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Unsupervised Deep Learning Applied to Breast
Density Segmentation and Mammographic

Risk Scoring
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Celine M. Vachon, Katharina Holland, Rikke Rass Winkel, Nico Karssemeijer, and Martin Lillholm

Abstract—Mammographic risk scoring has commonly been au-
tomated by extracting a set of handcrafted features from mammo-
grams, and relating the responses directly or indirectly to breast
cancer risk. We present a method that learns a feature hierarchy
from unlabeled data. When the learned features are used as the
input to a simple classifier, two different tasks can be addressed: i)
breast density segmentation, and ii) scoring of mammographic tex-
ture. The proposedmodel learns features atmultiple scales. To con-
trol the models capacity a novel sparsity regularizer is introduced
that incorporates both lifetime and population sparsity. We eval-
uated our method on three different clinical datasets. Our state-
of-the-art results show that the learned breast density scores have
a very strong positive relationship with manual ones, and that the
learned texture scores are predictive of breast cancer. The model
is easy to apply and generalizes to many other segmentation and
scoring problems.
Index Terms—Breast cancer, deep learning, mammograms,

prognosis, risk factor, segmentation, unsupervised feature
learning.

I. INTRODUCTION

B REAST cancer is the most frequently diagnosed cancer
among women, worldwide [1]. In 2012, 464,000 new

cases (13.5% of all cancers) were diagnosed in Europe and
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131,000 died from the disease [2]. Breast cancer mortality
can be reduced by identifying high risk patients early and
treating them adequately [3]. One of the strongest known risk
factors for breast cancer after gender, age, gene mutations, and
family history is the relative amount of radiodense tissue in the
breast, expressed as mammographic density (MD). According
to several studies, women with high MD have a two to six-fold
increased breast cancer risk compared to women with low
MD [4], [5]. Further, breast density is modifiable and density
changes relate to breast cancer risk. Tamoxifen, for example,
reduces breast density and decreases the risk, whereas hormone
replacement therapy causes the opposite [6].
Many MD scores have been proposed, ranging from manual

categorical (e.g., BI-RADS) to automated continuous scores.
In early years, radiologists characterized the mammographic
appearance by a set of intuitive, but loosely defined breast tissue
patterns that were shown to relate to the risk of breast cancer
[7], [8]. The current gold standard are semi-automated contin-
uous scores, as obtained by Cumulus-like thresholding [9]. In
Cumulus, the radiologist sets an intensity threshold to sepa-
rate radiodense (white appearing) from fatty (dark appearing)
tissue. The computer then measures the proportion of dense to
total breast area, known as percentage mammographic density
(PMD). However, user-assisted thresholding is subjective and
time-consuming, and hence not suited for large epidemiolog-
ical studies. There has been a trend towards fully automating
PMD scoring [10]–[15], but most of these approaches rely on
handcrafted features with several parameters that need to be
controlled. Generalizing these methods beyond the reported
datasets could be challenging.
Finding features that capture the relevant information in the

mammogram is a difficult task. This becomes even more ap-
parent when looking at work on mammographic texture (MT)
scoring. MT scoring methods aim to find breast tissue patterns
(or textures) that are predictive of breast cancer [16]–[22]. Intu-
itively, their goal is to characterize breast heterogeneity instead
of breast density. MT scoring is even harder than MD scoring,
since the label of interest (healthy vs. diseased) is defined per
image and not per pixel (e.g., fatty vs. dense). Previous work on
MT scoring has focused on manually designing and selecting
features, similar to automatic MD scoring methods [17]–[20].
However, these studies reach different conclusions on which
texture features discriminate best. Furthermore, it is unclear if
the published methods generalize to multiple datasets.
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The goal of this paper is to present a method that automati-
cally learns features for images, which in our case are mammo-
grams. The model is called a convolutional sparse autoencoder
(CSAE), as its core consists of a sparse autoencoder within a
convolutional architecture. The method extends previous work
on CSAEs [23], [24] to the problem of pixel-wise labeling and
to large images (instead of small patches). The proposed CSAE
is generic, easy to apply, and requires barely any prior knowl-
edge about the problem. The main idea of the model is to learn a
deep hierarchy of increasingly more abstract features from un-
labeled data. Once the features have been learned, a classifier is
trained to map the features to the labels of interest.
We evaluate the method on two breast-cancer tasks that have

previously been addressed in very different ways: The first task
is the automated segmentation of breast density (MD). The
second task is to characterize mammographic textural (MT)
patterns with the goal of predicting whether a woman will
develop breast cancer.
As in our previous work on multiscale denoising autoen-

coders [25], [26], we analyze features at multiple scales. On
top of that, the CSAE employs a convolutional architecture
that models the topology of images, and integrates a novel
sparsity term to control the model capacity. We continue with
a literature review for each of the two concerned tasks and
summarize related work on feature learning.

