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introDuCtion
Breast cancer is the most frequently diagnosed cancer 
among females with an incidence of 12.3% in the normal 
population1,2 and it is the second most common cause of 
cancer death in females.3 Epidemiological studies have 
shown that females with extremely dense breast tissue 
present a two- to six-fold increased risk of developing 
breast cancer.4 Due to different X-ray absorption proper-
ties, fibroglandular breast tissue, comprised of glandular 
tissues, fibrous tissues, and stroma cells, appears opaque 

on a mammography as compared to the lucent fatty tissue. 
The mammographic density (MD) or breast density, i.e. 
the measure of the relative amount of fibroglandular 
parenchyma and fat tissue in the breast based on the 
mammographic appearance of the fibroglandular paren-
chyma, provides an objective assessment of the relative 
amount of glandular tissue in the breast, which is other-
wise not inferable from a physical examination.5 Studies 
performed during the last decades have shown that the 
MD reflects changes in breast density due to aging and 
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objective: High breast density is a risk factor for 
breast cancer. The aim of this study was to develop 
a deep convolutional neural network (dCNN) for the 
automatic classification of breast density based on the 
mammographic appearance of the tissue according 
to the American College of Radiology Breast Imaging 
Reporting and Data System (ACR BI-RADS) Atlas.
Methods: In this study, 20,578 mammography single 
views from 5221 different patients (58.3 ± 11.5 years) 
were downloaded from the picture archiving and 
communications system of our institution and automati-
cally sorted according to the ACR density (a-d) provided 
by the corresponding radiological reports. A dCNN with 
11 convolutional layers and 3 fully connected layers 
was trained and validated on an augmented dataset. 
The model was finally tested on two different datasets 
against: i) the radiological reports and ii) the consensus 
decision of two human readers. None of the test data-
sets was part of the dataset used for the training and 
validation of the algorithm.
results: The optimal number of epochs was 91 for 
medio-lateral oblique (MLO) projections and 94 for 
cranio-caudal projections (CC), respectively. Accuracy 
for MLO projections obtained on the validation dataset 
was 90.9% (CC: 90.1%). Tested on the first test dataset of 

mammographies (850 MLO and 880 CC), the algorithm 
showed an accordance with the corresponding radi-
ological reports of 71.7% for MLO and of 71.0% for CC. 
The agreement with the radiological reports improved 
in the differentiation between dense and fatty breast 
for both projections (MLO = 88.6% and CC = 89.9%). In 
the second test dataset of 200 mammographies, a good 
accordance was found between the consensus decision 
of the two readers on both, the MLO-model (92.2%) and 
the right craniocaudal-model (87.4%). In the differentia-
tion between fatty (ACR A/B) and dense breasts (ACR 
C/D), the agreement reached 99% for the MLO and 96% 
for the CC projections, respectively.
Conclusions: The dCNN allows for accurate classification 
of breast density based on the ACR BI-RADS system. 
The proposed technique may allow accurate, standard-
ized, and observer independent breast density evalua-
tion of mammographies.
advances in knowledge: Standardized classification of 
mammographies by a dCNN could lead to a reduction 
of falsely classified breast densities, thereby allowing for 
a more accurate breast cancer risk assessment for the 
individual patient and a more reliable decision, whether 
additional ultrasound is recommended.

https://doi.org/10.1259/bjr.20180691
mailto:alexander.ciritsis@usz.ch


2 of 10 birpublications.org/bjr Br J Radiol;92:20180691

BJR  Ciritsis et al

menopausal transition.4,6 Moreover, lifestyle risk factors (such 
as body mass index, alcohol intake, or breastfeeding) can have 
an effect on MD.7

Besides its relevance in the assessment of the individual risk of 
developing breast cancer, the MD also represents an important 
parameter in the planning of systematic mammography 
screening programs. Scientific studies have shown that the sensi-
tivity of screening mammographies strongly depends on the 
MD. While for low density breast a sensitivity of 87% is reported, 
for dense breast tissue a dramatic drop of the sensitivity to 63% 
has been observed.8 Patients with dense breast may require addi-
tional imaging, such as tomosynthesis, ultrasound or breast MR 
to increase the cancer detection chances.9

