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ABSTRACT

PURPOSE

METHODS

RESULTS

CONCLUSION

Breast density is a widely established independent breast cancer risk factor.
With the increasing utilization of digital breast tomosynthesis (DBT) in breast
cancer screening, there is an opportunity to estimate volumetric breast density
(VBD) routinely. However, current available methods extrapolate VBD from
two-dimensional (2D) images acquired using DBT and/or depend on the ex-
istence of raw DBT data, which is rarely archived by clinical centers because of
storage constraints.

We retrospectively analyzed 1,080 nonactionable three-dimensional (3D)
reconstructed DBT screening examinations acquired between 2011 and 2016.
Reference tissue segmentations were generated using previously validated
software that uses 3D reconstructed slices and raw 2D DBT data. We developed a
deep learning (DL) model that segments dense and fatty breast tissue from
background. We then applied this model to estimate %VBD and absolute dense
volume (ADV) in cm3 in a separate case-control sample (180 cases and 654
controls). We created two conditional logistic regression models, relating each
model-derived density measurement to likelihood of contralateral breast
cancer diagnosis, adjusted for age, BMI, family history, and menopausal status.

The DL model achieved unweighted and weighted Dice scores of 0.88 (standard
deviation [SD] = 0.08) and 0.76 (SD = 0.15), respectively, on the held-out test
set, demonstrating good agreement between the model and 3D reference
segmentations. There was a significant association between the odds of breast
cancer diagnosis and model-derived VBD (odds ratio [OR], 1.41 [95 % CI, 1.13 to
1.77]; P = .002), with an AUC of 0.65 (95% CI, 0.60 to 0.69). ADV was also
significantly associated with breast cancer diagnosis (OR, 1.45 [95% CI, 1.22 to
1.73]; P < .001) with an AUC of 0.67 (95% CI, 0.62 to 0.71).

DL-derived density measures derived from 3D reconstructed DBT images are
associated with breast cancer diagnosis.
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INTRODUCTION

Breast density is a widely established independent breast
cancer risk factor and is also associated with increased risk of
tumor masking.'"> The American College of Radiology Breast
Imaging Reporting and Data System (BI-RADS)® is currently
the most used method for assessing breast density in the
clinic; however, it is a subjective, qualitative method that
carries large inter- and intra-reader variability.”*° Fully au-
tomated quantitative methods are needed to improve accu-
racy in breast density estimations and optimize screening
protocols. Most current fully automated quantitative methods
rely on two-dimensional (2D) digital mammography (DM)
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images,"** but in the United States, DM has rapidly been
replaced by a quasi-three-dimensional (3D) x-ray imaging
modality, digital breast tomosynthesis (DBT).”> DBT creates
reconstructed quasi-3D (henceforth referred to as 3D) images
of breasts from multiple 2D raw projection images, offering
the unique opportunity to quantify dense breast tissue vol-
umetrically, which may improve accuracy and improve risk
calculations.’®'? Approximately 91% of mammography fa-
cilities in the United States have incorporated DBT as of July
20248

Current US Food and Drug Administration (FDA)—cleared
methods for breast density estimation exist but possess
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CONTEXT

Key Objective

Can we develop a deep learning (DL) algorithm to estimate volumetric breast (VBD) density using three-dimensional (3D)
reconstructed, for-presentation digital breast tomosynthesis (DBT) examinations, given that raw projection images are

rarely archived by clinical centers?

Knowledge Generated

To our knowledge, we developed the first DL algorithm that can estimate VBD and absolute dense tissue volume from 3D
DBT reconstructed slices. The breast density measurements produced by this algorithm are superior to those produced by
previous algorithms that rely on two-dimensional raw projections.

Relevance (J.L. Warner)

Breast density is a well-known risk factor associated with breast carcinoma and creates challenges with standard screening
and diagnostic imaging techniques. This study shows that a DL algorithm can be used to augment standard diagnostics

and should be evaluated next in prospective fashion.*

*Relevance section written by JCO Clinical Cancer Informatics Editor-in-Chief Jeremy L. Warner, MD, MS, FAMIA, FASCO.

limitations. 2D tools can only approximate breast tissue
volume because they extrapolate volumetric breast density
(VBD) from 2D images acquired using DBT.**# Current 3D
tools can more routinely estimate VBD from DBT but still rely
on the existence of 2D raw projection images to refine dense
tissue segmentation. These raw projection images are rarely
archived by clinical centers because of storage constraints
on their picture archive and communication system
(PACS).161719-22 Ag a result, this limits the ability to use DBT
images to perform retrospective cohort studies. The 3D DBT
reconstructed data, however, are readily available in many
clinical centers.

