
IET Image Processing

Research Article

Context-based ensemble classification for the
detection of architectural distortion in a
digitised mammogram

ISSN 1751-9659
Received on 23rd May 2019
Revised 17th September 2019
Accepted on 13th November 2019
E-First on 3rd February 2020
doi: 10.1049/iet-ipr.2019.0639
www.ietdl.org

Yusuf Akhtar1 , Dipti Prasad Mukherjee1

1Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India
 E-mail: yusuf.eciit@gmail.com

Abstract: The problem of computer-aided detection of architectural distortion (AD) in a digitised mammogram has been
attempted in this manuscript. In examining a mammogram, the decision regarding a particular region of interest (RoI) is
dependent on the appearance of the surrounding regions. However, in existing methods to detect AD the inference about an RoI
is dependent on the appearance of this RoI alone. In addition, multiple radiologists infer the same mammogram in coming to a
final decision about the mammogram. Contrary to popular ensemble classifiers like Adaboost and Random Forest, the authors
propose an ensemble based method (imitating multiple radiologists by classifiers) for detecting AD such that the decision on a
test RoI is dependent on the decisions of the surrounding RoIs in the proposed ensemble classifier. The proposed context-
based ensemble classifier has been validated on two mammographic databases. The proposal shows promising results in both
the databases.

1 Introduction
Architectural distortion (AD) is an abnormality of the breast that is
detected in a mammogram (an X-ray imaging modality of the
breast). AD [1] is defined as a focal retraction of the breast tissue
or a radiating pattern of ridges referred by spicules in the medical
literature (refer Fig. 1). The detection of AD is challenging because
of its subtle appearance [1]. The early detection of AD is crucial
because of its relevance to the survival chances of a cancer patient
[3]. To provide an inexpensive large-scale screening of
mammograms, several computer-aided detection (CAD) algorithms
[4–7] have been designed for the detection of AD.

There are two issues with the preceding proposals to detect AD.
First is that in the existing works for detecting AD, the inference
about a region of interest (RoI) in the test set is dependent on the
feature vector of this RoI alone (refer Fig. 1e). In practice,
however, the decision regarding an RoI is influenced by the
appearance of surrounding RoIs. None of the existing approaches
to detect AD incorporate this vital observation of the preceding
statement.

Second weighing the decisions regarding a particular RoI from
atleast two radiologists is commonplace in coming to a final
decision regarding this particular RoI. The number of radiologists
could be increased theoretically; however practical issues like cost
incurred in examining the mammograms limit such increase in the

number of radiologists. The correct label of a particular RoI is
likely to occur the most number of times in the interpretations of an
RoI from multiple radiologists. An attempt of the detection of AD
that looks similar to the example on multiple radiologists is
weighing the decisions of multiple classifiers (in place of
radiologists) in coming to a final decision regarding a particular
RoI. Results on different pattern recognition problems show that an
ensemble performs better [8] than a single classifier in certain
problems.

The reader may note that in the machine learning literature
there are two popular ensemble classifiers like Adaboost [8] and
Random Forest [9]. In this manuscript, a method has been
proposed that incorporates the observation of Fig. 1e. The proposed
ensemble classifier assumes that every classifier in an ensemble
would behave consistently on a large set of mammograms. Till
date, to the best of the authors' knowledge, there has been no
proposal to detect AD with the aid of ensemble classifiers.

The objective of an ensemble classifier is to assign a class label
(AD/normal) to a RoI in a test set of RoIs. Let the class label
assigned to the ith RoI in the test set be denoted by ci. Let us
denote the class label assigned to the jth RoI in the training set by a
radiologist by the same notation cj. The class label ci (cj) can take
value −1 (representing normal) and 1 (representing AD). Let us
assume that there are K number of classifiers. Each classifier
assigns a class label to an RoI in a set of RoIs.

Let the class label assigned to the ith RoI by the kth classifier be
denoted by cki. Therefore, each RoI has K number of class labels
assigned to it which may not be consistent with one another. It is
apparent that cj of an RoI in the training set is available with us
from the ground truth. However if the ith RoI belongs to the test
set, ci is not available; the problem is to predict the class label ci.

How is the proposal different: The proposed ensemble approach
differs from Adaboost and Random Forest as the decision
regarding multiple RoIs influence the decision of an individual RoI
in the proposal. The above formulation is assumed because the
labelling of an RoI depends not only on the pixel values within it
but also on the context of the problem that may be elicited from the
appearance of the surrounding regions. Hence, the proposed
ensemble approach is referred as context based ensemble approach
to classification. Specifically, the proposed ensemble formulation
can be viewed as follows. It is apparent that multiple RoIs are
extracted from the mammograms in the test set. Let Fi denote the

Fig. 1  Illustration of the examination of a mammogram
(a), (b) Examples of prominent AD sites (mdb115.pgm and mdb117.pgm [2]), (c), (d)
Examples of ambiguous AD sites (mdb121.pgm and mdb130.pgm [2]), (e) Example
showing multiple RoIs: decision of RoI i depends on decisions on RoIs 1, 2, 3 and 4
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feature vector of the ith RoI. In AdaBoost and Random Forest, the
class for the ith RoI, ci is given by some function (designed during
training) of the feature vector Fi. Let this function be denoted by
G(). We have

ci = G(Fi) . (1)

In Adaboost, G() is a weighted function of cki for all classifiers;
each classifier referred by an index say k in an ensemble. The class
labels cki are dependent on Fi. Whereas in Random Forest, G()
returns the class label to which the trees (the classifiers in an
ensemble; the forest) put the maximum number of votes. Note that
the weights in Adaboost and the votes in Random Forest are
computed during training and is used as it is during testing. In
contrast to the above formulation, the class label that is assigned to
an RoI in the proposal, is a function of Fi, the feature vectors Fj
( j ≠ i) and also the class labels that we assign to the other RoIs of
the test set. If the preceding function is denoted H(), for the
proposal, we have

ci = H({Fi} ∪ {Fj, cj; j ≠ i}) . (2)

For example in Fig. 1e, the class label of the ith RoI depends on
Fi and features F1, F2, F3 and F4 and the class labels of RoIs with
the indices 1, 2, 3 and 4.

In practice, decision regarding multiple RoIs influence the
decision of an individual RoI. In (1), there is no provision to adopt
the preceding observation evident from (2).

How does the proposal solve the ensemble classification: To
solve (2), the proposal assumes that a classifier behaves
consistently over a large set of mammograms. The first step in
solving the preceding equation lies in computing the performance
(sensitivity and specificity) of a classifier on the RoIs in the
training set as we have cj if the jth RoI belongs to the training set.
In the proposal it is assumed that a classifier would produce the
same sensitivity and specificity in the test set. This implies that the
class label ci of the ith RoI in the test set should be such that a
classifier should produce the same sensitivity and specificity as in
the training set. The preceding conclusion should also be true for
every classifier in an ensemble. The AD detection problem then
reduces to making an educated guess of ci. Details of this educated
guess are presented in Section 3. An illustration of the
methodology is shown in Fig. 2. 

In Adaboost and in Random Forest, a training model is built.
The training model is used as it is in the test set. The proposal of
this manuscript differs in this regard since the only information the
proposal incorporates from training is the sensitivity and the
specificity of a classifier and their consistency. In the proposal, a
classifier recomputes its model in the test set. In brief, this
recomputation involves the computation of a threshold based on
the features of all RoIs in the test set. Comparing the features of an
RoI with this threshold, a classifier assigns a class label to the RoI
in the test set.

The methodology of the proposal is discussed in Section 3. The
methodology is validated on two mammographic databases. The
results are discussed in Section 4. In the next section, we present
existing works that are also related to the detection of AD.

