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Abstract
Medical images have been widely used in clin-
ics, providing visual representations of under-
skin tissues in human body. By applying dif-
ferent imaging protocols, diverse modalities
of medical images with unique characteris-
tics of visualization can be produced. Consid-
ering the cost of scanning high-quality sin-
gle modality images or homogeneous multiple
modalities of images, medical image synthe-
sis methods have been extensively explored
for clinical applications. Among them, deep
learning approaches, especially convolutional
neural networks (CNNs) and generative ad-
versarial networks (GANs), have rapidly be-
come dominating for medical image synthesis
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in recent years. In this chapter, based on a
general review of the medical image synthesis
methods, we will focus on introducing typical
CNNs and GANs models for medical image
synthesis. Especially, we will elaborate our
recent work about low-dose to high-dose PET
image synthesis, and cross-modality MR im-
age synthesis, using these models.
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Introduction

As a technology to produce the visual repre-
sentations of anatomical and pathological struc-
tures and their functions in human body, medical
imaging is widely applied in clinics for disease
diagnosis and treatment planning. It consists of
various imaging protocols which have their spe-
cific insights to produce different modality im-
ages. For example, computed tomography (CT)
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creates the images of internal organs, bones, soft
tissue, and blood vessels to show electron density
and physical density [22]; magnetic resonance
imaging (MRI) provides diverse contrasts of soft
tissues through setting different scanning param-
eters [33]; positron emission tomography (PET)
enables the visualization of metabolic processes
of scanned body part [12]. Due to their differ-
ent and sometimes complementary characteris-
tics, multiple modalities are usually utilized in
the analysis of clinical applications. However,
the acquisition of some modality images, such
as PET and CT, increases the risks of radiation
exposure, especially when patients have to take
these imaging scanning multiple times during
the entire treatment [37]. Thus, the high-quality
and human-safe medical images are not easy to
acquire in the practical applications. Besides, due
to the different imaging protocols and the cost of
multi-modality image acquisition, sufficient and
consistent modalities are not always accessible
for every patient [57]. To handle these issues,
medical image synthesis, which is defined as an
approach to modeling a mapping from the given
source images to the unknown target images, has
been widely explored by researchers [18].

Medical image synthesis has been used in
various applications, e.g., estimation of missing
images [43], knowledge transformation across
modalities [53], image super-resolution [24], and
annotated dataset creation [14]. Here, according
to its applications, we roughly classify medical
image synthesis into two main categories, i.e.,
within-modality synthesis and cross-modality
synthesis. Specially, the within-modality synthe-
sis usually aims at generating the higher-quality
images from the input within-modality images
of relatively lower quality. In contrast, the cross-
modality synthesis targets to capture the useful
structuring information in the source-modality
to generate the target-modality image. Although
these two categories are applied in different prac-
tical tasks, the underlying synthesis principles are
similar. The conventional synthesis approaches
exploit diverse nonlinear models, e.g., dictionary
learning [45] and random forest [26], to process
the handcrafted medical image features which

are manually selected by professional experts
during the synthesis. However, these handcrafted
features have limited power to represent the
complex visual information in medical images
and therefore adversely affect the synthesis per-
formance. Recently, deep learning based methods
have mitigated this issue through automatically
learning the task-specific features having
sufficient descriptive power with the training of
the mapping models [41, 55]. Through designing
advanced deep learning models, the performance
of medical image synthesis has been greatly
improved.

In Table 1, a list of works that utilized deep
learning models for medical image synthesis are
presented. Here, we mainly focus on the synthe-
sis applications for three major imaging modal-
ities, i.e., CT, MR, and PET. The timeline for
the development of these methods is summa-
rized in Fig. 1. As shown in Table 1 and Fig. 1,
deep learning approaches started to be popular
for medical image synthesis in 2015 [42]. Af-
ter two years of exploration, a large category
of models, especially deep convolutional neural
networks (CNNs) based architectures, became
dominating for both within-modality and cross-
modality synthesis in 2017 [10, 11, 20, 28, 31, 32,
51]. Before the end of 2017, a novel family of
CNN based models, i.e., generative adversarial
networks (GANs), attracted the attention of re-
searchers and achieved promising results [3,4,7].
In 2018, more complicated CNN models were
further explored in the conventional way [8,9,58].
At the same time, numerous GAN models with
different frameworks were proposed in 2018 and
2019, and this research trend becomes more and
more popular now.

In the rest of this chapter, we first discuss two
typical types of deep learning models for medical
image synthesis in section “Deep Learning
Models for Medical Image Synthesis”. Following
that, we introduce four of our recent works for
within-modality and cross-modality synthesis,
respectively, in sections “Within-Modality
Synthesis” and “Cross-Modality Synthesis.”
Finally, a brief conclusion about this chapter
is given in section “Conclusion.”
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Table 1 Medical image synthesis publications with deep learning models

Publication Method Dataset Organ

Within-modality synthesis
CT (low-dose to full-dose)

Chen et al. [11] Custom three layer-CNN NBIAa Multiple body parts

Chen et al. [10] CNN based residual encoder-
decoder

NBIAa Multiple body parts

Kang et al. [28] CNN for wavelet domain denois-
ing

low-dose CTb Head, chest and abdomen

MRI (super-resolution or 3T to 7T)

Zend et al. [58] Residual CNN Brainwebc

NAMICd
Brain

Chaudhari et al. [9] Residual CNN OAI [39] Knee

Nie et al. [37] Cascade GANs – Brain

PET (low-dose to full-dose)

