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ABSTRACT Some recent studies have described deep convolutional neural networks to diagnose breast
cancer in mammograms with similar or even superior performance to that of human experts. One of the
best techniques does two transfer learnings: the first uses a model trained on natural images to create a
‘‘patch classifier’’ that categorizes small subimages; the second uses the patch classifier to scan the whole
mammogram and create the ‘‘single-view whole-image classifier’’. We propose to make a third transfer
learning to obtain a ‘‘two-view classifier’’ to use the two mammographic views: bilateral craniocaudal
and mediolateral oblique. We use EfficientNet as the basis of our model. We ‘‘end-to-end’’ train the
entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using:
(a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an
AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal
error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483,
as far as we know the highest reported AUC for this problem, although the subtle differences in the testing
conditions of each work do not allow for an accurate comparison. The inference code andmodel are available
at https://github.com/dpetrini/two-views-classifier

INDEX TERMS Breast cancer diagnosis, deep learning, convolutional neural network, mammogram,
transfer learning.

I. INTRODUCTION
Major medical and governmental health agencies endorse
mammography screening programs, because it reduces breast
cancer-specific mortality, and nowadays, more and more
women adhere to this recommendation. As a consequence,
the number of mammograms that should be analyzed are
increasing day after day. Mammograms must be interpreted
by experienced radiologists to achieve a low error rate.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

To help radiologists, CAD (Computer-Aided Detection and
Diagnosis) systems have been and are being developed.

Recently, there has been a revolution in artificial intel-
ligence (AI) and computer vision with the introduction of
the deep convolutional neural network (CNN) [1]–[3]. Some
recent works have proposed to use CNN to diagnose cancer
in mammograms. However, we should consider that there are
important differences between classifying natural images and
mammograms. In natural images, the target that defines the
image category occupies a large area. This does not happen
on mammograms, where the cancer tissue may occupy only
a tiny area. Consequently, directly training a CNN or making
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a conventional transfer learning to classify mammograms
usually does not work well.

Shen et al. [4] present a good idea to overcome this chal-
lenge, that consists on performing two transfer learnings.
The first uses a model trained on the ImageNet [5] natu-
ral images to initialize the ‘‘patch classifier’’ that classifies
small mammogram patches into five categories: background,
benign calcification, malignant calcification, benign mass,
and malignant mass. The second uses the patch classifier
to initialize the ‘‘single-view whole-image classifier’’ that is
end-to-end trained using whole mammograms with cancer
status. In other words, they first build the patch classifier
because it is easier than building a whole image classifier.
Subsequently, the patch classifier scans the entire mammo-
gram, generating attribute maps that describe the likelihood
of having different types of lesions in each region of the
mammogram. The whole image classifier uses these maps
to make the final classification and is end-to-end trained.
In this paper, we propose some improvements to Shen et al.’s
method to increase its performance:

(1) The original technique used ResNet [6] and VGG [7]
as the base models. We replaced them with the more recent
EfficientNet [8].

(2) Standard mammography consists of two views for each
breast: bilateral craniocaudal (CC) and mediolateral oblique
(MLO). The original algorithm processes only one view at
a time and, to take the two views into account, it simply
averages the scores of the two views processed independently.
Our technique performs a third transfer learning, in addition
to the original two, to take into account the two views.
We use the single-view classifier to initialize the ‘‘two-view
classifier’’ and then the entire system (patch, single-view and
two-view classifiers) is end-to-end trained, using two-view
mammograms with cancer status.

With the above improvements, together with test-time
augmentation (TTA) and ensemble of four models with the
same architecture, we achieved an AUC (Area Under ROC
Curve) of 0.9344± 0.0341 in 5-fold cross-validation using
CBIS-DDSM dataset (accuracy, sensitivity and specificity
are 85.13% at the equal error rate point of the ROC). It is
known that a substantially smaller AUC is obtained using
the original CBIS-DDSM training/test division [9]. In this
condition, we obtained an AUC of 0.8483± 0.0253 (with
TTA). As far as we know, this is the largest AUC reported
for this problem.