A. Mammographic Density Scoring (MD)
Various approaches have been suggested to automate per-

centage mammographic density (PMD), which is widely con-
sidered as the gold standard in mammographic density scoring.
A recent overview of methods can be found in He et al. [27].
A first class of methods takes the global image appearance into
account. Sivaramakrishna et al. [28] mimicked PMD by mea-
suring Kittler's optimal threshold, whereas Torrent et al. [29]
determined the threshold based on excess entropy. Ferrari et al.
[30] fitted a GaussianMixtureModel to regions of different den-
sity. Keller et al. [15] utilized adaptivemulticlass fuzzy -means
clustering on the gray-level intensity followed by support vector
machine classification.
None of the aforementioned methods takes neighborhood in-

formation into account. To capture structural information, sev-
eral authors assessed breast density using texture features from
the computer vision literature. An approach that integrates many
of these features with location, intensity, and global contextual
information has been proposed by Kallenberg et al. [10]. The
approach achieves state-of-the-art performance, but introduces
a plethora of parameters that need to be controlled. To over-
come this problem, we have recently proposed a feature learning
method called multiscale denoising autoencoder [25], [26]. The
method is more generic, yet achieves comparable results in au-
tomating MD.
Instead of assessing PMD in the breast area, it has also

been suggested to estimate PMD in the breast volume [31],
[32]. Highnam and Brady [31] suggested the standard mam-
mographic form, a model of the imaging process, to automate
volumetric PMD.
In this paper, we use a similar framework as in [25], [26], but

introduce a convolutional learning architecture that preserves

the spatial layout of the image and regularizes the learning al-
gorithm with a novel sparsity term.

B. Mammographic Texture Scoring (MT)
Mammographic texture (MT) scores consider structural in-

formation of breast tissue and can be grouped into manual and
automated MT scores. Manual MT scores characterize breast
tissue by a small number of intuitive, but rather imprecise pat-
terns. Popular examples include the Wolfe patterns [7] or the
Tabár score [8]. In contrast, existing automated MT scores se-
lect a set of generic statistical features and employ a statistical
learning algorithm to separate healthy from diseased patients.
Consequently, automated MT scores may consider textural pat-
terns that are predictive, but weakly correlated with manual den-
sity patterns.
The literature contains various approaches for automated MT

scores. Byng et al. [33], Huo et al. [34], and Heine et al. [20]
estimated texture by computing histogram statistics, such as the
central moments or the entropy of the histogram. Also features
that capture spatial relationships among pixels have been con-
sidered, such as statistics of the gray-level co-occurrence matrix
(GLCM) [17], [18], run-length measures [17], [18], Laws
features [17], Fourier techniques [17], Wavelet features [17],
[18], fractal dimension [33], [29], or lacunarity [29]. Manduca
et al. [17], Häberle et al. [18] and Zheng et al. [22] summarized
and combined most of the common heuristic texture features
for breast cancer risk assessment. The approaches resemble
each other with respect to the examined features. However,
they differ in the evaluated dataset, feature selection schemes,
classifiers, and the region of interest for computing the MT
score. Manduca et al. found that a set of Fourier and Wavelet
features at coarse scales performs best, whereas Häberle et al.
concluded that certain GLCM and histogram features from
fine and coarse scales are most predictive. Zheng et al. found
that extracting features from multiple locations in the breast
outperforms a single-ROI approach.
Nielsen et al. [19] investigated another method to determine

the texture features. They selected a combination of multiscale
3-jet and 2D location features, employed a sequential forward
selection using bootstrapping, and predicted pixel-wise labels
which were afterwards averaged over the breast region.
In contrast to previous work, we do not handpick heuristic

texture features, but instead aim to learn meaningful texture fea-
tures directly from the unlabeledmammograms. The hope is that
an uncommittedmethod is better suited to generalize to different
datasets.

