an improvement of 16% as reported in

able 3 . Due to this, the overall classification accuracy is increased

rom 85.52% to 97%. In addition, YOLO-based CAD system presents

tability with slightly improvement rate regarding the performance

f mass detection. Note that the presented results in all sections

re based on the training of the augmented dataset. 

. Discussion 

In this study, we have developed a deep learning YOLO-based

AD system which detects the locations of potential masses on

ammograms and classifies them into benign or malignant simul-

aneously. The recent deep learning CAD systems only addressed

he diagnosis task of the extracted patches from mammograms

6,7,10,11,13,23] . In contrast, the proposed YOLO-based CAD system

ould handle both detection and classification at the same time us-

ng whole breast image. Figs. 5 and 6 show the capability of the

roposed CAD system to detect the potential breast masses and

roduce the proper diagnosis for each mammogram (i.e., benign

r malignant). Furthermore, we observe that YOLO-based CAD sys-

em overcomes two important challenges faced CAD approach in

he clinical mammographic field. First, it could reveal the breast

asses which are existed over the pectoral muscle as shown in

ig. 6 (b). Second, the proposed methodology successfully identi-

ed breast masses in the dense tissues as shown in Fig. 6 (d). In

act, both of these challenges are due to the high intensities (i.e.,

ore bright) among the pectoral muscle and dense tissue regions

ompared to normal breast tissue. The results of Tables 1 and
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Table 2 

Confusion matrices and performance of our YOLO-based CAD system throughout 5-fold cross validation. 

Fold test Actual classes Predicted classes Sensitivity (%) Specificity (%) AUC (%) Accuracy (%) 

Benign Malignant 

1st fold Benign 240 0 100 92.5 95.73 96.25 

100% 0.0% 

Malignant 18 222 

7.5% 92.5% 

2nd fold Benign 239 0 100 95.82 97.16 97.91 

100% 0.0% 

Malignant 10 229 

4.2% 95.8% 

3rd fold Benign 240 0 100 94.58 96.83 97.29 

100% 0.0% 

Malignant 13 227 

5.4% 94.6% 

4th fold Benign 239 0 100 94.17 95.85 97.08 

100% 0.0% 

Malignant 14 226 

5.8% 94.2% 

5th fold Benign 240 0 100 92.92 96.66 96.46 

100% 0.0% 

Malignant 17 223 

7.1% 92.9% 

Average Benign 100% 0.0% 100 94.00 96.45 97.00 

Malignant 6.00% 94.00% 

Fig. 6. Mass detection and classification. (a) and (c) show the ground-truth mass over the pectoral muscle and the detected by new proposed method, respectively. (b) and 

(d) present the ground-truth mass surrounding by dense tissue and the detected by new proposed CAD. 

Table 3 

Comparison of the performance (%) of the effect of the dataset size via present pro- 

posed YOLO-based CAD system. 

Index YOLO –CAD with 

original dataset 

YOLO –CAD with 

augmented dataset 

Sensitivity 93.20 10 0.0 0 

Specificity 78.00 94.00 

AUC 87.74 96.45 

Classification accuracy 85.52 97.00 

Detection accuracy 96.33 99.70 
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2 show the analysis of both detection and classification of the

breast masses throughout 5-fold cross validation. 

It is previously shown that training with augmented data im-

proves the performance of breast masses detection and classifica-

tion [6,14,18,19] . The overall accuracy performance increased from

85.5% with the 600 original mammograms to 97% with the 2400
ugmented mammograms as shown in Fig. 7 (b) and Table 3 . These

esults demonstrate that the YOLO-based CAD system is effective

o achieve high accuracy in both detection and classification of the

bnormalities at the same time. 