A previous version of this work was presented at
the 2021 AACR annual meeting and published as an
abstract [10], [11].

II. LITERATURE REVIEW
A. CNN-BASED BREAST CANCER DIAGNOSIS
Recently, the deep convolutional neural network (CNN)
has been applied with remarkable success in different
areas. Some recent CNN-based breast cancer diagnostic sys-
tems show similar or even better performance than human
specialists.

Kooi et al. [12] compared classification of mammogra-
phy ROIs using state-of-the-art classic method, CNN-based
method and radiologists. They concluded that CNN has a
performance comparable to radiologists and superior to the
classic method.

Rodriguez et al. [13] compared a CNN-based commer-
cial system (Transpara 1.4.0) with 101 radiologists, using
9 datasets from different institutions in the US and Europe.
The AUC of the AI system was 0.840 while the mean AUC of
the radiologists was 0.814. Therefore, the AI was better than
the average of radiologists but its performance was inferior to
that of the best radiologist.

Schaffter et al. [14] describe the ‘‘DM DREAM Chal-
lenge’’ fostered to develop AI algorithms for interpreting
mammograms, held between September 2016 and Novem-
ber 2017. The top-performing single algorithm achieved an
AUC of 0.858 (in the US dataset) and 0.903 (in the Swedish
dataset). No single or ensemble algorithm outperformed radi-
ologists.

McKinney et al. [15] present an AI system that surpasses
human experts in breast cancer prediction. This system con-
sists of an ensemble of three deep learning models that were
tested on private UK and US private datasets and achieved
AUCs of 0.889 and 0.8107, respectively.

Wu et al. [16] designed a four-view deep learning. They
achieved an AUC of 0.895 in predicting cancer using 4 views,
which is higher than the radiologists’ average AUC of 0.778.
Although both Wu et al.’s work and ours use multi-view to
classify cancer, there are fundamental differences that we
explain in Section IV-C4.

B. PUBLIC MAMMOGRAM DATASETS
Currently, the DDSM [17] is the largest public mammo-
gram dataset, with 2,620 exams and contains normal, benign
and malignant cases with verified pathological information.
CBIS-DDSM [18] is an updated and curated version of
DDSM, organized to make it easier to use. It consists of 3,103
mammography images. We use this dataset to train and test
our system. Table 1 summarizes the number of mammograms
in this dataset.

TABLE 1. Number of mammograms in CBIS-DDSM dataset in the original
training/test division. We consider as malignant exams with both benign
and malignant findings, so some numbers in this table may be slightly
different from those of Almeida et al. [23].

The InBreast public dataset contains only 115 cases with
410 images [19], too small to be used in deep learning.
The recently published public dataset CSAW-M [20] does
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not classify lesions into normal/benign/malignant classes and
therefore cannot be used in our study. Other recent public
datasets such as KAU-BCMD [21] or VinDr-Mammo [22]
lack verified pathological information and are not fully avail-
able at the time of this writing.

C. COMPARING CAD PERFORMANCES
It is difficult to compare the techniques described in different
papers evenwhen all systems use the same dataset (e.g. CBIS-
DDSM). Many works in the literature randomly divide this
dataset into training and test sets [4], [9]. This procedure can
generate biased results, as there is the possibility of randomly
choosing a test set that is easy (or difficult) to classify. This
phenomenon can be seen in our own results. When the CBIS-
DDSM dataset is randomly divided into 5 subsets and our
two-view classifier is trained using 4 subsets and tested on
the remaining set, the 5 obtained AUCs vary from 0.90 to
0.99 (4 models with TTA, see Table 5). Thus, if we were
lucky in the random division, our two-vew classifier would
reach astonishing 0.99 AUC and, if we were unlucky, it would
reach only 0.90. Neither of the two values reflects the true per-
formance of our system. Consequently, the results obtained
using random training/test division are unreliable.