Xiang et al. [51] Cascade CNNs – Brain

Wang et al. [46] 3D cGAN – Brain

Wang et al. [47] 3D cGAN with locality-adaptive
module

– Brain

Cross-modality synthesis
MR to CT or CT to MR

Nie et al. [36] 3D CNN-FCN – Pelvic

Han et al. [20] U-net – Brain

Leynes et al. [31] U-net – Pelvic

Liu et al. [32] CNN based autoencoder – Brain

Chartsias et al. [7] cycleGAN MM-WHSf Cardiac

Nie et al. [37] Cascade GANs ADNIe Brain and pelvic

Emami et al. [17] cGAN – Brain

Hiasa et al. [21] cycleGAN with gradient loss – Musculoskeletal

Zhang et al. [59] cycleGAN with segmentors – Cardiac

CT to PET or PET to CT

Ben et al. [3] FCN-cGAN – Liver

Bi et al. [4] cGAN with tumor label input – Thorax

Armanious et al. [2] cGAN with CasNet generator – Brain

MR to PET or PET to MR

Choi et al. [13] cGAN (pix2pix) ADNIe Brain

Wei et al. [49] Cascade GANs – Brain

Cross-modality MR ( T1, T2, FLAIR, and MRA)

Van et al. [42] Location-sensitive CNN NAMICd Brain

Chartsias et al. [8] CNN based encoder and decoder ISLES2015g

BRATS2015h

IXIi

Brain

Dar et al. [16] cGAN (pix2pix) MIDAS [5]
BRATS2015h

IXIi

Brain

Olut et al. [38] cGAN IXIi Brain

Mok et al. [35] cGAN (two generators and four
multi-scale discriminators)

BRATS2015h Brain

(continued)
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Table 1 (continued)

Publication Method Dataset Organ

Yang et al. [52] cGAN BRATS2015h Brain

Welander et al. [50] cycleGAN and UNIT Human
Connectomej

Brain

Yu et al. [56] 3D cGAN BRATS2015h Brain

Yu et al. [57] 3D cGAN with edge map adver-
sarial learning

BRATS2015h

IXIi
Brain

a https://dcm.bmia.nl/ncia/login.jsf
b https://www.aapm.org/GrandChallenge/LowDoseCT/
c http://www.bic.mni.mcgill.ca/brainweb/
d http://hdl.handle.net/1926/1687
e www.adniinfo.org
f http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
g http://www.isles-challenge.org/ISLES2015/
h https://sites.google.com/site/braintumorsegmentation/home/brats2015
i http://brain-development.org/ixi-dataset/
j https://ida.loni.usc.edu/login.jsp.

LSDN [43]

2015

Deeper CNNs
and U-net

[10,20,28,31,32,52]

2017

3 D CNN-FCN [36]

2016

cGANs
and cycleGANs

[3,4,7]

2017

residual CNNs and
more complicated

CNNs [8,9,59]

2018 cascade GANs,
cycleGANs, 3D

cGAN…
[2,13,16,17,21,35,37,
38,46,48,50,51,53,57,

58,60]

2018-2019

Fig. 1 The development of deep learning models for medical image synthesis

Deep LearningModels for Medical
Image Synthesis

The state-of-the-art medical image synthesis
methods usually use convolutional neural
networks (CNN) [29]. With the delicate design,
they can be exploited for whole-image or large-
patch based synthesis to capture the implicit
dependency among pixels/voxels in the same
input during the end-to-end training. Among
them, the most typical CNN architecture is U-
net [40]. More recently, a number of CNN based
generative adversarial networks (GANs) further
improve the medical image synthesis results [55].
Therefore, this section will present the details of
the typical conventional CNN model, i.e., U-net,
and the basic GAN model in the research area of
medical image synthesis.

Convolutional Neural Networks

TheU-net model can extract the global contextual
information from the source image and also re-
serve the spatially continuous details in the target
image. As illustrated in Fig. 2, the original U-net
model consists of the contracting and expanding
paths. The number of convolutional layers in the
contracting path is same to that in the expanding
path. Between these two paths, multiple skip-
connections are built to bridge them. With this
structure, the U-net model can acquire the multi-
depth information of the input source image. In
addition, the gradient vanishing problem which
is commonly shown during the training of deep
learning models is mitigated, since the gradient of
the deeper layers can be directly back-propagated
to the shallower layers via the skip-connections.

https://dcm.bmia.nl/ncia/login.jsf
https://www.aapm.org/GrandChallenge/LowDoseCT/
http://www.bic.mni.mcgill.ca/brainweb/
http://hdl.handle.net/1926/1687
www.adniinfo.org
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://www.isles-challenge.org/ISLES2015/
https://sites.google.com/site/braintumorsegmentation/home/brats2015
http://brain-development.org/ixi-dataset/
https://ida.loni.usc.edu/login.jsp
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Fig. 2 Original 2D U-net model taken from [40]

This specific CNN architecture extracts the hier-
archical visual clues from the input and is par-
ticularly suitable for the medical image synthesis
tasks.

Generative Adversarial Networks

In 2014, the original GANs were first proposed
for the generic image synthesis tasks [19]. Differ-
ent from the common CNN based deep learning
models, a GAN model consists of two agents,
i.e., a generator G and a discriminator D, and is
trained by the adversarial learning, as shown in
Fig. 3. The original GAN model aims to learn a
mapping from an input random noise to a target
image that follows the distribution pdata of real
images. In order to condition the GAN model
on an input data of auxiliary information which
could guide the mapping processing, conditional
generative adversarial networks (cGANs) were
then proposed [34]. When the input data is a
source image x ∼ pdata(x), the cGANs can

be trained to synthesize its corresponding target
image y ∼ pdata(y) with the specific control from
x. This is a process of paired image-to-image
synthesis.