C. Feature Learning
A lot of research has been devoted to selecting and hand-

crafting features that encode the important factors of variation in
the input data. However, it can be time-consuming and tedious
to mathematically describe human intuition and domain-spe-
cific knowledge. Furthermore, human heuristics are not guaran-
teed to capture the salient information of the data, and features
that perform well on a related computer vision problem may not
transfer to the application at hand.
An increasing number of papers demonstrate that compa-

rable or even better results are achieved by learning features
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directly from the data. Especially deep nonlinear models have
been proven to generate descriptors that are extremely effec-
tive in object recognition and localization in natural images. A
recent overview of feature learning with deep models is given
in [35] and [36]. Inspired by the human brain, these architec-
tures first learn simple concepts (or features) and then compose
them to more complex ones in deeper layers. In addition, fea-
tures share components from lower layers which allow them to
compactly express the idiosyncrasies of the data and fight the
curse of dimensionality [37]. Most of these models are trained
by iteratively encoding features (forward propagation) and up-
dating the learned weights to improve the optimization (back-
ward propagation).
One approach is to jointly optimize the features of the deep

model, in order to minimize the loss between the predictions
of the top most layer and the target values. Traditional neural
networks fall into this category, and also variants like convolu-
tional neural networks (CNNs) by Lecun et al. [38], which are
tailored towards images. Deep neural networks, such as CNNs,
have been successfully applied to challenging image analysis
problems, e.g., object recognition, scene parsing [39], cell seg-
mentation [40], neural circuit segmentation [41], [42], analysis
of images the breast [43]–[46]. They were found to be faster
and more expressive than other graphical models like Markov
or Conditional Random Fields [47].
The features can also be learned in an unsupervised way,

e.g., using Restricted BoltzmannMachines [48], [49] or autoen-
coders [23], [50], [51]. The features are typically learned in a
greedy, layer-wise fashion, before a classifier is trained to pre-
dict the labels from the feature responses of the top most layer.
The division into multiple optimization problems has several
advantages. First, large amounts of unlabeled data can be ex-
ploited for training the features. Second, the features are learned
faster and more stable, as each layer is optimized by a small en-
coder-decoder architecture instead of a complex deep network.
And third, these deep models can incorporate transformations
and classifiers that are optimized independently from the fea-
tures.
In this paper, we employ a sparse autoencoder for learning

the features in an unsupervised way. Previous work has sug-
gested sparse autoencoders for object recognition from small
image patches [23], [24], [52]. In contrast, we propose a feature
learning method for images that exploits information at multiple
scales and incorporates a different sparsity regularizer.

II. METHOD

We explain the overall approach consisting of three parts:
generating input data, model representation, and parameter
learning. The input data is composed of multiscale image
patches that capture both detail and large contextual regions.
The patches are processed by a multilayer convolutional archi-
tecture. The parameters of this representation are learned using
a sparse autoencoder, which enhances the standard autoencoder
with a novel sparsity regularizer.

A. Overall Approach
Assume we are given a set of training images with associ-

ated label masks and our goal is to predict the label mask for an

unseen image. It would be computationally prohibitive to map
entire images to label masks. Downsampling the image is also
infeasible, as many structures of interest occur at a fine scale.
However, we can learn a compact representation for local neigh-
bors (or patches) from the image.
Let us represent the labels in a 1-of- coding scheme. Then

formally, we aim to map a multi-channel image patch
of size with channels to a label posterior

patch of size with one channel
per label, where we assume quadratic input sizes for ease of
notation. The image and label posterior patch are centered at the
same location, but can have different sizes. The channels of the
image patch may include color channels, preprocessed image
patches, or feature responses.
For training our model, labeled training examples

are extracted at randomly chosen locations
across the set of training images. Given the training data ,
our model learns a hypothesis function which is
parameterized by .
In this paper, the hypothesis function is defined as a la-

tent variable model that consists of multiple layers. Instead of
mapping to directly, we learn a series of increasingly more
abstract feature representations1 for layers ,
where and . The feature representations
are gained by encoding the input through a cascade of trans-
formations, of which some are trainable. We learn the param-
eters of these transformations in a greedy layer-wise fashion
without using the labels. While an individual layer is not deep,
the stacked architecture is (e.g, the second layer receives as
input the output from the first layer). Thus, the individual un-
supervised training of (“shallow”) layers results in an unsuper-
vised deep learning procedure.
Three steps are necessary to move from one feature represen-

tation, , to the next one, :
1) Extract sub-patches (called local receptive fields) from

random locations in and optionally preprocess them.
2) Feature learning:Learn transformation parameters (or fea-

tures) by autoencoding the local receptive fields.
3) Feature encoding: Transform all local receptive fields in

using the learned features from step 2. The result of the
transformation is referred to as the feature representation