Especially, using the official training/test division of CBIS-
DDSM, a remarkably small AUC is obtained. Shen et al. [4]
obtained an AUC of 0.87 using random training/test division
but, using the official division, their system achieves only an
estimated AUC of ∼ 0.75 [24], or 0.7522±0.0105 obtained
in our own tests emulating their experiments (single runs).
Similarly, Wei et al. [9] obtained an AUC of 0.9182 using a
random division but only 0.7964 using the official division
(single runs). According to Wei et al., this happens because
the testing data is another holdout set acquired in a different
time.

D. RECENT WORKS THAT USE CBIS-DDSM
Our work is based on Shen et al.’s [4]. Making a random
division of CBIS-DDSM dataset, they obtained AUCs of
0.87, 0.88, and 0.91 respectively single-model without TTA,
single-model with TTA and ensemble of four models with
TTA but, as we argued before, these results are unreliable.
Besides Shen et al., there are more recent works that use
CBIS-DDSM to train and test their convolutional models.

Shu et al. [25] proposed two new pooling techniques and
used them instead of the traditional average-pooling or max-
pooling layers. The largest AUC obtained by their method
was 0.838. It is unclear whether the authors used the origi-
nal training/test split because they say they used 85/15% of
the images for training/testing, while the original dataset is
divided into 80/20% (Table 1).

Wei et al. [9] proposed to use neural net morphing instead
of the traditional transfer learning. They reported an AUC
of 0.796, 0.822 and 0.831 respectively single-model without
TTA, single-model with TTA and four models ensemble with
TTA, using the original training/test division. They reported

an AUC of 0.9427 (with TTA) using random training/test
division but, as we argued before, this result is unreliable.

Almeida et al. [23] compared the performance of classic
XGBoost and convolutional VGG16 on CBIS-DDSM images
resized to 224 × 224 pixels using the original dataset divi-
sion and obtained AUCs of 0.6849 and 0.6822 respectively,
concluding that the two techniques have similar prediction
accuracy when used in low-resolution images.

Panceri et al. [26] selected a small subset of 503 cranio-
caudal mammograms from CBIS-DDSM with calcification
lesions and trained CNN to distinguish between cancerous
and normal patches. The classification of the mammogram is
obtained by simply thresholding the patches.

III. METHODOLOGY
In this section, we describe the two test methods used to
evaluate the algorithm, the preprocessing steps and data aug-
mentation, and then the implemented CNN architectures for
the patch classifier, single-view classifier, and the new two-
view classifier.

A. TWO TESTING METHODS
In order to get unbiased results, we did not randomly
split CBIS-DDSM into fixed training/test sets. Instead,
we repeated the experiments using two different methodolo-
gies. The techniques used in both tests are similar, but we
introduced some minor improvements in the second test.

1) Cross validation (CV) test: At first, we did the ‘‘CV
test’’, in which we randomly divided the dataset into
5 subsets, trained and tested our system five times using
one of the subsets as the test set and the remaining four as
the training set (5-fold cross validation). Then, we com-
puted themean and standard deviation of the five results.
Of the 3,103 original mammograms, we discarded those
with only one view as we are proposing a two-view
system. We also discarded those classified as ‘‘benign
without callback’’ because what characterizes a lesion as
benign is precisely the fact that cancer does not develop
over the years. Thus, we used 2,260 images, represent-
ing the two views of 1,130 breasts. Each cross-validation
fold comprised 452 test images and 1,808 training
images, of which we used 20% (361 images) as the
validation set. We took precaution to avoid any ‘‘infor-
mation leak’’ from the test set to the training process.

2) Original division (OD) test: Then we did the ‘‘OD test’’,
where we used the original training/test split of the
CBIS-DDSM dataset. We used all the 3,103 images
to train the patch and single-view classifiers, but we
used only 2,694 images with two views to train and
test the two-view classifier. This time, we did not dis-
card ‘‘benign without callback’’ cases and considered
them as benign. We used 10% of the training set as the
validation set. We calculated the standard error of the
obtained AUCs using the formula proposed by Hanley
and McNeil [27].
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B. PREPROCESSING AND DATA AUGMENTATION
As preprocessing, we resized all mammograms to 1152 ×
896 pixels due to insufficient GPU memory. We subtracted
the mean of all training images from training, validation and
test sets. In all trainings in this work, we used data augmen-
tation with parameters: rotation ± 25◦, zoom ± 20%, shear
± 12%, intensity shift ± 20% and horizontal/vertical flips.
We used border reflection to fill out the area outside of the
image domain. We developed our code in PyTorch.

