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Breast cancer is the most common malignant disease in women worldwide. In recent
decades, earlier diagnosis and better adjuvant therapy have substantially im-
proved patient outcome. Diagnosis by histopathology has proven to be instrumental
to guide breast cancer treatment, but new challenges have emerged as our in-
creasing understanding of cancer over the years has revealed its complex nature.
As patient demand for personalized breast cancer therapy grows, we face an urgent
need for more precise biomarker assessment and more accurate histopathologic
breast cancer diagnosis to make better therapy decisions. The digitization of pa-
thology data has opened the door to faster, more reproducible, and more precise
diagnoses through computerized image analysis. Software to assist diagnostic breast
pathology through image processing techniques have been around for years. But
recent breakthroughs in artificial intelligence (AI) promise to fundamentally change
the way we detect and treat breast cancer in the near future. Machine learning, a
subfield of AI that applies statistical methods to learn from data, has seen an ex-
plosion of interest in recent years because of its ability to recognize patterns in data
with less need for human instruction. One technique in particular, known as deep
learning, has produced groundbreaking results in many important problems includ-
ing image classification and speech recognition. In this review, we will cover the use
of AI and deep learning in diagnostic breast pathology, and other recent develop-
ments in digital image analysis. (Translational Research 2018;194:19–35)

Abbreviations: DIA = digital image analysis; AI = artificial intelligence; H&E = hematoxylin and
eosin; IHC = immunohistochemistry; ISH = in situ hybridization; DCIS = ductal carcinoma in situ;
ER = estrogen receptor α; PR = progesterone receptor; HER2 = human epidermal growth factor
receptor 2; DNA = deoxyribonucleic acid; mRNA = messenger ribonucleic acid; WSI = whole-
slide imaging; CAD = computer-aided diagnosis; RF = random forest; SVM = support vector
machine; MIL = multiple instance learning; ConvNet = convolutional network

BACKGROUND

Personalized cancer therapy—providing treatment tai-
lored to the patient—will require sophisticated analyses
on various levels, such as the genomic makeup of the
tumor. In breast pathology, accurate biomarker assess-
ment is vital for accurate therapy decisions. The
complexity of and demand for accuracy in histopatho-
logic breast cancer diagnosis is increasing. However, the
lack of pathologists is an evident issue in most parts of
the world. Computerized image analysis in histopathol-
ogy of breast tumors holds promise to improve breast
cancer diagnosis and help the pathologist reduce time-
consuming tasks such as biomarker assessment. Several
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biomarkers struggle with intra- and interobserver vari-
ability, which hampers its reproducibility. Digital image
analysis (DIA) provides efficient tools to increase
biomarker scoring reproducibility. Furthermore, devel-
opment of computer-aided diagnosis and outcome
prediction models using machine learning may facili-
tate clinical decision-making, in line with personalized
cancer medicine.

Surgical pathology is a medical discipline com-
pletely dependent on microscopic images to diagnose
diseases. With high capacity, whole-slide image scan-
ners available, the digital workflow in surgical pathology
is emerging, requiring advances in image analysis and
providing opportunities for large collections of image
data being used for machine learning algorithms.
Groundbreaking improvements in computer-aided diag-
nostics and artificial intelligence (AI) will fundamentally
change the way we diagnose diseases in the near future.
The most promising advance in AI is machine learn-
ing, the science of making computers analyze and learn
from data without human instruction. These technolo-
gies are commonly seen in areas such as spellcheck and
development of self-driving cars, and are all carried out
by neural network algorithms. Deep learning is a recent
machine learning approach that uses biologically in-
spired networks to represent data through multiple levels
of nonlinear modules that transform the previous repre-
sentation into a higher, slightly more abstract
representation. The compositional nature of the archi-
tecture allows deep neural networks to form highly
complex and nonlinear representations that provide un-
precedented discriminatory power. Deep networks have
produced groundbreaking results in many important prob-
lems including image classification1 and speech
recognition.2 Deep neural networks show decision-
making capable of defeating world champion human Go
players.3 In medical imaging, deep neural network anal-
ysis of skin lesions has recently shown diagnostic accuracy
on par with board-certified dermatologists.4 In ophthal-
mologic assessment of retinal fundus images, neural
networks recently showed high sensitivity and specific-
ity for the detection of referable diabetic retinopathy.5 An
example of industry-driven innovation in this field is IBM
building the AI platform Watson Health to aid radiolo-
gists interpret images and to produce even more
sophisticated complex tasks to improve patient care.6,7

The goal of AI applications is, however, not to replace
radiologists or pathologists, but to make the diagnostic
workflow more efficient and help evaluate and extract
the most important information from the images, as well
as to detect patterns not visible to the human eye.

In this review, we aim to summarize the recent de-
velopments in digital image analysis and in the use of
AI in forms of machine learning in diagnostic breast pa-

thology and to investigate why we need deep learning
in histopathology.

THE PATHOLOGY OF BREAST CANCER

Breast cancer is a heterogeneous disease and the most
common malignant disease in women worldwide, with
nearly 1.7 million new cases in 2012.8 More than 255,000
new cases are expected in 2017 in the United States
alone.9 The prognosis for breast cancer patients is highly
variable, depending on several prognostic variables. Breast
carcinomas comprise a wide range of morphologic phe-
notypes and are categorized into different histologic
subtypes. Breast carcinoma arises from the mammary ep-
ithelium and causes a premalignant epithelial proliferation
within the ducts, called ductal cancer in situ (DCIS).
However, at some point the cancer cells may gain ca-
pacity to break through the basal membrane of the duct
walls and infiltrate into surrounding tissues. When this
happens, the disease is called invasive carcinoma.