This study aims to harness deep learning (DL) to develop a
computational tool for VBD assessment based solely on 3D
reconstructed, for-presentation, DBT images and assess its
segmentation performance on a held-out test set. Then, we
evaluate the model’s efficacy for estimating the likelihood of
contralateral breast cancer diagnosis using an independent
case-control sample.

METHODS
Study Data Set

This study was performed in a Health Insurance Portability
and Protection Act—compliant and institutional review
board—approved manner under waiver of consent. To de-
velop our DL model, we retrospectively analyzed 1,080
nonactionable (BI-RADS 1 or 2 and at least a 1-year non-
actionable follow-up) DBT screening examinations (Selenia
Dimensions, Hologic Inc, Marlborough, MA) obtained be-
tween 2011 and 2016 at the Hospital of the University of
Pennsylvania (HUP). Both 2D raw projection images and 3D
reconstructed slices from the standard acquisition angles
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(craniocaudal [CC] and mediolateral oblique [MLO]) or views
acquired using DBT were available for each examination,
with some examinations requiring multiple acquisitions to
capture the full extent of their breast tissue. All images were
anonymized deterministically by accession number.

3D reference-standard tissue segmentations were generated
using previously validated software* that uses both 3D
reconstructed slices and 2D raw projection images acquired
with DBT. Briefly, the software works by first treating each
2D raw projection image as a low-dose DM and uses an
adapted version of a previously published DM tissue seg-
mentation algorithm for these images. It then uses these
segmented 2D images to build a statistical model of the
breast tissue segmentation in 3D while also correcting for
blurring effects. Voxels are segmented to be one of three
classes (background/nonbreast, fatty breast tissue, dense
breast tissue). Given resource constraints, reference tissue
segmentations were not able to be refined by board-certified
radiologists. Before model training, all 3D reconstructed DBT
slices and corresponding reference tissue segmentations
were padded to ensure that each image was at least 2,048
voxels in both the x- and y-directions.

DL Model Development

We used a DL-based approach, leveraging neural networks to
perform image segmentation.> Using the open-source
Generally Nuanced Deep Learning Framework (GaNDLF;
v0.0.19; MLCommons),* we trained a convolutional neural
network topology?> that leverages weights from ImageNet>°
to pretrain encoders followed by a UNet?’-style decoder,
known as FlexiNet. The DL model performs three-label
image segmentation on 3D reconstructed DBT recon-
structed slices (ie, background/nonbreast, fatty breast
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tissue, dense breast tissue). The data set was randomly split
into training, validation, and held-out test subsets (80%,
10%, and 10%, respectively) such that all views from any
single patient were restricted to a single subset. Each
training batch, consisting of 30 patches of size 2048 voxels
by 2048 voxels, was uniformly sampled from each image
volume. Each batch was normalized such that each voxel
value was within the range (0-1).

To evaluate the segmentation accuracy of our DL model, we
used a common metric, the Dice similarity coefficient (Dice).
Dice is a measure of overlap between the DL model’s tissue
segmentation and the reference tissue segmentation, with
zero indicating absolutely no overlap and one indicating
perfect overlap.®2° With a three-class segmentation prob-
lem, Dice is typically calculated as an unweighted average of
the Dice scores of each class. To properly evaluate how the
model performs with respect to the rarest class (dense breast
tissue), we used a weighted Dice score,3° in which the Dice
score of each class was inversely weighted by the class
prevalence in the reference tissue segmentations. A sche-
matic of the experimental methodology is shown in Figure 1.

Additional training parameters included a batch size of 2, a
learning rate of 0.0005, the Adam optimizer, weighted Dice
loss function,*®* and maximum training epochs of 50.
Training was stopped once the validation loss failed to de-
crease for two consecutive epochs. At the end of every epoch,

weighted Dice was calculated for the validation set. We se-
lected the final model weights as the weights corresponding
to the epoch that demonstrated the highest weighted Dice on
the validation set. Model segmentation performance was
evaluated on the held-out test set (10% of the original data
set as specified previously) using unweighted and weighted
Dice scores.