.
A classifiermaps the last feature representation into label space
. An unseen image is tested by applying the trained hypoth-

esis function to all possible patches in a sliding window
approach. Thus, every patch within the tested image is sent
through the trained encoders and classifier to create a predic-
tion. If the size of the predicted output region is bigger than a
single pixel, i.e., , predictions at neighboring image lo-
cations might overlap with each other. These predictions can be
fused by computing the average probability per class.
An overview of the pipeline is shown in Fig. 1. Our archi-

tecture consists of four hidden layers: a convolutional layer, a
maximum pooling layer, and two further convolutional layers.

1We use the terms weights and features interchangeably to refer to the param-
eters of a representation transformation. The output of this transformation are
called activations or feature representation. Within a convolutional architecture,
the activations will be spatially arranged as feature maps (see Section II).
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Fig. 1. Deep convolutional architecture consisting of convolutional, pooling and a softmax layer(s). Input patches are extracted from multiple scales of an image.
The pixel spacing of the patches is adjusted such that the feature maps at different scale levels are equally sized. Each scale level of the CSAE model is processed
in isolation before all activations are integrated in the second last layer. The convolutional layers in the unsupervised parts are trained as autoencoders; In the
supervised part the (pretrained) weights and bias terms are fine-tuned using softmax regression (see text for details).

We chose one pooling layer to be invariant towards small distor-
tions, but sensitive to fine-scaled structures. The specifics will
be presented in the following sections.

B. Multiscale Input Data
We capture long range interactions in the mammograms by

extracting input examples frommultiple scales. As introduced
in our previous work [25], [26], a given mammogram is em-
bedded into a Gaussian scale space .
Here the operator denotes convolution. Multi-scale mammo-
graphic analysis is realized using the well established discrete
scale space theory (see, e.g., [53]); specifically we use a Fourier
implementation where the Gaussian kernel is discretized in the
Fourier domain and spatial convolution obtained through multi-
plication (in the Fourier domain) with the discrete Fourier trans-
form of the mammogram [54]. The parameter denotes
the position (or site) and determines the standard deviation
of the Gaussian at the th scale. More specifically, the standard
deviation

(1)

is given as the square root of the summed Gaussian variances
from the first scale levels of the Gaussian pyramid. In this
paper, we chose downsampling factor .
An input example at location from scale is constructed

by sampling a patch with pixel distance (or stride) around
location in the Gaussian scale space. For example, an input
patch at scale level is a coherent region, whereas
the patch at scale considers only every eighth pixel around
from a heavily smoothed mammogram.
The underlying representation of our model, a convolutional

architecture, processes inputs from multiple scales (Fig. 1). For
computational reasons, features are first learned for each scale
in isolation, before they are merged in deeper layers.

C. Sparse Autoencoder
It would be possible to learn the weights (or features) using

forward and backward propagation through the entire architec-

ture [38]. However, as argued in our review of feature learning,
we aim to learn features in an unsupervised way using autoen-
coders. We propose a variant of the autoencoder that enables to
learn a sparse overcomplete representation. A feature represen-
tation is called overcomplete if it is larger than the input. Spar-
sity forces most of the entries to be zero, leaving only a small
number of non-zero entries to represent the input signal. Thus,
in the case of extreme sparsity, each input example would be
encoded by a single hidden unit, the one whose input weights
(or feature) are the most similar to the input example.
Sparse overcomplete representations provide simple interpre-

tations, are cost-efficient, and robust to noise. They are suited
to disentangle the underlying factors of variation because each
input example needs to be represented by the combination of a
few (specialized) features.
In previous work, feature representations have been made

sparse by limiting the number of active (non-zero) units per ex-
ample (population sparsity) or by limiting the number of exam-
ples for which a specific unit is active (lifetime sparsity). Pop-
ulation sparsity underlies methods like sparse coding [55], or
-means, where each cluster centroid can be interpreted as a

feature and each example is encoded by the most similar cen-
troid. Lifetime-sparsity is incorporated in the sparsifying lo-
gistic by Ranzato et al. [23] or the sparse RBM by Lee et al.
[56], where the average activation per unit is supposed to equal
a user-specified sparsity threshold.
In this paper, we formulate a sparsity regularizer that incorpo-

rates both population sparsity and lifetime sparsity. While pop-
ulation sparsity enforces a compact encoding per example, life-
time sparsity leads to example-specific features. Our proposed
sparsity prior can be combined with any activation function in-
cluding the rectified linear function, which was shown to pro-
duce better features than the sigmoid or the hyperbolic tangent
in [57]. The formalization of the sparse autoencoder is given in
the appendix.

