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Abstract: Breast cancer, as of 2022, is the most prevalent type of cancer in women. Breast
density—a measure of the non-fatty tissue in the breast—is a strong risk factor for breast
cancer that can be estimated from mammograms. The importance of studying breast
density is twofold. First, high breast density can be a factor in lowering mammogram
sensitivity, as dense tissue can mask tumors. Second, higher breast density is associated
with an increased risk of breast cancer, making accurate assessments vital. This paper
presents a comprehensive review of the mammographic density estimation literature,
with an emphasis on machine-learning-based approaches. The approaches reviewed can
be classified as visual, software-, machine learning-, and segmentation-based. Machine
learning methods can be further broken down into two categories: traditional machine
learning and deep learning approaches. The most commonly utilized models are support
vector machines (SVMs) and convolutional neural networks (CNNs), with classification
accuracies ranging from 76.70% to 98.75%. Major limitations of the current works include
subjectivity and cost-inefficiency. Future work can focus on addressing these limitations,
potentially through the use of unsupervised segmentation and state-of-the-art deep learning
models such as transformers. By addressing the current limitations, future research can
pave the way for more reliable breast density estimation methods, ultimately improving
early detection and diagnosis.
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1. Introduction
Breast cancer was the second most common type of cancer in 2022, with over 2.3 million

cases recorded in 185 countries [1]. Moreover, in females, it was responsible for 23.8%
of all cancer cases and 15.4% of all cancer-related deaths. Given its high prevalence and
steep mortality rates, it is undoubtedly a dangerous prospect for women. However, it
has been proven that the risks of mortality can be mitigated if breast cancer patients are
diagnosed early and consequently treated effectively [2]. The most effective method for
early detection is mammography, given its efficacy in detecting small tumors before they
grow large enough to cause symptoms [3]. Mammography is an X-ray-based screening
procedure that produces images of the breast—referred to as mammograms—which allow
for the early detection of tumors, boasting a reported sensitivity of 86.9% [3].

In addition to directly aiding in the early detection of growths, mammograms can
be used by radiologists to ascertain a strong risk factor for breast cancer, known as mam-
mographic (or breast) density. Breast density is a measure of the amount of radio-dense
fibro-glandular (i.e., non-fatty) tissue within the breast [4]. Women with high breast density
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have been shown to be far more likely to develop breast cancer, marking breast density as a
critical risk factor and one worth studying [5].

In Figure 1, samples of mammograms with varying densities are provided. Denser
tissue appears light within a mammogram, contrasting with the dark appearance of fatty
tissue [5]. Potentially harmful growths and tumors also appear light within mammo-
grams. While this contrast makes it easier for radiologists to identify tumors in low-density
(fatty) breasts, it notably reduces the sensitivity of mammograms in cases of highly dense
breasts [6]. This is because dense tissue can mask potential tumors [6].
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The efficacy of mammography relies heavily on the subjective interpretation of the
attending radiologist. Though radiologists tend to agree on the majority of cases, there is
notable subjectivity in cases of highly dense breasts [8,9]. In ref. [8], 21 expert radiologists
classified 100 mammograms into 4 density categories, with an overall agreement of only
61.4%. The experience of the radiologists in this work ranged from 4 to 22 years of clinical
experience, with an average of 12 years. Another study, ref. [9], involving the assessments
of 83 radiologists found that the percentage of breasts classified as dense varied widely,
ranging from 6.3% to 84.5% depending on the radiologist’s interpretation. This amount
of subjectivity may dangerously influence a radiologist’s decision as to whether harmful
lesions are present within a mammogram. Significant inter-observer variability has also
been observed in relation to breast cancer screening in mammograms, as seen in [10], as
well as in the measurement of breast cancer proliferation markers, such as Ki-67 [11].

In addition, it is fairly common for cancers to go undetected in mammograms and
only be identified later during retrospective reviews [12]. This can often be attributed to
misinterpretations of the true breast density, which can result from factors such as the
assumption of the asymmetry of fibro-glandular tissue—for example, dense tissue may
appear in one mammographic view of the breast but not in the other, leading a radiologist
to mistake a lesion for dense tissue. Moreover, errors in evaluating breast density can lead
radiologists to make biased decisions, including opting for more invasive procedures. This
occurs because mammogram sensitivity decreases significantly for extremely dense breasts,
with the research in [6] suggesting it can be as low as 40%. Furthermore, radiologists often
miss cancers in mammograms due to cognitive biases, misinterpretations, and other factors
discussed in [12]. As such, while radiologist interpretation is generally sound, it is not
without its challenges.
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Given these issues, it is clear that there is a need for a less subjective, more accurate,
and easily integrable method of estimating breast density. Various studies in the literature
have tackled the issue of breast density estimation from mammograms. The purpose of
this paper is to provide a comprehensive review of the literature surrounding density
estimation methods, including visual, software-based, and artificial intelligence (AI)-based
approaches. While other surveys exist, they are either outdated [13,14], not primarily
focused on automated, AI-based approaches [15–19], or have concentrated on other imaging
modalities [20]. Therefore, the necessity for a new review is evident, as it will address these
gaps. The emphasis on AI-based approaches is also important given the recent deployment
of machine learning for various tasks related to breast imaging, such as tumor detection
and classification, mammographic image improvement, and breast cancer risk assessment,
as well as breast density estimation [21].

The rest of the paper is organized as follows: In Section 2, the research methodology,
as well as the inclusion and exclusion criteria, are discussed. In Section 3, visual, software-
based, machine-learning-based, and segmentation-based approaches to breast density
estimation are reviewed. In Section 4, the limitations of the current approaches are discussed
and future research directions are outlined. Lastly, a conclusion is provided in Section 5.