Class-specific Dice scores are also reported as unweighted
Dice scores using the class of interest as the foreground and
the other two classes together as the background. For un-
weighted Dice, weighted Dice, background only, fatty breast
tissue only, and dense breast tissue only, we compared Dice
scores between CC images and MLO images via two-tailed
Student’s t-test with unequal variances.

VBD Model Evaluation in an Independent Case-
Control Sample

After DL model development, the resulting DL model was
applied to a case-control sample (n = 834)Y that was in-
dependent of the training, validation, or test sets. The
resulting density measures were used in regression models
of breast cancer incidence to relate the DL-derived density
measures to cancer status. The evaluation procedure was like
that described by Gastounioti et al,*® but on a subset of the
case-control data that they used. Cases were selected from
women who had biopsy-confirmed unilateral invasive breast

Use model to perform 3-class
segmentations on the testing set

Evaluate model performance by
computing weighted Dice score

3D reference segmentations created from previously validated software using
data from both 3D reconstructed and raw 2D DBT images

Split DM-DBT scans for 1080 patients into training (80%), validation (10%),
and testing (10%)

Train CNN using ImageNet-UNet architecture from GaNDLF version 0.0.19

Use model to calculate VBD and
absolute amount of dense breast tissue
for each patient in the case-control cohort

Perform conditional logistic regression to
determine association with cancer status

FIG 1. Schematic representing the methodology for reference tissue segmentation construction, DL
model training, and DL model evaluation. 2D, two-dimensional; 3D, three-dimensional; CNN, con-
volutional neural network; DL, deep learning; DM-DBT, digital mammography-digital breast tomo-

synthesis; VBD, volumetric breast density.

JCO Clinical Cancer Informatics

ascopubs.org/journal/cci | 3


http://ascopubs.org/journal/cci

Downloaded from ascopubs.org by 198.214.82.120 on October 3, 2025 from 198.214.082.120
Copyright © 2025 American Society of Clinical Oncology. All rights reserved.

Ahluwalia et al

cancer (biopsy- and state registry—confirmed) after dual
DM/DBT screening at the HUP between 2012 and 2015. For
each case, four age- and race-matched controls were se-
lected from patients who received initial DM/DBT screening
during the same period and had nonactionable follow-up
screening at least 1 year later. Within each matched group,
the age for all women was in the same 5-year range. Indi-
vidual women were excluded from the regression model if
age at screening and/or BMI were not available. All women in
amatched group were excluded if no case or no controls were
present because of the exclusion criteria.

For each patient in a matched group, DL-derived %VBD was
calculated using image views contralateral to the side from
which the respective case received a diagnosis of breast
cancer.” 3 If multiple contralateral CC and/or MLO views
were available, %VBD was averaged among all contralateral
views.3? Total absolute dense volume (ADV), the sum of
voxels segmented as dense tissue multiple by the voxel size
(cm3), was calculated for each patient using the same pro-
cedure as %VBD.

We had access to predetermined radiologist-assigned BI-
RADS density categories (A, B, C, D) for patients in this
sample, where A indicates lowest breast density and D indi-
cates highest breast density. BI-RADS classifications were
determined from both breasts together, per the BI-RADS 2013
definition.?334 We stratified DL-derived %VBD by the BI-
RADS density classifications using box plots and compared
the groups using one-way analysis of variance (ANOVA) with
Bonferroni correction for multiple comparisons.

To assess the association between each VBD measure and
breast cancer, we fit two conditional logistic regression
models, one using DL-derived %VBD and the other using
DL-derived ADV. Each model was adjusted for age, BMI,
number of family members with a history of breast cancer,
and menopausal status. Each continuous covariate param-
eter was normalized to have zero mean and unit standard
deviation. Fitting of the conditional logistic regression
model yielded log odds per unit change in standard deviation
(henceforth referred to as odds ratios [ORs]), with 95% CIs
relating the odds of having breast cancer to the respective
density measurement. AUC was calculated with respect to the
ability of the conditional logistic regression model to cor-
rectly classify cancer status, using 1,000-sample bootstraps
for AUC CIs.

