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Many existing approaches for mammogram analysis are based on single view. Some recent DNN-based 

multi-view approaches can perform either bilateral or ipsilateral analysis, while in practice, radiolo- 

gists use both to achieve the best clinical outcome. MommiNet is the first DNN-based tri-view mass 

identification approach, which can simultaneously perform bilateral and ipsilateral analysis of mam- 

mographic images, and in turn, can fully emulate the radiologists’ reading practice. In this paper, we 

present MommiNet-v2, with improved network architecture and performance. Novel high-resolution net- 

work (HRNet)-based architectures are proposed to learn the symmetry and geometry constraints, to fully 

aggregate the information from all views for accurate mass detection. A multi-task learning scheme is 

adopted to incorporate both Breast Imaging-Reporting and Data System (BI-RADS) and biopsy informa- 

tion to train a mass malignancy classification network. Extensive experiments have been conducted on 

the public DDSM (Digital Database for Screening Mammography) dataset and our in-house dataset, and 

state-of-the-art results have been achieved in terms of mass detection accuracy. Satisfactory mass malig- 

nancy classification result has also been obtained on our in-house dataset. 

© 2021 PAII Inc. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Mammography is widely used as a cost-effective early detec- 

ion method for breast cancer, the most common cancer in women 

orldwide and the second leading cause of cancer death for 

omen in the US. With about 39 million mammograms performed 

nnually in the US alone, Computer-Aided Diagnosis (CAD) systems 

ave the promise to help radiologists improve the overall efficiency 

nd accuracy for breast cancer diagnosis. Significant progress has 

ecently been made in the performance of CAD systems, espe- 

ially with the advance of DNN-based methods. Nonetheless, mam- 

ographic abnormality detection and malignancy classification re- 

ain challenging, largely due to the high accuracy requirement set 

y the clinical practice. 
∗ Corresponding authors. 

E-mail address: pengchang@gmail.com (P. Chang). 
1 These authors equally contributed to this work. 
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There are generally two categories of approaches toward a CAD 

ystem for mammograms: multi-stage and end-to-end. The multi- 

tage approaches follow the diagnostic routine of a radiologist, by 

ividing the whole process into several stages, such as identifying 

ll the lesion regions, classifying the malignancy for each lesion, 

nd reporting the overall cancer risk. On the contrary, the end-to- 

nd approaches take the mammographic images as input, and di- 

ectly output the cancer risk at the image or patient level, bypass- 

ng the lesion level output. Some recent results show that the end- 

o-end systems have the potential to outperform the radiologists 

n certain circumstances ( McKinney et al., 2020; Wu et al., 2019; 

kselrod-Ballin et al., 2019 ), nonetheless it is still a far-fetched 

oal to replace the radiologists in the near future. Our collabora- 

ion with the radiologists in the clinical experiments indicates that 

he radiologists often prefer to have the lesion level output from 

he CAD system, to make the final diagnosis decisions. Therefore 

e take a multi-stage ( Guan et al., 2020 ) approach, and in this pa-

er, we focus on mass detection and malignancy classification in 

ammograms. 
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A standard mammography screening procedure acquires two 

ow-dose X-ray projection views for each breast, a craniocaudal 

CC) view and a mediolateral oblique (MLO) view. Radiologists rou- 

inely use all views in breast cancer diagnosis. The ipsilateral anal- 

sis refers to the diagnosis based on the CC and MLO views of 

he same breast, while the bilateral analysis combines the findings 

rom the same views of the two breasts. For example, the radi- 

logists may cross-check the lesion locations through the ipsilat- 

ral analysis, and use the symmetry information from the bilat- 

ral analysis to improve the decision accuracy. Many previous ap- 

roaches on mammographic lesion detection focus on one view ( Li 

t al., 2018; Agarwal et al., 2019; Zhang et al., 2019; Xi et al., 2018;

ao et al., 2019a; 2019b; Li et al., 2019 ), therefore unable to cap-

ure the rich information from the multiple view analysis. Recently 

everal DNN-based dual-view approaches have been proposed, per- 

orming either ipsilateral or bilateral analysis ( Carneiro et al., 2017; 

iniz et al., 2018; Li et al., 2020; Liu et al., 2019; Perek et al.,

018; Ren et al., 2019 ). In our previous work ( Yang et al., 2020b ),

e have proposed MommiNet ( M amm O graphic M ulti-view M ass 

 dentification NET works [ maa ·mee ·net]), the first DNN-based ar- 

hitecture to perform tri-view based mass detection. In this work, 

e further improve this model by incorporating the recently pro- 

osed High-Resolution Network (HRNet) as the backbone to pre- 

erve high-resolution feature representations through the network 

 Wang et al., 2020 ). Moreover, we also integrate a classification 

odule to classify the malignancy of the detected masses. High- 

esolution feature representations are critical for the accuracy of 

oth mass detection and malignancy classification in mammo- 

rams, since the detailed texture information of lesions are well- 

reserved. This upgraded version is denoted as MommiNet-v2. 

BI-RADS (Breast Imaging-Reporting and Data Sys- 

em) ( American College of Radiology, 2013 ) and biopsies are 

ommonly used to assess the cancer risk of breast lesions. A 

adiologist typically assigns each lesion/breast a BI-RADS category 

rom 0 to 6 in a diagnostic report after interpreting a mammo- 

ram. A biopsy can be ordered to confirm the malignancy for 

esions with high BI-RADS levels, and is considered as the gold 

tandard. Most previous studies in the literature treat the mass 

alignancy classification as a binary problem, and the mass ma- 

ignancy labels are obtained from biopsy results. However, since 

iopsy is an invasive operation, only the patients with high risk 

ill take this further test, while BI-RADS information is more 

idely available to indicate lesion malignancy. To take advantage 

f the BI-RADS information, in this work we adopt a multi-task 

earning framework ( Caruana, 1997 ) for the mass malignancy 

lassification to combine BI-RADS categories and biopsy results. 

In all, we present a two-stage system for mass detection and 

alignancy classification. Our main contributions include: 

• We further improve MommiNet, the first tri-view DNN ar- 

chitecture to perform joint ipsilateral and bilateral analysis, 

and present MommiNet-v2, which can fully aggregate informa- 

tion from high-resolution representations of all views with im- 

proved mass detection performance. 
• A multi-task learning scheme to incorporate the malignancy in- 

formation from both biopsies and BI-RADS categories, for im- 

proved mass malignancy classification. 
• State-of-the-art (SOTA) Free-Response Operating Characteristic 

(FROC) mass detection performance on the entire DDSM and 

our in-house datasets. 