In mammography screening, reports are typically formulated 
according to the American College of Radiology Breast Imag-
ing-Reporting and Data System (ACR BI-RADS) catalog last 
updated in November 2015. In ACR BI-RADS, breast density 
is classified into four subcategories: A (“almost entirely fatty”), 
B (“scattered areas of fibroglandular density”), C (“heteroge-
neously dense breasts, which may obscure small masses”), and 
D (“extremely dense breasts, which lowers the sensitivity of 
mammography”). In spite of this cataloging, the classification 
of the MD suffers from a poor inter reader and intra reader 
reproducibility.10

In this investigation, we evaluated whether a deep convolutional 
neural network (dCNN) trained with approximately 20,000 
mammography projections, labeled with an ACR MD score 
obtained from the corresponding report, allows for accurate, 
objective, and standardized MD classification.

MethoDs anD Materials
Database search
The local ethics committee “Kantonale Ethikkommission 
Zürich” approved this retrospective study and waived the need 
for informed consent (Approval Number: 2016–00064). All 
reports from mammography patients of the years 2012 and 2013 
were indexed to an anonymous ID and the study date. The corre-
sponding mammographies were downloaded and indexed to the 
previously assigned ID and the respective study date. Overall, 
20,578 diagnostic mammography views from 5,221 unique 
patients (including 153 patients with a one-sided mastectomy) 
with a mean age of 58.3 ± 11.5 years were linked to the ACR 
BI-RADS density from the corresponding radiological report 
using a home-written text searching MATLAB script (Release 
2013b, MathWorks, Natick, MA). To avoid over representation 
of ACR densities B and C, the original dataset made of 20,578 
views was reduced to 12,932 views.

Data preparation
All computations were performed on a consumer-grade desktop 
computer equipped with an Intel i7-7700 CPU with 16 GB 
random access memory and an NVIDIA 1080 GTX graphics 
processing unit with 8 GB graphics random access memory. The 
computer was running Ubuntu Linux 16.04 with Tensorflow 
1.0.1 and Keras 2.0.4. All images were resized from their initial 

dimensions of 3072 × 2816 pixels to 351 × 280 pixels. To increase 
the number of mammographies, all projections were reori-
ented to the right-sided position for analysis, and all computa-
tions were performed with right-side projections [medio-lateral 
oblique (MLO): n = 6470; cranio-caudal (CC): n = 6462] . Data 
augmentation was further performed with the ImageDataGener-
ator of Keras expanding the dataset to achieve an equal distribu-
tion of breast densities for the training and the validation phase 
(Table 1). Digitally generated images were computed performing 
random vertical and horizontal shifts, and image shearing 
transformations.

The resulting dataset was randomly shuffled and stratified with 
respect to the density classes, and then split into a 70% parti-
tion for the training and a 30% partition for the validation of the 
model. Prior to the density estimation each mammographic view 
was classified according to its orientation (MLO or CC) and side 
(right or left).

The performance of the algorithm was tested on two different 
test datasets. The first test dataset was referenced to the radio-
logical reports of our institution and consisted of 850 MLO 
(882 CC) projections composed of 167(201) ACR A, 347 (308) 
ACR B, 260 (249) ACR C, and 76 (124) ACR D densities. The 
second test dataset was made by 200 images (100 MLO and 100 
CC projections) previously excluded from training or validation 
of the algorithm. The subset contained an equal distribution 
of breast density classes (each with 50 images) taken from the 
radiological reports. Classes were presented to the readers and 
the dCNN in a random order. The dCNN-based MD classifica-
tions for the subset were compared to the consensus decision 
made by two experienced radiologists with over 5 years experi-
ence in mammographic imaging and 1500 mammographic cases 
read per year.

dCNN architecture
A dCNN model was employed in this study for classification 
of an input mammography projection into four categories. In 
order to find a good compromise between memory usage of 
the graphical processor unit and validation accuracy, and to 
prevent overfitting, different network architectures regarding the 
number of layers, number of filters, dropout rate and number of 
epochs, were systematically evaluated to avoid overfitting. The 
final convolutional network consisted of 13 convolutional layers 
followed by max-pooling for reduction of the dimensionality of 