We performed supplementary analyses stratifying by race
and image view. First, we compared unweighted and
weighted Dice among patients who identify as White, Black,
or Other Race using ANOVA with a Bonferroni correction. We
also calculated ORs and AUCs for regression models that
were first using only White or only Black participants and
then calculated P values for the difference in the respective
AUCs. Within strata of image view (CC, MLO), we plotted DL-
derived %VBD versus reference %VBD and calculated
Pearson’s correlation coefficients (r) to quantify the strength
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of the linear relationships between the DL-derived VBDs and
the reference segmentations.

Our final supplementary analysis compared our DL algo-
rithm against previously published 2D breast density esti-
mation methods for DM such as LIBRA 1.0.4.3* Using a subset
of the case-control sample for which both 3D DBT recon-
structed slices and for-processing (ie, raw) 2D DM images
were available, we fit four additional conditional logistic
regression models using (1) % DL-derived VBD from DBT,
(2) DL-derived ADV from DBT, (3) LIBRA-derived area
percent density (%ADV) from DM, and (4) LIBRA-derived
absolute dense area (ADA) from DM. AUC for these four
conditional logistic regression models was calculated in a
similar manner to the analyses described above. Finally, we
compared AUCs for regression models with regard to (1) %
VBD versus %ABD and (2) ADV versus ADA; these compar-
isons were also made using 1,000 bootstraps.

DL model training using GaNDLF was performed in Python
3.10.0. Logistic regression modeling and other statistical
analyses were performed using Stata (version 18.0).

RESULTS
DL Evaluation on the Held-Out Test Set

The data set used for DL model training, validation, and testing
included 1080 DBT screening examinations (41.2% Black,
54.2% White, 4.6% Other; mean age + standard deviation
[SD], 57.0 = 11.3 years; mean BMI =+ SD, 28.7 = 7.1 kg/m?). The
training, validation, and test sets contained 6,294, 791, and
780 3D volumes of DBT reconstructed slices, respectively.

Dice scores showed generally good agreement for background
and fatty tissue segmentations, whereas the agreement was
somewhat lower for the dense breast tissue segmentation. On
the held-out test set, the model achieved the overall un-
weighted and weighted Dice of 0.88 and 0.76, respectively
(Table 1). Performance was best when segmenting the
background (Dice = 0.99), indicating that the algorithm can
accurately segment breast from nonbreast. There was more
agreement between model-predicted segmentations and
reference segmentations for CC-view images compared with
MLO-view images (unweighted Dice 0.89 and 0.87, respec-
tively (P < .0001), with the weighted Dice being 0.80 and 0.72,
respectively (P < .0001)). In Appendix Table A1, there was
similar performance among women who identify as White,
Black, or Other Race in terms of unweighted Dice (0.89, 0.88,
and 0.88, respectively; P = .053). Weighted Dice was lower for
Black patients (0.74, P = .004) than for White patients (0.78)
or patients of another race (0.76). There was moderate cor-
relation between reference %VBD and DL-derived %VBD for
the MLO view (r = 0.67) with weaker correlation in the CC view
(r = 0.34; Appendix, Fig A1).

3D DBT reconstructed slices with corresponding reference
tissue segmentations and DL model-predicted tissue
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TABLE 1. Results on the Held-Out Test Set Using Dice Score

Dice Metric Entire Test Set (n = 780) CC-Only (n = 400) MLO-Only (n = 380) P

Unweighted Dice 0.88 (0.08) 0.89 (0.08) 0.87 (0.07) <.0001
Weighted Dice 0.76 (0.15) 0.80 (0.12) 0.72 (0.17) <0007
Background 0.99 (0.01) >0.99 (<0.01) 0.99 (0.01) <0007
Fatty breast tissue 0.93 (0.08) 0.93 (0.11) 0.93 (0.05) 488
Dense breast tissue 0.72 (0.17) 0.76 (0.16) 0.69 (0.19) <.0001

NOTE. Dice and standard deviations in parentheses. P values are derived from comparisons between CC-view and MLO-view Dice scores for each

specified subgroup using Student’s t test with unequal variances.
Abbreviations: CC, craniocaudal; MLO, mediolateral oblique.

segmentations are shown in Figure 2. The images shown in
the third and fourth columns illustrate how the pectoralis
muscle is present in the 3D DBT reconstructed slice in the
MLO view, but our DL model successfully segments this
region as background or nonbreast in its segmentation
prediction.