Most existing GAN models for medical image
synthesis [14, 16, 46, 57] follow a representative
work pix2pix [25] and achieve very promising re-
sults. As a cGAN model, it synthesizes an image
G(x) from the given source image x to resemble
the real target image y by its generator G. At
the same time, its discriminator D is trained to
differentiate between the synthesized image pair
(x, G(x)) and the corresponding real image pair
(x, y). Therefore, the synthesis performance can
be improved through the adversarial competition
between these two agents. The training loss of the
generator G is formulated as follows:

LG
cGAN = Ex∼pdata(x)[log (1 − D(x, G(x)))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1],
(1)

where the symbolE denotes mathematical expec-
tation, and G(·) and D(·) accordingly refer to the
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noise
synthesized

image

real
image

real or synthesized?Discriminator (D)
Generator (G)

Fig. 3 Original GAN model

outputs of the generator and the discriminator. In
Eq. (1), the generator G is trained to synthesize a
realistic image which could fool the discriminator
D via the first term. In its second term, the gen-
erator G tries to enforce the intensity similarity
between the synthesized and real images through
an L1-norm penalty on the pixel-wise intensity
difference. The symbol λl1 is a hyper-parameter
to balance these two terms.

The loss function of the discriminator D is
defined as follows:

LD
cGAN = −Ex,y∼pdata(x,y)[log D(x, y)]

− Ex∼pdata(x)[log (1 − D(x, G(x)))].
(2)

In Eq. (2), different from the generator G, the
discriminator D is trained to estimate the correct
labels (0 or 1) for the synthesized or real image
pairs. Thus, the adversarial competition between
G and D conforms to a two-player min-max
game.

In this cGANmodel, the two sub-jobs of image
generation and image discrimination are achieved
together. Therefore, the final loss function inte-
grates the above two objectives as follows:

LcGAN = LG
cGAN + LD

cGAN. (3)

Both the generator and the discriminator in
this cGAN model are CNN based to capture the
powerful deep learning features. Specially, the
generator has a U-net-like architecture to obtain
the hierarchical contextual information from the
input source images and then generate the better
target images.

Within-Modality Synthesis

In this section, we present our two recent works
for within-modality synthesis. These two works

aim to synthesize high-quality positron emission
tomography (PET) images to reduce the dose of
radioactive tracer during the PET scanning. Since
PET is widely exploited to visualize metabolism
processes of human in clinics and research, it
is important to get the clear PET images for
patients. Before the PET image scanning, a full-
dose radioactive tracer on a biologically active
molecule is injected into the patient’s body.
During the scanning, the gamma rays which are
emitted from the radioactive tracer in the body
can be detected by the PET scanner. After that,
the PET scanner analyzes the detected gamma
rays of the full-dose tracer and constructs a
high-quality three-dimensional (3D) PET image.
However, the injected full-dose radioactive tracer
brings up the risk of radioactive exposure and
also raises the concerns about potential health
hazards. As reported in “Biological Effects of
Ionizing Radiation (BEIR VII),”1 one full-dose
radioactive tracer for every brain PET scan
will improve the potential of lifetime cancer
by 0.04%. When patients should take multiple
times of PET scanning during their treatment,
these risks will even accumulate, especially for
the pediatric patients. To handle the radiation
exposure issue, some researchers have lowered
the injected dose of the tracer to the half of the
full-dose, which inevitably decreases the quality
of scanned PET images. The comparison of the
full-dose PET image (F-PET) and the low-dose
PET image (L-PET) is given in Fig. 4. Therefore,
this high-quality PET image synthesis task aims
to estimate the F-PET images from the given
L-PET images.

1http://www.nap.edu/catalog/11340/health-risks-from-
exposure-tolowlevels-of-ionizing-radiation.

http://www.nap.edu/catalog/11340/health-risks-from-exposure-tolowlevels-of-ionizing-radiation
http://www.nap.edu/catalog/11340/health-risks-from-exposure-tolowlevels-of-ionizing-radiation
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Fig. 4 Comparison between the low-dose PET (L-PET) image and the corresponding full-dose PET (F-PET). Taken
from [47]

3D cGAN

Many cGANmodels for medical image synthesis
are 2D based [4,14,16,54].When they are applied
to the 3D medical imaging data, like PET and
MRI, these methods first separate the 3D source
image into axial slices and then separately map
these source slices to the 2D target slices. After
the concatenation of these synthesized 2D slices,
a 3D target image can be reconstructed. Thus, the
coronal and the sagittal slices of the reconstructed
3D target image are formed by the independently
synthesized lines from the estimated axial planes.
This will inevitably cause the loss of contextual
information along the sagittal and coronal direc-
tions and the strong discontinuities in the final
image. To mitigate this issue, our work in [46]
proposes a 3D cGAN model to estimate the high-
quality F-PET image from the L-PET image.

Framework
The framework of 3D cGAN model is illustrated
in Fig. 5. Similar to the aforementioned cGAN
model, this 3D cGAN consists of two agents:
a 3D U-net-like generator G and a 3D CNN
based discriminator D. The generator G pro-
cesses a given L-PET image which is the source
image and generates a synthesized F-PET image
to approximate a real F-PET image. Simultane-
ously, the discriminatorD is trained to distinguish
between the synthesized F-PET-like image pair

and the real F-PET image pair. The adversar-
ial learning in the 3D cGAN follows the com-
petition between two sub-tasks, i.e., the image
generation of G and the image discrimination
of D.