C. PATCH CLASSIFIER
We created a ‘‘patch classifier’’ similar to the one described
by Shen et al. [4], but based on the modern EfficientNet [8]
instead of VGG [7] or ResNet [6]. From 3,103 images,
we selected 3,568 ROIs (some images have more than one
ROI). From each ROI, we selected 20 patches sized 224 ×
224: 10 around the ROI and another 10 in the background
(Figure 1). To select patches around the ROI, we calculated
its center of mass from the corresponding mask and selected
an area with 224×224 pixels around the center with a random
displacement of ± 10% of the height/width (inside the white
rectangle in Figure 1). In sequence, we sampled 10 back-
ground patches from anywhere in the image except the ROIs.
We further divided the patches containing the lesions into
4 subcategories according to their labels in CBIS-DDSM:
benign calcification, malignant calcification, benign mass
and malignant mass. So a patch can be of 5 types, with the
background summing up 50% and the remaining categories
making up respectively 9.5%, 17.5%, 11.1% and 11.9% for
the ‘‘OD Test’’ and 11.5%, 11.5%, 13.5% and 13.5% for the
‘‘CV Test’’. We did not use any technique to compensate for
this imbalance.

FIGURE 1. Left: we randomly chose 10 background (yellow) patches
anywhere but in the lesion; we delimited a (white) region centered at the
lesion and sampled 10 patches with random horizontal and vertical
displacements within this region. Right: the lesion segmentation mask
provided by CBIS-DDSM.

There are 8 models of EfficientNet, numbered from B0
to B7 [8]. EfficientNet-B0 is the smallest model and was
designed automatically by the Neural Architecture Search.

FIGURE 2. Diagrams of the single-view classifier for the ‘‘CV test’’ (top)
and ‘‘OD test’’ (bottom).

Then, this base model was scaled up in width, depth and
resolution of the input image to obtain the remaining seven
models. We took EfficientNets pre-trained on ImageNet [5]
images and performed transfer learning to classify mam-
mogram patches into 5 categories. As mammograms have
only one channel, the same grayscale feeds EfficientNet’s
red, green and blue inputs. When an EfficientNet without
the top layers is fed with a 224 × 224 patch, it yields dif-
ferent numbers of maps with 7 × 7 attributes. For exam-
ple, EfficientNet-B0, B4 and B7 generate respectively 1280,
1792 and 2560 maps with 7 × 7 attributes. These maps are
average-pooled and pass through a fully-connected layer with
five outputs to make the classification into 5 categories.

D. SINGLE-VIEW CLASSIFIER
The ‘‘single-viewwhole-image classifier’’ is created from the
patch classifier by first removing the fully connected layer
with 5 outputs. If this model is fed with a mammogram with
1152 × 896 pixels (instead of a 224 × 224 patch), it will
yield 1792 (‘‘CV test’’) or 1280 (‘‘OD test’’) maps with 36×
28 attributes that represent the likelihoods of presence of
different types of lesions in each region (Figure 2). We added
additional layers on top of this model to extract high-level
features and classify full mammograms into malignant or
non-malignant. We tested many different combinations of
EfficientNet base blocks (i.e., MBConv blocks [8], [28])
using:
(a) One, two or three MBConv blocks;
(b) MBConv blocks with strides 1 or 2.

After testing the combinations of these two hyperparameters,
we concluded that the best model is obtained using:
(a) One MBConv block with strides 1 (in the ‘‘CV test’’);
(b) TwoMBConv blocks with strides 2 (In the ‘‘OD test’’).
The output of the last MBConv block is followed by global

average pooling and a dense layer with two output categories.