2 Literature survey
Most of the existing CAD approaches detect AD by defining
features on the spicules (faint ridges). These features assist in the
distinction between an AD site and a normal site. For example in
[4–7], ridges are extracted with the aid of Gabor filters. These
Gabor filters return the orientation of the ridge (if any) at a pixel of
an RoI. The phase portrait model is used to encapsulate these
orientations (at all the pixels) of an RoI. The parameters of the
phase portrait model are used along with a classifier such as
support vector machine (SVM) to distinguish between an AD site
and a normal site. In [10, 11], ridges are extracted with the aid of
linear directional filters. The concentration (evaluating the
radiating pattern of linear structures) and isotropic indices
(evaluating the distribution of the orientations of the linear
structures) are used to evaluate the pattern of the ridges. Using
discriminant analysis on the concentration index, the isotropic
index and seven other features obtained from the pixel values in an
RoI, the RoI is labelled as an AD site or a normal site. In [12],
ridges are detected with the aid of Radon transform and a filter that
resembles a striped disc. Features obtained by applying the Radon
transform and the disc like filter are taken as input to SVM
classifier (that is trained on the feature vectors of the training set)
to return the AD sites in a test mammogram.

In [13], linear structures are detected with the aid of spiculated
lesion filters. The probability of the occurrence of a pattern of the
linear structures is characterised with the aid of a Gaussian mixture
model (GMM). The parameters of the GMM model that represent
the chance of occurrence of such a pattern (of the linear structures
in an RoI) are used along with the SVM classifier to label an RoI

Fig. 2  Overview of our ensemble based approach. The proposed ensemble classification assumes decision on multiple RoIs (RoIs with indices 1, 2, 3 and 4 in
Fig. 1e) affect the decision on a particular ith RoI
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as an AD site or a normal site. In [14], a modified hierarchical
clustering has been adopted to extract spicules. Segmentation of
these extracted spicules with the aid of active contours is
implemented to isolate the spiculated regions from other normal
regions.

Other approaches to detect AD opine that an AD site is
associated with a bright patch. For example in [15], blobs are
detected with the aid of Otsu [16] method of clustering. This is
followed by area based thresholding of the blobs to report the AD
sites. The drawback of [15] lies in the definition of an AD site that
does not relate the appearance of an AD site to a bright patch.

Some approaches do not rely on the extraction of linear
structures to detect AD. These approaches use an abstract
representation of the pixel values of an RoI. For example in [17],
the texture of an RoI is evaluated with the aid of difference of
Gaussian (DoG) based filters. This adoption of the DoG model
decomposes an image into sub-images. The probabilities of the
occurrence of the sub-images are characterised with the aid of a
GMM. The parameters of the GMM model are used along with the
SVM classifier to label an RoI as an AD site or a normal site. In
[18], an RoI is decomposed into sub-images by using bi-
dimensional empirical mode decomposition. Three features are
defined on these sub-images. Using SVM on these features an RoI
is labelled as an AD RoI or a normal RoI. In [19], an RoI is
transformed to polar co-ordinates from the Cartesian co-ordinates.
The texture in this newly transformed RoI is evaluated with the aid
of monogenic binary coding (MBC). The RoI is labelled as an AD
or a normal site with the features from the MBC and a SVM
classifier. The drawbacks of the preceding approaches discussed in
this subsection is that the decision regarding a particular RoI in the
test set is independent of the appearance of the surrounding
regions; which is however not true when a mammogram is
examined.

As mentioned in Section 1, we use an ensemble of classifiers to
label an RoI as an AD or a normal site. There are two popular
ensemble classifiers, AdaBoost [8, 20, 21] and Random Forest [9],
both of which build a classifier with multiple weak learners. The
reader may note that weak learners in AdaBoost are trained on
feature vectors that are assigned unequal weights based on their
difficulty level in classification. In contrast in Random Forest,
equal weights are assigned to the feature vectors. In addition, the
weak classifiers (the trees) are trained on different subsets of the
training samples.

The proposal differs from AdaBoost and Random Forest since
contrary to the preceding ensemble classifiers, the decision
regarding an RoI in the test set is influenced by the decision of the
other RoIs in the test set. This observation is incorporated in the
proposal's ensemble classifier by assuming that all classifiers in an
ensemble behave consistently over a large dataset of
mammograms. We discuss the methodology of the proposal in the
next section.

3 Methodology
The design of a classifier: It is apparent that the strong presence of
certain features asserts whether an RoI belongs to a particular class.
For example, a radiating pattern of ridges [1] indicates an AD site.
The presence of a certain feature may be quantified by a measure.
In the context of the detection of AD there are two classes we are
interested in. One is the AD class and the other is the normal class.
The aforesaid discussion indicates that we should be using two
measures on the pixel values of an RoI; one measure for each class
(AD/normal). These two measures are some functions, say f 1()
and f 2(), of the pixel values of an RoI.

Consider a set of RoI in the training set. Let us assume that we
have some method to extract features from an RoI say R. Let the
vector consisting of the features of R be referred by FR. Let us use
two functions f 1() and f 2() to map FR to a scalar. The function
f 1() is used to map FR to a scalar which specifies the class label of
R as AD. This scalar is denoted by A1. The AD class label is
denoted by C1. The function f 2() is used to map FR to a scalar
when the class label of R is set as normal. This scalar is denoted by
A2. The normal class label is denoted by C2.

Let i assume the value 1 or 2. In the proposal it is assumed that
R belongs to the class Ci if Ai is less than a threshold say T. If this
condition is not satisfied R does not belong to Ci. The preceding
statements are mathematically stated as

If Ai < T , R belongs to class Ci.
If Ai ≥ T , R does not belong to class Ci.
There are three cases that arise when the threshold is varied. If

the threshold is less than both A1 and A2 then A1 > T  and A2 > T .
Therefore, R does not belong to either of C1 or C2. If the threshold
is greater than both A1 and A2, then A1 < T  and A2 < T . Therefore,
R belongs to both C1 and C2. The preceding two cases make our
decision regarding the class to which this RoI belongs ambiguous.

However if the threshold is chosen between A1 and A2, either
A1 < T < A2 or A1 > T > A2. Consider the first relation
A1 < T < A2. Since A1 < T , R is interpreted as belonging to the AD
class. Since A2 > T , R is interpreted as not belonging to the normal
class.

Now consider the inequality A1 > T > A2. Since A1 > T , R is
interpreted as not belonging to the AD class. Since A2 < T , R is
interpreted as belonging to the normal class. In the former relation
A1 < T < A2, R belongs to the AD class (C1); in the latter inequality
A1 > T > A2, R belongs to the normal class (C2). This motivates the
choice of the threshold as (A1 + A2)/2 since this expression always
lies between A1 and A2. Let the aforesaid average of A1 and A2,
referring to RoI R, be denoted by τR. Since there are multiple RoIs
in the training set, we will have many such τR with us. We are
constrained to choose only one value as the threshold T for
multiple RoIs.

From the preceding discussion it is reasonable to conclude that
selecting the τR (as the threshold T) that occurs most frequently will
reduce the number of ambiguous decisions the most (where an RoI
belongs to or does not belong to both the AD and normal classes)
regarding the class labels of the RoIs. This motivates the selection
of the mode of the expressions of the form (A1 + A2)/2 as the
threshold. This mode(threshold) is denoted τX. The process is
shown in Fig. 3. 

The labelling of an RoI by a classifier: On selecting τX as the
threshold, if the AD class label of the RoI R is correct and the
normal class label of the RoI R is incorrect, this RoI is assigned the
label 1. If the normal class label of the RoI R is correct and the AD
class label of the RoI R is incorrect, this RoI is assigned the label
−1. For the other cases when both the class labels are correct or
incorrect, the RoI R is assigned the ambiguous class label, 0. This
class label (1, −1 or 0) of RoI R is referred by lbnR. A block
diagram of this discussion is shown in Fig. 3.

Changing the functions f 1() and f 2() may generate a different
lbnR. Let there be NA (NN) number of AD (normal) sites in the
training set. Let NR = NA + NN denote the total number of RoIs in
the training set.