Experimental Results
As reported in [46], the 3D cGAN is evaluated
on a real human brain dataset, which contains
two categories: eight normal subjects and eight
subjects diagnosed as mild cognitive impairment
(MCI). Experiments are conducted in the widely
used “Leave-One-Subject-Out cross-validation”
strategy, i.e., in each experiment one subject is
used as test data and the other 15 subjects are ap-
plied for training. To acquire sufficient 3D train-
ing data, 125 large image patches of size 64 ×
64 × 64 are extracted from every original PET
image of size 128 × 128 × 128 with the stride
of 16. In the final synthesized 3D PET image,
the overlapped regions are averaged from the
estimated large patches. To evaluate the PET syn-
thesis performance, peak signal-to-noise (PSNR)
and normalized mean squared error (NMSE) are
used.

To validate the effectiveness of the 3D model,
2D cGANs are compared with the 3D cGAN
model. These 2D cGANs are separately trained
with the 2D slices from the corresponding axial,
coronal, and sagittal views. One visual example
of synthesized results by the compared methods
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Fig. 5 Framework of training a 3D cGAN to estimate the full-dose PET image from low-dose counterpart. Taken
from [46]

Fig. 6 Qualitative comparison between the results estimated by 2D cGANs and 3D cGANs. In the axial and coronal
images, the left side of the image is the right side of the brain, and the right side of the image is the left side of the brain,
taken from [46]

is given in Fig. 6. As shown, the results by 3D
cGAN, which are presented in the blue block,
have high visual quality in all three views. In
contrast, these three 2D cGANs only produce

good results in their corresponding trained views
as indicated in the red circles, but get blurred
synthesized views along the other two directions.
The given example shows that the 2D cGANs
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Fig. 7 Quantitative comparison between 2D cGANs and 3D cGANs, in terms of PSNR and NMSE, taken from [46].
Error bar indicates the standard deviation

Fig. 8 Quantitative comparison between the existing PET estimation methods and the proposed method, in terms of
PSNR and NMSE, taken from [46]. Error bar indicates the standard deviation

cause the discontinuous estimation across slices
and lose the 3D structural information during the
synthesis. The quantitative results of PSNR and
NMSE are separately reported on the normal and
the MCI data in Fig. 7. 3D cGAN achieves the
best PSNR and NMSE results on both two cat-
egories of PET data, which consistently indicates
that the 3D information captured in 3D cGAN can
boost the synthesis.

Three state-of-the-art PET synthesis methods
are compared with the 3D cGAN. They
are (1) mapping based sparse representation
(m-SR) [44], (2) semi-supervised tripled
dictionary learning method (t-DL) [45], and
(3) common CNN based method [51]. The

quantitative comparison results are reported in
Fig. 8. 3D cGAN performs best among all four
methods in terms of both PSNR and NMSE,
which demonstrates the superiority of the 3D
cGAN in full-dose PET image synthesis.

Locality Adaptive Multi-Modality
GANs

Recent research reports that using multiple
modalities, like PET and MRI, benefits the
medical image quality enhancement [23]. In
addition, different from PET, scanning MRI
would not raise the risks of radioactive exposure
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Fig. 9 Overview of locality adaptive multi-modality GANs, taken from [47]

for patients. Thus, medical images of T1-
weighted MRI (T1-MRI), fractional anisotropy
diffusion tensor image (FA-DTI), and mean
diffusivity DTI (MD-DTI) are applied to assist
the synthesis of high-quality F-PET images
from L-PET images. Traditionally, the image
convolution in CNN based GANs is performed
on these multiple images (input channels) in a
global manner. That is to say, the common multi-
channel based GANs apply the same convolution
filter to all image locations of each input modality
for producing the feature maps which will be
combined in deeper layers. As a result, these
multi-channel models would not consider the
location-varying contributions from the various
input modalities. To handle this issue, locality
adaptive multi-modality GANs (LA-GANs) are
proposed in [47] for PET image synthesis.

Framework
The LA-GANs model includes three modules:
(1) the locality-adaptive fusion network, (2) the
generator network, and (3) the discriminator
network, as illustrated in Fig. 9. The newly added
locality-adaptive fusion network processes L-
PET, T1-MRI, FA-DTI, and MD-DTI images
as input channels and estimates a fused image

by learning different convolutional kernels
at different image locations. Specifically, the
module of locality-adaptive fusion network
first separately partitions the entire input L-
PET, T1-MRI, FA-DTI, and MD-DTI images
into N non-overlapped small patches which
are accordingly denoted by P L

i , P T1
i , P FA

i , and
PMD

i (i = 1, . . . , N). These small patches from
different locations are indicated by different
colors in Fig. 9. After that, the patches at the
same location from the four input modalities are
separately convolved by four different 1 × 1 × 1
filters with parameters ωL

i , ωT1
i , ωFA

i , and ωMD
i ,

respectively. Through this locality-adaptive
convolution, a fused patch P C

i can be calculated
as follows:

P C
i = ωL

i P L
i + ωT1

i P T1
i + ωFA

i P FA
i + ωMD

i PMD
i ,

s.t. ωL
i + ωT1

i + ωFA
i + ωMD

i = 1,

ωL
i , ωT1

i , ωFA
i , ωMD

i > 0, i = 1, . . . , N.

(4)

Therefore, N groups of different convolution
filters for the N ∗ 4 small patches at N locations
from four modalities can be learned.
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Fig. 10 Visual comparison with multi-channel GANs method, taken from [47]

Table 2 Quantitative comparison with the multi-channel GANs method on normal and MCI subjects

Methods PSNR SSIM

Mean (std.) Med. Mean (std.) Med.