E. TWO-VIEW CLASSIFIER
In standard mammography, each breast is radiographed twice
in CC and MLO views and thus an abnormality appears in
both views. We propose a convolutional network that simul-
taneously takes into account the two views of the same side of
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the mammography, making a third transfer learning. We use
the weights of the single-view classifier to obtain the two-
view classifier and end-to-end train the whole system. Also
here we evaluated different combinations of number of blocks
and strides to choose the best network architectures.

In the ‘‘CV test’’, we take a pair of single-view clas-
sifiers and discard the upper layers (the MBConv blocks
onwards). This operation results in a network that takes the
two views of a mammography exam (CC and MLO, 1152×
896 pixels each) and generates a pair of 1792 maps with
36 × 28 attributes (Figure 3). Then we concatenate these
maps, obtaining 3584 maps with 36 × 28 attributes that are
processed by two new MBConv blocks with strides equals
to 1. The output of the last MBConv block passes through
average pooling followed by a dense layer to make the final
classification.

FIGURE 3. Diagram of the two-view classifier for the ‘‘CV test.’’

The network architecture of the ‘‘OD test’’ is similar.
Discarding the top layers, we get a network that takes the
two views and generates a pair of 1280 maps with 36 ×
28 attributes (Figure 4). We concatenate these maps, obtain-
ing 2560 maps with 36 × 28 attributes. These maps are pro-
cessed by two newMBConv blocks with strides 2 that reduces
dimensionality, producing 2560 maps with 9 × 7 attributes.
The final classification is obtained by average pooling these
maps followed by a dense layer.

FIGURE 4. Diagram of the two-view classifier for the ‘‘OD test.’’

IV. EXPERIMENT AND RESULTS
With the aforementioned architectures, we performed many
tests to find the optimal parameters and obtained the results
described below.

A. PATCH CLASSIFIER
1) TRAINING PATCH CLASSIFIER
In the ‘‘CV test’’, we simply used the Adam optimizer with
fixed learning rate of 10−4 for 20 epochs and batch size

of 40 to adapt the ImageNet-trained EfficientNet to classify
patches. In the ‘‘OD test’’, we used the Adam optimizer
with learning rate determined by the ‘‘warm-up and cyclic
cosine’’ [29] with 30 epochs, period of 3 (the cyclic repetition
in number of epochs), delta of 2 × 10−4 (the amplitude of
learning rate changing), and warm-up delay of 4 epochs (the
linear rise until the initial learning rate of 10−4).

2) RESULTS OF PATCH CLASSIFIER
Table 2 shows the accuracies of the patch classifiers using
different EfficientNet models. These values are for reference
only, as the selection of the best network is decided by the
performance of the single view classifier.

TABLE 2. Accuracies of patch classifiers and AUCs of single-view
classifiers using different base models.

In the ‘‘CV test’’, the patch classifier based on
EfficientNet-B4 presents the lowest accuracy (0.7644) but it
presents the largest AUC (0.8757) when it is converted into
a single-image classifier. Consequently, we use EfficientNet-
B4 as the basis in this test. In the ‘‘OD test’’, surprisingly the
opposite happens: the patch classifier based on EfficientNet-
B0 presents the lowest accuracy (0.7554) but its correspond-
ing single-image classifier presents the largest AUC (0.8033).
Consequently, we use EfficientNet-B0 as the base model in
this test. As we anticipated, the accuracies and AUCs of the
‘‘OD tests’’ are considerably smaller than those of the ‘‘CV
tests’’.

B. SINGLE-VIEW CLASSIFIER
1) THE TRAINING AND THE RESULTS OF ‘‘CV TEST’’
To train single-view classifier, we fed the network with sam-
ple mammograms with the cancer status. Backpropagation
adjusts the network parameters to better classify samples.

