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Abstract

The ability to generate synthetic medical images is useful for data augmentation,
domain transfer, and out-of-distribution detection. However, generating realistic,
high-resolution medical images is challenging, particularly for Full Field Digital
Mammograms (FFDM), due to the textural heterogeneity, fine structural details and
specific tissue properties. In this paper, we explore the use of progressively trained
generative adversarial networks (GANs) to synthesize mammograms, overcoming
the underlying instabilities when training such adversarial models. This work is the
first to show that generation of realistic synthetic medical images is feasible at up
to 1280x1024 pixels, the highest resolution achieved for medical image synthesis,
enabling visualizations within standard mammographic hanging protocols. We
hope this work can serve as a useful guide and facilitate further research on GANs
in the medical imaging domain.

1 Introduction

The generation of synthetic medical images is of increasing interest to both image analysis and
machine learning communities for several reasons. First, synthetic images can be used to improve
methods for downstream detection and classification tasks, by generation of images from a particularly
sparse class, or by transforming existing images in a plausible way to generate more diverse datasets
(known as data augmentation). Salehinejad et al. (2018) and Frid-Adar et al. (2018) show the benefits
of this approach as applied to chest X-ray and liver lesion classification, respectively. Costa et al.
(2017) successfully use generative adversarial networks (GANSs) in an image-to-image translation
setting to learn a mapping from binary vessel trees to realistic retinal images.

Second, GANs can be used in domain adaptation, in which a model trained on images of one domain
is applied to images of another domain where labels are scarce or non-existent. Images across related
modalities can have significantly different visual appearance, such as in the cases of CT and MRI,
or across different hardware vendors or even when using different imaging protocols. As a result,
transferring a model across domains can severely degrade its performance. To that end, Kamnitsas
et al. (2017) used adversarial training to increase the robustness of segmentation in brain MRI and
Lafarge et al. (2017) in histopathology images.

Third, image-to-image translation using GANs has achieved impressive results in several applications,
such as image enhancement (i.e. denoising (Yi and Babyn, 2018), super-resolution (Ledig et al.,
2017) etc) and artistic style transfer (i.e. (Ulyanov et al., 2017)). Especially the former, has been
shown to be successful in enhancing images from low-dose CT scans so that they become comparable
with high-dose CTs, as shown in Wolterink et al. (2017) and Yi and Babyn (2018).
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Finally, in semi-supervised learning, an adversarial objective can help to leverage unlabeled alongside
labeled data in order to improve classification or detection performance. We refer to Lahiri et al.
(2017) for an example of semi-supervised learning as applied to retinal images.

In recent years GANSs have lead to breakthroughs in a number of different non-medical applications
involving generation of synthetic images, such as single-image super-resolution (Ledig et al., 2017),
image-to-image translation (Isola et al., 2017) and the generation of artistic images (Elgammal et al.,
2017) to name a few.

GANSs manage to ameliorate many of the issues associated with other generative models. For instance,
auto-regressive models (Van Oord et al., 2016) generate image pixels one at a time, conditioned on
all previously generated pixels, by means of a Recurrent Neural Network (RNN). These methods
have shown promise, however have not yet been able to scale to high image resolutions. Additionally,
the computational cost of generating a single image does not scale favorably with its resolution.
With Variational Auto-encoders (VAEs) (Kingma and Welling, 2013), restrictions on the prior and
posterior distributions limit the quality of the drawn samples. Furthermore, training with pixel losses
exhibits an averaging effect across multiple possible solutions in pixel space, which manifests itself
as blurriness (discussed in more detail in Ledig et al. (2017)). In contrast, GANs are able to produce
samples in a single shot and do not impose restrictions on the generating distribution in a process
similar to sampling from the multitude of possible solutions in pixel space, which generally leads to
sharper and higher quality samples.

The framework for training generative models in an adversarial manner was first introduced in the
seminal work of Goodfellow et al. (2014). This framework is based on a simple but powerful idea:
the generator neural network aims to produce realistic examples able to deceive the discriminator
which aims to discern between original and generated ones (a ‘critic’). The two networks form
an adversarial relationship and gradually improve one-another through competition, much like two
opponents in a zero-sum game (see Fig. 1). The main disadvantage is that training these models
requires reaching a Nash equilibrium, a more challenging task than simply optimizing an objective
function. As a result, training can be unstable, susceptible to mode collapse and gradient saturations
(Arjovsky et al., 2017).