Invasive carcinoma of no special type (NST) com-
prises the largest group of invasive breast cancers.
Previously, invasive carcinoma NST was referred to as
infiltrating ductal carcinoma or invasive ductal carcino-
ma not otherwise specified. In up to 80% of these tumors,
foci of associated DCIS will be seen.10,11 Invasive lobular
carcinoma accounts for 5%–15% of invasive breast car-
cinoma, and appears with a more diffuse growth pattern
of the cell infiltrate. Invasive carcinoma NST and lobular
carcinoma together account for approximately 95% of
all breast tumors. Apart from these, the World Health Or-
ganization has classified numerous other categories of
carcinoma of the breast, which show characteristic
morphology.12,13

Histopathology refers to the study of tissue speci-
men after the specimen has been fixed in formalin,
paraffin embedded, and thin histologic tissue sections have
been cut and mounted onto glass slides. The principal
stain of tissue specimens is a combination of hematoxy-
lin and eosin (H&E). H&E staining has been used for
more than a century, and is still the standard for routine
histopathologic diagnostics. In addition, specific tech-
niques such as immunohistochemistry (IHC)14-22 and in
situ hybridization (ISH)23 are often used to come to a com-
plete diagnosis (Fig 1).

The morphologic assessment and tumor grading is
manually performed by the pathologist through light mi-
croscope assessment of tissue sections. A tumor’s
histologic grade has shown to be a strong prognostic
marker and is included in the pathologic reporting of every
breast cancer specimen. The method for histologic grading
by Bloom and Richardson has been modified most re-
cently by Elston and Ellis.24,25 The grading of invasive
breast tumors is performed based on assessment of
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3 morphologic features: tubular formation (glandular dif-
ferentiation), nuclear pleomorphism, and mitotic counts,
each given a value of 1–3. The combined scores give the
overall tumor grade (I–III), currently named Notting-
ham histologic grade, because it originally was based on
the Nottingham/Tenovus study 1973–1989.25 This manual
grading process is tedious and subjective, causing
interobserver variations even among senior pathologists.26

The most important prognostic indicator in breast
cancer is still its stage. Based on tumor size, regional
lymph node status and distant metastasis, breast carci-
nomas are classified and staged according to the TNM
system of malignant tumors.13,27

ASSESSMENT OF BIOMARKERS

The predictive and prognostic biomarkers estrogen re-
ceptor α (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2) and in some
countries, the proliferation-associated nuclear protein Ki67
are routinely analyzed by IHC (Fig 1).28-32 The Ameri-
can Society of Clinical Oncology/College of American
Pathologists have published guideline recommenda-
tions for immunohistochemical testing of ER, PR, and
HER2.33,34 Approximately 80% of breast cancer pa-
tients have tumors that express ER, which is the only
clinically used biomarker for endocrine therapy
response.35,36 In addition, co-expression of the ER-
induced gene PR is considered a positive factor for
response.37 The hormone receptors, ER and PR, are as-
sessed by manually counting the percentage of positive-
stained tumor nuclei over the whole tumor section. Tumors
with ≥1% or ≥10% stained nuclei, depending on guide-
line, are regarded as ER- or PR-positive.34

HER2/neu (c-erbB-2) is an oncogene that encodes a
transmembrane glycoprotein with tyrosine kinase activ-
ity in the family of epidermal growth factor receptors.
HER2 protein overexpression by HER2 gene amplifi-
cation is seen in approximately 15% of early breast tumors
and associated with poor prognosis.38,39 But HER2 is also
a target for anti-HER2 therapy that dramatically im-
proves the outcome for this group of patients.39 In routine
clinical pathology, HER2 protein expression is first as-
sessed by IHC analysis, and in those cases where the
staining is equivocal, ISH analysis is performed to verify
the HER2 gene amplification by a DNA probe.40 The
overexpression of HER2 is a good predictor of re-
sponse to anti-HER2 therapy. However, diagnostic
observer variability has been reported for HER2 scoring
by pathologists.41-45

The proliferation-associated biomarker Ki67 is a
nuclear protein expressed in all phases of the cell cycle,
except for the G0 (resting state). The Ki67 index is as-
sessed by manual counting of the percentage of Ki67
stained nuclei in a “hot spot” region with the densest im-
munoreactivity out of at least 200 tumor cells. It can be
used to distinguish between low- and high-proliferating
tumors, which may be used to guide clinical decisions
regarding adjuvant chemotherapy in ER-positive
tumors.46-48 There is robust evidence that Ki67 has clin-
ical validity in breast cancer prognostication and therapy
prediction.46,49 Despite its importance in breast cancer,
Ki67 index scoring has shown interlaboratory discor-
dance and a lack of standardized assessment, which
prohibits the recommendations for Ki67 assay in routine
oncology.28,46,50 Today, there is no consensus regarding
which region to score or which cutoff to use for prolif-
eration rates, and the IHC assessment of Ki67 assay

Fig 1. Breast carcinoma. (A) Hematoxylin and eosin tissue staining. Biomarkers immunohistochemically stained for es-
trogen receptor (ER; B), progesterone receptor (PR; C) HER2 (D), and proliferation-associated protein Ki67 (E). (F)
Immunohistochemical cytokeratin (CK) double staining for CK5 (brown) and CK8/CK18 (red) shows the absence of
basal/myoepithelial cells (CK5) corresponding to invasive carcinoma.
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requires knowledge of local laboratory values.28 As stated
by Goldhirsch et al., “Analytic validity, clinical validi-
ty, and clinical utility are all required for optimal clinical
application of tumor biomarkers.”29,51 Certain biomarkers
are prone to intra- and interobserver variability, and this
effect is especially evident for Ki67.45,52,53 The St Gallen
International Expert Consensus 2015 states that image
analysis may help to reduce variability in Ki67 scoring.28

The accuracy for the IHC-determined biomarkers is vital,
because they together with the morphologic tumor char-
acteristics (grade and stage) are used for guiding the
therapeutic decisions.