It is reiterated that the intention of the proposal in this
manuscript is to incorporate the observation of Fig. 1e with the aid
of an ensemble classifier. A classifier can be characterised with the
pairs f 1() and f 2(). Let us adopt K number of different pairs of
f 1() and f 2(). A pair of f 1() and f 2() is also referred by function
pair.

Notations for an ensemble of classifiers: In order to unify the
observation of Fig. 1e with the proposed ensemble classifier, a data
structure (two- dimensional matrix) referred by M is used. Along a
row of M we have class labels assigned to multiple RoIs by a
single classifier. Along a column of M we have the class labels
assigned to a particular RoI by all the classifiers in the ensemble.

It is now apparent that the dimensions of the matrix M is
K × NR. Let the class label assigned to RoI R by the kth function
pair be denoted by lbnR(k). If this RoI is the jth RoI in the training
set, M(k, j) = lbnR(k). It may be noted that a radiologist interprets
an RoI as either belonging to the AD class (label=1) or the normal
class (label = − 1). Considering the ground truth that is given in
the publicly available mammography databases [2, 22], the
ambiguous class (label=0) is not present in the ground truth. The
assessment by the radiologist needs to be represented in the
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classification model. Given this, let P denote a NR × 1 column
vector whose value at the jth index is equal to the class label (1 for
AD/−1 for normal) of the jth RoI as per radiologist's assessment.

Analogous to the notations M, NR, NA, NN and P for the
training set, let us define notations for the test set. Let Me contain
the class labels that are assigned to the test RoIs by all the
classifiers in the ensemble. Specifically, Me(k, j) contains the class
label assigned to the jth RoI of the test set by the kth classifier. Let
NRe denote the total number of RoIs in the test set. Let NAe denote
the number of AD RoIs in the test set. Let NNe denote the number
of normal RoIs in the test set. Let Pe contain the class labels of the
test RoIs as per ground truth.

It is apparent that the goal of the AD problem is that of
discerning Pe (since this vector contains the true class labels of the
RoIs in the test set as per radiologist's assessment). Let the estimate
of Pe obtained from the proposal (discussed below) be denoted P

~
e.

In the next subsection, the method of finding the estimate P
~

e is
discussed.

3.1 Estimation of P
~

e

Motivation: It is reiterated that the design of the proposal's
ensemble classifier is based on the principle that a classifier in an
ensemble would behave consistently on a large number of RoIs.
Following derivation relates to estimation of performance.

The class label assigned to an RoI by the kth classifier may not
be consistent with the radiologist's assessment. From this we imply
that the kth classifier will assign correct labels to a certain fraction
of the number of AD (as per ground truth) RoIs. Let this fraction
(sensitivity) be denoted senk. Consider the following sum:

∑
j ∈ J1

M(k, j), J1 = { j such that P( j) = 1} . (3)

This sum contains all the class labels that are assigned to the
AD (as per ground truth) RoIs by the kth classifier. Expression (3)
can be decomposed into

∑
j ∈ J2

1 − ∑
j ∈ J3

1, (4)

where J2 = { j such that P( j) = 1 and M(k, j) = 1}; J3 = { j such
that P( j) = 1 and M(k, j) = − 1} . Expression (4) denotes the
number (the first summation or the LHS of (4)) of AD RoIs in the
training set that have been correctly classified by the kth function
pair minus the number (the second summation or the RHS of (4))
of AD RoIs that have been misclassified by the kth function pair.
We may assume that by our judicious selection (median of the
average of A1 and A2) of τX, the number of AD RoIs (as per ground
truth) that are assigned the ambiguous class label (0) is very small
compared to the number of AD RoIs that are classified as normal
RoIs by the kth classifier. Therefore, the LHS term of expression
(4) is equal to NAsenk and the RHS term of the aforesaid expression
is approximated as NA(1 − senk); the entire term equates to
NA(senk − (1 − senk)). If (senk − (1 − senk)) is denoted by snk (or
senk = (snk + 1)/2), expression (4) becomes NAsnk.

Similarly, the kth classifier will assign correct labels to a certain
fraction of the number of normal (as per ground truth) RoIs. Let
this fraction (specificity) be denoted by speck. Consider the
following sum:

− ∑
j ∈ J4

M(k, j), J4 = { j such that P( j) = − 1} . (5)

This sum contains all the class labels that are assigned to the
normal (as per ground truth) RoIs by the kth classifier. Expression
(5) can be decomposed into

∑
j ∈ J5

1 − ∑
j ∈ J6

1, (6)

where J5 = { j such that P( j) = − 1 and M(k, j) = − 1}; J6 = { j
such that P( j) = − 1 and M(k, j) = 1}.

Expression (6) denotes the number (the first summation or the
LHS of (6)) of normal RoIs that have been correctly classified by
the kth function pair minus the number (the second summation or
the RHS of (6)) of normal RoIs that have been misclassified by the
kth function pair. We may assume that by our judicious selection of
τX, the number of normal RoIs (as per ground truth) that are
assigned the ambiguous class label (0) is very small compared to
the number of normal RoIs that are classified as AD RoIs by the
kth classifier. Therefore, the LHS of this expression (6) is equal to
NNspeck and the RHS of the aforesaid expression is approximated
as NN(1 − speck); the entire expression equates to
NN(speck − (1 − speck)). If (speck − (1 − speck)) is denoted by spk
(or speck = (spk + 1)/2), this expression (6) equates to NNspk.

Mathemetical formulations for measuring the performance of
classifiers: Now we shall explore the concise representation of the
discussion related to (3) and (5). This concise representation will
aid us in solving the estimate P

~
e. To do this concise representation

we need the aid of four additional variables. One is the vector of
length K containing the snk of all the classfiers in the ensemble.
This is represented by SA. Second is the vector cotaining the spk of
all the classifiers in the ensemble. This is represented by SN. The
third (fourth) is a vector of dimensions NR × 1 (NRe × 1) containing
ones. This vector is represented by O (Oe). The roles that the
notations SA, SN, M, Me, P and P

~
e play in the proposal has been

illustrated in Fig. 4. 
It follows that the kth element in the vector (1/2)M(P + O) is

equal to NAsnk which is shown in (3). It also follows that the kth

Fig. 3  Assignment of a class label to an RoI R by a classifier. The
classifier in the image is characterised by the pair of functions f 1() and
f 2(). For details refer Section 3
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element in the vector (1/2)M(P − O) is equal to NNspk which is
shown in (5).

The following relations then hold:

1
2 M(P + O) = NASA,

1
2 M(P − O) = NNSN .

(7)

Analogous to the notations SA and SN, let SAe and SNe denote the
vectors containing snk and spk, respectively, that are evaluated on
the test set. Similar to the above equations, the following relations
hold for test cases:

1
2 Me(Pe + Oe) = NAeSAe,

1
2 Me(Pe − Oe) = NNeSNe .

(8)

How does the proposal solve the estimate of P
~

e: Since SAe, SNe,
NAe and NNe are unknown beforehand, we may assume that the
sensitivities (fraction of the number of AD RoIs classified as AD)
and the specificities (fraction of the number of normal RoIs
classified as normal) of an approach (corresponding to a function
pair of f 1() and f 2()) are constant irrespective of the set of
mammograms when the number of mammograms in the set is
large. The consequence of these assumptions are SAe = SA and
SNe = SN because (snk + 1)/2 represents sensitivity and (spk + 1)/2
represents specificity. The terms NAe and NNe can be equated to the
number of class labels equal to 1( − 1) in P

~
e (an estimate of Pe).

The equations in (8) are rewritten below:

1
2 Me(P

~
e + Oe) = NAeSA,

1
2 Me(P

~
e − Oe) = NNeSN .