Table 1. Number of mammographies used for training/valida-
tion of the dCNN

ACR A ACR B ACR C ACRD
RMLO 1,565 2,158 1,635 1,112

RMLO augmented 6,579 5,720 4,786 5,329

RCC 1,561 2,150 1,641 1,110

RCC augmented 6,696 5,759 4,667 5,317

ACR, American College of Radiology; dCNN, deep convolutional 
neural network;RMLO, right medial-lateral oblique; RCC, right 
cranicaudal;
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the feature maps and 4 dense layers with a final fully connected 
softmax layer as depicted in Figure  1. The number of applied 
filters amounted 32, which were randomly initialized using 

the glorot_uniform method. The convolution layers were zero-
padded; Nesterov momentum11 and dropout with a rate of 
50% were used to improve the performance of the model and 
to prevent overfitting. Batch size was set to 40, and maximum 
number of epochs for training was 120. The weights with the 
best performance on the validation set were saved and used for 
evaluation on the test dataset. After complete training of the 
model, density classification was assigned to each image of the 
test dataset based on the highest probability assigned to the four 
categories A to D (keras predict_proba function).

Human readout
All images in the test set were presented in the same random order 
to two radiologists (Reader 1: MM; Reader 2: NB), who were 
blinded to the clinical information as well as to the study design. 
Each reader rated the images individually according to the ACR 
BI-RADS catalog. After the individual evaluation of each image, all 
images rated differently by Reader 1 and Reader 2 were again classi-
fied by both readers in consensus. The classification results derived 
by the consensus decision of both readers served as ground truth 
for the evaluation of the classification accuracy of the dCNN and of 
the initial classification of each reader.

Statistical analyses
Statistical analysis was performed using the SPSS software 
package (SPSS v. 23, IBM Corp., Armonk, NY). The metrics 
of the confusion matrices were quantified to assess the overall 
performances of the dCNN and of each reader as compared to 
the consensus decision.12 Inter rater reliabilities of the MD classi-
fications between the dCNN, both readers, and the ground truth 
were assessed by calculating Cohen’s kappa (κ) coefficients with 
quadratic weights evaluated according to Landis and Koch.13,14 
The diagnostic performance of the dCNN compared to the 
human readout was assessed by conducting a receiver operating 
characteristics (ROC) analysis. For this, the multiple classifica-
tion problem of the test dataset into four density categories (i.e. 

Figure 1. Schematic representation of the applied dCNN. dCNN, deep convolutional neural network.

Figure 2. Accuracy curves for the training and validation data-
sets for both projections. CC, cranio-caudal; MLO, medio-lat-
eral oblique.

http://birpublications.org/bjr
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A, B, C, and D) was translated into four binary classification 
problems (i.e. A vs all; B vs all; C vs all; D vs all). For each binary 
classification sensitivity and specificity of each human reader 
and of the dCNN were computed. Diagnostic accuracies were 
expressed as the area under the curves (AUC) (ROC curves) and 
compared with DeLong’s non-parametric test.15 All tests were 
two-tailed and p-values < 0.05 were considered indicative of 
significant differences.

results
Training and validation
In total 12,932 mammography views were successfully linked to 
the ACR BI-RADS density from the corresponding radiological 

report. After image pre-processing and data augmentation a 
balanced training and validation dataset subdivided into four 
classes composed of n = 22,414 MLO projections and n = 22,439 
CC projections was available.

The model computations for the MLO and CC projections were 
completed in 20.3 and 21.6 h, respectively. For both models, 
initially accuracy was higher on the validation dataset compared 
to the training dataset (Figure 2), which may be attributed to the 
relatively small batch size, whereas validation after each cycle 
is performed with the complete validation set. For the MLO 
model, accuracy on the validation set was 90.9% (CC: 90.1%) 
after 91 (CC: 94) epochs. At about 90–95 epochs, accuracy on 

Figure 3. Examples of mammography evaluations using the dCNN. dCNN, deep convolutional neural network.