Aside from standard clinicopathologic assessment,
gene expression profiling can provide prognostic
information.54-57 High concordance and robustness of
biomarker evaluations and gene expression profiling of
breast tumors are of great importance in oncologic patient
management. Identification of gene expression signa-
tures and intrinsic subtypes based on global mRNA
expression, as first described by Perou et al. in 2000, have
provided promising alternatives to classify invasive breast
tumors into high- and low-risk subtypes.55,58 The intrin-
sic subtypes luminal A, luminal B, HER2-enriched, basal-
like, and normal-like have been widely investigated by
DNA microarray and hierarchical clustering analysis.55,57-61

Multiparameter molecular marker assays, such as the
Prosigna (Nanostring Technologies Inc, Seattle, WA),62,63

BluePrint and MammaPrint (Agendia, Inc, Irvine, CA),64,65

and Oncotype DX (Genomic Health Inc, San Fran-
cisco, CA)66,67 can be used to define the subtypes and
estimated risk of recurrence, but are unfortunately ex-
pensive and not available in less developed regions in
the world. However, IHC measurements of ER, PR, Ki67,
and ISH of HER2 can be used to approximate multigene
testing, to obtain surrogate definition of subtypes.68 The
ER-expressing luminal A and B subtypes account for 70%
of all breast tumors. The hormone receptor positive, low
proliferating luminal A tumors generally have good prog-
nosis and endocrine response,69 whereas the high
proliferating luminal B subtype show poorer prognosis
and reduced sensitivity to endocrine therapy.47 The HER2-
enriched subgroup, which can be effectively targeted by
anti-HER2-therapy, corresponds to ER-negative and
HER2-positive tumors.70 Triple-negative tumors corre-
spond more or less to the basal-like subtype.69

WHY DIGITAL PATHOLOGY?

Around the world, pathology laboratories are faced with
fixed health-care budgets in the face of growing numbers
of patients from an aging population. At the same time,
there is a shortage of trained pathologists, and patient
demand for precision diagnostics and treatment is in-
creasing. Efficient and cost-effective methods are highly

desired to address these needs and to modernize routine
pathology. The digitization of pathology data has opened
the door to faster, more reproducible, and more precise
diagnoses through computerized image analysis. Digital
pathology is a dynamic, rapidly evolving, image-based
discipline that incorporates acquisition, management, and
interpretation of pathology information obtained from a
digital scan of a glass slide. In several validation studies,
the concordance between digital image diagnosis and con-
ventional glass slide diagnosis has shown to be good to
superior.71-77 Digitalized images make consultation
between expert pathologists easier, and facilitate auto-
mated image analysis. The goal of digital pathology is
not to take over the pathologist’s work, but to improve
accuracy, reduce human error, and provide tools for a more
efficient workflow and increased reproducibility. Other
benefits of digitization include a reduction in the cost of
handling glass slides and the ability to share data for ed-
ucation or long-distance consultations.78 In addition, the
image quality of a digital slide scan is preserved, whereas
the staining in the physical sample fades over time.

Laboratories with integrated digital pathology
workflows and interpretation are still sparse today. This
stands in contrast to radiology, which in most countries
underwent digitalization over the past decades. Picture
archiving and communication systems have been in place
for radiology departments for more than 20 years. Con-
sequently, medical image analysis development has largely
focused on digital radiology data, producing important
advances with clinical implementations.79,80 Technical limi-
tations have slowed progress in digital histopathology—
primarily because the images can be up to 10 times the
size of radiology images. Histologic glass slides are con-
verted to digital images using high-resolution whole-
slide imaging (WSI) scanners. The entire process involves
several steps: image acquisition, storage and manage-
ment, annotation, and viewing or sharing. Several
pathology laboratories are integrating WSI scanners into
the routine workflow in an effort to digitalize the diag-
nostic workflow. However, challenges to find solutions
that provide sufficient storage capacity with reasonable
archiving costs remain. The digitalization of pathology
data opens the door to quantitative computer-based image
analysis, and could prove to be clinically important as
a tool to accurately identify high-risk patients. Novel
digital image analysis algorithms to improve therapy pre-
diction and survival prognostication are of utmost value
in the clinicopathologic setting. Current classification of
biomarkers based on manual measurement is arbitrary:
furthermore, manual measurement and counting of cell
numbers hampers reproducibility. Depending on the
downstream analyses that will be performed, manual an-
notation of the digitalized slides by a trained pathologist
can be required, for example, to delineate cancer or
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metastasis and exclude artifacts. That can be a time-
consuming step. Computerized image analysis promises
to improve reproducibility. However, there is controver-
sy about how image analysis should be implemented.28

EXISTING DIGITAL IMAGE ANALYSIS METHODS

Pathology is an image-based discipline, traditionally
with the light field microscope as the major working tool
for image interpretation. Computerized image analysis
software has been developed to aid the pathologist’s eval-
uation of whole-slide images. Such software enables
quantitative image analysis, in an effort to improve ac-
curacy, reliability, reproducibility, and productivity.
Computerized image analysis is not a novel research area
in histopathology. Over the years, methods have been de-
veloped to reduce variations in image quality, for example,
through color standardization, spatial filtering, denoising,
or enhancement.81 A significant amount of work has been
devoted to the automatic segmentation of nuclei, for
example, applying active contour models.82 This is a
general segmentation technique, which fits a deform-
able shape model to a given image.83-85 Research has also
concentrated on mitosis detection.56 For a detailed review
of object detection and segmentation, see Veta et al. and
Gurcan et al.86,87 In this review, we do not intend to cover
all the previous techniques for image analysis in histo-
pathology, but to give the current state of DIA focusing
on breast pathology.