2. Methods
To obtain the papers to be reviewed, several online databases were searched for

papers that proposed automated breast density estimation methods. The main search
keywords were “breast density”, “mammographic density”, “density estimation”, “density
assessment”, “machine learning”, and “deep learning”, among others. The following
databases were accessed and explored as part of the search:

• Google Scholar;
• IEEE Explore;
• arXiv;
• Springer;
• Science Direct;
• PubMed.

A total of 27 works were selected to be included in the review. Of the 27 works, 5 cover
visual methods, 3 cover density estimation software, 16 cover machine learning methods,
and 3 cover segmentation-based methods.

Since this review focuses extensively on AI-based approaches to breast density esti-
mation, very few visual or software-based methods were selected. Any visual/software
methods that had not been applied or evaluated in clinical settings were excluded from
the review. The age of the studies did not have any impact on the inclusion of works
introducing visual/software-based methods.

For AI-based methods, the selected papers focus mainly on introducing methods for
mammographic density estimation. Although many papers exist in the mammogram pro-
cessing literature covering a variety of tasks, such as mammographic image improvement
and breast cancer risk assessment and detection in mammograms, only papers primarily
addressing the issue of breast density estimation or assessment were included in this review.
Regarding machine-learning-based methods, papers published before 2010 were excluded
from the review to ensure that all the approaches covered are still relevant. Specifically, for
deep-learning-based approaches, the oldest selected work was published in 2018. Concern-
ing segmentation-based approaches to breast density estimation, due to the small number
of works, the oldest selected study was published in 2007. In all cases, works not published
in English were excluded from this review.
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3. Results
In this section, breast density estimation methods found in the literature are reviewed

and discussed. The methods detailed can be classified into four categories: visual, software-,
machine learning-, and segmentation-based methods. In this review, a special emphasis is
placed on machine-learning-based approaches, given their recent emergence as a viable
and successful solution for several breast imaging problems, including tumor detection and
classification, mammographic image improvement, and breast cancer risk assessment [21].

3.1. Visual Methods

Visual methods are widely adopted for breast density estimation. They can be based on
parenchymal patterns, qualitative, or semi-quantitative methods [22]. The most commonly
used qualitative density categorization method is the Breast Imaging Reporting and Data
System (BI-RADS), created by the American College of Radiology (ACR) [23]. It can be
used to categorize breasts into one of four qualitative categories:

1. Fatty (I): nearly no fibro-glandular tissue; almost entirely composed of fat;
2. Scattered areas (II): relatively small amount of fibro-glandular tissue;
3. Heterogeneously dense (III): large amount (>50%) of fibro-glandular tissue;
4. Extremely dense (IV): almost entirely made up of fibro-glandular tissue.

Other visual methods include the Wolfe [24] and Tabár [25] classifications, both of
which classify breasts into five density categories based on parenchymal patterns. A few
semi-quantitative visual approaches have been proposed to obtain a numeric approximation
of breast density. Norman Boyd et al. categorized breasts into six density ranges based on
visual estimates [5]. The Visual Analogue Scale—a 100 mm-long scale—has also been used
to quantify breast density composition based on visual estimates with high accuracy [22,26].

3.2. Software-Based Methods

Since visual methods are highly subjective, the use of software has been proposed as a
quantitative alternative. Some density estimation software is semi-automatic, requiring
input from the attending radiologists. One such software is Cumulus, which calculates
the percentage of radiographically dense tissue within a breast based on a radiologist’s
annotation of dense region edges within an input mammogram [27]. Several studies have
affirmed the effectiveness of Cumulus and the reproducibility of its estimates [22]. Other
software is fully automatic, requiring little to no effort from radiologists. Such software is
meant to be easily integrable and can either be area-based or volume-based. Area-based
methods rely on two-dimensional area measures of breast density. A notable system
for area-based assessment is Densitas, which employs two deep learning models: one to
estimate percent density and another to produce a descriptive classification aligned with the
four BI-RADS classes [22]. Densitas is currently cleared for clinical use in the United States,
Europe, Canada, and Australia. Volume-based methods estimate the physical volume of
dense tissue within the breast. Quantra [28] and Volpara [29] are two systems that fall into
this category. They estimate breast volume, segment it based on density, and calculate
the percentage of dense tissue. While both systems operate similarly, they differ in their
physics models, with Volpara using a relative physics model and Quantra using an absolute
physics model. Both Quantra and Volpara have received clearance from the United States
Food and Drug Administration (FDA).

3.3. Machine-Learning-Based Methods

Several works in the literature use machine learning for breast density estimation.
These works introduce methods for mammogram preprocessing and feature extraction to
facilitate notable estimation performance. The methods employed can be broken down
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into two categories: traditional machine learning and deep learning approaches. Most
machine learning methods in the literature produce qualitative estimates in accordance
with the BI-RADS classification scheme. A summary of the best accuracies achieved by the
reviewed works is showcased in Figure 2.

In terms of image preprocessing, various procedures are covered by different works.
Region of interest (ROI) extraction is a common element among the majority of works in the
literature, since works that extract a ROI tend to perform best [30]. Further, the work in [31]
suggests that the central region of the breast is the most indicative of differences between
density categories. The works in [30,32,33] detail methods for artifact and in-image label
removal, as well as pectoral muscle removal. Lastly, the works in [34–40] mention rescaling
input mammograms to speed up the subsequent steps.