D. Experiments and Datasets

We evaluated the performance of the CSAE for two different
tasks (MD, MT) on three different mammographic datasets. For
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each task we first segmented mammograms into background,
pectoral muscle, and breast tissue region. The breast tissue re-
gion was then used as a region of interest for the mammographic
scoring tasks (MD and MT). We continue with a description of
the datasets, the parameter settings, and the results for each of
the two tasks.
1) Density Dataset: From the Dutch breast cancer screening

program we collected 493 mammograms of healthy women.
Mean age of the women was . The images
were recorded between 2003 and 2012 on a Hologic Selenia
FFDM system, using standard clinical settings. We used the raw
image data. The set contained a mixture of mediolateral oblique
(MLO) and craniocaudal (CC) views from the left and right
breast. For each woman however only one view was available.
A trained radiologist annotated the skin-air boundary and the

pectoral muscle by a polygon tool. In a second step, the breast
tissue area was delineated by cropping superfluous tissue folds
below and above the breast area. The radiologist estimated per-
cent density using a Cumulus like approach.
2) Texture Dataset: The texture dataset comprises 668 medi-

olateral mammograms from the Mayo mammography Health
Study (MMHS) cohort at the Mayo Clinic in Rochester, Min-
nesota. The purpose of the MMHS study was to examine the
association of breast density with breast cancer [58]. The chosen
subset included 226 cases and 442 controls that were matched
on age and time from earliest available mammogram to study
enrollment/diagnosis date. The images were recorded between
October 2003 and September 2006, between 6 months and 15
years prior to the detection of the cancer. The mean age was

.
All mammograms were digitized with an Array 2905 laser

digitizer (Array Corporation, the Netherlands) that provided a
pixel spacing of 50 microns on a 12-bit gray scale. A trained ob-
server annotated the skin-air boundary and the pectoral muscle
by a polygon tool.
3) Dutch Breast Cancer Screening Dataset: From the Dutch

breast cancer screening program we collected 394 cancers, and
1182 healthy controls. Controls were matched on age and acqui-
sition date. The images were recorded between 2003 and 2012
on a Hologic Selenia FFDM system, using standard clinical set-
tings. For each woman MLO views from both the right and left
breast were available. However, to exclude signs of cancerous
tissue, we took the contralateral mammograms for our analyses
on breast cancer risk prediction. We used the raw image data.
Mean age of the womenwas . The images were
segmented into the breast area, pectoral muscle and background
using automated software (Volpara, Matakina Technology Lim-
ited, New Zealand).

E. Parameter Settings and Model Selection
If not stated otherwise, the same parameter settings have been

applied to each task and each dataset.
1) Patch Creation: Before extracting the patches, the mam-

mograms were resized to an image resolution of roughly 50
pixels per mm. The model was trained on .
The patch size in terms of number of pixels was restricted to
24 24 in order to keep the number of trainable weights and
bias terms limited. The training patches were sampled across

the whole dataset as follows: For density scoring 10% of the
patches were sampled from the background and the pectoral
muscle, 45% from the fatty breast tissue, and 45% from the
dense breast tissue. For texture scoring 50% of the patches were
sampled from the breast tissue of controls, and 50% from the
breast tissue of cancer cases. In pilot experiments we exper-
imented with different breast tissue masks to sample patches
from. Best results were obtained if we restricted the sampling
of the patches to the inner breast zone, which is the breast area
that is fully compressed during image acquisition, and in which
the fibroglandular tissue is most prominent. For both tasks

was chosen. We set scales to 1 to 4 for both density and
texture scoring. The smallest patch was thus 4.8 mm 4.8 mm,
whereas the biggest patch was 3.7 cm 3.7 cm. As such sev-
eral structures of interest could be captured in different detail.
On a validation set we experimented with different setups of the
input channels. Best results were obtained by having one input
channel consisting of the unprocessed image.
2) Convolutional Architecture: For each tasks the number of

feature map were set to ; the associated
kernel sizes were fixed to {7, 2, 5, 5}. These values were moti-
vated from previous work on convolutional architectures [59].
3) Sparse Autoencoder: To learn the weights of the convolu-