(9)

The estimate P
~

e would be ideal if the equalities of (9) are
satisfied. In the non-ideal case there would be a deviation of LHS
from the RHS of (9). It is assumed that lesser the deviation of LHS
from the RHS of (9), the better is the estimate. In the proposal, a
greedy approach is used to minimise the sum of the LHS–RHS of
the above equations (refer (9)) when the goal is to label not all RoIs
in the test set but a prespecified fixed number of RoIs as AD sites.
The sum of difference between the LHS and the RHS of (9) is
represented in the following expression that is referred by Loss:

Loss = 1
NAe + 1

1
2 Me(P

~
e + Oe) − NAeSA

+ 1
NNe + 1

1
2 Me(P

~
e − Oe) − NNeSN .

(10)

In the proposal, P
~

e is initialised to −Oe. By exhaustive search of
the NRe positions (where by constraint NRe = NAe + NNe), the
position in P

~
e where if a 1 is inserted Loss will be the minimum is

found. Let us call this optimum position o1. After finding o1,
P
~

e(o1) is set to 1 (the AD class label). Let the now updated P
~

e be
referred by P

~
e(1). The next position in P

~
e(1) is then established where

if a 1 is inserted Loss is further minimised. Let us call this optimum
position o2. Next P

~
e(1)(o2) is set to 1. Let the updated estimate P

~
e(1)

be referred by P
~

e(2). This is continued until NAe is equal to some
prespecified fraction of the total number of RoIs in the test set viz.
NRe. In this manuscript, this prespecified fraction is represented by
θ.

At iteration a, let the updated estimate of Pe be referred by P
~

e(a).
Let the value of the position where if a 1 is inserted in P

~
e(a), Loss is

minimised be referred by oa. It is apparent that the value of oa is
modulated by the vector P

~
e(a) which contains the class label 1 at

positions o1, o2, …, o(a − 1) and −1 at the remaining positions.
Note that the preceding statement shows that the optimum position
oa is found by taking all the class labels of the test RoIs into
consideration. This is unlike Adaboost and Random Forest where
the class label assigned to a test RoI is dependent on the RoI's
feature vector and a classifier model that is built during training.

As θ increases we will necessarily obtain some AD RoIs which
are AD as per radiologist's assessment. The remaining AD RoIs are
labelled as normal RoIs as per ground truth. The fraction of
number of AD RoIs labelled as AD sites by the proposal to the
total number of AD RoIs as per ground truth represents the
sensitivity (sen) of our proposal (note that senk represents the
sensitivity of the kth classifier while sen represents the sensitivity
of the entire proposal). Similarly, we will necessarily obtain some
normal (as per ground truth) RoIs that are labelled as AD RoIs by
the proposal. This number of normal RoIs per mammogram
represents the number of false positives per mammogram referred
by FP. The pair of {sen, FP} will constitute one point in the free
receiver operating characteristic (FROC) curve of our proposal.
The proposal is validated with this FROC curve in Section 4.

It is apparent that the FROC is obtained on mammograms
whose ground truth is available. The multiple co-ordinates of the
FROC are obtained on choosing multiple values of θ; one co-
ordinate for one value of θ. The question arises that which value of
θ should the user use if the proposal needs to be deployed in real
practice. In this regard, refer Fig. 5. Once the FROC is obtained,
the user would choose an operating point on this FROC that best

Fig. 4  Explanation of the bottom four blocks of Fig. 2. The symbol P represents the class label of the RoIs of the training set as per ground truth. The symbols
SA and SN are vectors whose elements are snk and spk, respectively, of all the classifiers in the ensemble. For details refer Section 3.1

 

IET Image Process., 2020, Vol. 14 Iss. 4, pp. 603-614
© The Institution of Engineering and Technology 2020

607



reflects the optimum performance of the proposal. This operating
point would refer to a particular value of sen and FP. For example,
choosing an operating point with a higher value of sen would yield
a greater value of FP. Thus, the user has to make a compromise in
choosing the operating point. The operating point so chosen would
have been obtained for a specific value of θ. The operator would
use this value of θ to implement the proposal in medical practice.

In the next subsection, the implementation of the function pairs
f 1() and f 2() is discussed.

3.2 Implementation of f 1() and f 2()
AD is related to the presence of bright lines in the mammogram
(refer Fig. 6).These lines are referred by spicules in the medical
literature. Technically a bright line is referred by a ridge in the
image processing literature. Since AD is defined as a radiating
pattern of spicules, in the proposal the concentration index [23] has
been adopted as the function f 1(). The concentration index is
aimed at evaluating the pattern of lines in an RoI; lower values
indicate a radiating pattern, higher values indicate a parallel set of
lines. Referring [23], let the magnitude and the orientation of the
ridge at pixel i in RoI R be mi and αi, respectively. These
magnitudes and the orientations at every pixel in R constitute the
feature vector of R. Let the co-ordinates of i be referred by xi and
yi. The concentration index [23] is defined as follows:

CℐR =
∑i mi(xisin αi − yicos αi)2

∑mi
. (11)

The term CℐR is used to refer to A1. It is observed that normal
tissues tend to have smooth circular shaped contours in contrast to
the corrugated contours in an AD site (refer Fig. 6c). It would then
make sense that the contours in a normal region would be more
circular in shape compared to the AD region. This motivates the
author to measure the eccentricity of the contours of an RoI and
use these eccentricity measures as inputs to f 2().

For simplicity, the eccentricity of one contour has been
measured. It makes sense that there are two extreme cases that
might arise in choosing the preceding contour. One when all the
pixels within an RoI are included in the contour. The other when
almost no pixels are included within the contour. In either case

both an AD site and a normal site would return the same
eccentricity values; thus differentiating between a normal site and
an AD site would be difficult.

This motivates the author to consider that contour which
encloses half of the number of pixels within an RoI. It is imperative
that there might be cases where such a realisation of a contour
might not be possible. For example, consider the case when all the
pixel values within an RoI are identical. Either all the pixels must
be considered or no pixels should be considered. Such cases are
however rare. It is possible to realise the contour that encloses
approximately half of the number of pixels within an RoI as
follows.

Let us sort the pixel values of an RoI in a descending order. Let
the number of pixels in an RoI be denoted as n. The pixel value
that is located at n/2 position in the aforementioned order is used
as the threshold to binarise the RoI. It is apparent that the number
of white pixels in this binary image will be approximately n/2.
Since there may be many connected components, the connected
component with the largest area is chosen. The eccentricity of the
largest ellipse that fits within the preceding mentioned connected
component is measured. This eccentricity is denoted as eR. This is
how the threshold 165 has been chosen in Fig. 6c.

Until now the measures CℐR and eR are characteristics of the
pixel values in R. The function f 1() was made to assume the value
of CℐR. If f 2() assumes the value of eR alone, we have created
only one classifier till now.

The question arises that how do we design different classifiers
with CℐR and eR. For simplicity f 2() is chosen to implement a
linear transformation on eR. Different classifiers can be designed to
implement different linear transformations in f 2() keeping the
function f 1() fixed. A linear transformation is characterised by a
slope and a y-intercept. The slope is referred by w1 and the y-
intercept is referred by w2. In the next subsection, the choice of the
parameters w1 and w2 that characterise the function f 2() of a
classifier in the proposal is discussed.

3.2.1 Choice of w1 and w2: Ideally, we would like to construct a
classifier that assigns class labels to RoIs of the training set in
perfect accordance with the ground truth. Had we chosen eR of an
RoI R as A2 we would have been able to construct only one
classifier, say C; that computes τX based on A1 and A2 of all RoIs
and then assigns the class label to an RoI based on the comparison
of the RoI's A1 and A2 with τX. This computation has been
illustrated in Fig. 3. There is no guarantee that the class labels so
assigned by the preceding classifier matches with the ground truth.
We would try to create a classifier whose assignment of class labels
to RoIs of the training set is uncorrelated with the class labels
assigned by C.

This is because if the classifiers assign class labels to RoIs in a
correlated way, these class labels would create similar rows in M.
This would generate the same snk and spk (when the index k refers
to the similar classifiers) in SA and SN, respectively.