Independent Case-Control Evaluation

After applying exclusion criteria (Appendix Fig A2), 180
matched groups (654 controls, 180 cases) were included in
our independent case-control data set. There was no evi-
dence of a statistically significant difference between cases

and controls with respect to race, age, or BIRADS category
although the breast cancer group had a statistically signif-
icantly higher BMI (Table 2). Mean DL-derived %VBD was
not statistically significantly different between the cancer
cases and controls (14.6% v 13.7%, P = .19). However, mean
DL-derived ADV was higher in the cancer cases than the
control (152.3 cm3 v 127.4 cm3) with P < .0001. The distri-
bution of DL-derived %VBD had a mean of 13.9% with a right
skew, indicating a long tail with few high %VBD estimations
(Appendix Fig A3). This is in line with the standard distri-
butions for VBD in the literature.3®* The mean DL-derived %
VBD increased with the successive BI-RADS density category
(7.1%,10.9%, 21.6%, and 34.6% for categories A, B, C, and D,

Reconstructed
DBT image

Reference
segmentation

DL-Derived
segmentation
prediction

JCO Clinical Cancer Informatics

FIG 2. DBT 3D reconstructed slices (top row), corresponding reference segmentation (middle row), and DL-derived seg-
mentation predictions (bottom row) from CC and MLO views in the test set. Black = background; gray = fatty breast tissue;
white = dense breast tissue. CC, craniocaudal; DBT, digital breast tomosynthesis; DL, deep learning; MLO, mediolateral oblique.
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TABLE 2. Demographics and Other Characteristics of the Case-Control Data Set, Consisting of 180 Groups Matched by Age and Race
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Characteristic Breast Cancer Group (n = 180) Control Group (n = 654) P
DL-derived %VBD 146 £ 87 13.7 £ 8.0 19
DL-derived ADV, cm?® 1523 £ 775 1274 £ 61.8 .0001
Age, years 60.6 = 11.0 61.0 = 10.8 .65
BMI, kg/m? 298 £ 7.1 288 = 6.8 .07
Self-identified race, No. .89

White 91 322

Black 83 313

Other Race or unknown 6 19
Radiologist-determined BI-RADS density category, No. .06

A 15 86

B 96 379

C 66 182

D 3 7

NOTE. P values for age and BMl refer to t tests with unequal variances; P values for race and BI-RADS density were derived from chi-squared tests.
Abbreviations: ADV, absolute dense volume; DL, deep learning; VBD, volumetric breast density.

respectively). As such, there was a clear relationship between
DL-derived %VBD and a measure of breast density deter-
mined by radiologists (Fig 3).

There was a statistically significant association between
breast cancer status and the DL-derived %VBD (OR, 1.41
[95% CI, 1.13 to 1.77]; P = .002), age at screening (OR, 4.71
[95% CI, 1.38 t0 16.05]; P = .013), and BMI (OR, 1.46 [95% CI,
1.17 to 1.81]; P = .001). The AUC for this model was 0.65

(95% CI, 0.60 to 0.69). Similarly, there was statistically
significant association between breast cancer status and the
DL-derived ADV (OR, 1.47 [95% CI, 1.23t0 1.76]; P < .001) and
age at screening (OR, 4.60 [95% CI, 1.34 to 15.81]; P = .015),
with an AUC of 0.67 (95% CI, 0.62 to 0.72). Menopausal
status, family history, and BMI were not significantly as-
sociated with breast cancer status in this model (Table 3).
When we fit conditional logistic regression models after
stratifying by self-identified race (Appendix Table A2), there

0.4 | .
g [ ]
> 031
=]
[«b)
= —
E °
a 02
4
D ..8.
Qe
0.1 4 .
[}
0.0 . . . .
A B C D
BI-RADS Classification