ImageJ, the free and accessible Java-based, user-
friendly image analysis tool developed by the National
Institutes of Health (Bethesda, MD), is arguably the most
popular open tool for biomedical image analysis. It can
readily be applied to quantify IHC or other specific tasks
through different analysis and processing plugins.
ImmunoRatio (University of Tampere, Finland) is a tool
developed for automated analysis of IHC biomarker as-
sessment (ER, PR, and Ki67). It provides a ratio of
positively stained tumor nuclei area (Fig 2). It is avail-
able as a web application or as a plugin for ImageJ.
ImmunoRatio has been used by various research groups,
and studies computing the Ki67 labeling index have
shown excellent concordance to manual assessment in
breast cancer.88,89 Similarly, the publicly available appli-
cation ImmunoMembrane has been evaluated for HER2
IHC.90

Today, in industry, there is increasing competition for
digital pathology image analysis solutions. This section
gives a brief overview of the most common commer-
cially available software for breast pathology. Roche
VENTANA image analysis algorithm for IHC assays in
breast pathology is a solution used to quantify breast panel
biomarkers and to provide an integrated solution includ-
ing antibody assays. In 2014, AstraZeneca acquired the

imaging and data analysis technology company Definiens,
and is incorporating their Tissue Phenomics software for
clinical programs in immune-oncology and predictive
biomarker discovery. Visiopharm (Hoersholm, Denmark)
Virtual Double Staining techniques is using a
pancytokeratin-stained tissue section, which is aligned
to the IHC-stained biomarker of interest and enables au-
tomated detection of tumor regions (Fig 2).91-93 The
abovementioned commercial platforms operate on input
from a WSI scanner, whereas the Aperio Digital Pathol-
ogy (Leica Biosystems, Nussloch, Germany) platform
operates by integrating a digital microscope with the
image software. The Aperio Digital Pathology user-
supervised platform has been compared with the
automated Definiens Tissue Studio platform for classi-
fication of ER and PR IHC positivity.94 TissueGnostics
analysis software (Vienna, Austria) offers image analy-
sis applications for clinical and research assessment of
biomarkers in breast cancer. The rapid development of
image analysis software and integrated solutions for his-
topathologic diagnostics will most certainly continue for
the coming years, with close competition in the indus-
try. If trends continue, these or similar software packages
will become an integrated part of routine digitalized
diagnostics.

Up to now, most research on digital image analysis
has focused on quantifying biomarkers by IHC. DIA has
shown excellent reproducibility, although limited to
subsets with individual biomarkers or smaller cohorts.93,95-97

Hartman et al. have recently shown the advantages in con-
gruence to gene expression assays and the prognostic
power of digital image analysis compared with current
manual methods of biomarker assessments.91 Auto-
mated image analysis has been applied to analyze several
biomarkers, including HER2 expression, holding promise
to reduce the need for additional ISH analysis in HER2
equivocal cases95,98 and significantly reducing inter- and
intraobserver variability.41,42 Applying automated image
analysis on IHC cytokeratin-stained sentinel node biop-
sies, negative (metastasis-free) samples can be eliminated
with 100% sensitivity and used as a screening tool.99 Fur-
thermore, significant compression and scaling of large
whole-slide images can be performed without compris-
ing automated IHC biomarker assessment.100

An important next step will be to focus on the assess-
ment of the basic H&E-stained tissue sections and the
development of computer-aided diagnosis (CAD) algo-
rithms for WSI.

MACHINE LEARNING IN DIGITAL PATHOLOGY
IMAGE ANALYSIS

Recent breakthroughs in AI promise to fundamental-
ly change the way we detect and treat breast cancer in
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the near future. The difference between AI, machine learn-
ing, and deep learning is not always obvious to nonexperts.
AI is an umbrella term encompassing the techniques for
a machine to mimic or go beyond human intelligence,
mainly in cognitive capabilities. AI includes a variety of
subfields such as rule-based systems,101 a classical ap-
proach to AI, in which the programmer explicitly encodes
the knowledge provided by the task experts. In con-
trast, machine learning is a subfield of AI that applies
statistical methods to learn to recognize patterns from
a set of provided data without explicit human instruc-
tion. Deep learning is a recent machine learning approach
that uses biologically inspired networks to represent data
through multiple levels of simple but nonlinear modules
that transform the previous representation into a higher,
slightly more abstract representation. The composi-
tional nature of the architecture allows deep neural

networks to form highly complex and nonlinear repre-
sentations that provide unprecedented discriminatory
power. Deep networks have produced groundbreaking
results in many important problems including image
classification1 and speech recognition.2

Computerized diagnostic systems in medicine102 and
technology in general,103,104 have traditionally been rule-
based. However, in the past years, we have witnessed
pivotal progress in several aspects; the advent of pow-
erful machine learning techniques, the advancement of
graphics computational resources, and the ever-increasing
digitization of medical data. These developments re-
sulted in an explosion of interest in machine learning as
these systems gradually replace classic image analysis
techniques for automatic medical diagnosis.