Table 2. Normalized confusion matrix of the “real-world” test dataset for the dCNN, considering the radiological reports as ground 
truth

Reference:radiological 
report 

PREDICTED

RMLO projections RCC projections

ACR A ACR B ACR C ACR D ACR A ACR B ACR C ACR D

GROUND 
TRUTH 

ACR A 86.8 18.2 1.5 0.0 84.6 20.8 1.6 0.0

ACR B 12.6 68.6 17.7 0.0 8.5 64.3 10.0 0.0

ACR C 0.6 11.5 63.5 18.4 5.5 10.4 60.2 12.9

ACR D 0.0 1.7 17.3 81.6 1.5 4.5 28.1 87.1

ACR, American College of Radiology; dCNN, deep convolutional neural network; RCC, right craniocaudal;

Table 3. Normalized confusion matrix of the “real-world” test dataset for the dCNN, with the radiological reports underlying as 
ground truth, applying the two-class discrimination fatty vs dense

Reference: 
radiological 

report 

PREDICTED

RMLO projections RCC projections

Fatty Dense Fatty Dense

GROUND TRUTH 
Fatty 90.3% 9.7% 93.9% 6.1%

Dense 14.1% 85.9% 14.9% 85.1%

dCNN, deep convolutional neural network;RCC, right craniocaudal;
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the validation set gradually reached saturation. Afterwards, the 
network started to overfit on the training data. Typical examples 
of the evaluation on three mammography projections unknown 
to the models are depicted in Figure 3.

Test datasets: radiological report as ground truth
In the test dataset referenced to the radiological reports, an accor-
dance of 71.7% was obtained for 850 MLO projections. Compa-
rable results were found for the 882 CC projections (accordance 
of 71.0%). Evaluating the accordance for the distinction between 
fatty (ACR A and B) and dense (ACR C and D) breast tissue, an 
accordance of 88.6% was reached for MLO projections, and of 
89.9% for CC projections. The corresponding confusion matrices 
are shown for both projections and for 4/2 class discrimination 
in Tables 2 and 3, respectively.

Test dataset: consensus of two experienced 
radiologists as ground truth
As compared to the consensus decision of the two experienced 
radiologists for the subset of the test dataset, the dCNN achieved 
an overall classification accuracy of 92.2% for the MLO and 87.4% 
for the right craniocaudal projections (Table 4). In the distinction 
between fatty (ACR A and B) and dense (ACR C and D) breast 
tissue, an overall classification accuracy of 99% was observed 
for MLO projections, and of 96% for CC projections. The corre-
sponding confusion matrices are shown for both projections and 
4/2 class discrimination in Table 5. For the MLO projections, the 
ROC analyses measured an AUC of 0.96 [95% CI: (0.90–0.99)] 
for Reader 1 and for Reader 2, while for the dCNN the AUC 
was 0.98 [95% CI: (0.93–0.99)] (Figure 4A, Table 6). For the CC 
projections, the AUC amounted to 0.97 [95% CI: (0.92–0.99)] 
for Reader 1, to 0.98 [95% CI: (0.93–0.99)] for Reader 2, and to 
0.97 [95% CI: (0.92–0.99)] for the dCNN (Figure 4B, Table 6). 
For both projections, no significant differences in the diagnostic 
accuracy were found between the two readers and the dCNN (p 
= 0.16–0.99).

For the MLO projections the agreement between each individual 
reader and the dCNN compared to the consensus decision 
ranged between “strong” {ACR B: dCNN/Consensus [κ: 0.75 
(95% CI: 0.60–0.92)]} and “almost perfect” {ACR A: Reader 2/
Consensus [κ: 0.93 (95% CI: 0.85–1.00)]}. Regarding the agree-
ment for the classification of all ACR MD scores, both Reader 1 
and the dCNN achieved “almost perfect”, whereas for Reader 2 
“strong” agreement was measured [κ: 0.80 (95% CI: 0.73–0.88)]. 
(Figure 5A; Table 7).