Stabilizing GAN training becomes even more pertinent as our aim shifts towards high resolution
images, such as medical images, where the dimensionality of the underlying true distribution in pixel
space can be enormous and directly learning it may be unattainable. A key insight made in Karras
et al. (2018) is that it is beneficial to start training at a low resolution, before gradually increasing it as
more layers are phased in. This was shown not only to increase training stability at high resolutions,
but also to speed up training, since, for much of the training, smaller network sizes are used.

The goal of this paper is to demonstrate the applicability of GANs in generating synthetic FFDMs.
Mammograms contain both contextual information indicative of the breast anatomy and a great
level of fine detail indicative of the parenchymal pattern. The large amount of high frequency
information makes it imperative for radiologists to view these images in high-resolution. For instance,
the spiculation of a mass or certain micro-calcification patterns as small as 1-2 pixels in diameter
can indicate malignancy and are thus very important to consider. Our aim was to train a generator
convolutional neural network (CNN) able to produce realistic, high-resolution mammographic images.
For that purpose we attempted to follow Karras et al. (2018) as closely as possible, as our previous
attempts generating even low-resolution images did not yield acceptable results.

The rest of the paper is arranged as follows: In Section 2 we summarize the key theoretical underpin-
nings of GANSs, including their progressive training, and various stabilization methods that can be
employed. In Section 3 we outline our methodology that builds on previously published literature
and discuss the results of our experiments in detail. Finally, in the Appendix, readers can find several
visual examples of successes and failures of the developed approach.

2 Generative Adversarial Networks

2.1 Theoretical Background

The framework for training generative models in an adversarial manner consists of a generator G,
tasked with generating samples highly probable under the true data distribution, and a discriminator
D, tasked with distinguishing synthesized samples from original ones. Both the generator and
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Figure 1: Schematic representation of a generative adversarial network.
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discriminator are trained using cost functions directly opposing each other, which can be regarded as
either a zero-sum game or as a saddle point optimization problem.

The original GAN value function (Goodfellow et al., 2014) is expressed in terms of the discriminator
binary cross entropy, as follows:

ménmgx E [log D (x)] + ZEJPZ [log (1 - D (G (2)))] (1
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where as P,, we denote the true data distribution with « being a sample real image and as P, we
denote a proxy random distribution of our choice (usually uniform) with z being a random latent
vector drawn from it. Note that the distributions we aim to match are P, and Pz, with & = G (2)
being a randomly generated image.

The above objective was shown to be equivalent to minimizing the Jensen-Shannon divergence
between the generator and true data distributions (Goodfellow et al., 2014).

Training is typically performed using batch discrimination (Salimans et al., 2016), according to which
the networks are presented with batches sampled exclusively from the true or generated images at
each time-step.

An issue that commonly arises due to the objective in Eq. 1 is that, if the discriminator becomes
too effective at discerning real from generated images, the second term of the objective approaches
zero and the gradient to the generator vanishes. As a result the generator cannot further improve and
training ceases. In order to avoid this undesired behaviour, the authors in Goodfellow et al. (2014)
suggest to alternatively minimize — log (D (G (z))) with respect to the generator parameters, which
is directly equivalent, but does not enjoy the same theoretical justification.

2.2 Wasserstein GAN

In Arjovsky et al. (2017), the authors show how the original GAN objective in Eq. (1) is potentially
discontinuous with respect to the generator’s parameters, which leads to instability during training.
They proposed a new objective based on the Wasserstein distance (a.k.a. the earth mover’s distance)
to remedy this. Intuitively, the Wasserstein distance W (p, ¢) is the minimum cost of transporting
probability mass in order to transform one distribution p into another distribution g, where the cost
is the mass multiplied by the transport distance. Under mild assumptions, W (p, ¢) is continuous
everywhere and differentiable almost everywhere, which the authors claim leads to improved stability
during optimization.