Let (1/2NAe)Me(P
~

e + Oe) be referred by S
~

Ae. Similarly, let
(1/2NAe)Me(P

~
e − Oe) be referred by S

~
Ne. Similar classifiers would

produce similar rows in Me. Therefore, S
~

Ae and S
~

Ne would contain
similar values at the indices corresponding to the similar
classifiers. The term Loss in (10) can also be rewritten as
(1/NAe + 1) ∥ S

~
Ae − SA ∥ + (1/(NNe + 1)) ∥ S

~
Ne − SN ∥. Keeping

similar information in most indices in S
~

Ae and S
~

Ne would imply
recomputing similar information for the same indices within the
norms in Loss. This would result in increasing space and
computational complexity without gaining in performance.

The purpose of using w1 and w2 is to construct classifiers such
that the classifiers assign class labels to RoIs of the training set in
an uncorrelated way amongst one another. The question arises that
how do we do it?

Choice of {w1, w2} if there are two RoIs in the training set: It is
reiterated here that the function f 1() that is applied on the pixels
values in an RoI is identical to the concentration index of the RoI.
The concentration index is a scalar. The output of f 1() is also

Fig. 5  Illustration of choosing the operating point on the FROC for
deployment of the proposal in the medical practice

 

Fig. 6  Illustration of the adoption of features from an RoI
(a) Spiculated AD RoI as per ground truth (mdb158.pgm, miniMIAS [2]), (b)
Synthetic radiating pattern of ridges that resembles an AD site, (c) Segmented image:
Pixels in (a) having grey scale value greater than 165 lie within the black region. The
choice of threshold 165 is explained in Section 3.2. Note the roughness of the
boundary of the black region. The eccentricity of the boundary (contour) of this black
region is used as one of the features in the proposal
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referred by A1. The function f 2() is a linear transformation of
another feature of an RoI, say R referred by eR. The value of this
linear transformation is a scalar. This scalar is equal to w1eR + w2.

Now let there be two RoIs in the training set; R1 and R2. In this
context let eR, A1 and A2 of R1 be denoted by eR1, A1R1 and A2R1

respectively. Let the parameters w1 and w2 of the kth classifier be
denoted by w1k and w2k, respectively. Let the difference between
A1R1 and A2R1 be denoted by λkR1. Therefore

A1R1 = A2R1 + λkR1,
A1R1 = w1keR1 + w2k + λkR1 . (12)

If A1R1 > A2R1, three cases might arise. First A1R1 > τX > A2R1.
Second A1R1 > A2R1 > τX. Third τX > A1R1 > A2R1. This means R1
can be assigned either the normal class label ( − 1) or the
ambiguous class label (0). Similarly if A1R1 < A2R1, R1 can be
assigned either the AD class label (1) or the ambiguous class label
(0). If an ensemble contains classifiers that assign class labels to an
RoI in the training set in an uncorrelated way, the AD class label
and the normal class label would have a 50–50 chance in getting
assigned to a particular RoI in the training set. We infer that for the
classifiers to be uncorrelated amongst one another we need to
adjust w1 and w2 such that the two conditions A1R1 > A2R1 and
A1R1 < A2R1 have a 50–50 chance.

Referring (12) let the expression A1R1 − w1keR1 − w2k be denoted
by LR1. Let the region in the w1k and w2k space where LR1 > 0 be
denoted by QR1

1 . Similarly let the region in the w1k and w2k space
where LR1 < 0 be denoted by QR1

0 . The pair {w1k, w2k} should be
chosen with equal probability from QR1

1  and QR1
0 . The preceding

analysis should be true for R2. There are four regions that arise in
the context of bringing the new RoI (R2). The first region is
QR1

1 ∩ QR2
1 . The second region is QR1

1 ∩ QR2
0 . The third region is

QR1
0 ∩ QR2

0 . The fourth region is QR1
0 ∩ QR2

1 . These regions are
illustrated in Fig. 7a. 

Choice of {w1, w2} if there are more than two RoIs in the
training set: Analogous to the four regions for two RoIs, for N
number of RoIs there would arise 2N regions. The pair {w1k, w2k}
should be chosen with equal probability from each of the 2N

regions. Let these regions be referred by Q1, Q2, …, Q2N
. The

method of choosing {w1k, w2k} based on the preceding analysis is
now discussed.

Let the intersection point of LR1 = 0 and LR2 = 0 be denoted by
WR1, R2. The symbol WR1, R2 has two components. One component
refers to the value along the w1k axis. The other component refers
to the value along the w2k axis. These two components are,
respectively

A1R1 − A1R2

eR1 − eR2
, A1R1eR2 − A1R2eR1

eR2 − eR1
. (13)

For all pairs of RoIs we would find points analogous to WR1, R2.
These clusters of points due to WR1, R2 may be represented by one
cluster. Let the convex hull of this cluster be denoted by V(W).

All the lines LR1 corresponding to the RoIs in the training set
will create multiple triangles (refer Fig. 7b) in the space of
{w1k, w2k}. The vertices of these triangles will be one of WR1, R2. We
can assume that V(W) will include some or all of Q1, Q2, …, Q2N

.
The process of choosing the pairs {w1k, w2k} should begin by

randomly generating pairs within V(W). The number of pairs (so
generated) within each of Q1, …, Q2N

 should be proportional to the
area of the respective region within V(W). Let the number of pairs
randomly generated in the vth region (Qv) be denoted by nv. We can
choose ν number of pairs from nv pairs in Qv; thus representing
every region Qv with equal probability and making the classifiers
uncorrelated amongst one another.

The preceding discussions of our proposal in the form of
algorithms are now outlined in the next subsection.

3.3 Training and testing

Establishment of τX: First an outline of the establishment of τX
given a set, say ℛ1 of RoIs and a function pair is presented. In this
algorithm, two storage variables Ll and Lτ are used. The pairs A1

and A2 for an RoI R are inserted in Ll. The average (τR) of A1 and A2

is inserted in Lτ. Let R denote an RoI in the set ℛ1. In step 2(a)(i)
and step 2(a)(ii) of Algorithm 1 (see Fig. 8), A1 and A2 are
computed. In step 2(a)(iv) the mean of A1 and A2 is computed. In
step 2(b) the mode of τR is assigned to τX. The output of Algorithm
1 (Fig. 8) is the value of τX and the set Lτ.

Establishment of M: It is reiterated here that M contains the
class labels assigned to all RoIs of the test set by the classifiers in
an ensemble. In Algorithm 2 (see Fig. 9), the establishment of M
has been outlined. The input to this algorithm is the set ℛ1 and the
set of K number of function pairs. Note that the function pairs
differ from one another in the scalars w1 and w2. The function pairs
are similar to one another since by design all of the pairs use Cℐ
and eR to compute A1 and A2. This set of function pairs is referred
by N.

Fig. 7  Illustration of decomposition of the {w1k, w2k} space when there are
(a) Two RoIs (for simplicity of illustration R1 and R2 has been replaced by j and l,
respectively), (b) Four RoIs in the training set (for simplicity of illustration the RoIs
are referred by 1, 2, 3 and 4)

 

Fig. 8  Algorithm 1: Establishment of τX

 

Fig. 9  Algorithm 2: Establishment of M
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Based on the value of τX, the values of A1 and A2 of the RoI R,
we can compute the class label (0/1/ − 1) of R as per the
conditions in step 2(b)(iii) of Algorithm 2 (Fig. 9). This label of the
jth RoI in ℛ1 by the kth function pair is assigned to the element at
the kth row and jth column in M viz. M(k, j). This assignment is
implemented in step 2(b)(iv) of Algorithm 2 (Fig. 9). The output of
this Algorithm is M.