tional layers, a sparse autoencoder was trained on
extracted local receptive fields from the activations of the pre-
vious layer. For the first layer each local receptive field was pre-
processed by removing its DC components. The sparsity param-
eter was set to and the weighting term of the sparsity
regularizer to . We applied the backpropagation algorithm
to compute the gradient of the objective function in (6). The pa-
rameters were optimized with L-BFGS using 25 mini-batches
of size 2,000. Each mini-batch was used for 20 iterations, such
that the entire optimization ran for 500 iterations. In pilot ex-
periments we determined the settings of the hyperparameters.
In these pilot experiments we put most emphasis on the sparsity
regularizer and the length of the training for both the unsu-
pervised and the supervised part of our network. We found that
the performance was robust for a broad range of values of the
mentioned parameters.
4) Classifier: We trained a two layer neural network, con-

sisting of a pretrained convolutional layer (i.e., layer )
and multinomial logistic regression (or softmax classifier) layer.
That is, that the weights and bias terms of the pretrained convo-
lutional layer (i.e., layer ) are fine-tuned with a supervised
signal. ForMD scoring we utilized three class labels: (i) pectoral
muscle and background, (ii) fatty tissue, and (iii) dense tissue.
For MT scoring we had two class labels: (i) cancer, and (ii) con-
trol. The optimization was performed for 500 iterations using
L-BFGS on the encoded patches. Unless stated otherwise for
each task and dataset results were obtained by performing 5-fold
cross-validation by image to estimate the generalization ability
of our machinery.

III. RESULTS

A. Mammographic Density Scoring
1) Density Dataset: The initial output of the MD scoring

is a score that represents the posterior probability that a given
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Fig. 2. Effect of varying the threshold on the posteriors on two per-
formance measures of MD scoring, namely (i) the image-wise average of the
Dice coefficient, and (ii) the root mean squared error between the percent den-
sity (PMD) as measured by our machinery and the radiologist.

TABLE I
COMPARISON OF AUTOMATED WITH RADIOLOGIST'S

MD SCORES FOR THE DENSITY DATASET.

pixel belongs to the dense tissue class. By thresholding the
posteriors with threshold we obtain a segmentation of
the dense tissue. Percent density (PMD) is then computed as the
percentage of breast pixels that is segmented as dense. To speed
up training we oversampled the dense class during training.
As such our machinery tends to overestimate the density if we
set the threshold to 0.50. By raising this effect
is compensated for. Fig. 2 shows the effect of on two
performance measures, namely (i) the image-wise average of
the Dice coefficient, defined as between
the automated segmentation and the segmentation of the
radiologist , and (ii) the root mean squared error between
the percent density (PMD) as measured by our machinery and
the radiologist. Best results are obtained with in the
interval 0.70–0.80. In the remainder of the paper results are
therefore reported with set to 0.75. Table I summarizes
the results on the density dataset. Reported are (i) the Pearson
correlation coefficient (and 95% CI) between PMD as measured
by our machinery and the radiologist, (ii-iii) the image-wise
average ( ) of the Dice coefficient for
both dense and fatty tissue, and (iv) the average percent density
( ). Fig. 3 shows an example of a mam-
mogram, the corresponding Cumulus-like segmentation and
the segmentation obtained with the CSAE that incorporates the
novel sparsity term.
2) Dutch Breast Cancer Screening Dataset: We used the net-

works that were trained on the density dataset to score PMD on
all images of the Dutch Breast Cancer Screening Dataset. Sub-
sequently we assessed how well our estimation of PMD is able
to discriminate between cancers and controls. Table II presents

Fig. 3. Automated MD thresholding. Depicted are (a) original image, (b)
dense tissue according to expert Cumulus-like threshold, and (c) dense tissue
according to CSAE.

TABLE II
STATISTICS OF MD SCORES ON THE DUTCH

BREAST CANCER SCREENING DATASET.

TABLE III
AUC VALUES FOR SEPARATING BETWEEN CANCERS

AND CONTROLS FOR VARIOUS AUTOMATED
MT SCORES ON THE TEXTURE DATASET.

(i) left-right correlation for the automated PMD scores (ii-iii)
mean and standard deviation of the PMD scores for cancers and
controls, and (iv) the area under the ROC curve (AUC) for sep-
arating between cancers and controls.