Normal subjects L-PET 19.88 (2.34) 20.68 0.9790 (0.0074) 0.980

Multi-channel 24.36 (1.93) 24.78 0.9810 (0.0065) 0.983

LA-GANs 24.61 (1.79) 25.32 0.9860 (0.0053) 0.987
MCI L-PET 21.33 (2.53) 21.62 0.9760 (0.0102) 0.979

subjects Multi-channel 24.99 (2.03) 25.36 0.9795 (0.0098) 0.982

LA-GANs 25.19 (1.98) 25.54 0.9843 (0.0097) 0.988

Mean (standard deviation), Median. The paired t-test of PSNR shows that our improvement against the multi-channel
one is statistically significant with p < 0.05 (p = 0.048 for NC subjects and p = 0.016 for MCI subjects). For SSIM,
our method also presents the significant improvement, with p-value 0.051 for NC subjects and 0.037 for MCI subjects,
respectively

After the above locality-adaptive fusion, the
final fused image is applied as the input of the
generator to generate F-PET-like images. The
generator and the discriminator in our LA-GANs
work similarly to those in the aforementioned 3D
cGAN.

Experimental Results
To evaluate the effectiveness of the newly
added locality-adaptive fusion network module,
the common multi-channel GANs model is
compared with the LA-GANs. Figure 10 gives
an example of visual results obtained by these
two methods. We can observe that the LA-
GANs model synthesizes the F-PET-like image
with less artifacts than the compared multi-
channel model, which are clearly indicated by red
rectangles. The quantitative results of these two
methods are reported in Table 2 via the evaluation

measures of PSNR and structural similarity index
(SSIM) [48]. The top part gives the results on
normal subjects, and the bottom part reports
the results on MCI subjects. These results show
the superiority of the locality-adaptive fusion
network module over the common multi-channel
processing, in terms of both PSNR and SSIM. In
addition, through conducting the paired t-test, all
these improvements are statistically significant at
the significance level of 0.05. Both the visual and
quantitative results demonstrate the effectiveness
of locality-adaptive fusion network in cGAN
models for the full-dose PET synthesis task.

Moreover, the LA-GANs model is compared
with four state-of-the-art methods, i.e., (1)
mapping based sparse representation method (m-
SR) [44], (2) tripled dictionary learning method
(t-DL) [45], (3) multi-level CCA method (m-
CCA) [1], and (4) auto-context CNN method
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Fig. 11 Qualitative comparison with the state-of-the-art PET estimation methods in terms of PSNR, taken from [47].
† indicates p < 0.01 in the paired t-test while � means p < 0.05

(auto-CNN) [51], as shown in Fig. 11. The highest
PSNR values of the LA-GANs indicate that it has
the best performance among all the compared
methods.

Cross-Modality Synthesis

Our two recent cross-modality synthesis works
are presented in this section. They are utilized
in cross-modality MR image synthesis that
aims to better visualize the scanned body parts
from diverse imaging perspectives and facilitate
the following clinical applications, e.g., tumor
segmentation. When setting different scanning
parameters, MRI can generate multiple-modality
images (e.g., T1-weighted, T2-weighted, and
FLAIR) which show the diverse contrasts
of soft tissues. Since each modality image
provides the unique visual representation of
scanned body parts, these multiple modalities
are usually studied together in the subsequent
analysis for disease diagnosis [15] and treatment
planning [30]. However, due to the potential
of modality loss in clinics, the quality of the
analysis will be adversely affected. Therefore,
cross-modality MR image synthesis is highly
desirable to synthesize the unknown target-
modality MR images from the given source-
modality images [26, 53].

3D cGANwith Subject-Specific Local
Adaptive Fusion

Our work in [56] proposes a 3D cGAN based
cross-modality MR image synthesis method to
boost brain tumor segmentation performance.
Compared with the single synthesis task, this
is more challenging and requires the higher
quality of synthesized images because of two
main reasons. First, due to the arbitrary location
and appearance of brain tumor, the pathology
involved MR images raise the difficulty of
synthesis in contrast to the healthy subject
images. Second, the source-modality images
may lack some important pathology-related
information which can be seen in the target-
modality. For example, as shown in Fig. 12,
the diffuse changes around tumor parts are only
observed in the FLAIR image. Thus, [56] presents
an additional approach to the 3D cGAN, which is
called subject-specific local adaptive fusion. This
fusion approach aims to polish the local details in
the synthesized target-modality-like images from
the 3D cGAN through a linear combination of the
real target-modality images among the training
set for approximation. During the combination,
the combination weights are estimated from the
synthesized target-modality-like images which
are the outputs of the 3D cGAN model. In this
way, this local and adaptive approach can improve
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Fig. 12 A brain T1 image (a) and the corresponding FLAIR image (b)

Fig. 13 Framework of subject-specific local adaptive fusion

the quality of synthesized images and further raise
the segmentation performance.

Framework
The framework of this subject-specific local
adaptive fusion is illustrated in Fig. 13. Here,
we take T1-to-FLAIR synthesis task as an
example, and the synthesized FLAIR-like image
from the 3D cGAN and the final fused FLAIR-
like image are called FLAIR-like-1 image and
FLAIR-like-2 image, respectively. Before this
fusion, for each test subject that only has its
real T1 image, its corresponding FLAIR-like-
1 image is partitioned into non-overlapped
small patches of size 16 × 16 × 16. Each
FLAIR-like-1 patch S te,gan of this test subject
is approximated by the convex combination
of the patches S

tr,gan
1 , S

tr,gan
2 . . . , S

tr,gan
Ntr

at the

same location from the FLAIR-like-1 images
of training subjects. The symbol Ntr denotes
the number of all training subjects. This
approximation is achieved through the following
optimization:

min
w

‖
Ntr∑

i=1

wiS
tr,gan
i − S te,gan‖2

2

s.t.
∑

wi = 1, wi ≥ 0.