In the ‘‘CV test’’, we used fixed learning rate of 10−5, batch
size of 3 (to fit in GPUmemory) and 50 epochs. The obtained
results are summarized in table 3. As we have already
explained, the results obtained by different works by making
random division are unreliable and cannot be compared with
our cross-validation results. We also tested a ResNet-based
network, getting an averageAUCof 0.8512, considerably less
than 0.8757 obtainedwith EfficientNet-based network (single
runs).
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TABLE 3. Results of 5-fold ‘‘CV tests’’ of our single-view classifier, using
ResNet50 or EfficientNet-B4, 1 model or ensemble of 4 models, with or
without TTA.

2) THE TRAINING AND THE RESULTS OF ‘‘OD TEST’’
In the ‘‘OD test’’, we used the Adam optimizer with learning
rate determined by the ‘‘warm-up and cyclic cosine’’ with
50 epochs, warm-up in 4 epochs, period of 5 epochs, delta
of 2 × 10−5, initial learning rate of 10−5 and batch size
of 4 (to fit in GPU memory). The obtained results (single
runs) are summarized in Table 4. The performance of our
best single-view classifier is better than Shen et al.’s [4] and
similar to Wei et al.’s [9].

TABLE 4. Comparison of different single-view classifiers (single runs,
except the last row) using the original CBIS-DDSM division.

C. TWO-VIEW CLASSIFIER
1) TRAINING TWO-VIEW CLASSIFIER
To train the two-view classifier, we fed the network with two-
view mammography samples with the cancer status. Back-
propagation adjusts the network parameters to better classify
samples.

In the ‘‘CV test’’, we use Adam optimizer with batch size
of 2 and learning rates:

• 10−3 during 3 epochs, training only the new fully con-
nected layer.

• 10−4 during 4 epochs, training all the new layers
(MBConv blocks onwards) with the bottom layers
(single-view classifiers) frozen.

• 10−5 during 8 epochs with all layers unfrozen.

In the ‘‘OD test’’, we use Adam optimizer with learning
rate calculated by ‘‘warm-up and cyclic cosine’’, 100 epochs,
warm-up in 5 epochs, period of 20 epochs, delta 2×10−6, and
initial learning rate 2×10−6. Here, all layers are unfrozen and
we use batch size 6 because EfficientNet-B0 is smaller than
B4. Figure 5 shows the profile of the used learning rate.

FIGURE 5. Learning rate used to train the two-view classifier in the
‘‘OD test.’’

2) RESULTS OF ‘‘CV TEST’’
Table 5 summarizes the results obtained in the ‘‘CV tests’’
and Figure 6 depicts the obtained ROCs. In single run, sin-
gle model, AUC has increased from 0.8757±0.0310 (single
view, Table 3) to 0.9298±0.0379 (two views, Table 5). With
TTA and 4 models, AUC has increased from 0.8907±0.0238
(single view, Table 3) to 0.9344±0.0341 (two views, table 5).
Therefore, we can conclude that taking into account CC
and MLO images simultaneously actually improves cancer
detection.

TABLE 5. AUCs of our ‘‘two-view classifiers’’, using ResNet50 or
EfficientNet-B4, 1 model or ensemble of 4 models, with or without TTA,
in ‘‘CV test’’.

Note that the AUC we obtained using our two-view classi-
fier with EfficientNet (0.9298) is greater than the best AUC
reported by Shen et al. (0.85 + 0.048 = 0.898) [4] obtained
using VGG+ResNet combination, independently processing
the two views and averaging them. TheymeasuredAUCwith-
out TTA or model ensemble, so we compared our two-view
approach under the same conditions and concluded that our
result is seemingly substantially better than simply averaging
the results for both views taken separately, although these
authors used random training test partition and we used cross-
validation.

We also tested the ResNet50-based two-view classifier
to find that replacing ResNet with EfficientNet seems to
slightly increase system performance, from 0.9255 to 0.9298
(Table 5). However, as the difference is small, we cannot state
statistically that the latter is better than the former.

3) RESULTS OF ‘‘OD TEST’’
The table 6 summarizes the AUCs obtained with the offi-
cial CBIS-DDSM division by different methods from the
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FIGURE 6. ROCs of our two-view classifiers in ‘‘CV test’’ (with TTA and
ensemble of 4 models).