Traditional machine learning methods generally rely on hand-crafted feature extrac-
tion procedures, where statistical and/or textural features are extracted. Statistical feature
extraction involves computing the statistical properties of input data. In terms of mammo-
grams, this can refer to features such as the mean luminance, the standard deviation, the
skewness and the kurtosis. Statistical feature extraction is undertaken in [30,32,33,41–43].
Textural feature extraction is commonly performed using a gray-level co-occurrence matrix
(GLCM). GLCM is a statistical method that reflects the texture of an image by calculating the
co-occurrences of particular pixel gray-level values at a specified spatial resolution (i.e., dis-
tance and direction). As demonstrated in [32,41,42], GLCM can produce diverse amounts
of features depending on the input parameters. Statistical methods can also be used to
extract shape descriptors and describe features such as the symmetry of fibro-glandular
tissue in the breast [32].

In contrast, deep learning methods can learn complex features from input mammo-
grams independently. Those features can represent texture, scale, and orientation, among
other details that are difficult to represent otherwise [34]. The most commonly used type of
neural network for breast density estimation is the convolutional neural network (CNN),
as seen in [34–40,44,45].

With respect to the evaluation metrics, traditional classification metrics are utilized in
all referenced works, as summarized in Table 1. The main metrics seen are classification
accuracy and F1-score. Some works specify AUC, precision, recall, specificity, sensitivity,
and loss.

Table 1. Evaluation metrics utilized in the literature.

Metric Formula

Accuracy True Positives+True Negatives
True Positives+False Positives+True Negatives+False Negatives

F1-Score 2×Precision×Recall
Precision+Recall

Precision True Positives
True Positives+False Positives

Recall True Positives
True Positives+True Negatives

Specificity True Negatives
False Positives+True Negatives

Sensitivity True Positives
True Positives+False Negatives

With regard to data, three publicly available datasets are utilized by several works in
the literature. Specifically, the public datasets used are Mini-MIAS [46], DDSM [47], and
INbreast [48]. A variety of private datasets are also employed in the literature. Table 2
details the public and private datasets used in the breast density estimation literature.
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Table 2. Datasets utilized in the literature.

Dataset Availability Origin Views Total
Images

Density
Categories

Mini-MIAS [46] Public UK MLO 322 3

DDSM [47] Public USA CC, MLO 10,480 4

INbreast [48] Public Portugal CC, MLO 410 4

Tianjin Tumor Hospital [43] Private China CC, MLO 88 4

University Hospital
Zagreb [42] Private Croatia MLO 144 2, 3, and 4

Gansu Provincial Cancer
Hospital [30] Private China MLO 128 3

University Hospital “Luigi
Vanvitelli” [49] Private Italy CC, MLO 876 4

New York University School
of Medicine [45,50] Private USA CC, MLO 886,000 4

University Hospital
Zurich [35] Private Switzerland CC, MLO 20,578 4

First Hospital of Shanxi
Medical University [44] Private China CC, MLO 18,157 4

University Hospital of
Pisa [39,51] Private Italy CC, MLO 6648 4

Retrospective Study [40] Private China CC, MLO 1985 4
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3.3.1. Traditional Machine Learning Approaches

As previously mentioned, traditional methods rely on actively selected and extracted
features. Those features can be textural, statistical, or, as is most often the case in breast
density assessment, a combination of both. The reviewed traditional machine learning
approaches are highlighted in Table 3.
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Table 3. Summary of traditional machine learning approaches to breast density estimation.

Study Dataset Preprocessing Feature
Extraction Model(s) Results (Accuracy)

L. Liu et al., 2010,
[33] MIAS Removal of labels

and pectoral muscle
Statistical feature

extraction DAG-SVM 77.33%

Q. Liu et al., 2011,
[43] Private database

Removal of artifacts,
pectoral muscle, and
contour line, as well
as enhancement of

images through
dyadic wavelet

transform

Statistical feature
extraction SVM 86.40%

M. Muštra et al.,
2012, [42]

Mini-MIAS and a
private database

Removal of artifacts,
reorientation and

resizing of the breast,
and extraction of

the ROI

Statistical feature
extraction and

GLCM

KNN (k = 1 and
k = 5) and Naïve

Bayes

MIAS:
1-NN: 90.37%
5-NN: 89.44%
Naïve Bayes:
91.61%
Private database:
1-NN: 97.22%
5-NN: 90.28%
Naïve Bayes:
89.58%