A preliminary version of this work has appeared 

n Yang et al. (2020b) . In this paper, we further improve the 

ass detection with better model structures (high-resolution 

odels), and provide more technical details of our method. 

urthermore, we propose a malignancy classifier to output the 

I-RADS category for each detected mass, along with a newly 
2 
roposed multi-task learning framework to incorporate both BI- 

ADS and biopsy information from the training data. Extended 

xperiment results with ablation studies are also included. 

The rest of the paper is organized as follows. We review the 

elated work in Section 2 . In Section 3 , we introduce the architec- 

ure of our method and loss functions. We present our experiment 

esults and comparisons in Section 4 , and discuss the results and 

imitations in Section 5 . In Section 6 , we conclude and describe fu- 

ure directions. 

. Related work 

.1. Mass detection 

Deep learning has been used to detect mass in mammograms, 

nd most of the methods use a single image for detection ( Li 

t al., 2018; Agarwal et al., 2019; Zhang et al., 2019; Xi et al., 

018; Cao et al., 2019a; 2019b; Li et al., 2019 ). Recently, multi- 

iew based approaches are attracting an increasing attention. In 

 Diniz et al., 2018; Li et al., 2020; Liu et al., 2019 ), bilateral anal-

sis has been incorporated in DNN-based approaches. Some other 

NN-based methods consider information of ipsilateral mammo- 

rams ( Carneiro et al., 2017; Perek et al., 2018; Ren et al., 2019 ).

owever, most of these approaches do not model the geometry re- 

ation across views explicitly. In ( Ma et al., 2019 ), a cross-view rela-

ion network is added to the Siamese Networks for mass detection. 

owever, this approach uses the same geometric features and em- 

edding for the relation network as in Hu et al. (2017) , which was

esigned for single view object detection. In ( Liu et al., 2020 ), a

ipartite Graph Convolutional Network is applied to detect masses, 

hich considers spatial information of nodes from ipsilateral mam- 

ograms. 

In this work, we perform the ipsilateral and bilateral analysis 

imultaneously using the specifically designed detection network, 

hich is a Faster-RCNN ( Ren et al., 2015 ) variant with Siamese 

nput module, and the segmentation network, which is an HR- 

et ( Wang et al., 2020 ) variant with Siamese input module, re- 

pectively. Unlike ( Ma et al., 2019 ), our relation network is ex- 

licitly designed to encode the mass-to-nipple distance for the ip- 

ilateral analysis, in tandem with a DNN-based nipple detector. 

he mass-to-nipple distance has been considered in previous work 

 Sahiner et al., 2006 ), while our approach is the first one to explic-

tly embed this prior knowledge into a DNN architecture. 

.2. Mass malignancy classification 

Different end-to-end malignancy classification approaches have 

een developed in at the image, breast, and patient level for breast 

ancer screening ( McKinney et al., 2020; Wu et al., 2019; Akselrod- 

allin et al., 2019 ). The biopsy result can serve as the ground 

ruth for mammographic images with a biopsy record. In addi- 

ion, normal mammographic images can be obtained from pa- 

ients who do not develop breast cancer in the following 12–24 

onths ( Akselrod-Ballin et al., 2019 ). Wang et al. (2020b) propose 

 Cycle-GAN (Cycle-Consistent Generative Adversarial Networks)- 

ased model ( Zhu et al., 2017 ) that uses bilateral symmetric prior 

nd “healthy” image generation mechanisms to boost mammo- 

ram malignancy classification. The motivation behind the sym- 

etric prior is that a lesion present on one side of the breasts 

arely appears in the corresponding area on the other side. A bi- 

ateral cycle-consistency mechanism is proposed and contralateral 

ammograms are used as references to generate the healthy ver- 

ion of target features to help find the abnormal features. In a later 

ork ( Wang et al., 2020a ), they extend the model by considering 

oth bilateral and epsilateral views as in Yang et al. (2020b) . The 

nd-to-end classification approaches do not require the annotated 
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esion types and locations. Therefore, it is possible to obtain mam- 

ograms with image-level malignancy information at a large scale, 

hich is essential for boosting the classification performance of 

 deep neural network model. However, the end-to-end methods 

re designed for image-level malignancy classification, and do not 

rovide detailed lesion level output. Although the generated heat 

aps could highlight the potential regions of the malignant le- 

ions, they generally cannot output the lesion types or the precise 

ocations. In other words, the image-level classification can provide 

imited information to the radiologists in terms of identifying indi- 

idual lesions. 

Multi-stage approaches focus on lesion detection and malig- 

ancy classification for each lesion type, such as calcification and 

ass. Since mass detection is still a challenging problem, some 

revious mass malignancy classification methods have been devel- 

ped with mass data labeled by human experts ( Rangayyan et al., 

997; Wang et al., 2009; Pedro et al., 2019; Jiao et al., 2016; Wang

t al., 2018 ). Most of them applied hand-crafted features or tra- 

itional machine learning methods ( Rangayyan et al., 1997; Wang 

t al., 2009 ), and the classification performance is not optimal. Re- 

ently, some deep learning based techniques have resulted in im- 

roved classification performance for mass malignancy ( Jiao et al., 

016; Wang et al., 2018 ). 

A few integrated mass detection and classification systems have 

lso been developed. Generally, most of these integrated systems 

mplement the detection and classification with a cascaded or 

ulti-stage manner ( Al-Masni et al., 2018; Al-Antari et al., 2018; 

bdelhafiz et al., 2019; Dhungel et al., 2017 ). In ( Dhungel et al.,

017 ), users are required to manually reject false positive mass re- 

ions. This user intervention sets a barrier in practical applications. 

y contrast, our proposed strategy and most cascaded-based meth- 

ds ( Al-Masni et al., 2018; Al-Antari et al., 2018; Abdelhafiz et al., 

019 ) do not have this limitation. 