FIG 3. Delineation of DL-derived %VBD by radiologist-determined BI-RADS density category
on the case-control set. One-way ANOVA analysis comparing mean DL-derived %VBD for
each BI-RADS category was significant after Bonferroni correction for multiple comparisons
(P < .001). The mean DL-derived %VBD was 7.1%, 10.9%, 21.6%, and 34.6% for BI-RADS
density categories A (n = 101), B (n = 475), C (n = 248), and D (n = 10), respectively. ANOVA,
analysis of variance; BI-RADS, Breast Imaging-Reporting and Data System; DL, deep learning;

VBD, volumetric breast density.
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TABLE 3. Odds Ratios Specifying Log Odds of Breast Cancer per Unit Change in Standard Deviation for the Two Conditional Logistic Regression

Models
Patient Parameter Log Odds per Unit Change (95% Cl) P AUC (95% Cl)
DBT %VBD-based model 0.65 (0.60 to 0.69)
DL-derived %VBD 1.41 (1.13 to 1.77) .002
Age 4.71 (1.38 to 16.05) 013
BMI 1.46 (1.17 to 1.81) .001
No. of relatives with breast cancer 1.16 (0.99 to 1.37) .065
Postmenopausal status 0.89 (0.66 to 1.19) 437
DBT ADV-based model 0.67 (0.62 to 0.77)
DL-derived ADV 1.45 (1.22 t0 1.73) <.001
Age 4.63 (1.35 to 15.90) 015
BMI 1.13 (0.93 to 1.36) 219
No. of relatives with breast cancer 1.17 (0.99 to 1.38) .060
Menopausal status 0.87 (0.65 to 1.16) 341

NOTE. AUC was calculated using 1,000 bootstraps.

Abbreviations: ADV, absolute dense volume; DBT, digital breast tomosynthesis; DL, deep learning; VBD, volumetric breast density.

was no statistically significant difference in cancer classi-
fication AUC between White and Black patients when using
ADV (P = .26) or %VBD (P = .17).

Additional analyses were conducted to determine if our 3D
model outperforms previously published 2D methods. A total
of 785 patients across 146 matched groups had both 2D for-
processing DM available and 3D DBT reconstructed slices
(Appendix Table A3). Replacing LIBRA-derived %ABD with
DL-derived %VBD increased the AUC from 0.61(95% CI, 0.55
to 0.65) to 0.63 (95% CI, 0.58 to 0.68). Similarly, replacing
LIBRA-derived ADA with DL-derived ADV increased the AUC
from 0.59 (95% CI, 0.53 to 0.64) to 0.66 (95% CI, 0.61 to
0.71); LIBRA-derived ADA did not have a statistically sig-
nificant association with breast cancer diagnosis (OR, 1.17
[95% CI, 0.93 to 1.46]). The difference between the AUC for %
VBD and ADA was not statistically significant (P = .101), but
the superiority of the AUC for ADV over ADA was statistically
significant (P < .001; Appendix Table A4).

DISCUSSION

Here, to our knowledge, we present the first DL model that
can estimate continuous VBD measures from 3D DBT
reconstructed slices rather than 2D raw DBT projections. The
DL model demonstrated a good overlap with reference tissue
segmentations on the basis of Dice score. There was an
association between density measures estimated from the
DL model and breast cancer status, justifying the clinical
utility of such a model. The AUC values derived from the
conditional logistic regression models were comparable with
the AUC reported by Gastounioti et al* (0.62 [95% CI, 0.57 to
0.68]) in their work that used raw projections, rather than
the 3D reconstructed DBT images. These AUC values were
superior to those obtained by models that use %ABD or ADA
extracted from DM, with the AUC for ADV differing from ADA

JCO Clinical Cancer Informatics

at a statistically significant level. These predictions could
conceivably be used to conduct population-level-based
personal risk assessments. Moreover, the FDA now re-
quires that women be informed of their breast density3¢;
automated methods for calculating %VBD can quickly pro-
vide this information to women.

Given the abundance of literature describing the role of racial
biases in machine learning algorithms373® and the racial
disparities in cancer care,34° we must ensure that new
machine learning models can remain robust to racial biases.
Evaluation of the DL model on the held-out test set high-
lights that performance is comparable among patients of
different self-identified races in terms of unweighted Dice
although weighted Dice is lower among self-identified Black
patients than White patients. Classification performance for
the %VBD and ADV was slightly higher for White patients
than Black patients, but this difference was not statistically
significant. In our specific patient population at HUP, women
who identify as Black tend to have larger breasts, so multiple
tiled images are required in each projection to visualize all
tissues. When there are more projections, it is more likely to
have an overlap of visualized tissues between the projec-
tions, which can lead to errors in segmentation. This may
explain the lower segmentation agreement and AUC for self-
identified Black patients in this specific population com-
pared with self-identified White patients.