D. Arefan et al.,
2015, [32] Mini-MIAS

Denoising and
removal of artifacts
and pectoral muscle

Statistical feature
extraction

Neural network
with sigmoid

function
97.6%

I. Kumar et al.,
2017, [41] DDSM

Extraction of ROI
from central
breast region

Statistical feature
extraction, GLDS,
GLCM, GLRLM,

Law’s texture
energy, and 2D

GWT

PCA-KNN,
PCA-PNN,
PCA-ANN,
PCA-NFC,

PCA-SVM, and a
Hybrid

Hierarchical
Framework

PCA-KNN: 72.50%
PCA-PNN: 68.33%
PCA-ANN: 50.41%
PCA-NFC: 80.41%
PCA-SVM: 78.33%
Hybrid: 84.17%

X. Gong et al.,
2019, [30]

Mini-MIAS,
DDSM, and a

private database

Denoising and
removal of labels

and pectoral muscle

Statistical feature
extraction, GLCM,

and area-based
density estimation

SVM

MIAS: 96.19%
DDSM: 96.35%
MIAS and private
database (mixed):
95.01%

M. Sansone et al.,
2023, [49] Private database

Histogram
equalization and

pectoral
muscle removal

Statistical feature
extraction, GLCM,

Law’s texture
energy, GLRLM,

and DWT

SVM 93.55%

In ref. [30], GLCM was used at all pixel distances in all directions to create a feature
vector of 528 dimensions. A total of 24 matrices were used to produce 22 features each. Ad-
ditionally, the mean, skewness, and kurtosis are extracted for each mammographic image.
Interestingly, ref. [30] also computed a density ratio based on pixel sums and combined
it with features derived statistically and through GLCM, resulting in a 532-dimensional
feature vector. This vector was then used to train a one-against-one SVM model as the
primary model, as well as an extreme learning machine (ELM) model—a type of feed-
forward neural network detailed in [52]—for comparison. The models in [30] were trained
and tested on three datasets—mini-MIAS, DDSM, and a combination of mini-MIAS and a
private dataset—and validated using 10-fold cross-validation. The best performing model
was a linear kernel SVM, with the ELM model fading in comparison. The insights gained
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highlight the effectiveness of GLCM for texture analysis, the value of combining statistical
data with density ratios, and the robustness of linear SVMs for high-dimensional data.

In ref. [32], nine statistical features, including the mean, standard deviation, and
smoothness, are extracted from the histogram of each ROI. Those features were then fed
into a two-layer feed-forward neural network with a sigmoid function. The model was
trained and tested over five iterations using the mini-MIAS database, and the accuracies
were reported for varied numbers of hidden layers. The highest average accuracy was
achieved by the model with eight hidden layers. In contrast, the worst-performing model
was the one with only two hidden layers. Comparatively, every other model performed
well. However, it is worth noting that only 43 images were used in the training and testing
of the algorithm. Nevertheless, the findings suggest that notable performance can be
achieved with as little as four hidden layers and using a relatively small feature vector.

The authors of [33] calculated six statistical features—composed mainly of variance,
skewness, and kurtosis, as well as mean values—at three histogram resolutions, to come up
with an 18-dimensional feature vector. The features were then fed into a Directed Acrylic
Graph SVM (DAG-SVM)—a one-against-all SVM. The model was tested on the MIAS
database and validated using leave-one-out cross-validation. The model achieved modest
accuracy, performing best in classifying fatty breasts and worst in classifying glandular
breasts. This discrepancy highlights a difficulty in distinguishing the subtler features of
dense tissue, indicating potential areas of improvement in feature extraction and selection.

In ref. [41], eleven first-order statistical features—including energy, uniformity, and
entropy—are computed from ROI histograms. Additionally, 13 GLCM features, 5 gray-level
difference statistics (GLDS) features, 11 gray-level run length matrix (GLRLM) features,
and 210 Law’s texture energy features are extracted. Furthermore, ref. [41] employs the
2D Gabor Wavelet Transform (2D GWT) to generate features that capture Gabor-filtered
statistical details, including the mean and standard deviation. This process is performed
for 21 images, producing 42 features. All extracted features are then input into six hier-
archical models with different architectures. The models used in [41] aim to decompose
the classification task from a four-class problem into three binary classification problems.
Specifically, the first stage of each model separates BI-RADS I breasts from the rest, the
second stage differentiates BI-RADS II breasts, and the third stage classifies breasts as either
BI-RADS III or BI-RADS IV. In implementing this architecture, KNN, probabilistic neural
network (PNN), artificial neural network (ANN), neuro fuzzy classifier (NFC), and SVMs,
were utilized. In all but the sixth model, a hierarchy of three blocks of the algorithm was
implemented, each preceded by Principal Component Analysis (PCA) for dimensionality
reduction. The sixth model followed the same hierarchy but incorporated the three best-
performing algorithms (one for each step): SVM, NFC, and KNN. All models were trained
and tested using the DDSM database. Among the first five models, PCA-NFC achieved
the best performance, followed by PCA-SVM and PCA-KNN. The hybrid model, however,
outperformed all the others, achieving notable classification accuracy. The results of this
work highlight the potential of ensemble models, and indicate that certain models can
better distinguish between specific BI-RADS classes than others—i.e., SVM was best for
identifying BI-RADS I breasts, NFC was best for recognizing BI-RADS II breasts, and KNN
was best for separating BI-RADS III and BI-RADS IV breasts. The hybrid model effectively
utilizes each individual model to attain promising results.

The work in [42] implemented GLCM at 4 directions and 4 distance values to extract
228 features. The authors also extracted several different features from 16-, 32-, and
256-bin histograms. Two variations of KNN (1-NN and 5-NN) and a Naïve Bayesian
model were deployed. The models were tested on the mini-MIAS dataset, as well as on a
private dataset, and were validated using leave-one-out cross-validation. The models were
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also tested on different variations in the number of categories; the models were used to
classify mammograms into two, three, and four categories in different iterations and using
variations in the datasets. The best-performing model for both datasets was 1-NN, with
much higher accuracy in binary classification than in multiclass assessment, and better
performance on the private dataset than on the mini-MIAS dataset. The authors of the study
attributed the variation in performance to the higher image quality in the private dataset.

In ref. [43], mammographic images were divided into subregions, and histogram
moments were used to generate features that measure the variance, skewness, kurtosis,
and means of each subregion. These features were then input into an SVM, which was
employed to classify the subregions into high-density and low-density categories. Based
on the SVM output, the density was estimated as the ratio of high-density subregions to
the total number of subregions. This numerical density estimate was subsequently used to
classify the mammogram into one of four density categories. The model was trained and
tested on a private dataset, achieving significant accuracy. It correctly identified all of the
class I and class IV breasts, but struggled with class II and class III breasts. This indicates
that breasts on the extremities (BI-RADS I and BI-RADS IV) have more distinctive features
that make them more readily distinguishable. The difficulty in capturing subtle features
that could help identify BI-RADS II and BI-RADS III breasts remains.