The purpose of a machine learning algorithm is to use
the provided task-related training data to learn a task,

Fig 2. Digital image analysis for breast pathology. (A-B) Digital automated scoring of immunohis-
tochemical (IHC) Ki67 using ImmunoRatio application for ImageJ. (A) Original image of IHC staining
for Ki67 (brown nuclei). (B) Image showing staining components. Positive nuclei = orange. Nega-
tive nuclei = blue. (C-D) Visiopharm integrator software using virtual double staining (VDS) sandwich
method for exclusion of non-epithelial cells and automated IHC Ki67 scoring. (C) IHC pancytokeratin
CKMNF116 stained tumor cells automatically identified and outlined by blue line. (D) IHC Ki67
stained image aligned with the CKMNF116 image, used for scoring of Ki67 in tumor cells.
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which usually involves taking an input data and pro-
cessing it in some way to produce a correct output. The
training data contain different examples of the task’s input.
It can also include examples of the correct output, which
is commonly referred to as labels. When the input data
include the corresponding label for all the examples, it
is called a supervised learning scenario. Supervised learn-
ing is currently the most common approach in digital
histopathology.105-122 The provided label for visual input
data (eg, image) can correspond to either an entire
image,111-113,123-128 a window within the image,108,115-117 or
at the pixel level.105-107,109,110,118-121 With the advent of deep
learning methods that strongly benefit from pixel-level
annotations, the latter is the most common type of problem
being currently studied. Another popular scenario is when
the training data come with a weaker form of annota-
tion than what is expected as the output of the machine
learning system. In work by Li et al.113 and Zu et al.,127

image-level labels are provided for histopathologic images
of tumors or benign tissues; however, the algorithm is
expected to produce pixel-level prediction of a cell being
cancerous or not. This setup is referred to as weakly su-
pervised learning.113,115,127-129 Weakly supervised learning
makes the annotation a simpler and less tedious task, but
at the cost of the model becoming less accurate and robust.
This trade-off of annotation costs and model accuracy
is a recurring scenario in digital pathology because of
the giga-pixel scale of the histopathologic image, per-
petuating the prominence of weakly supervised learning.
An even harder-to-learn setup is called unsupervised learn-
ing, where there is no example of the correct output
provided with the training data. In unsupervised learn-
ing, the task is to look for patterns that we have minimal
idea about a priori. For instance, Xu et al. use an unsu-
pervised learning method to discover cancer subtypes by
applying a clustering technique on histopathologic images
of cancerous tissues.127 Additionally, unsupervised learn-
ing is commonly employed for extracting the important
measurements, or features, from the data.107,130 There exist
other variants of data supervision, which has less com-
monly been used in digital histopathology, such as
reinforcement learning, semi-supervised learning, and self-
supervised learning.

Before a machine learning algorithm can consume the
training data to learn a model, it is required to make the
data presentable to the algorithm. A representation method
ideally discards the irrelevant information from the data
and makes the potentially relevant information more ac-
cessible. In digital pathology, a typical histopathologic
image can be 100,000 × 100,000 pixels. That is, each color
image, as a computer program sees it, is 30 billion
numbers. This enormity of the input data can easily cripple
most of learning methods and warrants a representa-
tion technique that reduces this size. Until a few years

ago, the most common types of image representations
used in the literature as well as industry were hand-
crafted by humans, such as scale-invariant feature
transform,131 speeded-up robust features,132 and local
binary patterns.133 These hand-crafted representations are
usually designed by domain experts who can hypothe-
size what type of image features can be important for
their domain’s tasks. In digital pathology, a combina-
tion of representations is usually used,105,111,113,118,122,123,129,134

each capturing a different aspect of the image such as
texture105,111,113,123,134,135 and color.113,134 Other works tried
to learn the suitable representation instead of crafting
them.123,124,126,130,136-138 Most recently, with the resur-
gence of neural networks, representation learning has
become the most prevalent method and achieved supe-
rior performance in various tasks.106,107,111

NON-DEEP LEARNING MACHINE LEARNING
METHODS IN IMAGE ANALYSIS

Deep learning is currently the dominant technique for
supervised learning from data. However, in the past
decades, a diverse set of machine learning models has
been proposed. Many of these methods have found their
way into diagnostic medical imaging. A decision tree is
used for supervised learning in classification and regres-
sion tasks.139 It operates by breaking down the decision-
making process into a series of consecutive tests. These
tests form a tree-like structure, where each decision cor-
responds to a node. Starting from a single root node, each
node applies a test on the input sample and based on the
test outcome it forwards the sample to one of its chil-
dren up the tree. When a sample reaches a leaf (a node
with no children), the decision associated with that leaf
is assigned to the sample. Decision trees are very effi-
cient in training and inference, but are prone to
overfitting—when the learned model becomes overly
complex so that it fits the training data well but fails to
generalize to unseen data.

A random forest (RF) uses an ensemble of decision
trees to make its learning more robust to variations in
data.140,141 In RF, different random subsets of the train-
ing data are formed, and for each subset a decision tree
is learned. An RF is very efficient thanks to the highly
parallelizable nature of both its training and inference,
and has been commonly used in digital pathology.106,120,129

Support vector machine (SVM) is a maximum-margin
classification algorithm used for supervised learning.142

It operates on training samples mapped to a representa-
tion space. For binary classification tasks (eg, tumor vs
normal), it essentially means that it learns a linear sep-
arator in the representation space such that the training
samples fall on either side of the line depending on their
class. SVM further maximizes the distance of the closest
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points (training samples) to the separation line. This
ensures that there is a margin between samples of the 2
classes. Standard SVM can be naturally extended to multi-
class scenarios.143 SVMs are generally fast to train, and
relatively efficient at inference. Various forms of SVM
are commonly employed in image analysis applica-
tions of breast histopathology.105,107,111,122-124,135

Multiple instance learning (MIL) is a meta-algorithm
dealing with a scenario where bags of samples are labeled
instead of each sample individually. A positive bag means
that at least one of the samples in the bag is positive and
a negative bag means none of the samples in the bag is
positive. MIL is usually applied to weakly supervised
training data. In digital histopathology, it is mostly applied
when we have labels for an image (bag of pixels) and
not the pixels themselves, whereas we are interested in
learning a model that can classify the pixels.113,127-129 For
instance, if the input is a dataset of images taken from
tumor or benign specimens but the desired output is

segmentation of the cancerous regions of an image, one
can use MIL.