Anecdotally, at one of our institutions, raw projection images
are only stored in PACS for approximately 3 months. So,
while previous algorithms that use raw projection images
could be used immediately after the examination, only an
algorithm that uses 3D reconstructed images, such as ours,
could be used to facilitate large retrospective density esti-
mations. We postulate that if clinical centers no longer need
to retain 2D raw projection images, this may lead to

ascopubs.org/journal/cci | 7
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decreased information technology (IT) costs although future
studies are needed to confirm this. Fortunately, the
framework which we used to develop our DL model
(GaNDLF) possesses postoptimization strategies to elimi-
nate the need for a graphics processing unit and decrease
random access memory needs by 50%.2%%

We would also like to highlight that glandular tissue in the
axillary tail of the breast frequently overlaps with the pec-
toralis muscle on 2D imaging. This has led to issues with
pectoral removal with computer-aided breast segmentation
and has necessitated the development of specific algorithms
whose sole aim is the correct segmentation of the pectoral
muscle.*> The DL algorithm was able to successfully segment
out the pectoralis and chest wall in the MLO view while
simultaneously distinguishing dense breast tissue from fatty
breast tissue, eliminating the need for a separate pectoral
segmentation algorithm.

This work has limitations. While the reference segmenta-
tions were generated from software, which was shown to be
quite effective at segmenting raw DBT projection images,*
the absence of clinician confirmation might have affected
reference tissue segmentations. The correlations between
the estimated %VBD and ADV and the reference segmen-
tations were only moderately correlated in the CC view
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FIG Al. Scatter plot illustrating the relationship between (A) DL-derived VBD and reference
VBD in the test set when stratifying by image view. CC, craniocaudal; DL, deep learning; MLO,
mediolateral oblique; VBD, volumetric breast density.

Original cohort
Women who had DM-DBT screening between September 20, 2011, and
November 25, 2016 (N = 901)

Exclusion criteria 1
) Women for whom all demographic information (age, BMI, race,
BI-RADS score, family history, menopausal status) was not known
(n =53)

Exclusion criteria 2
) Women who were matched to a group without a case available (n = 12)

) Exclusion criteria 3

Women who did not have contralateral imaging (n = 2)

Final case control cohort
Women who met inclusion criteria spanning 180 groups (n = 834)

Controls
Women who met inclusion criteria spanning 180
groups and who were confirmed to be breast
cancer—-negative within 5 years of initial
DM-DBT screening (n = 654)

Breast cancer cases
Women who met inclusion criteria and who were
diagnosed with unilateral breast cancer after
screening (n = 180)

FIG A2. Inclusion and exclusion criteria for case-control sample selection. BI-RADS, Breast Imaging-

Reporting and Data System; DM-DBT, digital mammography-digital breast tomosynthesis.
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FIG A3. Distribution of DL-derived ADV and %VBD on the case-control data set. (A) ADV for the entire case-control cohort; (B) %VBD for the
entire case-control cohort; (C) ADV for the entire case-control cohort with cases and controls separately overlaid; (D) %VBD for the entire case-
control cohort with cases and controls separately overlaid. ADV, absolute dense volume; DL, deep learning; VBD, volumetric breast density.

TABLE A1. Results on the Held-Out Test Set Using Dice Score

Black Race (n = 340) White Race (n = 404) Other Race (n = 36) P
Unweighted Dice 0.88 (0.08) 0.89 (0.08) 0.88 (0.07) 053
Weighted Dice 0.74 (0.15) 0.78 (0.15) 0.76 (0.16) .004

NOTE. Dice and standard deviations in parentheses. P values are derived from one-way analysis of variance comparisons between self-identified
racial groups after Bonferroni correction for multiple comparisons.