The authors of [49] designed an elaborate feature extraction procedure and tested
multiple models. First, they applied histogram equalization to mammograms to enhance
image quality. They also removed the pectoral muscles and isolated the breast tissue.
Next, they extracted 112 GLCM features, 45 Law’s texture energy features, 28 GLRLM
features, 30 discrete wavelet transform (DWT) features, 12 histogram features, fractal
dimensions, and local binary patterns. For feature selection, filter feature selection through
correlation and wrapper feature selection through Recursive Feature Elimination (RFE)
were compared. The extracted features were used to train four separate models: SVM,
Linear Discrimination Analysis (LDA), ANN, Decision Tree (DT), and Random Forest Tree.
The authors transformed the problem into a binary classification task by merging BI-RADS
I and II cases into a “fatty” class and BI-RADS III and IV cases into a “dense” class. For
evaluation, 10-fold cross-validation was utilized. The best performance was achieved using
the SVM model, suggesting that a comprehensive feature extraction procedure can lead to
significant breast density classification accuracy.

3.3.2. Deep Learning Approaches

Deep learning approaches do not require hand-crafted features. Instead, neural
networks learn complex features from input mammograms, and can reliably be used to
estimate breast density. Table 4 summarizes the reviewed deep-learning-based breast
density estimation approaches.

Uniquely, in ref. [34], binary masks of input mammograms were generated using
a conditional generative adversarial network (cGAN). Features of input mammograms
are learned by the encoder of the cGAN’s generator, while binary masks are produced
by the decoder of the generator. The masks are subsequently fed to a CNN consisting of
three convolutional layers and two fully connected layers. The CNN classifies an input
mammogram into one of four density categories. The model also generates a numerical
density estimate based on a quotient of the number of dense tissue pixels and the number of
all breast tissue pixels. The INbreast database was used to train and evaluate the model, uti-
lizing balanced and imbalanced input data of different sizes (128 × 128 and 64 × 64 pixels).
The best performance was attained using a balanced dataset with a standard input size of
128 × 128 pixels. For the imbalanced dataset, the model achieved better results with an
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input size of 64 × 64 pixels. The study’s findings suggest that the combination of cGAN
and CNN is effective for breast density classification.

Table 4. Summary of deep learning approaches to breast density estimation.

Study Datasets Preprocessing Model(s) Results

N. Wu et al., 2018, [45] Private database - DCNN Accuracy: 76.70%
macAUC: 0.916

A. Ciritsis et al., 2019,
[35] Private database Rescaling DCNN

MLO Accuracy: 92.20%
MLO AUC: 0.980
CC Accuracy: 87.40%
CC MLO: 0.970

P. Shi et al., 2019, [36] Mini-MIAS
Rescaling and

pectoral muscle
removal

CNN Accuracy: 83.6%
Loss: 0.52

N. Saffari et al., 2020,
[34] INbreast Removal of pectoral

muscle and rescaling cGAN-CNN

Accuracy: 98.75%
Precision: 97.50%
Sensitivity: 97.50%
Specificity: 99.16%

J. Deng et al., 2020, [44] Private database

Removal of pectoral
muscle, grayscale

transformation,
cropping of images,

and image whitening

CNN with
SE-Attention

Accuracy: 92.17%
F1-score: 90.33%

B. Mohammed and B.
Nadjia, 2021, [37] INbreast

Reorientation to left
side, breast area
extraction, and

rescaling

Inception_ResNet_V2

Accuracy: 98%
Precision: 97%
Recall: 96%
Specificity: 98%
F1-score: 96%

W. Zhao et al., 2021,
[38]

DDSM and
INbreast

Denoising, breast
area extraction, and

rescaling

BASCNet: ResNet and
ASAM and ACAM

DDSM (CC):
Accuracy: 85.10% ± 2.50%
F1-score: 73.92% ± 3.82%
AUC: 91.54% ± 0.88%
INbreast (CC and MLO):
Accuracy: 90.51% ± 5.08%
F1-score: 78.11% ± 10.30%
AUC: 99.09% ± 1.20%

F. Lizzi et al., 2021, [39] Private database

Conversion from
12 bits to 8 bits,
rescaling, and

pectoral
muscle removal

Very deep residual
CNN

Accuracy: 82.0%
Precision: 83.3%
Recall: 80.3%

C. Li et al., 2021, [40] INbreast and a
private database Rescaling

ResNet with dilated
convolutions and

channel-wise
attention layers

INbreast:
Accuracy: 70.0%
F1-score: 63.5%
AUC: 84.7%
Private database:
Accuracy: 88.7%
F1-score: 87.1%
AUC: 97.4%

The study in [35] employed a DCNN with thirteen convolutional layers, four dense
layers, and a fully connected softmax classification layer. The model was trained and
tested using MLO and CC mammograms from a private database. The model achieved
significant accuracy for both, but showcased better performance in the classification of
MLO mammograms. The findings suggest that DCNNs can provide standardized and
observer-independent breast density classifications, potentially improving clinical accuracy.
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In ref. [36], a lightweight CNN architecture was used to extract deep features from
mammographic images. The CNN comprises three convolutional layers (with max pooling
implemented) and three fully connected layers. The model was trained and tested on the
mini-MIAS database and validated using five-fold cross-validation. To address the limited
number of images in the mini-MIAS dataset, image augmentation was applied. The authors
also explored various segmentation methods (i.e., preprocessing) and experimented with
different numbers of convolutional layers. The primary three-layer model achieved the best
reported accuracy. Regarding segmentation, the best-performing model was the one that
extracted pectoral muscles alongside the breast region. The authors conclude that utilizing
a balanced CNN architecture along with image augmentation can result in improved breast
density classification accuracy.