DEEP LEARNING

Deep learning is a method for layered end-to-end learn-
ing, and in contrast to other prevalent learning methods,
deep learning requires minimal processing on the input
data or the output values (Fig 3).144 An end-to-end model
takes in the raw data (eg, image pixels) and directly pro-
duces the desired output (eg, diagnosis), without an expert-
designed feature extraction or representation step required
by other learning methods. Deep learning involves mod-
eling through multiple layers of nonlinear transformations.
Each middle layer takes as input the output of the pre-
vious layer and transforms it by applying simple matrix
operations using that layer’s parameters. The first layer
takes the raw data as input and the last layer produces
the desired output (Fig 3). This design effectively unifies

Fig 3. Deep learning vs traditional machine learning. (A) In the traditional paradigm, several steps requiring expert human
knowledge are required to recognize cancer in images. First, image processing such as segmentation corrects the image
and breaks it into manageable parts. Next, hand-crafted measurements, or features, are extracted from each part. A machine
learning algorithm is provided those features as a vector, which it uses to learn a predictive model. (B) In contrast, deep
learning is an end-to-end approach to learning that takes raw images as input and directly learns a model to produce the
desired output. Deep learning uses biologically inspired networks to represent data through multiple levels of simple but
nonlinear modules that transform the previous representation into a higher, slightly more abstract representation. The
compositional nature of the architecture allows deep networks to form highly complex and nonlinear representations as
each layer forms a more abstracted representation than the last. The result is a rich representation that provides unprec-
edented discriminatory power.
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the notions of representation learning and modeling such
that it becomes indistinguishable at which layer the rep-
resentation stops and the modeling starts. Although each
layer’s computations are simple, the power of deep learn-
ing comes from having multiple consecutive layers. It
has been shown that deep models are more efficient than
few layer models in approximating highly complex func-
tions. In addition, the layer-wise transformation is
compatible with our cognitive understanding of the com-
positional nature of an image—a scene consists of
different objects, objects consist of parts, parts consist
of motifs, and so forth. In that respect, earlier layers of
a deep network model the more atomic constituents of
an image, and as we go deeper more abstract concepts
emerge.145

TYPES OF DEEP NETWORKS

There are several types of deep networks, with the most
common ones being convolutional networks (ConvNet),146

auto-encoders,147 recurrent networks,148 and adversarial
networks.149 ConvNet is composed of several convolu-
tional layers; each of these layers applies the same local
transformations at various locations of its input signal.
A convolutional layer assumes that different concepts (eg,
visual objects) can appear at any location in the input
(eg. image). Convolutional layers, thus, have 2 proper-
ties, which significantly increase their efficiency: (1) the
transformations are local and (2) the parameters are shared
for different local regions. This profoundly increases the
robustness of ConvNets to data variation. ConvNets are
the most common types of deep learning used in digital
breast pathology.106,107,109-112,115,119,121,150,151

Different architectures have been proposed for
ConvNets. Some of these architectures have repeatedly
been shown to be successful for image recognition tasks
and became standards in the field. These architectures
include inception,108,150,152 residual networks,109,153 visual
geometry group,106,150,151,154 multi-column networks,155

densely connected networks,156 and AlexNet.1,112,150

Because of the unique size and nature of breast histo-
pathology images, many works in this field design their
own ConvNet architecture.111,112,115,117,119,121

Another type of deep network is an autoencoding
network. Autoencoders are simple, usually shallow, ar-
chitectures, which are used for learning a representation
on a set of training data in an unsupervised fashion. This
is usually done by encoding the data into a low-
dimensional vector such that the important properties of
the original data can be reconstructed from the low-
dimensional vector. Autoencoders along with deep belief
networks157 and restricted Boltzmann machines158 have
been often used for representation learning on histo-
pathologic images.116,123,136-138

Recently, a new architecture known as generative
adversarial networks was proposed,149 which has rapidly
become popular because of its unprecedented ability to
generate unseen examples.159 Adversarial training in-
volves 2 networks: a generator whose task is to generate
realistic output, and a discriminator whose task is to dis-
tinguish between a synthetically generated output and a
real example. The 2 networks compete—the genera-
tor’s task is to perform so well at its task such that it
completely fools the discriminator network. Adversarial
training is starting to emerge in the field of digital
pathology.160,161

COMMON PRACTICES IN DEEP LEARNING

A variety of different techniques have been estab-
lished for training a deep learning model. Here we discuss
a few key techniques commonly applied in digital
pathology.

Deep learning is most successful when abundant
labeled training data are available. ImageNet, a data-
base commonly used to train networks for image
classification, contains millions of images, and thou-
sands of examples of every object type. Creating a dataset
of this size is an enormous effort. Medical image datasets
are usually much smaller because of patient privacy issues
and the need for expert annotation. One way to circum-
vent this issue is to use transfer learning via pre-
training the deep network on a completely different
task107,108,150 or a related task106 and then fine-tuning the
network’s parameters on the small dataset at hand. Al-
though this is a common setup for small medical
datasets,106-108,150 there are works who have managed to
train a network successfully without pre-training.109,119,121,150

Another approach to alleviate the lack of medical images
is data augmentation using different image transforma-
tions that do not change its corresponding label. This
is a common approach in digital histopathology using
deep learning.106,108-110,121,151 The augmentation can
be done through flipping the images,106,108-110,121,151

rotation,106,108-110,121,151 cropping,106,108,109,151 and less com-
monly via color and contrast distortion,106,151 added
blurriness,110 scaling,151 and elastic deformation.110