Unlike the aforementioned methods, our work adopts the 

ulti-task learning framework and incorporates both the BI-RADS 

ategory information and the biopsy information when available 

or each mass during the training, which leads to a larger train- 

ng dataset and much improved classification performance. Com- 

ared to the binary malignancy result from biopsy test, the multi- 

evel BI-RADS categories provide more detailed information about 

he malignancy likelihood, which is more informative for training 

 deep neural network based model. To the best of our knowl- 

dge, this is the first work that considers both biopsy results and 

I-RADS categories in mass malignancy classification. 

. Proposed method 

.1. Datasets 

Public dataset We leverage the widely used DDSM (Digital 

atabase for Screening Mammography) ( Lee et al., 2017 ) as our 

ublic dataset. DDSM has 2620 patient cases, each of which 

as standard four views of mammograms. Excluding some defec- 

ive/corrupted cases, 2578 cases (10,312 images in total) are used 

n this work. All cases are randomly divided at patient level into 

he training, validation, and test sets by approximately 8:1:1, re- 

ulting in 8256, 1020 and 1036 images in the respective sets. 

In-house dataset 2 We collected and annotated mammographic 

ata from Shenzhen People’s Hospital in China to validate our pro- 

osed methods. The in-house dataset contains 2749 patients’ data 

aken with Siemens and Giotto equipment. After data cleaning, 

807 four-view cases are obtained, consisting of normal, benign, 

nd cancerous cases, which are close to the patient distribution in 
2 This project is approved by the IRB number LL-XJS-2020011. 

p

B

t

3 
he hospital. All these mammograms are collected from digital ra- 

iography (DR) systems, which have better imaging quality than 

onventional computed radiography (CR) in the DDSM dataset. Le- 

ion regions are first annotated by two radiologists and then re- 

iewed by a senior reader. All cases are randomly split by 8:1:1 

nto the training, validation and test sets, each with 8988, 1120, 

nd 1120 images, respectively. 

.2. System overview 

The framework of the our enhanced method, MommiNet-v2, is 

llustrated in Fig. 1 . Different from our original MommiNet, a mass 

alignancy classification module is integrated. First, one input im- 

ge is selected as the main view, and its corresponding ipsilateral 

nd bilateral views are considered as the auxiliary views. These 

hree images form the input of MommiNet-v2. As in Fig. 1 , the 

ain view (“RCC (main)”) and the corresponding ipsilateral view 

“RMLO (aux)”) are input together into the ipsilateral branch. In 

arallel, the main view and the bilateral view (“LCC (aux)”) are 

nput into the bilateral branch. These two branches generate the 

robability maps of the main view, named as “Ipsi-prob map” and 

Bi-prob map”, respectively. Then, the probability maps along with 

he main view are fed into the integrated fusion network (v2) to 

enerate the final mass detection results. Finally, the detected mass 

egions are further classified as benign or malignant by the malig- 

ancy classification module. More specifically, a DNN-based nipple 

etector is added to the ipsilateral branch to extract the nipple lo- 

ations on both views (“RCC” and “RMLO”) before inputting into 

psiDualNet-v2 , and the bilateral view (“LCC”) image is first regis- 

ered towards the main view before input into the BiDualNet-v2 . 

n practice, the proposed multi-view framework can be applied to 

ny given view as the main image, and we apply it to all avail-

ble views to obtain the mass detection and classification results 

n each view. 

.3. Image pre-processing 

Image registration To facilitate the DNN-based learning of the 

ymmetry constraint from the bilateral images, we register the in- 

ut pair of the same view images (e.g. two CC view images or two 

LO view images). The auxiliary image is horizontally flipped and 

hen warped toward the main image according to the breast con- 

ours. In particular, the nipple locations are used to roughly align 

he two MLO images before warping. A warped CC view example 

s shown in Fig. 1 . 

Nipple detection Nipple locations are required in image registra- 

ion for MLO views and IpsiDualNet-v2. A Faster-RCNN based key- 

oint detector ( Facebook, 2019 ) is trained to identify the nipple lo- 

ations with satisfactory accuracy. For example, there is only one 

ncorrect nipple prediction in our in-house dataset (11,228 images 

n total). 

.4. BiDualNet-v2 

Most women have roughly symmetric breasts in terms of den- 

ity and texture ( Cunningham, 2013 ). This property is well lever- 

ged by radiologists to identify the abnormalities in mammograms. 

inging on a bilateral dual-view, radiologists are able to locate a 

ass based on its distinct morphologic appearance and relative po- 

ition compared to its corresponding area in the lateral image. 

To incorporate this diagnostic prior information and facilitate 

he learning of the symmetry constraint, we develop BiDualNet- 

2 ( Bi lateral Dual -view Net work-v2) as illustrated in Fig. 2 . Com-

ared with the original version of BiDualNet ( Yang et al., 2020b ), 

iDualNet-v2 leverages the HRNet to learn the bilateral informa- 

ion. HRNet is capable of maintaining high-resolution image rep- 
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Fig. 1. Framework of the proposed MommiNet-v2 for mass detection and malignancy classification. (Figures are better viewed with the web version of this article.) 

Fig. 2. Architecture of BiDualNet-v2 for mass detection on bilateral dual-view mammograms. 
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esentations, which are not available in the previously adopted 

esNet-based encoder structure. As HRNet’s effectiveness has been 

roven in many common computer vision tasks, it has been al- 

eady applied to medical image analysis ( Xu et al., 2020; Huang 

t al., 2020 ). We utilize the HRNet structure in BiDualNet-v2 to 

etter exploit the high-resolution symmetry information from the 

ual-view inputs. Our BiDualNet-v2 is derived from the HRNet-48 

tructure, enhanced with a Siamese input module and the pixel- 

ise focal loss (PWFL). The two Siamese inputs pass through the 

tage 1,2,3 simultaneously, and all these 3 stages share the same 

eights between the Siamese inputs, extracting features from the 

ilateral images in the same manner. The auxiliary feature map is 

hen assumed as a reference and concatenated with the main fea- 

ure map at the Stage 3, and in turn, the feature difference at the 

ame location can highlight the abnormality. After a 1 × 1 convo- 

ution and the rest stages of HRNet, the segmentation network fi- 

ally generates the feature map, which is converted into the prob- 

bility map (Bi-prob-map) and input into the following integrated 

usion network (v2). The model is optimized by minimizing the 

WFL during training by performing focal loss ( Lin et al., 2017 ) 

ixel by pixel between the ground-truth and the probability map, 

n which the focal loss itself tends to penalize more on those hard 

xamples. 