In ref. [37], a transfer learning approach was implemented. A pretrained Incep-
tion_ResNet_V2 was implemented, within which the top layer was replaced by a pooling
layer, followed by two fully connected layers, a dropout layer, and a softmax classification
layer. The model was trained on the INbreast database and had significant classification
accuracy. This work demonstrated the effectiveness of transfer learning in achieving high
performance, even with a small training dataset.

Another study, ref. [38], introduced an architecture named BASCNet, which integrated
ResNets from [50] with an adaptive spatial attention module (ASAM) and an adaptive
channel attention module (ACAM). In the model described in [38], ASAM is utilized to
capture distinctive features, while ACAM highlights informative channels. The model
was trained on CC mammograms from the DDSM database as well as on MLO and CC
mammograms from the INbreast database. The model showcased robust performance
overall, with better classification accuracy observed on mammograms from the INbreast
database. The authors concluded that the addition of the attention modules allowed the
model to capture distinctive spatial and channel dimension features, consequently resulting
in robust performance.

The authors of [39] used a very deep residual CNN. The CNN consists of 41 convolu-
tional layers arranged in residual blocks. The model was trained and tested on a private
dataset using two variations of input images: images with and images without pectoral
muscles. The model performed better on mammograms where the pectoral muscle had
been removed, with the accuracy dropping slightly for images where it had been kept. This
finding underscores the importance of mammogram preprocessing in improving density
assessment performance.

The approach detailed in [40] made use of ResNet, which was originally proposed
in [53]. In ref. [40], the authors added several dilated convolutional and channel-wise
attention layers to the architecture. The model was trained and tested on a private dataset
as well as on the INbreast database. The proposed model exhibited notable performance
on the private dataset, but was less impressive when applied to the INbreast database. This
discrepancy highlights the challenges of generalizing across different datasets. The authors
suggest fine-tuning as a viable solution, since it requires fewer samples and speeds up the
training process compared to training from scratch.

The work in [44] improved on the basic CNN structure by introducing squeeze-
and-excitation (SE)-Attention blocks to the architecture. Three different CNN models—
Inception_V4, ResNeXt, and DenseNet—were augmented with SE-Attention blocks, con-
sequently tested on a private database, and validated using 10-fold cross-validation. The
best performing model was the augmented Inception_V4 model, with strong classification
accuracy. The authors of this work concluded that the SE-Attention mechanism can signifi-
cantly enhance the feature extraction ability and the overall performance of CNN models
for density estimation.
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In ref. [45], transfer learning was applied with a deep CNN (DCNN) that was previ-
ously trained and used in [50] for cancer screening. The architecture in [45] was identical
to that in [50], with the exception of a softmax classification layer. This model was then
tested on a massive, private dataset. The authors of [45] experimented with different input
data amounts, ranging from 1% of the data to 100% of the data. In all cases, the model
showcased modest top-1 accuracies, significant top-2 accuracies, and notable superclass
(dense vs. not dense) accuracies. Performance only improved marginally with the addition
of more input data, suggesting that the volume of data may not be the most significant
factor in improving breast density estimation accuracy.

3.4. Segmentation-Based Methods

The machine learning methods described earlier are supervised, relying on subjective
expert assessment for their training. Mammogram segmentation is a mainly unsupervised
alternative that can be used to estimate breast density. Segmentation of the breast region can
be performed to gain a quantitative measure of overall breast density and can often be used
for cancer risk assessment in mammograms [17]. Automatic density segmentation methods
can be arranged into two categories: area density projection-based and volume density
projection-based methods. Area density projection-based methods include thresholding,
clustering, statistical modeling, and collective multiple measurement approaches. Volume
density projection-based methods estimate the depth of a given image to compute volume
and consequently use it to segment the image. These include prior calibration, in-image
reference calibration, and software solutions such as Quantra (version 1.2β) [28] and
Volpara (Version 1.2.1) [29].

Segmentation methods have been applied directly to breast density assessment to
produce continuous percent density estimates by following the segmentation process with
arithmetic division. A summary of the detailed approaches is provided in Table 5.

Table 5. Summary of segmentation-based methods for breast density estimation.

Study Dataset(s) Segmentation
Techniques Utilized Results

C. Glide-Hurst et al.,
2007, [54] Private dataset

Gaussian mixture
modeling and

K-means.

Spearman rho:
CC: 0.67
MLO: 0.71

M. Kallenberg et al.,
2016, [4] Private dataset

Convolutional sparse
autoencoder for

feature learning and
softmax regression for

pixel labeling.

Correlation (r): 0.85
Dice coefficients:
Dense: 0.63
Fatty: 0.95

N. Gudhe et al., 2022,
[55]

MIAS, INbreast,
mini-DDSM, and a

private dataset

Multitask model with
encoder–decoder

architecture.
Correlation (r): 0.90

The work in [54] presents an unsupervised approach to the estimation of mammo-
graphic percent density. Multiple segmentation steps are applied to allow for the estimation
of breast density. First, a Gaussian mixture modeling approach is applied to separate the
breast tissue from non-breast tissue. Next, the breast outline is automatically selected using
a tracing tool, and irrelevant radiographic markers are removed. Then, K-means clustering
is employed to segment the chest wall from the breast. K-means is then also applied to the
breast tissue in order to segment it into an adjustable number of clusters—typically set to
four to match the BI-RADS density classification scheme. Percent density is then estimated
through arithmetic division. To evaluate this method, the authors computed the correlation
between the resulting estimates and the qualitative BI-RADS labels. This method achieved
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a strong correlation for both CC and MLO mammograms. The authors conclude that the
proposed approach presents a quantitative—and more objective—assessment method for
breast density estimation, which may improve risk assessment.