Another common technique includes processing the
input image at different magnifications. Analyzing his-
topathologic images involves studying the phenotypic
properties of individual cells as well as the growth pat-
terns. This warrants a learning machinery, which processes
the image at various scales. Thus, ensembles of multi-
ple deep networks operating on different scales have
been helpful in these applications.108,110 In general, com-
bining different deep networks for a single task is a
common technique to increase the performance of the
predictions.106,108,121
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Finally, the trained deep network can be treated solely
as a representation method and then be combined with
other learning machineries.106,107,111 Along that line, dif-
ferent machine learning techniques have been applied on
top of a ConvNet’s output, such as RF,106 SVM,107,111

voting,108,109,117 probabilistic graphical models,110 and ad-
ditional adaptation layers.107

DEEP LEARNING FOR COMPUTATIONAL
BREAST PATHOLOGY

Deep learning has generated a lot of excitement. The
trend is to apply it to new domains, and pathology is not
an exception. There is a high potential and demand for
rapid advances in computational pathology. In breast pa-
thology, apart from CAD, deep learning methods are being
applied to complex pattern recognition tasks. Here, we
intend to cover the leading research in computational
breast pathology, with approaches for grading and de-
tecting cancer as well as outcome prediction.

Deep learning has already been applied for detection
of tubular formation,162 nuclear pleomorphism,162,163 and
tumor grading.162-164 Counting of mitotic figures, 1 of 3
parameters in grading of breast tumors, is a tedious and
somewhat subjective assessment. Ciresan et al. was first
to apply convolutional neural networks to counting of
mitosis in breast cancer based on H&E sections.121 Wang
et al. proposed a ConvNets model combined with hand-
crafted features for mitosis detection165 and later this
method was combined with an RF classifier.166 Another
example combined segmentation-based features with
neural networks and demonstrated precise detection of
mitotic figures.167 Several automated methods for mitosis
detection have been proposed.168,169

Furthermore, deep learning algorithms such as
ConvNets can facilitate classification of, for example,
benign vs malignant breast tumors,170 or detection of in-
vasive carcinoma.171 In a recent work by Araujo et al.,
a convolutional neural network could distinguish normal
breast tissue, benign lesion, and in situ carcinoma from
invasive carcinoma.172 Automated methods have been pro-
posed to distinguish intraductal lesions such as usual
ductal hyperplasia from atypical ductal hyperplasia and
DCIS, the latter 2 leading to surgical excision.173 Cruz-
Roa et al. proposed a multilevel neural network for
automatic detection of invasive tumor extent in breast
cancer.174 Litjens et al. used deep learning model with
fully ConvNets showing high performance in image clas-
sification in forms of detection of breast cancer metastasis
in whole-slide images of sentinel lymph nodes.175

The Camelyon16 grand challenge was the first grand
challenge on CAD in pathology using WSI. The data con-
tained sentinel lymph node images of breast cancer
patients, with the task being to detect metastasis. The best

performing algorithms for this task all used deep learn-
ing, with a level of accuracy similar to that of a
pathologist.176-178

Deep learning models have recently been applied to
automated biomarker assessment in immunohisto-
chemically stained breast tumor images. For example,
they have been used for automatic scoring of IHC HER2179

and automated ER scoring.180 Furthermore, the stromal
tissue surrounding the invasive tumor has not been as ex-
tensively studied, despite the vast cell types present in
this tissue compartment and in direct relation to the tumor
cells. However, deep learning for assessment of tumor-
associated stroma and the diagnostic importance as a
biomarker was recently shown.106 In addition, deep learn-
ing methods have been used to quantify immune cell
infiltration, so-called tumor infiltrating lymphocytes, in
H&E-stained breast tumor images.181

Although deep learning has produced some promis-
ing results, before deep learning models are implemented
in clinical decision-making, further studies are needed
for validation and to assess their use.

Computer-aided prognosis is a promising field for
machine learning algorithms, especially in cancer med-
icine, such as breast cancer and precision medicine.
Computer-aided prognosis and prognostic models for
breast cancer are based on histologic “features,” molec-
ular characteristics (gene expression profiling), and clinical
data, and for example distinguish patients with more ag-
gressive disease.182,183 Machine learning algorithms have
shown the ability to identify stromal morphologic struc-
tures that were not previously associated with prognostic
outcome in breast cancer, and based on tissue micro-
array cohorts, an image-based model was developed to
predict patient outcome.184

LIMITATIONS WITH DEEP LEARNING AND
COMPUTER-AIDED DIAGNOSTICS

Because of its unprecedented performance in recog-
nition tasks, deep learning has opened doors to
technological advances in many fields including medical
imaging. However, it still entails challenges, limita-
tions, and concerns. This section discusses some of those
that directly apply to the field of digital pathology.

Deep learning, in general, is perceived as a data-
hungry learning method. The scale of the data available
to most of the medical studies has so far been below the
common standards in machine learning and computer
vision. This can affect the performance of deep learn-
ing to medical data. So, the most common architectures
and learning strategies in deep learning might not be im-
mediately effective or optimal for medical image data.
Moreover, standard deep architectures are computationally
expensive and memory-heavy when training, and less
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severely at deployment. The computational complexity
gets aggravated for medical images because of their size
(ranging from mega- to giga-pixels). These underline the
importance of adapting the mainstream methods of deep
learning toward the needs and settings of medical images.