.5. IpsiDualNet-v2 

Ipsilateral images provide information on the same breast from 

wo different views. Hence, a mass in the ipsilateral images tends 

o have similar distances to the nipple and share common appear- 

nce traits. This is an essential knowledge to assist radiologists in 

aking decisions. We incorporate this prior diagnostic knowledge 

n our designed IpsiDualNet-v2 ( Ipsi lateral Dual -view Net work-v2) 

s presented in Fig. 3 . Based on the Faster-RCNN detection archi- 

ecture, we add the Siamese input module, a Feature Pyramid Net- 

orks (FPN) module ( Facebook, 2019 ), and the designed relation 

locks. The Siamese input module with FPN enables the two in- 

ut branches to share the same weights and extract the features 

rom the two ipsilateral views in the same way. In turn, the pro- 

osed relation blocks (described in the next paragraph) compute 

he appearance similarity and the geometry constraint between 
4 
he RoIs from the two branches. Finally, the mass regions in the 

ain image are detected and converted into a probability map. 

oreover, focal loss (FL) ( Lin et al., 2017 ) and Distance-IoU loss 

DIoU) ( Zheng et al., 2019 ) are used to improve the performance of 

psiDualNet-v2 , and training with negative samples (normal cases) 

s enabled. Different from the normal IoU loss, the DIoU loss can 

etter minimize the normalized distance between the target box 

nd the anchor box. Compared with the original version IpsiDual- 

et ( Yang et al., 2020b ), the ResNet-50 backbone is replaced with 

he HRNet-48, which can better preserve the high resolution rep- 

esentations. 

Relation networks Hu et al. (2017) explore the attention-based 

elationships ( Vaswani et al., 2017 ) between two RoIs in single im- 

ge based on the similarity of their appearance and geometric fea- 

ures, improving detection accuracy. Inspired by Hu et al. (2017) , 

e develop a new relation block that enhances the appearance 

nd geometric similarities of a lesion RoI in two ipsilateral images. 

he appearance similarity weight ω 

i j 
A 

between the i th RoI f 
i 
m 

in the 

ain image and the j th RoI f 
j 
a in the auxiliary image is defined in 

q. (1) , where two matrices W a and W m 

project the i th and the 

j th RoIs into subspaces to measure their appearance similarity. Re- 

arding the geometric similarity, Eq. (2) considers RoIs’ geomet- 

ic factors g k t = { d k t , w 

k 
t , h 

k 
t } , including the RoI-to-nipple distance,

oI width and height, where the subscript “t” indicates “m ” or 

a ” (the main or auxiliary image). Other variables in Eqs. (1) and 

2) have the same meaning as described in Hu et al. (2017) . The

utput of our relation block is also designed to add back to the 

ain image stream without altering the feature dimension, and 

an be repeated for multiple times after the fully connected layer 

t the RoI head phase. We utilize two relation blocks as shown in 

ig. 3 to emphasize the ipsilateral relationships. Radiologists rou- 

inely adopt the lesion-to-nipple distance as an important factor 

or estimating a lesion, since this distance is approximately the 

ame in both CC and MLO views ( Wei et al., 2009; Ikeda and

iyake, 2016 ). Fig. 4 shows an example of the similarity of the 

OI-to-nipple distances. 

 

i j 
A 

= 

dot(W a f 
j 
a , W m 

f 
i 
m 

) √ 

D 

, i ∈ { 1 , 2 , . . . , I} , j ∈ { 1 , 2 , . . . , J} , (1)
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Fig. 3. Architecture of IpsiDualNet-v2 for mass detection on ipsilateral mammograms. 

Fig. 4. Similarity of RoI-to-nipple distances. 
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) , log ( 
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.6. Integrated fusion network (v2) 

We explore a fusion network to integrate the outputs of both 

psilateral and bilateral learning, and Fig. 5 illustrates the architec- 

ure of the designed integrated fusion network v2. The input of 

ntegrated fusion network consists of three images: the main im- 

ge and the two probability maps generated by the IpsiDualNet-v2 

nd BiDualNet-v2 (shown in Fig. 1 ). These two probability maps 

re attentions of the comprehensive information from both bilat- 

ral and ipsilateral analysis. As shown in Fig. 5 , there are two 

oncatenation steps in the network. The first concatenation is to 

use the outputs from the two preceding sub-networks along with 

he main image. We perform the second concatenation in a U- 

et style, which can better keep the low level feature informa- 

ion along with the high level feature map generated by a series 

f convolutions, max-pooling and upsampling. Different from our 

riginal method in Yang et al. (2020b) , the backbone ResNet-50 is 

eplaced with HRNet-48. Note that the HRNet-48 backbone comes 

rom IpsiDualNet-v2 and is frozen during the training process. The 

nal mass detection result is generated by this integrated fusion 

etwork. 

.7. Multi-task learning for mass malignancy classification 

While the MommiNet-v2 aims to detect mass regions in the 

igh-resolution mammograms, a complete mass identification sys- 

em is desirable to take one step further to predict the probability 

f the mass malignancy. This multi-stage framework design is con- 

istent with radiologists’ interpretation of a mammogram for diag- 

osing breast cancer. 
5 
Using biopsy results alone as labels that indicate normal/benign 

r malignant tissues already enables us to train a binary classi- 

er to differentiate between benign and malignant mass patches. 

n addition, in most modern health care facilities, clinicians use 

I-RADS to sort the assessment of breast lesions ( Spak et al., 

017 ) into categories numbered 0 through 6. The brief definition 

f BI-RADS categories is introduced in Table 1 , in which each 

I-RADS category corresponds to a probability range of malig- 

ancy ( American College of Radiology, 2013 ). In this regard, we in- 

estigate whether training with the combination of BI-RADS scores 

eported by radiologists and biopsy results could improve the au- 

omated classification performance of benign and malignant breast 

ass on mammographic images. 