B. Mammographic Texture Scoring
1) Texture Dataset: The initial output of the MT scoring is a

score that represents the posterior probability that a given pixel
belongs to the cancer class. To obtain one MT score per image
we averaged the posteriors of 500 patches randomly sampled
from the breast area. We have evaluated the MT scoring per-
formance on the texture dataset (see Table III). Our model im-
proved on two state-of-the-art methods in MT scoring: (i) the
KNN method by Nielsen et al. [19] using multiscale local jet
features [60], which so far had reported the best results on the
texture dataset (results were communicated); (ii) a softmax clas-
sifier on static histogram features inspired by the method of
Häberle et al. [18]. A precise reimplementation of the original
method by Häberle et al. was not possible, since we could not
get access to important hyperparameters like the orientation of
the chosen features. The static histogram features represent 16
of the 45 final selected features, but accounted for 15 of the 18
highest coefficients in their final softmax classifier.
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TABLE IV
STATISTICS OF MT SCORES ON THE DUTCH

BREAST CANCER SCREENING DATASET.

We also checked the robustness of our results with respect
to different randomizer seed points. We found that the CSAE
model was able to produce similar scores in different runs. The
AUC varied less than 0.01 across multiple runs.
2) Dutch Breast Cancer Screening Dataset:

Table IV presents performance indicators for our MT scoring
on the Dutch Breast Cancer Screening dataset. Shown are
i) left-right correlation of the MT scores ii) the area under
the ROC curve (AUC) for separating between cancers and
controls.

IV. DISCUSSION

We have presented an unsupervised feature learning method
for breast density segmentation and automatic texture scoring.
The model learns features across multiple scales. Once the fea-
tures are learned, they are fed to a simple classifier that is spe-
cific to the task of interest. After adapting a small set of hy-
perparameters (feature scales, output size, and label classes),
the CSAE model achieved state-of-the-art results on each of the
tasks.
The results suggest that the proposed method was able to

learn useful features for each of the considered applications.
The automated PMD scores have a very strong positive rela-
tionship with the manual Cumulus scores ( ) and are
competitive with reported correlation coefficients from the lit-
erature, e.g., 0.63 [61], 0.70 [12], 0.85 [15], 0.88 [14] and 0.91
[10]. We also evaluated how well the automated PMD scores
separated out cases from controls. We found that the automated
PMD scores yielded an AUC of 0.59, which is competitive to
reported AUCs in the literature on similar populations (e.g.,
0.57 [61], 0.59 [14], and 0.60 [62]). Thus, our automatic MD
scoring method could be an alternative to subjective and expen-
sive manual MD scoring.
The automated MT scores separated cancers and controls

better than two state-of-the-art MT scoring methods. In the
texture dataset the CSAE model improved on the KNN method
by Nielsen et al. [19] and a simplified version of the model of
Häberle et al. [18]. The full model of Häberle et al. could not
be tested, as necessary parameter settings were missing.
Based on our results we conclude that useful discriminative

features can be attained by ”letting the data speak” instead of
modeling prior assumptions.
We proposed a novel sparsity regularizer that incorporates

both population sparsity and lifetime sparsity. We compared the
performance of the machinery with the novel sparsity term with
a control setup that used an alternative sparsity term [56], which
measured the KL-divergence between the mean activation and
the desired activation. For each experiment the novel sparsity
term performed at least equally well as the control setup.
The stack of convolutional (sparse) autoencoders (CSAE)

presented in this work forms a convolutional neural network

(CNN). The major difference between a CSAE and a classic
CNN is the usage of unsupervised pre-training. In our previous
work [25] we found that unsupervised pre-training with au-
toencoders led to an increase in performance on similar tasks
as presented here. This is in line with several works (e.g.,
[24], [63]–[65]) that demonstrated the merits of employing
unsupervised pre-training with autoencoders in convolutional
architectures.
We have focused on presenting a principled and generic

framework for learning image features. The MT features were
learned on image patches and mapped to individual locations
in the image. In a second step, the classifier predictions were
merged to assign a disease label for the mammogram. However,
the labels in the texture scoring task are provided per mammo-
gram. We assumed that texture changes are systemic and occur
at many locations in the tissue. One may also hypothesize the
opposite. Texture changes could be restricted to the vicinity
of future cancers. We plan to extend the framework to learn
from multiple instances. The idea would be to train a classifier
that maps the feature responses from multiple locations to one
label. This is a difficult task and probably requires many more
disease labels than considered in this paper. However, with the
advent of large screening datasets, it may become possible to
learn a relationship from images to labels, and investigate the
locality of texture changes.
The model could be easily adjusted to support 3D data.