(5)

Therefore, the combination weights wi

(i = 1, . . . , Ntr) are learned via Eq. (5).
Since the FLAIR-like-1 image is generated to
resemble the corresponding real image, these
combination weights could be further applied to
linearly combine the real FLAIR training patches
Rtr

1 , Rtr
2 . . . , Rtr

Ntr
at the same location to polish
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the final FLAIR-like-2 patch S te,cc through the
following equation:

S te,cc =
Ntr∑

i=1

wiR
tr
i . (6)

In this way, a better polished target-modality-
like image is estimated and used together with its
corresponding real source-modality image in the
subsequent brain tumor segmentation.

Experimental Results
This work is evaluated on BRATS2015
dataset [33], which includes 274 subjects of four
modality images, i.e., T1, T1C, T2, and FLAIR,
with size of 240 × 240 × 155, and additional
brain tumor labels. In this work, 230 subjects are
randomly selected as training data and the rest
44 subjects are test data for the T1-to-FLAIR
synthesis task. The brain tumor segmentation
model from [27] is utilized to evaluate the
segmentation performance of the synthesized
FLAIR images. During the synthesis task, 3D
large patches of 128 × 128 × 128 are extracted
from images to increase the training samples for
3D cGAN. The evaluation measures of PSNR
and NMSE on the synthesized whole brains and
tumor regions are utilized.

To study the contribution of the subject-
specific local adaptive fusion, it (i.e.,3D cGAN
(128)+local adaptive fusion) is compared with
another two methods for ablation study. They
are: (1) 3D cGAN trained on large patches
(1283) and (2) local non-linear mapping (3D
cGAN on patches with the size of 323) applied
after the method (1). The synthesis results are
reported in Table 3. As shown, the 3D cGAN

(128)+local adaptive fusion outperforms the other
two methods, demonstrating the effectiveness of
subject-specific local adaptive fusion in T1-to-
FLAIR image synthesis task. The results also
indicate that using the linear combination in the
local adaptive fusion can obtain better results
than the local non-linear mapping of 3D cGAN
(32). Table 4 gives the segmentation results on
whole tumor parts and tumor core regions by
the above three methods, which consistently
indicates the better performance of the 3D
cGAN (128)+local adaptive fusion approach.
The results by using the single modality of
T1 are also reported. The paired t-test result
verifies that the improvement on the tumor
core part is statistically significant. Therefore,
the quantitative results of both synthesis and
segmentation tasks show the advantage of 3D
cGAN (128)+local adaptive fusion approach
in synthesizing FLAIR images from T1, and
the benefits of using the synthesized FLAIR
images to improve the T1-based brain tumor
segmentation.

Edge-Aware GANs

The aforementioned cGAN models enforce the
pixel/voxel-wise intensity similarity between the
real and the synthesized images through using
an L1-norm penalty during training. However,
the structure of image content, like the textural
information in MRI [6], is not sufficiently cap-
tured by these models. The edge information in
an image provides the details about the textu-
ral structure of image content through capturing
the local intensity changes and the boundaries

Table 3 Quantitative evaluation results of the synthesized images

Methods Synthesis quality (PSNR/NMSE%)

Whole brain Tumor

3D cGAN (128) 20.45/25.08 19.13/12.68

3D cGAN (128)+3D cGAN (32) 19.94/24.99 18.73/13.45

3D cGAN (128) + local adaptive fusion 20.68/22.67 19.27/11.86

Values with underline indicate they are statistically significantly different from 3D cGAN (128)+local adaptive fusion,
according to a two-sided, paired t-test (solid line p < 0.05). t-Test values are given as follows: (1) proposed method
over 3D cGAN: (a) whole brain (1.17e − 1/4.59e − 2); (b) tumor (1.17e − 2/8.13e − 4). (2) Proposed method over 3D
cGAN(128) + (32): (a) whole brain (8.75e − 7/5.59e − 4); (b) tumor (2.1e − 3/6.12e − 5)
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Table 4 Quantitative evaluation results of segmentation

Methods Segmentation (dice ratio%)

Whole tumor Core

3D cGAN (128) . . . . . .66.35 72.09

3D cGAN (128)+3D cGAN (32) . . . . . .66.61 72.14

T1 67.18 63.00

T1+real FLAIR (ideal scenario) 82.17 85.49

3D cGAN (128) + local adaptive fusion 68.23 72.28

Values with underline indicate they are statistically significantly different from 3D cGAN (128)+local adaptive fusion,
according to a two-sided, paired t-test (solid line p < 0.05, dotted line p < 0.1). t-Test values are given as follows:
(1) proposed method over 3D cGAN: (a) whole tumor (0.0643); (b) core (0.886). (2) Proposed method over 3D
cGAN(128)+ (32): (a) whole tumor (0.0672); (b) tumor (0.912). (3) Proposedmethod over T1: (a) whole tumor (0.262);
(b) tumor (9.44e − 5)

(a) (b) 

Fig. 14 A brain FLAIR image (a), and its corresponding edge map (b) after the 3D Sobel edge detection, taken
from [57]. The contour of abnormal tissues can be depicted clearer by the edge map, which is shown as the zoomed
regions

between different tissues. Thus, maintaining the
edges during the synthesis can help to sharpen
the synthesized target-modality MR images. Es-
pecially, for a pathology involved MR image,
the edge details benefit to distinguish between
the normal and the abnormal tissues, which is
important to depict the contour of the arbitrary
pathological regions. For example, Fig. 14 shows
that the zoomed gliomas tumor is very clear in
the edge map of a brain MR image. Therefore,
our work in [57] proposes new cGAN models to
enforce edge preservation for cross-modality MR
image synthesis. This work adds an extra con-
straint to 3D cGANmodels to realize edge-aware
generative adversarial networks (Ea-GANs) by
ensuring the similarity of the edge maps extracted
from the real and the synthesized images dur-
ing training. These edge maps are calculated via
the commonly applied Sobel filters as shown in
Fig. 15. These three 3 × 3 × 3 Sobel filters, i.e.,
Fi , Fj , and Fk , are applied to convolve a given

image A to produce its three edge maps which
correspond to the intensity gradients along i, j ,
and k directions, respectively. After that, a final
edge map S(A) of A is obtained by merging the
three-direction edge maps through the following
equation:

S(A) =
√

(Fi ∗ A)2 + (Fj ∗ A)2 + (Fk ∗ A)2,

(7)

where ∗ denotes the convolution operation.