Formally, the Wasserstein GAN objective function is defined using the Kantorovich-Rubinstein
duality (Villani, 2009) as:

minmax | E [fu (90 ()] = E [fw(@)] 2)

where f, (+) is the critic function transforming an image to a discriminative latent feature space, as
opposed to previously being trained to discern between original and generated images, and { fu, }wew
is the set of all critic functions that are 1-Lipschitz continuous.



latents real/fake latents real/fake real/fake
! X256 a1
.
e
160028 | 160x128
320256 | [ somaese |
6401512 | [ 6401512 |
1280x1024 |—>l~| 1280x1024 |
Generator Discriminator Generator Discriminator Generator Discriminator
(a) Scale 0 (b) Scale 4 (c) Scale 8

Figure 2: Illustration of the progressive growth of both networks during training.

To enforce the Lipschitz continuity on the critic it is sufficient to clip the weights w of the critic to lie
within a compact space [—c¢, c] (Arjovsky et al., 2017). However, as Gulrajani et al. (2017) show, this
clipping can lead to optimization problems. Instead, they propose adding a gradient penalty term to
the Wasserstein objective as an alternative way to ensure the Lipschitz constraint. Their improved
Wasserstein objective used in this work, is formulated as follows:

E:
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where & is a random interpolation between an original and a generated image, & = y& + (1 —
Yge (z), v ~ U(0,1) and the hyper-parameter /3 is the target value of the gradient magnitudes,
usually selected 5=1.

2.3 Stabilization Methods

Despite their improved stability, even Wasserstein GANs remain notoriously difficult to train and
subject to instabilities when the equilibrium between the generator and discriminator is lost. The
problem stems from the fact that the optimal point of the joint GAN objective corresponds to a saddle
point, which alternating SGD methods such as those used to train the generator and discriminator
networks do not reliably converge to.

A lot of research is being dedicated to stabilizing convergence to this saddle point. Yadav et al. (2018)
combine SGD with a ‘prediction step’ that prevents ‘sliding off” the saddle due to maximization with
respect to the discriminator overpowering minimization of the generator or vice-versa. Adolphs et al.
(2018) exploit curvature information to escape from undesired stationary points and converge more
consistently to a desired optimum. Finally, Daskalakis et al. (2018) use Optimistic Mirror Descent
(OMD) to address the limit oscillatory behavior known to impede saddle point convergence.

Stable GAN convergence becomes even more elusive when high resolution images are involved. In
this setting differences between the high frequency artifacts of original and generated images make it
even easier for the discriminator to win out over the generator, destabilizing training. Progressively
trained GANs, which we describe next, were developed to tackle this problem.

2.4 Progressive Training of GANs

The research towards using GANs to synthesize ever increasing resolution of images has recently lead
to a breakthrough in the work of Karras et al. (2018). The underlying idea is to progressively increase
the resolution of generated images by gradually adding new layers to the generator and discriminator
networks. The generator first learns to synthesize the high-level structure and low frequency details
of the image distribution, before gradually shifting its attention to finer details in higher scales. The
fact that the generator does not need to learn all scales at once leads to increased stability. Progressive
training also reduces training time, since most of the iterations are done at lower resolutions where
the network sizes are small.

The original work includes several further important contributions. A dynamic weight initialization
method is proposed to equalize the learning rate between parameters at different depths, batch



normalization is substituted with a variant of local response normalization in order to constrain signal
magnitudes in the generator, and a new evaluation metric is proposed (Sliced Wasserstein distance).

2.5 Quantitative Evaluation Metrics

There are two main factors we wish to assess in order to estimate the quality of outputs from the
trained generator network. One is how probable the synthesized images are under the true data
distribution, and the other is how large is the support of the generated distribution. Neither of these
factors are straightforward to quantitatively assess and have been a subject of research since the
advent of GANGs.

The difficulty in assessing the fidelity to which the generated distribution follows the true data
distribution stems from the fact:

— We wish to compare sets of images, as opposed to pairs of images for which most image
similarity metrics are designed.

— The comparison is based on conceptual attributes of appearance that are inherently subjec-
tive.

A first attempt to the problem was the consideration of the Inception Score (IS). Synthesized images
x are presented to an ImageNet trained Inception model to produce a class prediction y, and a
score is assigned based on the entropy of p(y|x) and p(y). Intuitively, high fidelity to the true
distribution implies low entropy w.r.t. p(y|x) (samples are unambiguous) and high distributional
support translates to high entropy w.r.t. p(y) (samples have high diversity).