Establishment of {w1, w2}: In Algorithm 3 (see Fig. 10), the
scalars w1 and w2 that characterise a classifier following our
discussion in Section 3.2.1 is established. In step 2(a) A1 j and ej of
the jth RoI are computed. In step 2(b) W j, l is computed from (13)
for all possible pairs of RoIs. In step 2(c) pairs of {w1k, w2k} are
generated at random within the convex hull V(W). In step 2(d) the

pairs of {w1k, w2k} in step 2(c) are grouped according to the region
Qv in which a pair lies. The output of this algorithm contains ν
pairs of {w1k, w2k} from each group of pairs in step 2(d).

Establishment of SA and SN: It is reiterated here that the
performances of all the classifiers in an ensemble are encapsulated
in SA and SN. In Algorithm 4 (see Fig. 11), the vectors SA and SN of
the aforesaid classifiers that are generated from Algorithm 3 (Fig.
10) are established. The input to this algorithm is the set of
mammograms in the training set. The radiologist's assessment is
available for the mammograms in this training set, say D.

From the mammograms in D, RoIs at varying scales (values of
the height and width of an RoI) are extracted (refer Fig. 12). These
scales are stored in Z. Let the value of a scale be referred by s. The
method of extracting RoIs (from a mammogram) is identical to a
sliding window approach that slides a window over the
mammogram in pixel steps of s/2 both horizontally and vertically.
For example, if the value of a scale refers to s, and an RoI of size
s × s centred at a pixel, say i in Fig. 12 is extracted then RoIs of
size s × s are also extracted at pixels i1, i2, i3 and i4 that are
situated at a distance of s/2 from the pixel i.

The set of the preceding RoIs is referred by ℛ1. The
construction of ℛ1 is outlined in step 2(a) of Algorithm 4 (Fig.
11). In step 2(b) different classifiers are generated; assigning these
classifiers to N. In step 2(c) M for the preceding set of RoIs viz.
ℛ1 and the set of function pairs N are computed. In step 2(d) the
vector P which contains the class labels of the RoIs in ℛ1 as per
radiologist's assessment is constructed. In step 2(e) SA and SN are
computed. The output of this algorithm is SA and SN.

Establishment of P
~

e: In Algorithm 5 (see Fig. 13) P
~

e is
established. The input to this algorithm is the set of mammograms
in the test set De. The radiologist's assessment is unavailable for the
mammograms in De. In addition to De we also take N and a
threshold θ as inputs to this algorithm. The threshold θ sets the
number of RoIs to be labelled as an AD site by the proposal.

Similar to the preceding discussion referring to Fig. 12, from
the mammograms in De RoIs at varying scales are extracted. These
scales are stored in Ze. The set of the preceding RoIs is referred by
ℛ1e. The construction of ℛ1e is outlined in step 2(a) of Algorithm
5 (Fig. 13). Let NRe represent the number of RoIs in ℛ1e. In step
2(c) Me for the preceding set of RoIs viz. ℛ1e and the set of
function pairs, N is computed. In step 2(d) the vector P

~
e is

established. To establish, the following approach has been taken in
the proposal.

The vector P
~

e has been initialised to −Oe, a vector of the same
dimension as P

~
e and containing all ones. Procedure 1 (see Fig. 14)

has been used to find the optimum position in P
~

e by exhaustive
search such that if a 1 is inserted at this position Loss is minimum. 
This is repeated until the number of RoIs that are labelled as 1
equals [θNRe]. Let a denote an integer. The value of P

~
e at iteration

a is denoted by P
~

e(a).
The output of this algorithm is the assertion that the RoIs with

label 1 in P
~

e are the AD sites.
Notice that in step 2(b) of Algorithm 1 (Fig. 8), the computation

of τX is dependent on the feature vectors FR = [CℐReR] of each
RoI in the training or test set. This justifies why the proposal
incorporates Fj, j ≠ i in (2). In step 2(d)(ii) of Algorithm 5 (Fig.
13) P

~
e(a + 1) is computed based on the value of P

~
e(a). This implies

that the index j in step 2(d)(i) of Algorithm 5 (Fig. 13) is dependent
on the class labels of all the RoIs in the test set. This justifies why
the proposal incorporates cj, j ≠ i in (2).

The experimental results are now discussed in the next section.

4 Experimental results
Necessary details of datasets and assumptions in validating the
proposal are provided in the next subsection. The experiments are
presented in Section 4.2. Discussions on the results (time
complexity) are provided in Section 4.3 (4.4).

Fig. 10  Algorithm 3: Establishment of w1 and w2 of all classifiers
 

Fig. 11  Algorithm 4: Establishment of SA and SN

 

Fig. 12  Extraction of RoIs of size s × s pixels from a mammogram. The
outline of the mammmogram is indicated by a green rectangle. The
notations i, i1, i2, i3 and i4 denote pixel positions
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4.1 Databases

There are two popular mammography databases in the medical
literature. These two databases are the Mammographic Image
Analysis Society Database (MIAS) [2] and the Digital Database for
Screening Mammography (DDSM) [22, 24]. Both these databases
are publicly available. The proposal has been evaluated on MIAS
and DDSM.

The MIAS database comprises of 322 mammograms having the
grey-level resolution of 8 bits, image size of 1024 × 1024 pixels
and the portable grey map file format of the images. Nineteen
mammograms out of 322 mammograms contain 19 AD RoIs, each
having one AD RoI. Out of these 19 images, 10 AD RoIs are
malignant and the remaining are benign. The MIAS database
describes the outline of an AD site by a circle. In addition to these
19 mammograms containing AD, there are also 19 mammograms
containing spiculations, 23 mammograms containing
circumscribed masses, 25 mammograms containing calcifications
and 15 mammograms containing breast asymmetry. The remaining
mammograms are normal. In the MIAS database only the MLO
mammographic views of the breasts are present.

The DDSM database comprises 2620 cases having the grey-
level resolution of 16 bits and lossless jpeg (LJPEG) file format of
the images. Each case contains the two mammographic views (CC
and MLO) of each breast of a patient. Fifty cases out of 2620
contain malignant AD. Out of 200 mammograms in the aforesaid
50 cases [note that a case contains four mammograms, two views
(CC and MLO) from each breast], 90 mammograms contain one
AD RoI each and two mammograms contain two AD RoIs each.
The rest of these 200 mammograms are normal. The DDSM
database describes the outline of an AD site by a chain code. In
addition to the 50 cases there are about 700 normal cases, 970
malignant cases, 830 benign cases and 140 benign cases without
any callback (i.e. these patients did not have any follow-up
mammograms).

The acquisition of the mammograms in the DDSM is made with
either of three scanners. These scanners are HOWTEK, DBA and
LUMISYS. The spatial pixel resolutions of these scanners are,
respectively, 43.5, 42 and 50 μm. The mammograms in the MIAS
database are generated by the Joyce-Lobel (JL) microdensitometer.
The scanner JL has a pixel resolution of 50 μm. In addition, certain
de-identified patient details such as age and imaging characteristics
such as intensity resolution and type of scanner are provided in the
DDSM database. In the MIAS database only the scanner with
which the mammograms were generated is known. In DDSM the
breast tissue density is inferred by the radiologist who assigns a
number to the inference. In MIAS, the breast tissue is inferred as
either fatty or glandular. In addition to this breast density, the BI-
RADS score of the evaluation of a mammogram is given in the
DDSM.

Recall that the sets Z and Ze in Algorithms 4 and 5 (Figs. 11
and 13) contain the dimensions of the RoI extracted from a
mammogram. Noting that the average size of an AD RoI is 40 mm
in the MIAS and the DDSM database, the spatial size of the RoIs
extracted from a mammogram have been allowed to take one of 45
and 57 mm. It is apparent that the aforesaid two spatial values can
be converted to their equivalent dimensions in pixels by the
relation: dimension in pixels = (spatial dimension)/(pixel
resolution). These pixel dimensions have been adopted in the sets
Z and Ze.