Framework
As shown in Fig. 16, [57] proposes two different
frameworks, i.e., a generator-induced Ea-GAN
(gEa-GAN) and a discriminator-induced Ea-
GAN (dEa-GAN), according to the different
strategies of using the edge maps. Both of these
two Ea-GANs are composed of three modules:
(1) a generator G, (2) a discriminator D, and (3)
a Sobel edge detector S.
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Fig. 15 Three-dimensional Sobel operator, taken from [57]. (a) Fi . (b) Fj . (c) Fk

Fig. 16 Frameworks of Ea-GANs, taken from [57]

For the gEa-GANmodel, when given a source-
modality image x and its target-modality counter-
part y as the groundtruth for the cross-modality
MR image synthesis task, its generator G tries
to synthesize target-modality-like images G(x)
that can be misclassified by its discriminator D

through the adversarial learning. The L1-norm
penalty through G is applied to ensure the voxel-
wise intensity similarity between the real and
the synthesized images, similar to the 3D cGAN
model. Additionally, another L1-norm penalty is
used to discourage the difference between their

corresponding Sobel edge maps which are ex-
tracted from S during the training of gEa-GAN.
Therefore, the loss function of the generator G is
formulated as follows:

LG
gEa−GAN = Ex∼pdata(x)[log (1 − D(x, G(x)))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1]
+ λedgeEx,y∼pdata(x,y)

[‖S(y) − S(G(x))‖1],
(8)
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where the hyper-parameters, λl1 and λedge, are
used to balance the three terms in Eq. (8).

Similar to the case of 3D cGAN model, the
loss function of its discriminator D is defined as
follows:

LD
gEa−GAN = −Ex,y∼pdata(x,y)[log D(x, y)]

− Ex∼pdata(x)[log (1 − D(x, G(x)))].
(9)

Thus, the final objective function of gEa-GAN
integrates the above two loss functions of the
generator and the discriminator as follows:

LgEa−GAN = LG
gEa−GAN + LD

gEa−GAN. (10)

Different from the gEa-GAN that maintains
the edge similarity only by its generator during
training, the dEa-GAN model additionally brings
the edge information into the adversarial learn-
ing between its generator and discriminator. In
this way, its discriminator could also perceive
the edge details of the synthesized images and
further benefit the synthesis processing. Specif-
ically, the edge maps of the real and the synthe-
sized target-modality images are correspondingly
concatenated with the real and the synthesized
image pairs as the real triplet (x, y, S(y)) and
the synthesized triplet (x,G(x), and S(G(x)). The
discriminator D of dEa-GAN tries to distinguish
between these two kinds of triplets, and this in
turn enforces its generatorG to estimate the better
edge details for synthesis.

For dEa-GAN, its generator G is also trained
by the adversarial loss, the voxel-wise intensity
difference loss, and the edge difference loss for
synthesis, following the designed objective:

LG
dEa−GAN

= Ex∼pdata(x)[log (1 − D(x, G(x), S(G(x))))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1]
+ λedgeEx,y∼pdata(x,y)[‖S(y) − S(G(x))‖1].

(11)

Different from the gEa-GAN model, the edge
map S(G(x)) in dEa-GAN is implicitly utilized in

the first term of Eq. (11) through calculating the
loss error of the outputs from its discriminator D.

The objective function of the discriminator D

is accordingly designed as:

LD
dEa−GAN = −Ex,y∼pdata(x,y)[log D(x, y, S(y))]

− Ex∼pdata(x)

[log (1 − D(x, G(x), S(G(x)))].
(12)

Finally, the objective for training the entire
dEa-GAN model is

LdEa−GAN = LG
dEa−GAN + LD

dEa−GAN. (13)

Experimental Results
The Ea-GANs are evaluated on BRATS2015
dataset by the way of 5-fold cross validation.
They are compared with five methods: (1)
handcrafted feature used replica [26], (2)
common CNN based multimodal [8], (3) 2D
cGAN based pix2pix [25], (4) 3D cGAN, and
(5) gradient loss utilized gradient cGAN. The
evaluation measures of PSNR, NMSE, and SSIM
are separately applied on the synthesized whole
images including the background and the brain
part. Two synthesis tasks, T1-to-FLAIR and T1-
to-T2, are conducted to show the performance
of Ea-GANs for cross-modality MR image
synthesis. Their quantitative and visual results
are presented in Table 5, Fig. 17, Table 6, and
Fig. 18.