For the CC projections the agreement between Reader 1, Reader 
2, and the dCNN compared to the consensus decision as ground 
truth ranged between “strong” {ACR D: Reader 2/Consensus 
[κ: 0.66 (95% CI: 0.43–0.89)]} and “almost perfect” {ACR A: 
Reader 2/Consensus [κ: 0.93 (95% CI: 0.85–1.00)]}. The inter 
rater agreement between both human readers ranged between 
“moderate” [κ: 0.5 (95% CI: 0.26–0.75)] for ACR D and “strong” 
for ACR A scored images [κ: 0.79 (95% CI: 0.64–0.95)]. With 
respect to the overall classification for both readers as well as 
the dCNN measured “almost perfect” agreement was measured, Ta
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with κ ranging from 0.82 (dCNN) to 0.89 (Reader 2) (Figure 5B; 
Table 8).

DisCussion
In the present study, we propose an automatic approach for deter-
mination of mammographic breast density according to the ACR 
BI-RADS catalog using a machine learning algorithm based on a 
deep convolutional neural network. The dCNN was trained with 
over 20,000 mammographies, which were successfully linked to 
the ACR BI-RADS density from the corresponding radiological 
report. For the implemented dCNN, an optimal number of 90–95 
epochs was determined, reaching an average validation accuracy 
of 91%. In a real-world situation with mammographies acquired 
in our institution between November and December 2011, an 
accordance between radiological report and prediction of 71% 
was reached. A notably better accordance of 89–90% was found 
for the clinical relevant distinction between fatty and dense MD.

In the clinical routine, MD is qualitatively rated according to the 
ACR BI-RADS catalog on the basis of the radiologist’s subjective 

perception. Numerous studies demonstrated that breast density 
classification using the ACR four-category scale is observer-de-
pendent with reported inter reader agreement ranging between 
0.43 and 0.89.16–19 Intra reader comparability showed that expe-
rienced radiologists more robustly reproduce breast density 
assessments as compared to radiologists not routinely reading 
mammographies.20,21 Therefore, the accuracy of the trained 
dCNN presented in this study is in accordance with the expecta-
tions due to the inter reader variability of the real-world dataset 
labeling constituted by the radiological reports. Moreover, an 
average accuracy of 91% achieved by our dCNN can probably 
not be further improved, as the classification error was part of the 
provided training dataset and can be described as a systematic 
bias, which is forward-propagated to the learning routine of the 
dCNN. To overcome the problem of the intrinsically high inter 
reader variability in the assessment of the MD of the radiological 
reports, two experienced radiologists were requested to classify a 
second “real-world” test dataset. As compared to the consensus 
of the two experienced radiologists, the dCNN showed an excel-
lent performance (MLO: 92.2%; CC: 87.4%). The robustness of 

Table 5. Normalized confusion matrix for the “real-world” data with the consensus decision of the two readers as ground truth, 
applying the two-class discrimination fatty vs dense

Reference: 
consensus 
decision 

PREDICTED

RMLO projections RCC projections

Fatty Dense Fatty Dense

ACTUAL 
Fatty

96.2%
(90.4%)
[98.1%]

3.9%
(9.6%)
[1.9%]

95.8%
(100.0%)
[100.0%]

4.2%
(0.0%)
[0.0%]

Dense

8.3%
(4.2%)
[0.0%]

91.7%
(95.8%)

[100.0%]

5.8%
(3.9%)
[1.9%]

94.2%
(96.2%)
[98.1%]

dCNN, deep convolutional neural network;RCC, right craniocaudal;
Reader 1 (no brackets), Reader 2 (round brackets), and the dCNN (square brackets)

Figure 4. ROC Curves. ROC, receiver operating characteristics.

http://birpublications.org/bjr


7 of 10 birpublications.org/bjr Br J Radiol;92:20180691

BJRFull paper: Determination of mammographic breast density via deep learning

the dCNN especially in the clinical relevant distinction between 
fatty and dense breast was confirmed with high accuracy (MLO: 
99%; CC: 96%). Our results showed that while the dCNN perfor-
mance is high for both projections, the two human readers have 
a slightly better agreement to the consensus for the CC projec-
tions as compared to the MLO (Table 6). The proposed dCNN 
provides an observer-independent, objective, and robust evalu-
ation of MD. The training of the algorithm with the collective 
“wisdom” of the local institution database resulted in robust 
performances, which suggest that the algorithm may eliminate 
intra and inter reader variability.