TABLE A2. AUCs for Conditional Logistic Regression Models When Trained on Only One Self-Identified Racial Group

Model Case, No. Control, No. Self-Identified Race AUC (95% Cl) P

DBT ADV 83 Ble White 0.70 (0.63 to 0.76) 255
91 322 Black 0.64 (0.57 to 0.77)

DBT %VBD 83 313 White 0.69 (0.63 to 0.76) 71
91 322 Black 0.63 (0.56 to 0.69)

NOTE. P value reflects the difference between AUC of regression models fit on White versus Black participants. AUC was calculated using 1,000
bootstraps.
Abbreviations: ADV, absolute dense volume; DBT, digital breast tomosynthesis; VBD, volumetric breast density.

© 2024 by American Society of Clinical Oncology
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TABLE A3. Demographics and Other Characteristics of the Case-Control Sample Subset for Which Raw for-Processing 2D DM Images and 3D DBT

Reconstructed Slices Were Available

Characteristic Breast Cancer Group (n = 146) Control Group (n = 639) P
DL-derived %VBD 15.0 £ 9.0 137 £ 79 .10
DL-derived %ADV 158.7 = 78.7 1272 = 61.6 <.0001
LIBRA-derived ABD 236 + 122 203 =119 .01
LIBRA-derived ADA 139 £ 95 145 95 46
Age, years 60.2 = 104 61.1 = 10.8 .36
BMI (kg/m?) 298 £ 74 287 = 6.8 13
Self-identified race, No. 73

White 69 316

Black 71 304

Other Race or unknown 6 19
Radiologist-determined BI-RADS .04

density category, No.

A 12 84

B 75 370

C 56 178

D 3 7

NOTE. P values for age and BMI refer to t tests with unequal variances; P values for race and BI-RADS were derived from chi-squared tests.
Abbreviations: ADA, absolute dense area; ADV, absolute dense volume; DBT, digital breast tomosynthesis; DL, deep learning; DM, digital

mammography; VBD, volumetric breast density.
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TABLE A4. Odds Ratios Specifying Log Odds of Breast Cancer per Unit Change in Standard Deviation for Conditional Logistic Regression Models
Using %ABD, %VBD, ADA, and ADV on the Subset of the Case-Control Sample

Patient Parameter

Log Odds per Unit Change (95% Cl)

Covariate P Value

AUC (95% Cl) AUC Comparison P Value

2D ABD-based model 0.61 (0.55 to 0.65) 101
LIBRA-derived %ABD 1.23 (1.03 to 1.47) .021
Age 2.81 (0.71 to 11.17) 139
BMI 1.27 (1.04 to 1.55) .022
No. of relatives with breast cancer 1.15 (0.96 to 1.37) 137
Menopausal status 0.83 (0.60 to 1.14) .250
3D VBD-based model 0.63 (0.58 to 0.68)
DL-derived %VBD 1.56 (1.21 to 2.02) .001
Age at initial screening 3.03 (0.77 to 11.95) 14
BMI 1.60 (1.26 to 2.04) <.001
No. of relatives with breast cancer 1.13 (0.95 to 1.36) 175
Menopausal status 0.88 (0.63 to 1.22) 443
2D ADA-based model 0.59 (0.53 to 0.64) <.001
LIBRA-derived 2D ADA 1.17 (0.93 to 1.46) 74
Age at initial screening 2.91 (0.74 t0 11.39) 125
BMI 1.35 (1.09 to 1.68) .007
No. of relatives with breast cancer 1.14 (0.96 to 1.37) 137
Menopausal status 0.83 (0.61 to 1.15) 265
3D ADV-based model 0.66 (0.61 to 0.77)
DL-derived 3D ADV 1.63 (1.33 t0 2.01) <.001
Age at initial screening 2.15 (0.78 to 12.64) 106
BMI 1.15 (0.93 to 1.43) 187
No. of relatives with breast cancer 1.15 (0.95 to 1.39) 139

NOTE. Only patients for whom 2D DM and 3D reconstructed DBT imaging were available were included in this subset analysis. AUC was calculated
using 1,000 bootstraps. Covariate P value refers to P value reported from the fitting of the conditional logistic regression model. AUC comparison P
value refers to the P value reported from comparing the AUC of the listed regression models.

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ADA, absolute dense area; ADV, absolute dense volume; DBT, digital breast
tomosynthesis; DL, deep learning; DM, digital mammography; VBD, volumetric breast density.
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