Moreover, deep networks currently prevail in super-
vised learning, but this does not hold for weakly
supervised or unsupervised learning scenarios. Super-
vised learning requires correctly labeled training data.
In visual recognition, large datasets are created using
crowdsourcing on common sense tasks (eg, is this an
image of a cat?). Acquiring such data for medical ques-
tions can be problematic for several reasons. For
histopathologic annotation, expert annotations from pa-
thologists are required to do the job. Their time is a scarce
and expensive resource. Another difficulty lies with the
complexity of medical tasks; predicting a patient’s
outcome depends on various factors, and possibly the col-
lected data may not give the complete picture—it may
only be partially relevant to the outcome or even not rel-
evant at all. Moreover, the most interesting estimation
problems are the ones that the pathologists have inter-
nal disagreements about, which makes potentially noisy
annotations. In addition, discovering novel biomarkers,
a vital task for machine learning systems in medical image
analysis, is an unsupervised learning problem, which deep
learning is thus far not well suited for. Finally, because
of the incredibly high resolution of some medical image
data such as WSI, it can become prohibitively tedious
to provide the necessary pixel-level annotations for lo-
calization tasks.

Another concern with deep learning, among other
machine learning methods, is covariate shift, which refers
to the scenario where the distribution of the input samples
changes from that of the training time. This can become
a vital reliability issue because all the performance metrics
used to train and evaluate a machine learning system is
drawn from the training distribution. If the training dis-
tribution no longer represents reality, there is no guarantee
that the expected performance will still hold. In fact, it
is possible to change the distribution of the input in such
a way that a well-performing system completely fails at
the new distribution. An important example in medical
image analysis is when a model is trained only using
images obtained from imaging equipment of a single
vendor. The network then fails to respond correctly to
images obtained from another vendor’s equipment. One
popular way that this phenomenon is studied in the context
of deep learning is through the notion of adversarial ex-
amples. Most interestingly, it has been shown that image
of a certain class can be minimally altered such that the
network is completely fooled about its class, whereas the
image’s appearance remains the same to the human eye.185

This concern is especially relevant to the field of medical

imaging. Medical images can come from various equip-
ment with different post-processing applied to them. Also,
system reliability is a crucial aspect of medical
applications.

Furthermore, a concern when analyzing histopathol-
ogy images is color inconsistency and variations in tissue
processing that may significantly affect the image anal-
ysis. To deal with these variations, caused by, for example,
different staining techniques, staining procedures
and manufacturers, and section thickness, different
pre-processing methods are used for image color
normalization.81

Finally, a common concern when acquiring medical
data is the privacy of the patients and their medical
records. Usually, that is resolved by giving restricted
access to the individuals who are involved in an ap-
proved research project with an agreement not to publicize
those data. However, releasing the trained model is usually
not seen as a breach of this agreement. In that regard,
some recent studies have shown that the data used to train
a deep network might be partially retrievable by reverse
engineering the network. However, techniques on how
to use encrypted input data where reverse engineering
become impossible have also been proposed.186

ADVANCES IN DIGITAL BREAST PATHOLOGY AND
FUTURE PERSPECTIVES

In today’s routine breast pathology, only a few pa-
thology laboratories have adopted a digital workflow,
which has limited the implementation of digital image
analysis. However, there is evidence that automated image
analysis increases reproducibility of biomarker assess-
ment. It will not be long until digital pathology is the
routine standard, as is the case in radiology. Deep learn-
ing algorithms for computer-aided prognosis may soon
be able to retrieve similar prognostic data as gene ex-
pression profiling by identifying common patterns in
different molecular subtypes of breast cancers. In this case,
deep learning would be a cheaper and much faster al-
ternative to gene expression profiling.

However, several challenges remain. Getting the full
advantage of deep learning depends on having a full
digital workflow, which is only slowly evolving because
of the high costs and the dependence on solid IT support
systems. The question of annotations remains: to what
extent are annotations required and how can this be stan-
dardized? Might it be sufficient enough to separate DCIS
from invasive tumor? Annotations limited to the train-
ing sets and to validate the networks in larger datasets.

Most studies have focused on invasive breast carci-
noma, but little attention has been given to DCIS—could
deep learning algorithms be trained to stratify DCIS
lesions according to grade and aggressiveness and to
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foresee which patient will progress to invasive cancer?
A lot of work has been done on whole tumor sections,
although core needle biopsies, with small amount of tissue
on which the primary diagnosis often is given, can hold
diagnostic challenges. Given a limited amount of breast
tissue, DCIS can be difficult to distinguish from true in-
vasive tumor cells. Appling machine learning on this
aspect could aid the pathologist in this critical decision.

The main goal with the research in applied deep learn-
ing for breast pathology is to identify patterns not visible
for the eye of a pathologist or so-called imaging
biomarkers, new unknown biomarkers resulting from deep
learning algorithms. Another promising avenue of re-
search is to study patterns that correlate to molecular
subtype, treatment response, and prognosis to refine the
diagnostics in precision medicine. This is in line with the
Precision Medicine Initiative launched by Barack Obama
in 2015.187 Stronger and robust biomarkers will likely not
come from 1 level of data, but through combining
genomic and histomorphologic information with neural
networks that are able to provide robust prognostic and
therapy-predictive information. Future studies will require
well-established cohorts with multiomics data.

However, the challenge for machine learning is not to
identify cancers or metastasis in images, because a trained
pathologist can complete this task fast. What we really
need deep learning for is to predict therapy response and
prognostication of the tumors, and to combine with or
complement genomics and transcriptomics for patient
stratification. This is where the real challenge lies and
it will be even more important to facilitate personal-
ized cancer medicine. Collaborations between computer
scientists, bioinformaticians, and research pathologists
are of utmost importance for the development of rele-
vant algorithms and computer-aided prognosis. In future
research, we envision deep learning models combined
with multiomics data for advanced precision medicine.
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