We propose a multi-task learning ( Chen et al., 2019 ) module 

or benign and malignant mass classification on mammographic 

mage patches, by training with both binary biopsy labels from 

athology reports and BI-RADS scores from attending radiologists. 

he proposed module aims to improve the learning efficiency and 

rediction accuracy by learning two separate objectives from a 

hared representation. More specifically, a 121-layer densely con- 

ected convolutional network ( Huang et al., 2017 ) is shared for fea- 

ure learning, with a binary classification branch and a regression 

ranch padded in parallel for benign/malignant classification and 

alignancy prediction, respectively. During training, the BI-RADS 

cores range from 1 to 6 (4A, 4B, and 4C are treated as separate 

lasses) are normalized into the range [0, 1] according to a pre- 

efined distance map. Since two neighboring BI-RADS categories 

re neither visually nor probabilistically equidistant, our collabo- 

ating radiologists approximately estimate the differences l i,i +1 be- 

ween any two neighboring BI-RADS categories i and i + 1 and de- 

ign a distance map upon them. The normalized distance between 

wo neighboring categories l̄ i,i +1 is defined as: 

 ̄i,i +1 = 

l i,i +1 ∑ 7 
i =1 l i,i +1 

(3) 

The pre-defined distance map and normalized value (as a refer- 

nce standard ground-truth) of each BI-RADS category are shown 

n Table 1 . 

We design a multi-task learning loss combining binary classifi- 

ation and regression to simultaneously learn these two tasks in a 

nified architecture: 

 MTL = 

1 
σ 2 

1 

L 1 (W ) + 

1 
2 σ 2 

2 

L 2 (W ) + log σ1 σ2 , (4) 

here L 1 (W ) is the binary cross entropy loss of the benign vs. ma-

ignant classification branch: L 1 (W ) = − log ( Softmax (f (W ) (x ) , y 1 )) ,

nd L 2 (W ) is the Euclidean loss for the regression branch: 

 2 (W ) = || f W (x ) − y 2 || 2 . y 1 and y 2 are the ground-truth biopsy la-

els and the normalized BI-RADS scores, respectively. The multi- 

ask learning module is optimized with respect to W as well as σ
1 
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Fig. 5. Integrated fusion network (v2). 

Table 1 

The definitions of BI-RADS and our pre-defined visual distances between neighboring BI-RADS categories. For example, 

the distance between BI-RADS 1 and 2 is set as 1.0, between 2 and 3 is set as 1.5, and so forth. The rightmost column 

shows the normalized values as a reference standard (or ground-truth (GT)) of the BI-RADS categories. 

BI-RADS Definition Prob. of malignancy Pre-defined distance Normalized GT 

0 Incomplete – need additional – – –

imaging evaluation 

1 Normal 0% 1.0 0 

2 Benign 0% 1.5 0.0926 

3 Probably benign < 2% 2.0 0.2315 

4A: 2%-10% 1.5 0.4167 

4 Suspicious for malignancy 4B:10%-50% 1.5 0.5556 

4C: 50%-95% 1.8 0.6944 

5 Highly suggestive of malignancy > 95% 1.5 0.8611 

6 Known biopsy-proven malignancy 100% – 1 
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nd σ2 , where σ1 and σ2 are the standard deviation of the out- 

ut values from the classification and regression branches, respec- 

ively. We follow Kendall et al. (2018) to optimize this objective 

unction, which has been proven to be superior and more effective 

han manually tuning the relative weighting in a linear combina- 

ion of each task’s loss. 

.8. Training strategies of the framework 

For the mass detection part, the detection subnetworks (i.e. the 

iDualNet-v2 and the IpsiDualNet-v2) of MommiNet-v2 are trained 

eparately. As shown in Fig. 1 , we first train the IpsiDualNet-v2 

nd the BiDualNet-v2 sub-modules separately, and then convert 

heir outputs into probability maps at the ipsilateral and bilateral 

ranches, respectively. Once the training procedure is completed, 

he two generated probability maps along with the main image 

tream are fed into the integrated fusion network (v2), which out- 

uts the mass detection result. Since both the BiDualNet-v2 and 

he IpsiDualNet-v2 are trained independently, they function in par- 

llel and generally do not influence each other. Nevertheless, the 

ntegrated fusion network (v2) is trained based on the preced- 

ng sub-networks’ outputs, and therefore is subject to their per- 

ormance. 

The goal of mass malignancy classification in this work is to 

dentify whether a detected region is malignant or not. Hence, 

e use both the gold patches annotated by radiologists (by re- 

erring to the biopsy results) and the patches detected by our 

ommiNet-v2 for training, but we only use the detected patches 
6 
y our MommiNet-v2 model for validation and testing. To get the 

round-truths of the detected patches, we match them with the 

old patches annotated by radiologists. If the IoU (Intersection over 

nion) between a detected patch and a gold patch is equal or 

arger than 0.5, we set the ground-truth of this detected patch to 

ssociate with the gold patch. If the IoU between a detected patch 

nd any gold patch is less than 0.5, we set the ground-truth of 

his detected patch as not malignant (normal or benign). All image 

atches are resized to 448 × 448 pixels. We augment the training 

ata using random horizontal and vertical flipping, random bright- 

ess and contrast adjustment, and random affine transformation. 

e initialize the DenseNet-121 ( Huang et al., 2017 ) with the net- 

ork weights pre-trained on the ImageNet classification task. We 

et the batch size to 16 and the initial learning rate as 0.001 and 

educe it by a factor of 0.1 after the loss plateaued for 5 epochs. 

tochastic gradient descent (SGD) optimizer with a momentum of 

.9 is used to optimize the training. Early stopping with a maxi- 

um running of 100 training epochs is used to avoid overfitting. 

Although we processed our in-house dataset to ensure each 

ase has four views, our framework can still work with missing 

iews, as the system automatically degrades into the correspond- 

ng dual-view model. 

. Experiments 

In this section, we perform extensive experiments on the DDSM 

nd our in-house datasets to validate our proposed method. The 

odel on each dataset is independently trained based on the pre- 
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Table 2 

Ablation study on ipsilateral and bilateral branches the DDSM dataset. 95% confidence intervals (CI) are shown in the square brackets. 