The work in [4] combines unsupervised feature learning with supervised classification
in order to estimate percent mammographic density and perform cancer risk assessment.
Their method utilizes a convolutional sparse autoencoder (CSAE) that autonomously learns
informative features from unlabeled mammographic images, followed by a supervised clas-
sifier (softmax regression) that estimates the probability that each pixel in a mammogram
belongs to the dense class. Thresholding the output of the model results in a segmented
mask of breast tissue. Percent density is then computed as the percentage of dense tissue
in that mask. This approach results in a significant correlation between the automated
density scores and manually assessed ones, with better performance on fatty tissues than
dense tissues. Its notable performance can be attributed to the models ability to learn
discriminative features through unsupervised pre-training with a CSAE, enabling effective
segmentation without relying on prior assumptions.

The work in [55] presented a supervised method for the simultaneous segmentation
of breast areas and dense tissue, as well as the calculation of percentage breast density via
arithmetic division. The method involved a multitask deep learning model (MTLSegNet)
that utilizes multilevel dilated residual blocks and parallel dilated convolutions to enhance
feature extraction. The model is trained using expert-annotated segmentation masks of
mammograms from three datasets—mini-MIAS, DDSM, and a private dataset. The percent-
age density is calculated by comparing the area of dense tissue to the total breast area. The
study’s segmentation performance was evaluated using the F-score and intersection over
union (IoU) metrics. The study’s results demonstrated that MTLSegNet outperformed base-
line models, showing higher F-scores and IoU metrics. Furthermore, the percentage density
estimates correlated very strongly with radiologists’ assessments. This work demonstrates
that utilizing a diverse dataset, with mammograms from different sources with varying
resolutions and intensities, can improve the generalizability of supervised models.

4. Limitations and Future Directions
The breast density estimation methods detailed in Section 3 are varied, and each has

advantages and disadvantages. In this section, a discussion is provided, wherein the issues
of each reviewed approach are summarized, and future research directions are outlined.

Visual methods—specifically the BI-RADS system—are the most widely adopted
standard for breast density estimation. However, they tend to be rather subjective, and
their efficacy is proportional to the experience of the attending radiologist. Additionally,
they are labor-intensive and relatively primitive, especially when compared to other more
precise methods of measurement. In spite of that, visual methods remain the most com-
monly adopted methods, particularly due to them not requiring any new infrastructure to
implement them. This cost-efficiency, coupled with the widespread familiarity of radiolo-
gists with the BI-RADS system, make visual methods very practical, especially in smaller
clinical environments.

Breast density estimation software presents a viable solution to the problems with
visual estimation. Nevertheless, the available software solutions each have their drawbacks.
Semi-automatic software solutions—chief among which is Cumulus—still require the
input of an expert. Fully automatic systems, such as Densitas, Quantra, and Volpara,
are more convenient than their semi-automatic counterparts, but they have their own
issues. They are entirely proprietary, and not much is known about the exact methods of
their functionality. This matter introduces issues such as interoperability difficulties, data
ownership concerns, and limited advancement in quality. It also makes them somewhat
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difficult to accurately assess, and limits any collaborative innovation efforts. Some of this
software employs machine learning techniques, which means that their algorithms are
likely trained on expert labels, possibly making their assessments subjective. They may
also have trouble generalizing to different demographics—they are cleared in varying
markets, and as such, their algorithms may be trained and tuned for those specific markets.
Furthermore, their estimates vary, and can be fairly inconsistent. For example, Volpara
may underestimate, while Quantra may overestimate mammographic density [56]. It is
also worth noting that all software solutions require the deployment of infrastructure
that can support their operation, introducing set-up and maintenance costs. Furthermore,
radiologists need to be trained on the specific software utilized in their clinics, and may
have trouble migrating from one software to another after years of experience. All of these
issues discredit the practicability of breast density estimation software in clinical settings.
Nonetheless, in contrast with AI-based methods, breast density estimation softwares have
been extensively studied and evaluated in clinical environments, with notable success as
support tools for radiologists.

The machine learning methods in the literature, both the traditional and deep learning
ones, are promising. A notable classification performance has been achieved on all publicly
available datasets as well as on several private datasets [30,32,34,35,37,38]. However,
the machine learning methods discussed in Section 3.3 all rely on labeled data to act
as ground truth. This is problematic because, as detailed earlier, expert labels can vary
significantly and be considerably subjective. Additionally, for all but one study [34], the
machine learning literature focused mainly on classification according to BI-RADS, and not
on the quantitative estimation of percentage breast density—which can be more precise
and informative.

Segmentation-based approaches provide a solution that can compute quantitative
breast density estimates, but they are not without issues. The segmentation-based methods
reviewed in Section 3.4 involve some innovative approaches, but outside of the work in [54],
they are supervised, requiring expert-annotated breast density segmentations for training.
On the other hand, even though a deliberate procedure was described in [54], the method
employed—K-means—is relatively primitive, making use of suboptimal techniques.