An alternative to the IS, is the the Frechet Inception Distance (FID) (Heusel et al., 2017), which
instead compares the distributions of the feature maps for original and generated images. The FID
directly utilizes the training image dataset and can be more robust to transferring to images that were
not used to train the inception model, e.g., facial images, as long as the features are also discriminative
in the new domain.

An alternative metric, not requiring the use of a trained model, is the Multi-scale Structural Similarity
Index (MS-SSIM) (Odena et al., 2017; Wang et al., 2003). The SSIM was designed to improve
upon traditional image quality metrics and has been used as a loss function in deep learning, as it is
differentiable (Godard et al., 2017). In order to assess the quality of a trained GAN, it is necessary to
randomly pair the original and generated images, compute the SSIM of each set and then compare
with within set self-similarities.

Finally, an interesting alternative to the aforementioned metrics, proposed in Karras et al. (2018), is
the Multi-scale Sliced Wasserstein metric. The concept is to compare the sorted sets of descriptors
extracted from original and generated images. In order to make this metric computationally efficient,
the authors have used descriptors that correspond to random projections of image patches.

3 Mammogram Synthesis

3.1 Clinical setting and data

Mammograms are relatively low-dose soft tissue X-rays of the breast. Acquisition is performed
after each breast in turn has been flattened using two plastic paddles, as illustrated in Fig. 3a.
Conventionally both left and right breasts are imaged using two standard views, the cranial-caudal
(CC) and the mediolateral-oblique (MLO), which are shown in Fig. 3b. This results in a total of four
7-10 megapixel images per patient.

Hanging protocols are the series of actions performed to arrange images on a screen to be shown
to the radiologist. Hanging protocols are designed to work across hardware and clinical sites. In
mammography, this defines how to setup and present the images for the reader, including preferred
windowing of image intensities and image size.

We have acquired a large number of images (>1,000,000) which we used for the purpose of this work.
From this proprietary dataset we excluded images containing post-operative artifacts (metal clips,
etc.) as well as large foreign bodies (pacemakers, implants, etc.). Otherwise, the images contain a
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(Blausen, 2014).

wide variation in terms of anatomical differences and pathology (including benign and malignant
cases) and the dataset corresponds to what is typically found in screening clinics.

3.2 Training
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(e) The training progression of a successful run.

Figure 4: Note that artifacts appear after around 4.7 million images have been presented to the
network. Training recovers shortly after that, however, as can be seen in the diagnostic plots, this
failure is not easily detectable from the curves.

We used a simple preprocessing method that preserves both the original aspect ratio of each image
and the hanging protocol. More specifically, we down-sampled by the largest factor to match one of



the desired dimensions and padded the other dimension with zeros. The final image size is 1280x1024
pixels which (to the best of our knowledge) is the highest image resolution generated by a GAN thus
far.

Despite using progressive training, we still had to overcome significant stability issues, due to the
high resolution. We took several steps to maximize the probability of a successful run outlined in the
following.

First, we increased the number of images used for training, from an initial 150k to 450k. This
inevitably introduces more variation, along with some noise due to images that are erroneously
included in the training set - some examples are shown in 16¢ of the Appendix. Nevertheless, we
argue the extra information to be leveraged is beneficial for training.

Second, as suggested in Salimans et al. (2016), we added some supervised information. More
specifically we conditioned on the view, namely CC and MLO, which is highly relevant as it has
significant impact on the visual appearance of the images.

Finally, we slightly decreased the learning rate from the one originally used in Karras et al. (2018),
from 0.002 to 0.0015 and gradually increased the discriminator iterations, from 1 to a maximum of
5 discriminator updates for each generator update. Even with these modifications, we had to often
restart training and artifacts periodically appeared, but the network was able to recover in most cases.
An example of the training progress for a successful run is shown in Fig. 4e.

We performed our training on an NVIDIA DGX-1, with 8 V100 GPUs, 16GB GPU memory each.
We initially trained until the network was presented with 15 million images, which is equivalent to 33
epochs which took about 52 hours. Then we resumed training for an additional 5 million images and
selected the best network checkpoint based on the Sliced Wasserstein Distance (Karras et al., 2018).

3.3 Results

The final samples drawn from a successfully trained network look very promising. Most of the
generated images seem highly realistic with a broad range of inter-image variability, which indicates
good representation of the underlying true distribution. However, we also observed some common
artifacts and failures, which we discuss below.