Networks Ipsilateral (Recall@ FPPI) Bilateral (Recall@ FPPI) 

R@ 0.5 R@ 1.0 R@ 2.0 R@ 0.5 R@ 1.0 R@ 2.0 

BiDualNet 0.668 0.809 0.887 0.783 0.842 0.891 

[0.664, 0.672] [0.803, 0.815] [0.883, 0.891] [0.779, 0.787] [0.838, 0.846] [0.887, 0.895] 

BiDualNet-v2 0.704 0.803 0.884 0.801 0.853 0.891 

[0.701, 0.707] [0.800, 0.806] [0.879, 0.889] [0.799, 0.803] [0.851, 0.855] [0.888, 0.894] 

IpsiDualNet w/o Relation Blocks 0.679 0.772 0.838 0.734 0.786 0.835 

[0.675, 0.683] [0.768, 0.776] [0.832, 0.844] [0.728, 0.740] [0.781, 0.791] [0.830, 0.840] 

IpsiDualNet 0.764 0.828 0.879 0.652 0.747 0.824 

[0.762, 0.766] [0.824, 0.832] [0.875, 0.883] [0.646, 0.658] [0.741, 0.753] [0.818, 0.830] 

IpsiDualNet-v2 0.811 0.843 0.889 0.678 0.764 0.801 

[0.805, 0.817] [0.837, 0.849] [0.885, 0.893] [0.674, 0.682] [0.760, 0.768] [0.795, 0.807] 

Table 3 

Ablation study on ipsilateral and bilateral branches on our in-house dataset. 95% confidence intervals (CI) are shown in the square brackets. 

Networks Ipsilateral (Recall @ FPPI) Bilateral (Recall @ FPPI) 

R @ 0.5 R @ 1.0 R @ 2.0 R @ 0.5 R @ 1.0 R @ 2.0 

BiDualNet 0.709 0.782 0.898 0.874 0.931 0.948 

[0.705, 0.713] [0.778, 0.786] [0.892, 0.904] [0.870, 0.878] [0.927, 0.935] [0.944, 0.952] 

BiDualNet-v2 0.741 0.802 0.884 0.892 0.932 0.950 

[0.738, 0.746] [0.799, 0.807] [0.880, 0.888] [0.889, 0.895] [0.930, 0.934] [0.947, 0.953] 

IpsiDualNet w/o Relation Blocks 0.804 0.856 0.908 0.828 0.881 0.917 

[0.801, 0.807] [0.853, 0.859] [0.903, 0.913] [0.823, 0.833] [0.876, 0.886] [0.913, 0.921] 

IpsiDualNet 0.882 0.917 0.958 0.777 0.832 0.903 

[0.878, 0.886] [0.913, 0.921] [0.953, 0.963] [0.771, 0.783] [0.826, 0.838] [0.826, 0.838] 

IpsiDualNet-v2 0.891 0.933 0.961 0.788 0.854 0.897 

[0.888, 0.894] [0.930, 0.936] [0.957, 0.965] [0.785, 0.791] [0.851, 0.857] [0.894, 0.900] 

t

f

r

e

i  

i

p

c

e

4

4

(

s

m

a

B

l

o

v

W

o

I

t

r

a

l

i  

s

s

I

l

d

t

d

n

m

v

S

s

s

y

c

t

m

T

3

4

v

i

2

t

r

v

t

R

(

o

a

i

e

p

l

rained ImageNet model ( Krizhevsky et al., 2012 ). The recall at dif- 

erent numbers of false positive per image (FPPI), namely, the free- 

esponse receiver operating characteristic (FROC) is selected as our 

valuation metric to compare with the previous work. Every image 

s resized to at most 30 0 0 × 150 0 according to the aspect ratio as

nput. A mass is assumed as successfully identified if the IoU of the 

redicted output and the ground truth mask is greater than 0.2, as 

ommonly used in earlier studies ( Agarwal et al., 2019; Dhungel 

t al., 2017 ). 

.1. Results of mass detection 

.1.1. Ablation study 

Ipsilateral and bilateral learning We train and test BiDualNet 

and v2), IpsiDualNet (and v2) and their degraded versions “Ip- 

iDualNet w/o Relation Blocks” (the two feature streams from the 

ain and auxiliary images are directly concatenated after the RoI 

lignment stage) on both ipsilateral and bilateral images. 

Table 2 shows the results on DDSM. It can be observed that 

iDualNet always achieves the relatively higher recall scores on bi- 

ateral images, and IpsiDualNet generally has better performance 

n ipsilateral images. The results of BiDualNet-v2 and IpsiDualNet- 

2 surpass their original versions at the appropriate lateral sides. 

e believe this is due to the fact that the high-resolution features 

f smaller mass lesions are better captured by the HRNet structure. 

t is also clear that IpsiDualNet outperforms IpsiDualNet w/o Rela- 

ion Blocks on ipsilateral images, which suggests that the designed 

elation module remarkably enhances IpsiDualNet. Thus, BiDualNet 

nd IpsiDualNet are respectively applied to the bilateral and ipsi- 

ateral analysis in MommiNet. The results on our in-house dataset 

n Table 3 follow a similar trend as on DDSM. The efficacy of Ip-

iDualNet and BiDualNet on the respective ipsilateral and bilateral 

ides is even more substantial. Similar to Table 2 , BiDualNet-v2 and 

psiDualNet-v2 outperform the original versions at the proposed 

ateral sides. 
7 
Geometric features in IpsiDualNet-v2 Table 4 shows the impact of 

ifferent geometric features on IpsiDualNet-v2, including the fea- 

ures in Ma et al. (2019) , the dummy nipple, and our RoI-to-nipple- 

istance based features. It clearly demonstrates that the RoI-to- 

ipple-distance based geometric features generate the best perfor- 

ance of IpsiDualNet-v2. 

Concatenation stage in BiDualNet-v2 In our proposed BiDualNet- 

2 (shown in Fig. 2 ), we concatenate the bilateral feature maps at 

tage 3 of HRNet-48. This stage is also the last concatenation po- 

ition in BiDualNet-v2 due to our 48-GB GPU memory limitation, 

ince any later concatenation stage requires the GPU memory be- 

ond the limit. We here investigate the impact of different con- 

atenation stages in BiDualNet-v2. Table 5 lists the results on both 

he entire DDSM and our in-house datasets when the dual feature 

aps are concatenated at Stage 1, 2, or 3 of HRNet-48, respectively. 

he results show that our default concatenation operation at Stage 

 in BiDualNet-v2 achieves the best result on both datasets. 