In terms of applicability, generalizability is a major concern for AI-based models, as
they often perform well in the conditions they were trained in, but may struggle to adapt
to diverse patient populations or different clinical environments. Both machine-learning-
and segmentation-based approaches may require expensive hardware to run. This is
especially true for methods relying on deep learning, which may require powerful GPUs
to run efficiently. The physical hardware requirement can be bypassed by using the cloud
for storage and processing, but this might introduce new costs and data privacy issues.
Additionally, the collection of the high-quality, labeled data needed for model training can
be highly costly, further reducing the practicality of supervised approaches. However, these
issues are all addressable. One way to address generalizability is by developing models
that are trained on diverse datasets representing a broad range of populations and clinical
scenarios. This can be achieved through international collaboration, and can improve
the adaptability of supervised models to different populations. Furthermore, effective
lightweight models, such the one proposed in [36], exist in the literature. Such models
can be deployed on consumer-grade devices, making them more practical than software
solutions. It is also important to point out that unsupervised approaches inherently address
the issues of subjectivity and generalizability, since they do not rely on labeled data, and
are not constrained by a specific training dataset. Thus, an unsupervised approach utilizing
a lightweight architecture may be ideal for a clinical environment.
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When AI is discussed in the context of clinical implementation, a few ethical concerns
arise. First, the issue of data privacy must be addressed. The data collected from patients
must be anonymized, and any personal health data must be kept confidential. In publicly
available datasets, personal details such as the patient’s age are often omitted in compliance
with confidentiality concerns. Additionally, informed consent should be obtained from
patients in order to comply with ethical standards. Approval from ethical boards of
institutions is generally required before data can be collected. Furthermore, it is paramount
that AI models adhere to data protection laws and regulations, which can vary by region.
The issue of data privacy often complicates the data collection process, but it serves to
protect the privacy of patients. Second, the implications of AI misclassification must be
considered. Misclassification can lead to patient harm; a false negative can get in the way
of timely intervention, while a false positive may lead to unnecessary treatments, tests, or
procedures. Notably, in the context of breast density, overestimating a patient’s density may
spur the attending radiologist to request more invasive procedures, while underestimating
density may delay cancer diagnosis, or worse, prevent it entirely. In addition, an AI model
that fails frequently will lose the trust of patients and professionals. If clinicians do not trust
AI tools, they would be reluctant to integrate them into their practices. Third, it is important
to consider the transparency and explainability of AI algorithms. AI models often function
in a way that is difficult to understand, and this can make patients uneasy. They also raise
issues of accountability—clear lines on which are necessary to ensure that responsibility for
patient outcomes remains with healthcare institutions. Last, the overuse of AI in healthcare
could serve to dehumanize it. It is crucial that AI-based healthcare tools—including breast
density estimation systems—aim to complement human decision-making, not replace it.
Clinicians should retain the ability to override AI recommendations when necessary.

Future research into automated breast density estimation must address these limita-
tions; namely, it should offer solutions to subjectivity and cost-inefficiency, which make
the current approaches impracticable in a real-world clinical setting. To that end, future
work should involve solutions that rely less on expert labels, given the high inter-observer
variability among radiologists. One possibility might be to utilize unsupervised learning,
as it deals with unlabeled data, and can be used to facilitate quantitative density estimates
through image segmentation. Unsupervised segmentation techniques include active con-
tour models, which have been successfully implemented for breast cancer detection [57].
Future work should also focus on employing state-of-the-art deep-learning models, as they
tend to be more effective than their traditional counterparts. The recent success of trans-
former models in medical imaging tasks, including breast tumor segmentation and cancer
detection, makes them a potentially suitable option for breast density estimation [58].
A notable transformer-based approach can be seen in [59], where an encoder–decoder
architecture with integrated transformer and ResNet modules is utilized for pixel-level seg-
mentation of mammogram ROIs. In addition, the impact of image enhancement techniques
on breast density estimation models is not well studied. Techniques such as contrast-limited
adaptive histogram equalization (CLAHE) and super-resolution should be explored in the
context of breast density estimation, given their proven ability to significantly improve the
image quality of mammograms [60,61]. Furthermore, augmentation-reliant approaches
should be forgone in favor of approaches that promote generalizability. Lastly, proposed
solutions should be tested on more than one dataset in order to obtain a reliable measure of
performance. By addressing these aspects, future research can pave the way for less subjec-
tive, more cost-efficient, and practical methods for breast density estimation, ultimately
improving clinical outcomes and patient care.
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5. Conclusions
Breast density is an important risk factor for breast cancer and inversely related to the

sensitivity of screening mammography. In this work, a review of the literature surrounding
breast density estimation, focusing primarily on methods utilizing machine learning, was
presented. The review highlighted significant advancements and detailed approaches
proposed in the literature. The limitations of current approaches—namely subjectivity,
cost-inefficiency, and impracticability—were discussed, and future research directions
were identified. By addressing said limitations, future research can lead to more objective,
cost-effective, and practical methods for breast density estimation.
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ASAM Adaptive Spatial Attention Module
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BI-RADS Breast Imaging-Reporting and Data System
CC Craniocaudal
cGAN Conditional Generative Adversarial Network
CNN Convolutional Neural Network
CSAE Convolutional Sparse Autoencoder
DAG Directed Acrylic Graph
DCNN Deep Convolutional Neural Network
DDSM Digital Database for Screening Mammography
DT Decision Tree
DWT Discrete Wavelet Transform
ELM Extreme Learning Machine
GLCM Gray-Level Co-occurrence Matrix
GLDS Gray-Level Difference Statistics
GLRLM Gray-Level Run Length Matrix
GPU Graphical Processing Unit
GWT Gabor Wavelet Transform
IoU Intersection over Union
KNN K-Nearest Neighbor
LDA Linear Discrimination Analysis
macAUC Macro Area Under the Curve
MIAS Mammographic Image Analysis Society
MLO Mediolateral Oblique
NFC Neuro Fuzzy Classifier
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PCA Principal Component Analysis
PNN Probabilistic Neural Network
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ROI Region of Interest
SE Squeeze-and-Excitation
SVM Support Vector Machine
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