Features could be learned for different mammographic projec-
tions (e.g., craniocaudal views) or images from complementary
modalities (e.g., ultrasound, magnetic resonance imaging,
tomosynthesis, or computed tomography). There are several
applications for automatically derived MD and MT scores.
As part of a risk prediction model, they stimulate research on
breast cancer epidemiology. For instance, large databases of
historical mammograms could be scored to investigate change
of breast cancer risk. Moreover, mammographic risk scores
may affect decision making for the individual patient, e.g., the
selection of screening interval, imaging modalities, or treat-
ment options. Thus, they could help organize mammographic
screening programs more efficiently and effectively, which
may ultimately lead to a reduction in breast cancer mortality.

APPENDIX

In the unsupervised part of our machinery features are learned
using autoencoders. We propose a variant of the autoencoder
that enables to learn a sparse overcomplete representation. We
introduce a novel sparsity regularizer that combines population
sparsity and lifetime sparsity. We summarize the idea of the
standard autoencoder (Fig. 4), before introducing an autoen-
coder that exploits sparsity.

Autoencoder: Consider learning the weights
in for , where we omit the layer index for brevity.
We rewrite the 3D weight arrays as a weight matrix

, where the th row corresponds to . Similarly, the
bias vector concatenates the bias terms . As-
sume further that we have sampled one local receptive field at a
random location per input feature map example
with . The local receptive fields have a size of

, but are arranged as vectors , where
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on October 04,2025 at 04:14:27 UTC from IEEE Xplore.  Restrictions apply. 



KALLENBERG et al.: UNSUPERVISED DEEP LEARNING APPLIED TO MAMMOGRAPHIC RISK SCORING 1329

Fig. 4. (a) An autoencoder for learning the features of the convolutional layer. The input is vectorized and reconstructed by an encoder-decoder architecture. (b)
Inference in a convolutional layer using a 3D convolution. The encoded units correspond to the highlighted units in output of the convolutional layer. The
weights between input feature maps and the th output feature map are marked in red and initialized with the learned weights from the autoencoder. We
refer to the text for details.

and . Then, we can learn and in an
unsupervised way by autoencoding the local receptive fields.
The autoencoder reconstructs an input by a com-

position of an encoder and a decoder . The en-
coder

(2)

connects the input layer with the hidden layer and uses the acti-
vation function , which is commonly one of the following:
the sigmoid, the hyperbolic tangent, or the recently introduced
rectified linear function that is used in this
paper due to its reported superior performance [57]. The de-
coder

(3)

is an affine mapping between the hidden layer and the output
layer. The activation function of the decoder is usually set
to the identity function and the weight matrix is de-
fined as the transpose of the encoder weight matrix (i.e., we use
tied weights [66]). The bias of the decoder has the
same dimension as the input. Tying the weights of the encoder
and decoder encourages and to be at the same scale and
orthogonal to each other [67]. It also decreases the number of
trainable parameters and thereby improves the numerical sta-
bility of the algorithm. The specialized decoder is thus given by

.
Let us denote the set of training examples as

and the trainable parameters as . Then the ob-
jective function to be minimized is

(4)

where the reconstruction error

(5)

is the squared loss. To avoid that the autoencoder learns the
identity function, the hidden layer is constrained to be under-
complete, i.e., the number of hidden units is smaller than the
number of input units ( ).

Sparse Autoencoder: We define a sparse autoencoder that
minimizes the objective function

(6)
using the novel sparsity term

(7)

This regularizer combines population sparsity and life-
time sparsity with respect to the activation matrix

.
To define the population sparsity term, let us compute the

average absolute activation for the th activation unit (averaged
across the examples)

(8)

where is the -norm of the th row in . We compare
this unit-wise population sparsity to a pre-specified sparsity pa-
rameter

(9)

and average the squared thresholded difference over the
units. Here, the threshold function

(10)

penalizes sparsity values above to avoid non-specific features.
Values below are not punished because selective features shall

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on October 04,2025 at 04:14:27 UTC from IEEE Xplore.  Restrictions apply. 



1330 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

be permitted. A typical value for the sparsity level is
(see Section II-E).
Similarly, we specify the lifetime sparsity for the th example

as its average absolute activation averaged across the activa-
tion units

(11)

where is the -norm of the th column in . The total
lifetime sparsity is then given by

(12)
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