.1.2. Results on the DDSM and in-house datasets 

Table 6 compares the performance of various single-view, dual- 

iew and tri-view methods on the DDSM dataset. The approaches 

n the references ( Campanini et al., 2004; de Nazaré Silva et al., 

015; Liu et al., 2019; Ma et al., 2019 ), which reported evalua- 

ion on DDSM with normal patients data using the FROC met- 

ic, are selected as the comparison methods. Among the single- 

iew methods, our Faster-RCNN with the HRNet-48 backbone and 

he modules of FPN, FL, and DIoU loss achieves the best result. 

egarding the recent dual-view methods, even though BG-RCNN 

 Liu et al., 2020 ) provides higher recall results at FPPI = 1.0/2.0, 

ur IpsiDualNet-v2 and tri-view models achieve better recall rates 

t FPPI = 0.5. In addition, only a small subset of DDSM (512 cases) 

s used in the BG-RCNN study, while the entire DDSM (2578 cases 

xcluding the corrupt files) is included in our study. Finally, our 

roposed tri-view MommiNet-v2 surpass all our dual-view base- 

ines and improve the performance of the original MommiNet. To 
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Table 4 

Impact of different geometric features on prediction performance on our in-house dataset. 

Geometric Features R @ 0.5 R @ 1.0 R @ 2.0 

Shape and location of RoI (i.e., Eq. (2) in Ma et al. (2019) ) 0.86 0.90 0.93 

Dummy nipple point (Central point of every image) 0.80 0.85 0.89 

RoI-to-nipple distance (Ours, in IpsiDualNet-v2) 0.891 0.933 0.961 

Table 5 

Comparison of concatenation location of HRNet-48 in BiDualNet-v2 on the DDSM and in-house 

datasets (referring to Fig. 2 ). 

Datasets Concatenation stage of HRNet-48 R @ 0.5 R @ 1.0 R @ 2.0 

DDSM Concat @ Stage 1 0.763 0.831 0.874 

Concat @ Stage 2 0.790 0.852 0.878 

Concat @ Stage 3 (Default in BiDualNet-v2) 0.801 0.853 0.891 

In-house Concat @ Stage 1 0.850 0.912 0.918 

Concat @ Stage 2 0.871 0.917 0.940 

Concat @ Stage 3 (Default in BiDualNet-v2) 0.892 0.932 0.950 

Table 6 

Performance comparison of various methods on the DDSM dataset. CVR-RCNN : Cross-View Relation Region-based Convolutional Neural Network; 

CBN : Contrasted Bilateral Network 95% confidence intervals (CI) are shown in the square brackets. 

View Method DDSM (train/val/test) Recall @ FPPI 

R @ 0.5 R @ 1.0 R @ 2.0 

Single Campanini et al. (2004) 1400/_/512 ∼0.54 ∼0.74 ∼0.86 

de Nazaré Silva et al. (2015) 349/150/100 n/a ∼0.8033 n/a 

Faster-RCNN ( Liu et al ., 2019) 

Mask-RCNN ( Liu et al ., 2019) 

}
80%/10%/10% 

0 . 6610 

0 . 6441 

0 . 7246 

0 . 7458 

0 . 7839 

0 . 8178 

DeepLab + NL + PWFL 

HRNet + PWFL 

Faster-RCNN ( ResNet- 50) + FPN + FL + DIoU 

Faster-RCNN ( HRNet- 48) + FPN + FL + DIoU 

⎫ ⎪ ⎬ 

⎪ ⎭ 

8256/1020/1036 

0 . 68 

0 . 70 

0 . 74 

0 . 76 

0 . 78 

0 . 79 

0 . 82 

0 . 82 

0 . 83 

0 . 84 

0 . 88 

0 . 88 

Dual CVR-RCNN ( Ma et al., 2019 ) 410/_/102 n/a n/a ∼0.88 

CBN ( Liu et al., 2019 ) 80%/10%/10% 0.6907 0.7881 0.8559 

BG-RCNN ( Liu et al., 2020 ) 1638/205/205 0.795 0.866 0.918 

BiDualNet 

BiDualNet-v 2 

IpsiDualNet 

IpsiDualNet-v 2 

⎫ ⎪ ⎬ 

⎪ ⎭ 

8256/1020/1036 

0 . 783 

0 . 801 

0 . 764 

0 . 811 

0 . 842 

0 . 853 

0 . 828 

0 . 843 

0 . 891 

0 . 891 

0 . 879 

0 . 889 

Tri MommiNet 8256/1020/1036 0.802 0.849 0.892 

[0.799, 0.805] [0.846, 0.852] [0.890, 0.894] 

MommiNet-v2 8256/1020/1036 0.831 0.850 0.898 

[0.827, 0.835] [0.848, 0.852] [0.894, 0.902] 

Table 7 

Performance comparison of various methods on the in-house dataset. 95% confidence intervals (CI) are shown in the 

square brackets. 

View type Method R @ 0.5 R @ 1.0 R @ 2.0 

Single-View DeepLab + NL + PWFL 0.81 0.84 0.90 

HRNet + PWFL 0.83 0.87 0.90 

Faster-RCNN(ResNet-50) + FPN + FL + DIoU 0.82 0.89 0.91 

Faster-RCNN(HRNet-48) + FPN + FL + DIoU 0.84 0.90 0.91 

Dual-View BiDualNet 0.874 0.931 0.948 

BiDualNet-v2 0.892 0.932 0.950 

IpsiDualNet 0.882 0.917 0.958 

IpsiDualNet-v2 0.891 0.933 0.961 

Tri-View MommiNet 0.901 0.939 0.960 

[0.897, 0.905] [0.935, 0.943] [0.957, 0.963] 

MommiNet-v2 0.912 0.939 0.962 

[0.908, 0.916] [0.936, 0.942] [0.959, 0.965] 
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he best of our knowledge, MommiNet-v2 achieves the highest re- 

all scores on the entire DDSM dataset. 