For more visual examples we refer to the Appendix, where we present images in several different
format, described as follows:

— 6x5 grids of randomly selected generations from CC and MLO views (Fig. 9 and 10).

— 5x2 grids of randomly selected generations from CC and MLO views, alongside randomly
selected real images. In this case, we also indicatively mark the best and worst generations
(Fig. 11 and 12).

— 3x5 grids of handpicked convincing results from CC and MLO views (Fig. 13).
— 1x3 grids of handpicked convincing results, alongside real images (Fig. 14 and 15).

— 2x5 grids where we present examples of failures from CC and MLO views, along with
images with artifacts from the training set (Fig. 16).

We also refer to a video illustrating a random walk through the latent space that can be found here:
https://www.youtube.com/watch?v=Ro-tZ6wYnlg

Views The MLO view is evidently the harder one to model, unsurprisingly so, as it exhibits the
highest variation and contains the most anatomical information, with the pectoral muscle clearly
visible, lymph nodes in some cases, and of course the breast parenchyma (Fig. 3b)

Samples from the CC view seem subjectively of higher quality, due to their relative simplicity
compared the MLO view.

Calcifications and metal markers Calcifications are caused naturally in the breast from calcium
deposition and can vary in size and shape, but appear very bright (white) on the image as they fully
absorb passing X-rays. They are important in mammography as certain patterns can be a strong
indication of malignancy, while others are benign (e.g., vascular deposits).
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(b) Randomly sampled examples of real and generated MLO views.

Figure 5: Examples of generated images from the GAN.

External skin markers are frequently used by technicians performing
the mammogram to indicate the position of a palpable lesion in the
breast for the attention of the radiologists who is going to perform
the reading. They also appear very bright, but are distinctively fully
circular in shape.

In Fig. 8 we show an example of both calcifications and a marker
in the bottom right, appearing in the same image.

We have observed that the generator strongly resists these structures.

It is only in very late stages of training that features roughly similar
to medium sized calcification may appear in the generations, but they
are not very convincing. We assume that the network architecture
acts as a strong prior against such features, which do not appear in
natural images (as also suggested in Ulyanov et al. (2018)).

Common artifacts We observe several types of failures in the

Figure 8: Calcifications and
a round marker (bottom right)
commonly used by the tech-
nician to indicate a palpable
lesion.

generated images. Some of them are clearly network failures, which indicate that not all possible
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Figure 6: Most commonly seen artifact patterns

latent vectors correspond to valid images in pixel space. Others can be attributed to problems in the
training set. Examples of such images are shown in Fig. 16c.

4 Conclusion

In this work we present our methodology for generating highly realistic, high-resolution synthetic
mammograms using a progressively trained generative adversarial network (GAN). Generative models
can be especially valuable for medical imaging research. However, GANs have not so far been able
to scale to the high resolution required in FFDM. We have managed to overcome the underlying
instabilities inherent in training such adversarial models and have been able to generate images
of highest resolution reported so far, namely 1280x1024 pixels. We have identified a number of
limitations, including common artifacts and failure cases, indicating that further research is required
but that promising results can already be achieved. We hope this work can serve as a useful guide and
facilitate further research on GANs in the medical imaging domain.

(a) Transitioning towards a larger | (b) Attempted reproduction of |(c) Distorted reproduction near
size. breast implant. the right hand side border of the
image.

Figure 7: Common failures.
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Appendices

A Further examples

Figure 9: Random samples of generated CC views.
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Figure 10: Random samples of generated MLO views.
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(a) Generated (b) Original

Figure 11: Randomly sampled original and generated CC views. The green dashed line denotes
particularly convincing samples and the red dashed line denotes images with obvious artifacts.

14



(a) Generated (b) Original

Figure 12: Randomly sampled original and generated MLO views. The green dashed line denotes
particularly convincing samples and the red dashed line denotes images with obvious artifacts.
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(b) Generated images from MLO view.
Figure 13: Handpicked examples of both CC and MLO views.
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(a) Generated (b) Original

Figure 14: Handpicked generated CC views alongside random original CC views.
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(a) Generated (b) Original

Figure 15: Handpicked generated CC views alongside random original CC views.
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(c) Original images with problematic appearances.

Figure 16: Worst examples we could find from both CC and MLO views.
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