In order to show how robust the proposed YOLO-based CAD

ystem is, we compare the results with the latest studies employ-

ng DBN and CNN. Comparison with the conventional classifiers

hat do not utilize deep learning is also provided to present the

fficiency of the deep learning algorithms. In the previous work

23] that utilized same kind of DDSM mammograms, a DBN-based

AD system was applied and compared its outcomes against the

onventional Linear Discriminant Analysis (LDA), Quadratic Dis-

riminant Analysis (QDA), and Neural Network (NN) classifiers.

tatistical handcrafted features are excerpted from the extracted

asses. That study investigated the effect of features dimensional-

ty reduction through different feature selection methods. Table 4

hows the overall classification accuracies by utilizing the Sequen-

ial Floating Forward (SFFS) algorithm. In the case of DBN tech-
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Fig. 7. (a) FROC curve performance of breast mass detection. (b) ROC curves of the proposed YOLO-based CAD system with the augmented dataset against the original 

dataset. 

Table 4 

Classification performance of present proposed YOLO-based CAD system against conventional classifiers, DBN, and CNN. 

Reference Method Database (No. images) Prediction classes Mass detection accuracy (%) Classification accuracy (%) 

Al-antari et al. [ 23 ] LDA DDSM (168) Normal / Benign / 

Malignant 

86.00 78.57 

QDA 76.19 

NN 84.52 

DBN 90.48 

Jiao et al. [ 6 ] CNN DDSM (2400) Benign / Malignant X 96.70 

Present study YOLO DDSM (2400) Benign / Malignant 99.7 97.00 
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ique, all the extracted features are utilized, without the need of

eatures reduction, to train and test the CAD system. It is clearly

hown that how the DBN overcomes the conventional classifiers

ith overall accuracy of 90.48%. Also, a comparison study between

andom forest (RF) classifier against CNN was investigated in [18] .

ifferent kinds of features set are manually extracted from the

ass patches to train RF classifier. Each features set are individ-

ally trained and then they applied them separately to the test

et. Their results showed that the features group of candidate de-

ector, contrast, texture, geometry, location, context, and patient

nformation got AUCs of 85.8%, 78.7%, 71.8%, 75.3%, 68.6%, 81.6%,

nd 65.1%, respectively. While all the feature sets together obtained

UC of 90.6% against 92.0% in the case of CNN. In addition, a

ramework for CAD system utilizing CNN technique was presented

n [6] . As different of our proposed CAD system that utilized the

hole mammograms for the convolutional layers, they only used

he ROIs of the cropped masses. Combination of the middle level

nd high level features are utilized to train and test the CAD sys-

em based CNN. The performance of CNN shows it capability to

lassify the masses into benign or malignant with overall accuracy

f 96.7%. Actually, this classification results are highly comparable

ith ours. In contrast, only our proposed YOLO-based CAD system

an detect the masses in mammograms besides predicting their

ypes compared with the conventional CNN. Our proposed tech-

ique should be feasible as a CAD system capable of detection and

lassification the abnormalities of the breast images. 

Finally, we present a comparison of the effect of utilizing aug-

ented data instead of original ones. 

In [18] , the mass dataset are augmented utilizing three transfor-

ation types: rotation, translation, and scaling. Normal and malig-

ant cases are classified by applying CNN to the mass patches with

 size of 250 × 250. Their AUC results of the CNN without the aug-
ented dataset achieved 87.5%, while it reached to 92.9% with the

ugmented dataset. This improvement rate is comparable with our

UC results from 87.74% to 96.45%. 

. Conclusion 

In this paper, we present YOLO-based CAD system for breast

ass detection and cancer classification. The proposed CAD system

ncorporates a ROI-based CNN approach which utilizes the con-

olutional layers followed by fully connected neural networks to

etect the proper location of the mass and to distinguish the tu-

or types: benign or malignant. Our results provide feasible and

romising results in term of detecting the location of benign and

alignant masses and recognize their proper classes as well. Fur-

hermore, the YOLO-based CAD system detects the masses existing

ver the pectoral muscle or surrounding by the dense tissue in the

ammograms which are considered as most challenging cases of

reast cancer CAD. The next step of the presented CAD system is

o be tested in practice for its real validity. 
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