Fig. 6 shows an example case of mass detection on the pub- 

ic DDSM dataset using a single-view method, MommiNet and 

ommiNet-v2. For the single view method, a mass is missed in 

he LMLO image, and a false positive is predicted in the LCC image. 

ommiNet eliminates the false positive in the LCC image but still 

isses the mass in the LMLO image. In comparison, MommiNet-v2 

uccessfully predicts all masses without any false positives. 
8 
Various methods are also tested on the in-house dataset, as 

hown in Table 7 . The dual-view networks are constantly bet- 

er than the single-view methods, and the tri-view MommiNet- 

2 again achieves the best result at all FPPIs. Furthermore, due 

o the DR images’ better quality, the results on the in-house 

ataset are generally better than on DDSM, and the proposed 

ethod achieves remarkably higher recall rates on the in-house 

ataset. 
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Fig. 6. An example case of mass detection on the DDSM dataset using a single view method (Faster-RCNN) and our MommiNet and MommiNet-v2 on DDSM. GTs are shown 

in white bounding boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. ROC curves of mass malignancy classification using both biopsy labels and 

BI-RADS scores (multi-task learning) compared to using only biopsy labels (with- 

out multi-task learning). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

4

t

p

o

v

s

(

t

m

C

c

b  

a

p

B

n

n

t

Fig. 8. Mass malignancy classification performance comparison between manual 

weight tuning and automatic weight learning for multi-task learning. For manual 

weight tuning, the sum of classification and regression task weight is 1. We plot 

different weight combinations. The maximal AUC using manual weight tuning is 

0.8981. The automatic weight learning method has nothing to do with individual 

weight, which achieves a mean AUC of 0.9144. 
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.2. Results of mass malignancy classification 

We train and evaluate our proposed mass malignancy classifica- 

ion module using multi-task learning on the in-house dataset. The 

roposed module is trained and cross-validated on a combination 

f 1173 mammographic image patches detected by our MommiNet- 

2 and the gold patches annotated by the radiologists. A hold-out 

et containing 390 image patches detected by the MommiNet-v2 

no patient overlap with the training and validation sets) is used 

o evaluate the performance of the proposed multi-task learning 

ethod. 

Our multi-task learning method achieves an AUC of 0.9144 (95% 

I [0.9112, 0.9175]) for benign versus malignant mass classification, 

ompared to 0.8860 (95% CI [0.8816, 0.8908]) using only binary la- 

els in training ( p < 0 . 05 ). We show the receiver operating char-

cteristic (ROC) curves of two random testing runs in Fig. 7 . This 

roves that in addition to the objective biopsy labels, subjective 

I-RADS scores can provide auxiliary information in training deep 

eural networks for benign/malignant mass classification or malig- 

ancy prediction in a multi-task setting. Furthermore, we compare 

he effectiveness of manual weight tuning and automatic weight 
9 
earning (shown in Fig. 8 ). The optimal performance for manual 

eight tuning (i.e., AUC = 0.8981) is achieved when the biopsy 

abel-based classification branch accounts for 70%, and the BI-RADS 

core-based regression branch accounts for 30% of the total weight, 

espectively. The automatic weight learning strategy achieves bet- 

er overall performance (i.e., AUC = 0.9144) and avoids expensive, 

ime-consuming manual selection of individual weight. 

.3. Visualization results 

Fig. 9 shows an example case of mass detection on our in-house 

ataset using single-view method, MommiNet and MommiNet-v2. 

or the single view method, a mass is missed in the LMLO image, 

nd a false positive is predicted in the LCC image. MommiNet de- 

ects the mass in the LMLO image but still has the false positive in 

he LCC image. In comparison, MommiNet-v2 successfully predicts 

ll masses with the highest IoU values, and without any false pos- 

tive. Furthermore, MommiNet-v2 correctly classifies the predicted 

asses as malignant ones. 

. Discussion 

We take a multi-stage approach toward a CAD system for mam- 

ograms, and MommiNet-v2 is an integral part of the system, tar- 

eting for mass detection and malignancy classification. Our mam- 
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Fig. 9. An example case of mass detection using a single view method (Faster-RCNN) and our MommiNet and MommiNet-v2 on the in-house dataset. GTs are shown in 

white bounding boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ographic breast lesion diagnostic system has already been de- 

loyed in the collaborating hospital, and the initial feedback from 

he radiologists has been encouraging in terms of the overall ac- 

uracy of mass detection and malignancy classification ( Yang et al., 

020a ). 

However, there are some limitations in this study. Firstly, for 

ery rare cases, nipples can not be clearly observed, leading to the 

naccurate nipple location estimation which may compromise the 

erformance of the ipsiDualNet-v2 branch. 

Secondly, our current in-house dataset consists of data gener- 

ted by equipment from two different vendors, and are collected 

rom one medical institute. The training and testing data are pre- 

ominantly labeled by our collaborating radiologists. Therefore our 

ata and results are subject to the patient distribution and radiol- 

gists’ expertise from our collaborating hospital. Moving forward, 

ffort has been undertaken to construct a larger scale multi-center 

ataset. 

Lastly, the malignancy classification stage is influenced by the 

etection results of the MommiNet-v2 since the input of the clas- 

ification task is the output of the detection. If a mass is missed by 

ommiNet-v2, it will not be classified in the malignancy classifica- 

ion stage. One possible way to remedy this is to use a sliding win-

ow to classify all the patches. But we did not perform this since 

he goal in this study is to determine the malignancy of the de- 

ected patches in the first stage. In addition, for mass malignancy 

lassification, we only utilize image appearances as visual fea- 

ures to train deep learning models, while linked electronic health 

ecords contain richer clinical information such as age, breast ra- 

iology history, family history and symptoms, and could help im- 

rove cancer prediction accuracy, as in Akselrod-Ballin et al. (2019) . 

ur mass malignancy classification model could also benefit from 

his approach. 

. Conclusion and future work 

In this paper, we further enhance the first multi-view DNN ar- 

hitecture MommiNet into MommiNet-v2 to perform joint ipsi- 

ateral and bilateral analysis on mammograms for high precision 

ass detection and malignancy classification. By carefully design- 

ng the DNN architecture, MommiNet-v2 can effectively learn the 

eometry constraint and symmetry constraint from the ipsilateral 

nd bilateral views respectively. Its efficacy can be further veri- 

ed by our extensive experiment results and the SOTA FROC per- 

ormance achieved on both the DDSM dataset and our in-house 

ataset. The proposed multi-task learning strategy has also shown 

reat potential for mass malignancy classification. We plan to fur- 

her improve the system performance with additional modality 
10 
ata, such as patients’ health records, ultrasound and MRI etc. 

e are also expanding our in-house datasets to include data from 

ore medical providers. 
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