When comparing two Ea-GANs with the 3D
cGAN model through the given quantitative re-
sults, the Ea-GANs produce higher-quality im-
ages than 3D cGAN with the significant im-
provements of PSNR from 29.26dB (3D cGAN)
to 30.11dB (dEa-GAN), SSIM from 0.958 (3D
cGAN) to 0.963 (dEa-GAN), and NMSE from
0.119 (3D cGAN) to 0.105 (dEa-GAN), respec-
tively, in the T1-to-FLAIR task. Similarly, these
two Ea-GANs also outperform the 3D cGAN
in the T2 image synthesis task. These results
demonstrate the effectiveness of preserving edge
information in the synthesized images. Addition-
ally, the dEa-GAN model performs better than
the gEa-GAN model in both of two synthesis
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Table 5 Quantitative
evaluation results of the
synthesized FLAIR-like
from T1 on the
BRATS2015 dataset
(mean± standard
deviation)

Methods PSNR NMSE SSIM

Replica [26] 27.17± 2.60 0.171± 0.267 0.939± 0.013

Multimodal [8] 27.26± 2.82 0.184± 0.284 0.950± 0.014

Pix2pix [25] 27.46± 2.55 0.144± 0.189 0.940± 0.015

3D cGAN 29.26± 3.21 0.119± 0.205 0.958± 0.016

Gradient cGAN 29.38± 3.25 0.116± 0.204 0.960± 0.017

gEa-GAN 29.55± 3.24 0.115± 0.199 0.960± 0.017

dEa-GAN 30.11± 3.22 0.105± 0.174 0.963± 0.016

The paired t-test is conducted between dEa-GAN and a com-
pared method at the significance level of 0.05. When the im-
provement of dEa-GAN over the method is statistically signif-
icant, the result of that compared method will be underlined. t-
Test values of proposed dEa-GAN over the following methods:
(a) Replica: 7.96e−53; 3.94e−13; 3.67e−106. (b) Multimodal:
9.10e − 39; 1.75e − 12; 2.11e − 41. (c) Pix2pix: 7.72e − 67;
8.50e − 21; 8.71e − 131. (d) 3D cGAN: 1.05e − 63; 6.62e − 6;
6.84e−42. (e) Gradient cGAN: 5.29e−30; 1.08e−2; 1.80e−22.
(f) gEa-GAN: 3.41e − 25; 9.15e − 4; 1.67e − 15

Fig. 17 Visual comparison of the synthesized FLAIR images between Ea-GANs and other state-of-the-art methods
taken from [57]: (a) axial slices, (b) zoomed parts of axial slices, (c) coronal slices, (d) zoomed parts of coronal slices,
and (e) sagittal slices, (f) zoomed parts of sagittal slices

tasks, showing the necessity of bringing the edge
information into the training of the discriminator.
Furthermore, the superiority of the Ea-GANs is
consistently shownwhen comparedwith the other
four state-of-the-art methods in terms of all the
three measures. When looking into the visual
comparison examples in Figs. 17 and 18, from
all the three views, it can be seen that the Ea-
GANs synthesize sharper edges and more local
details than the compared methods as indicated.
Therefore, both the quantitative and visual results

demonstrate that the Ea-GANs synthesize better
MR images by using edge maps via two different
strategies in cGAN models than the compared
methods.

Conclusion

In this chapter, we focus on presenting deep
learning approaches for medical image synthesis.
Through the experimental results in our four
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Table 6 Quantitative
evaluation results of the
synthesized T2-like images
from T1 on the
BRATS2015 dataset
(mean± standard
deviation)

Methods PSNR NMSE SSIM

Replica [26] 26.92± 2.36 0.158± 0.324 0.946± 0.015

Multimodal [8] 27.31± 2.39 0.140± 0.229 0.951± 0.016

Pix2pix [25] 28.12± 2.45 0.110± 0.220 0.953± 0.014

3D cGAN 29.34± 3.23 0.095± 0.199 0.964± 0.017

Gradient cGAN 29.43± 3.28 0.097± 0.210 0.966± 0.017

Proposed gEa-GAN 29.58± 3.29 0.093± 0.218 0.966± 0.018

Proposed dEa-GAN 29.98± 3.37 0.088± 0.223 0.967± 0.016

The paired t-test is conducted between dEa-GAN and a compared
method at the significance level of 0.05. When the improvement of
dEa-GAN over the method is statistically significant, the result of that
compared method will be underlined. t-Test values of proposed dEa-
GAN over the following methods: (a) Replica: 4.03e − 41; 4.21e − 7;
1.85e − 72. (b) Multimodal: 4.25e − 48; 4.32e − 23; 1.49e − 78. (c)
Pix2pix: 1.90e−42; 2.19e−9; 2.44e−106. (d) 3D cGAN: 4.25e−30;
1.54e − 4; 3.43e − 40. (e) Gradient cGAN: 2.24e − 33; 3.77e − 10;
2.28e − 16; (f) gEa-GAN: 8.59e − 18; 1.82e − 7; 3.72e − 5

Fig. 18 Visual comparison of the synthesized T2 images between Ea-GANs and other state-of-the-art methods taken
from [57]: (a) axial slices, (b) zoomed parts of axial slices, (c) coronal slices, (d) zoomed parts of coronal slices, and
(e) sagittal slices, (f) zoomed parts of sagittal slices

works, we can see that using the recent GAN
based models achieves better medical image
synthesis performance than the conventional
CNN based models. Besides, we can also
conclude two main factors that benefit the
successful application of the presented GAN
models in within-modality and cross-modality
synthesis. First, due to the 3D structure ofmedical
images, the 3D architecture of GAN models
can preserve continuous contextual information
along all the three directions and therefore

improve the synthesis results. Second, in order
to synthesize more realistic images, additionally
exploiting the spatially local details in the source
or the target images for different subjects can
further boost the synthesis performance of the
GAN based methods, since the subtle visual
difference in medical images is essential in
clinical applications. In summary, deep learning
based medical image synthesis, especially the
recent GAN based one, has become an active
research topic. With the participation of more
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researchers, it is expected that new synthesis
approaches and methods will be developed in the
coming years to further boost its performance
and efficiency.
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