In the proposal it has been assumed that an AD site (as per
radiologist's assessment) is detected if there is at least one RoI
whose centre pixel is contained within the AD site (as per
radiologist's assessment). The RoIs that are labelled as AD sites by
our proposal but whose centre pixel does not lie within any AD site
as per radiologist's assessment are counted as a false positive. But
false positives which share a common area of more than 70% (of
the area of the smallest RoI) are counted as one false positive.

Recall that the proposal relied on the assumption that the
parameters SA and SN are constant for a large set of mammograms.
The question arises that how large should this training set be? As a
part of the validation process, 20, 50 and 80% of the available
mammograms are chosen as the mammograms in the training set.
Let this percentage be denoted as x. The remaining (100 − x)% is
chosen for testing. For each x, three combinations of training and
testing are created. This is done by choosing the first, the middle
and the last x% of the available mammograms as the mammograms
in the training set. The validation process is repeated three times
(for the first, the middle and the last x% of the available
mammograms) and the average result (the false positives per
mammogram) of three runs is reported. All images of a patient
(two MLO views per patient in MIAS, two MLO and two CC
views per patient in DDSM) are placed in any one of training and
testing set. The experiments are discussed next.

4.2 Experiment

In this experiment, all the 19 mammograms in the MIAS database
that contain AD have been adopted. The notation K (number of
function pairs) has been assigned one amongst the values 1, 10, 40,
100 or 600. The terms w1 and w2 have been generated as per
Algorithm 3 (Fig. 10). For each combination of x and K, the
number of false positives per mammogram (FP) at 80% sensitivity
(the fraction of AD sites detected by the proposal) has been
included in Table 1. In a different experiment along with the
previous 19 mammograms containing AD, 20 normal
mammograms have been included from MIAS. Now the discussion

Fig. 13  Algorithm 5: Establishment of P~e

 

Fig. 14  Procedure 1: Establishing index position j in P~e(a)

 
Table 1 False positives per mammogram at 80% sensitivity
of our proposal in the MIAS database
x% 1 10 40 100 600
20 23.4 23.4 23.4 21.4 20.4
50 20.4 20.4 18.4 18 17.7
80 20 16.4 15.7 19.4 18.7
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in the last paragraph of Section 4.1 has been modified by keeping x
% of the mammograms containing AD and x% of the normal
mammograms in the training set. The remaining mammograms
containing AD and the normal mammograms are kept in the test
set. We have evaluated our proposal with these additional normal
mammograms and have shown the results in Table 2. The same
using the median in step 2(b) of Algorithm 1 (Fig. 8) has been
shown in Table 3. 

The process in previous paragraph was repeated on 55
mammograms in the DDSM dataset. All these 55 mammograms
contain AD. The results have been shown in Table 4. In a separate
experiment along with 51 mammograms of DDSM containing AD,
49 normal mammograms have been included from DDSM. We
have evaluated our proposal with these additional normal
mammograms and have shown the results in Table 5. The same
using the median in step 2(b) of Algorithm 1 (Fig. 8) has been
shown in Table 6. We have also trained on the 39 chosen (referring
Tables 2 and 3) mammograms of MIAS and tested on the 100
chosen (referring Tables 5 and 6) mammograms of DDSM and vice
versa. The results are shown in Table 7. In Tables 2– 7, the chosen
mammograms from DDSM for the evaluation of the proposal have
been down-sampled to a pixel resolution of 200 μm for a fair
comparison with the mammograms in MIAS which also have a
pixel resolution of 200 μm. 

In Tables 12 and 13 of [25], surveys of different ensemble
approaches in breast cancer classification have been provided. In
Tables 3–5 of [26], the performance of a newly developed
ensemble classifier on breast cancer has also been presented. In
Tables 1–5 of [8], the performance of different Adaboost variants
on breast cancer has been provided. With the aid of these results
the performance of different Adaboost variants in [8] and boosted
Random Forest [9] has been estimated for our mammograms from
MIAS and DDSM. For example, the area under the receiver
operating characteristics curve (ROC) is provided in [25]. The plot
of the ROC is not provided in [25]. We can approximate the ROC
from the given area under the ROC (AUC) as follows.

We first consider two variables say {yv, y f } that denote some
pair of sensitivity and specificity in the ROC. We draw a line

segment from the origin to {yv, y f } and from {yv, y f } to {1, 1}.
Let the two line segments so obtained represent the approximated
ROC. The area under this approximated ROC is made equal to the
AUC given in [9, 26, 25] by adjusting yv and yf. We solve for yv
and yf to satisfy the condition of the preceding statement. Once the
ROC is obtained the FROC is obtained by equating (1-specificity)
× total number of RoIs per mammogram to FP and using
sensitivity as it is.

The estimated results along with the results of the phase portrait
approach have been given in Table 8 at K = 100 and x = 50% for
the MIAS and the DDSM database. The FROC curves are plotted
in Fig. 15a. 

It is reiterated that false positives which share a common area of
more than 70% are counted as one false positive. We have
evaluated our proposal on the 55 mammograms of DDSM
containing AD for false positives sharing a common area of more
than 50 and 25%. The FROC results are shown in Fig. 15b. Plots of
Loss for x = 50% and K = 100 have been shown in Fig. 15c.

4.3 Discussions

Tables 1 and 4 show the false positives (FP) per mammogram in
the MIAS and the DDSM database, respectively, for different
values of K (varying along a row) and x (varying along a column).
The FP values in Table 4 are lesser than the same in Table 1. There
can be two reasons for this result. These are as follows.

The pixel resolution in MIAS images is approximately four to
five times the pixel resolution in DDSM images. In addition, the
grey-level resolution in DDSM images is higher by eight bits than
the same in MIAS. Given this, lines representing spicules and
vessels within dense breast tissues are much better captured in
DDSM than in MIAS. These strong signature of ridges in DDSM
would be reflected in the value of the concentration index in our
proposal. The consequence is that the proposal would be able to
distinguish a radiating pattern of ridges from other normal patterns
thus affecting the label lbnR (the class label assigned to RoI R by a
classifier in an ensemble). This may be a reason for the better
performance of our proposal in the DDSM database. The aforesaid
inability is one limitation and calls for modifying the proposal's

Table 2 False positives per mammogram at 80% sensitivity
of our proposal in the MIAS database
x% 1 10 40 100 600
20 16.6 19 18 18 21.3
50 23 24.3 24 23.6 24.3
80 17.6 17.6 17.6 15.3 20.6
 

Table 3 False positives per mammogram at 80% sensitivity
of our proposal in the MIAS database
x% 1 10 40 100 600
20 17 18.3 18 18.3 19.6
50 24 23.5 24 24.5 24.8
80 18 19 19.6 19 20
 

Table 4 False positives per mammogram at 85% sensitivity
of our proposal in the DDSM database
x% 1 10 40 100 600
20 18 18 17 16 16
50 18 18 18.3 17.3 15.3
80 22 22 21 20 17.7

 

Table 5 False positives per mammogram at 80% sensitivity
of our proposal in the DDSM database
x% 1 10 40 100 600
20 16.6 17.3 18.6 16.6 18.6
50 24.6 24 24 27 26.3
80 31 31.3 32.3 29.6 30

 

Table 6 False positives per mammogram at 80% sensitivity
of our proposal in the DDSM database
x% 1 10 40 100 600
20 17 17.3 17.3 18 18.3
50 24 24.6 25 25 25.3
80 31.6 30.6 33 32.3 27.6

 

Table 7 False positives per mammogram at 80% sensitivity
of our proposal
Train Test method 1 10 40 100 600
MIAS DDSM mode 13 15 14 17 16
DDSM MIAS mode 14 15 14 14 18

 

Table 8 Comparison of the proposed approach with
competing approaches
Method MIAS DDSM

90% 85% 90% 85%
real AdaBoost 20 19 19.3 18.3
gentle AdaBoost 20 19 19 18
modest AdaBoost 21 20 20 19
parametrised AdaBoost 20 19 19 18
margin-pruning AdaBoost 21 20 21 20
penalised AdaBoost 20 19 19 18
boosted random forest [9] 22 21 21 20
consensus ensemble [26] 20 19 19 18
phase portrait [6] > 30 > 30 > 30 > 30
proposal 19 18.3 17.3 16.8
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concentration index which will focus on faint signatures in the
breast tissue.