TABLE 6. AUCs obtained using the original CBIS-DDSM division. The data
in this table should be interpreted with reservations, as the test
conditions of the algorithms were different.

literature and by our two-view classifier. The data in this
table should be interpreted with reservations, because there
are many subtleties that do not allow direct comparison of
the numbers. For example, the CBIS-DDSM set grew over
time, so not all works used the same data. Also, unlike many
other works, our work had to discard images that did not have
two views in order to test the two-view classifier. Anyway,
our method seems to be at least as good as the best methods
reported in the literature. Figure 7 represents the ROC curve
of our two-view classifier in ‘‘OD test’’.

The AUC in single run has increased from 0.8033±0.0183
(single view, Table 4) to 0.8418±0.0258 (two views, Table 6).
Using TTA, it has increased from 0.8153±0.0178 (single
view, Table 4) to 0.8483±0.0253 (two views, Table 6). This
confirms that the use of the two views indeed improves
the system. With TTA, we achieved our best mark of
0.8483±0.0253. This is the largest reported AUC using
CBIS-DDSM original division, as far as we know. We tried
using an ensemble of independently trained 4 models (with
the same architecture) but the AUC did not increase.
We hypothesize that AUC would increase if we use ensemble
of models with different architectures. In the table 6 we also
compare with other works that use the original division of the
CBIS-DDSM.

FIGURE 7. ROC curve of our two-view classifier in ‘‘OD test’’ (with TTA).

4) MULTI-VIEW TECHNIQUE BY WU et al.
Wu et al. [16] also use multi-view to improve their breast
cancer CAD performance. However, there is some important
differences between their four-view classifier and ours. First,
they do not make transfer learning from patch classifier to
whole-image classifier in end-to-end fashion, idea proposed
by Shen et al. [4] and essential to obtain high performance.
Second, Wu et al. independently process each view with
ResNet-22 and concatenate the maps obtained after the four
average poolings. Meanwhile, our classifier processes each
view with EfficientNet-B4 and concatenates the attribute
maps before doing average poolings. We tested both ideas
(concatenating the attribute maps after or before the average
poolings), always using EfficientNet-B4 as the base model,
and the results seem to show that slightly better results are
obtained when concatenating the maps before the average
poolings (Table 7). This is not surprising, as information
about the spatial locations of lesions are lost by average
poolings.

TABLE 7. Comparison between concatenating the attribute maps after or
before average poolings. All tests used EfficientNet-B4 as the base model
(single runs).

V. CONCLUSION
In this paper, we have presented a new high performance
breast cancer CAD (Computer-Aided Detection and Diagno-
sis) system. We have proposed a deep convolutional network
that simultaneously takes into account the two views of the
same side of the mammography that is end-to-end trained
making three transfer learnings:
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1) First, we use the weights of EfficientNet trained on
natural images to train the patch classifier.

2) Second, we use the patch classifier weights to train the
single-view classifier.

3) Third, we use the single-view classifier weights to train
the two-view classifier.

Using 5-fold cross validation, our system has achieved an
AUC of 0.9344± 0.0341 in classifying CBIS-DDSM mam-
mograms with two views (accuracy, sensitivity and speci-
ficity are 85.13% at the equal error rate point of the ROC).
Using the original CBIS-DDSM division into training/testing
sets, our technique achieved an AUC of 0.8483± 0.0253,
the highest ever achieved, as far as we know (although a
direct comparison of the different methods is not possible
due to the subtle differences in test conditions). In both tests,
AUCs increased significantly from single view classifiers to
two view ones: from 0.8907 to 0.9344 in ‘‘CV test’’ and
from 0.8033 to 0.8483 in ‘‘OD test’’. Furthermore, the AUC
obtained by our technique (0.9255) is substantially higher
than that obtained by averaging the two views processed inde-
pendently by Shen et al. (0.898) under the same conditions
(without TTA and model ensemble). We also noticed that
replacing VGG and ResNet with the modern EfficientNet as
the base model seems to slightly increase performance.
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