The definition of a correct ground truth for the MD assessment 
is not a trivial issue. In this study, the performances of the dCNN 
were compared to the radiological reports of our institution 
and to the consensus of two experienced radiologists. Alterna-
tive methods for MD quantification have been proposed in the 
scientific literature. Those methods rely on the quantification of 
the percentage of the segmented areas of highest density on the 
mammographic image. Segmentation can be performed manu-
ally or be based on interactive thresholding.22 The first method is 
time consuming, labor intensive, and does not cover regions with 

inhomogeneous fibroglandular tissue, which can lead to signifi-
cant inaccuracies. The second method relies on a semi-automated 
technique, where the observer interactively applies thresholding 
values on the mammography for assessment of fibroglandular 
tissue pixels. The amount of breast tissue is then calculated by 
dividing the semi-automated segmented area of fibroglandular 
tissue by the area of the entire breast. This approach is less time 
consuming but constitutes a semi-subjective method due to the 
required user input. Both methods did not find a use in the clin-
ical routine also because they do not provide an equivalent for 
the broadly accepted ACR-based classification.10,23,24 A further 
drawback of those methods is that they provide an overall 
percentage of breast tissue, which may not reflect high-density 
parenchymal patterns in local areas of the breast.

In accordance to our results, Mohamed et al also recently showed 
that a dCNN algorithm can discriminate between categories B 
and C with an accuracy of 94% as compared to the radiolog-
ical reports of the local institution. Classification accuracy was 
reported to increase up to 98%, when excluding image data of 
poorer quality.25 In our study a four-class classification was kept 
to comply the ACR BI-RADS classification. The algorithm was 

Table 6. ROC analyses for the “real-world” dataset with the consensus decision of the two readers underlying as ground truth

RMLO n = 100 RCC n = 100

AUC [%]  
(95% CI)

Specificity  
[%]

Sensitivity  
[%]

PPV  
[%]

NPV  
[%]

AUC [%]  
(95% CI)

Specificity  
[%]

Sensitivity  
[%]

PPV  
[%]

NPV  
[%]

Reader 1
0.96a (0.90–
0.99) 91.7 96.2 92.6 95.7 97.3 (0.91–0.99) 94.2 95.8 93.9 96.1

Reader 2
0.96a (0.90–
0.99) 95.8 90.4 95.9 90.2 98.0 (0.93–0.99) 96.2 100.0 96.0 100.0

dCNN
0.98a (0.93–
0.99) 100.0 98.1 100.0 98.0 97.4 (0.92–0.99) 98.1 100.0 98.0 100.0

Figure 5. Evaluated Inter rater agreement.
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trained with data, whose quality reflects the clinical standard of 
our institution.

A main peculiarity of the algorithm is that the applied dCNN 
emulates the clinical workflow in decision making and can thus 
easily be integrated in the clinical routine for MD assessment 
according to the ACR BI-RADS catalog. The implementation of 
the proposed dCNN into the clinical workflow may reduce the 
subjectivity in the breast density classification leading to a reduc-
tion of falsely classified breast densities. Additionally, it may help 
standardization of decisions for follow-up diagnostic ultrasound 
simultaneously reducing morbidities and overall costs. More-
over, an objective evaluation of MD via artificial intelligence will 
allow for a more accurate calculation of the breast cancer risk in 
the individual patient and for large screening cohorts.26 Lastly, 

the proposed dCNN could serve as a quality control tool retro-
spectively applied to large numbers of mammographies. The 
obtained data could be used to characterize a screening cohort 
or to assess variability in breast density assessment between 
different centers.

ConClusion
In conclusion, we applied a dCNN trained on over 20,000 
mammography projections, which allowed for accurate, stan-
dardized, and observer-independent classification of breast 
density according to the ACR BI-RADS catalog. The implemen-
tation of dCNN into the clinical workflow may help improving 
the diagnostic accuracy and reliability of mammographic breast 
density assessment in the clinical routine.
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