The second reason could be related to the fact that a
mammogram is a 2D projection of a 3D object: the breast. It is
apparent that a normal site in the breast and an abnormal site
containing AD might be located at different regions in the breast.
However, the 2D projections of both these regions might overlie on
one another in the mammogram. A site (RoI) containing both these
projections would be interpreted as an AD site as well as a normal
site yielding a label lbnR of 0. The chances of this happening
decrease if two views (projections) are taken for a breast. This is
because the chance of both views failing to capture the AD and the
normal regions at different sites in the mammogram is lesser than
that of a single view capturing the image of the breast. The
consequence is that the proposal failing to detect the AD site in
both the views is unlikely. In the DDSM we have two views of a
breast. This is unlike in MIAS where only the medio-lateral-
oblique view of a breast is present. This observation might account
for the lesser values of FP in Table 4.

In the context of the validation of our proposal, it is apparent
that there are three parameters in our proposal. These parameters
are K, the number of classifiers in the ensemble, and the number of
mammograms in the training and test set as judged by x, the
percentage of the total number of mammograms kept in the
training set. If the aforesaid parameters are kept constant, the
proposal performs better when the mode (of τR) is chosen (as τX)
instead of choosing the median in step 2(b) of Algorithm 1 (Fig. 8).
The better performance of the proposal in choosing the mode is
evident from the lesser (in majority cases) values (3% on the
average) of false positives per mammogram (FP) in Tables 2, 5 and
7 compared to the same in Tables 3, 6 and 7. A lesser value of FP
in choosing the mode in Algorithm 1 (Fig. 8) is expected. This is
because as discussed in the beginning of Section 3, the frequently
occurring value of τR must be chosen as the threshold in Algorithm
1 (Fig. 8) to generate less number of ambiguous labels (0) in matrix
M or Me (a unified representation of the class labels assigned to all
ROIs in a training/test set by all the classifiers in an ensemble) of
the proposal. The mode by definition represents the frequently
occurring value of a variable unlike the median.

It is also observed that the proposal performs better when the
number of mammograms in both the training and test set is fairly
large. For instance, the FP in Table 7 is obtained from 100
mammograms of DDSM and 39 mammograms of MIAS; a total of
139 mammograms. The FP in Tables 2–6 is obtained from either
100 mammograms of DDSM or 39 mammograms of MIAS. The
values of FP in Tables 2–6 are greater by 18% (on the average)
than the same in Table 7. It is reiterated that the estimation of the
class labels of the RoIs of the test set is made on the assumption
that a classifier would perform consistently when the number of
mammograms in the training and the test set is fairly large. The
argument that our proposal would perform well for a large number
of mammograms in the training and test set is promoted by the
greater FP values in Tables 2–6 compared to the same in Table 7.

In Table 1, we did not incorporate normal mammograms
contrary to Tables 2–7. We observe that the incorporation of
normal mammograms yields lesser FP (by 10% on the average).

The reason for this is that the normal mammograms tend to serve
better training examples in the form of normal RoIs. These normal
RoIs show circularly shaped contours (measured in the form of
ellipticity; refer Section 3.2) compared to the contours of the
normal RoIs in the mammograms containing AD. The ellipticity of
the contours of some normal RoIs in the mammograms containing
AD resemble closely the same (in magnitude) of the contours of
the AD RoIs. This makes the discrimination of normal RoIs (in the
mammograms containing AD) from the AD RoIs difficult (for the
experimental setting in Table 1); leading to greater FP.

However on the contrary, Table 4 which does not incorporate
normal mammograms yields lesser FP. The reason could be the
features in the mammograms of Table 4 are prominent since the
pixel resolution is four times lesser than the mammograms in
Tables 5–7. It is reiterated that the mammograms in Tables 5–7
have been down-sampled to 200 μm for a fair comparison with the
mammograms in MIAS which also have a pixel resolution of
200 μm.

It may be observed that in Tables 1–7 the performance of the
proposal is consistent for low values of K such as K < 100. A
question may arise why keeping one classifier in the ensemble
performs as well as keeping multiple classifiers. We argue that in
choosing K = 1 the class labels assigned to the test RoIs is not the
class labels assigned by the single classifier in the ensemble. There
is an intermediate process that predicts the class labels of the test
RoIs by assuming that the single classifier would perform
consistently in both training and test sets. Therefore, the class
labels assigned to the test RoIs for K = 1 is not the labels in
Me(1, 1: NRe) but the class labels in P

~
e.

Let us say that FP < 19.6 is low, FP > 19.6 and FP <= 25 is
moderate and FP > 25 is high. We observe from the tables that
x = 20 (recall that x is the percentage of total number of
mammograms kept in the training set) yields low FP values in all
the tables except for the moderate FP values in Table 1. We notice
that x = 50 yields moderate FP values except for the low FP
values in Tables 1 and 4. We also observe that x = 80 yields low
FP values except for the moderate FP values in Table 4 and high
FP values in Tables 5 and 6. In the discussion of the preceding
paragraphs we have shown that there are at least two factors that
have played a role in the values of FP in these tables. For example,
the spatial pixel resolution of a mammogram and the inclusion of
normal mammograms have explained some anomalies as
elucidated in the preceding paragraphs of this subsection. Due to
the presence of such multiple factors we cannot interrelate the
magnitude of FP values with a particular value of x. Therefore,
there may not be a fixed guideline of how many mammograms are
suited in the test (training) set for the proposal. However, given the
results in Tables 1– 7 and the imaging quality (a spatial resolution
of approximately 50 μm) of existing scanners we can expect that
the proposal fares well for number of mammograms (in the training
and test set) > 20.

In Table 8, the proposal extracts the least number of FP in the
DDSM database whereas in the MIAS database the proposal
extracts greater number of FP. The reason for the poor
performance of the proposal in the MIAS database can be
attributed to the fact that the function pair and method of creating

Fig. 15  Illustration of the different plots of our experiments in Section 4
(a) FROC curves on the MIAS (m) database and the DDSM (D) database for the proposed method (DD) and the phase portrait approach (PP), (b) Illustration of the proposal's
performance in counting false positives sharing a common area of more than 70% (50%, 25%) of the smallest RoI as one false positive, (c) Plots of Loss in the MIAS and the DDSM
for x = 50% and K = 100. Note that because of oscillation of Loss towards the end, the lines appear thicker
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the label lbnR does not differentiate between difficult to classify
RoIs and other easier to classify RoIs; which is done in boosting
[8]. However, the proposal performs better in case of DDSM
because as highlighted earlier the signatures in the breast tissue are
prominent in the DDSM; hence all RoIs are of the same difficulty
level (if the ridges and the contours are used to describe an RoI) in
the context of labelling an RoI as an AD site.

4.4 Time complexity

The time complexity of Algorithm 1 (Fig. 8) (Algorithm 2 (Fig. 9))
is NRlog NR (KNRlog NR). The time complexity of Procedure 1
(Fig. 14) (Algorithm 3 (Fig. 10)) is NReK
(KNRelog NRe + NReK[θNRe]). The execution time of an
unoptimised Matlab code of Algorithm 2 (Fig. 9) (Algorithm 3
(Fig. 10)) is 3 (20) s per mammogram with a Xeon(R) CPU, 3 GHz
clock frequency, 24GB RAM and Windows 7 operating system.
The same for a phase portrait approach is of the order of minutes.

5 Conclusion
We have proposed an ensemble classifier for the detection of AD in
a mammogram. Our approach performs better than variants of
AdaBoost in one mammographic database. The proposal performs
better than Random Forest and phase portrait approach in two
mammographic databases. We intend to integrate the proposal with
a decision tree based ensemble classifier in order to reinforce the
classification result.
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