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Abstract

Breast cancer is a globally prevalent and potentially fatal illness affecting women. Timely
identification of screening mammography may decrease the occurrence of incorrect posi-
tive results and enhance the rate of patient survival. Nevertheless, the density of breast
tissue in mammograms can impact the precision and effectiveness of detecting breast
cancer. This paper examines the existing body of research on the analysis of breast den-
sity in mammograms utilising advanced deep learning models, including convolutional
neural networks (CNN), transfer learning (TL), and ensemble learning (EL). Additionally,
it examines various datasets and evaluation measures employed in the investigations. The
study demonstrates that deep learning models can attain exceptional accuracy in categoris-
ing breast density. However, they encounter obstacles such as limited data availability,
intricate model structures, and difficulties in interpreting the results. The research asserts
that categorising breast density is an essential undertaking in order to enhance the identi-
fication and survival rates of breast cancer. Further investigation is warranted to examine
the most effective deep learning structures, data augmentation methods, and interpretable
models for this undertaking.

Keywords Mammogram - Breast density classification - Convolutional neural network -
Transfer learning - Ensemble learning

1 Introduction

Breast cancer exhibits a high prevalence within the population of India, and its incidence is
similar in cities and villages. Studies in the year of 2020, suggested that around 2.3 million
women would be diagnosed with breast cancer and 6,85,000 were succumbing to the dis-
ease (Tice et al. 2015). Due to the higher death rate, steps have been initiated to reduce the

P< T. Joshva Devadas
joshvadevadas.t@vit.ac.in

! School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

2 School of Electronics Engineering, Vellore Institute of Technology, Vellore, India

@ Springer


https://doi.org/10.1007/s10462-025-11232-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-025-11232-8&domain=pdf&date_stamp=2025-5-5

240 Page 2 of 44 S. Jeba Prasanna Idas et al.

death rate by detecting breast cancer at an early stage. The early detection of breast cancer is
typically achieved through the use of mammography, which is considered a widely accepted
and reliable imaging technique in the medical field (Oza et al. 2021). Screening mammo-
grams and diagnostic mammograms are the two various techniques involved in mammog-
raphy (Mathur and Taurin 2022). Screening mammograms can be used when the women
have no signs or symptoms related to breast cancer (Murtaza Mendes and Matela 2021). A
diagnostic mammogram is used when a lump or any other symptoms are found in the breast.

Women can gain awareness and understanding of breast cancer and breast density
through risk factors associated with the disease. Both modifiable and non-modifiable risk
variables have been identified (Kaiser et al. 2019). During a Patient’s lifetime, people are
unable to alter risk variables such as family history, genetic alterations, mensuration, and
menopause. Lifestyle choices of women may lead to cancer but that would change or lower
the risk of the development of breast cancer when a healthy lifestyle is practiced. This can
be achieved by breastfeeding children, maintaining a healthy weight, getting enough sleep,
exercising frequently, staying against alcohol, and having a proper diet.

The application of CAD in the field of medical image processing and deep learning has
significantly simplified the detection of breast cancer. In previous studies, breast density
was estimated and classified with the use of feature extraction and a variety of segmentation
techniques. However, segmenting and classifying breast density remains challenging due
to the low quality of images and the intervention of radiologists. Deep Learning negates
the necessity for human involvement (Braithwaite et al. 2018). Since feature extraction and
selection are integrated within the network architecture itself. Moreover, the development of
conventional neural networks has proven to be particularly effective in classification tasks.
Over the past years, a large number of researches has focussed on breast cancer, especially
on breast cancer detection and classification using mammogram images. However, there is a
limited body of research that specifically examines the classification of breast density and its
potential influence on the progression of breast cancer. The primary focus of the survey is to
examine and explore the interrelation between mammographic density and the risk factors
associated with breast cancer. Additionally, the present study aims to conduct a comprehen-
sive review of the application of CNN, TL, and EL, in breast density classification methods
(Lester et al. 2022).

1.1 Sources of breast cancer

Breast cancer is a multifaceted ailment that arises from a confluence of hereditary predispo-
sition and environmental influences. The precise aetiology of breast cancer remains elusive,
while it is hypothesised to stem from alterations in the DNA of breast tissue cells. In normal
cells, DNA serves as a blueprint for cellular growth and apoptosis, whereas in cancer cells,
it imparts altered instructions that promote rapid cell proliferation. This can result in the
development of a neoplasm, which has the ability to infiltrate and eradicate normal bodily
tissue (Kressin et al. 2022). Cancer cells can eventually detach and disseminate to different
regions of the body, leading to the development of metastatic cancer. The genetic alterations
associated with breast cancer predominantly occur in the milk ducts, which serve as con-
duits for transporting milk to the nipple, and in the milk glands, responsible for producing
breast milk. Although infrequent, other breast cells can undergo malignant transformation
and become cancerous.
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Factors that increase the risk of breast cancer include having a family history of breast
cancer, having a personal experience of breast cancer, and having a personal history of
specific breast disorders. Females have a higher propensity for developing breast cancer
compared to males (Miles et al. 2019). Additionally, the presence of dense breast tissue,
characterised by a combination of fatty and dense tissue, can impede the detection of breast
cancer during mammography. Consuming alcohol elevates the likelihood of developing
breast cancer, while delaying the age at which one has their first child may also heighten
the risk.

Genetic mutations that are passed down from parents, such as BRCA1 and BRCA2, can
elevate the likelihood of developing breast cancer and other types of cancer. Combining
oestrogen and progesterone in menopausal hormone therapy may potentially elevate the
likelihood of developing breast cancer, obesity is associated with a greater chance of devel-
oping breast cancer, whereas exposure to radiation on the chest during childhood or early
adulthood can also elevate the risk (Saffari et al. 2020).

To summarise, Fig. 1 depicts the risk of breast cancer can be influenced by factors such
as familial history, personal history of breast cancer, and genetic predisposition. Engaging
in a discussion with healthcare specialists is crucial to ascertain the optimal approach for
managing and preventing this disease.

Figure 2 illustrates four lifestyle habits that have the potential to reduce the chance of
developing breast cancer. These factors encompass the maintenance of a desirable body
weight, participation in consistent physical exercise, cessation of smoking, and restriction
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of alcohol consumption. Women of all age groups should adhere to a well-balanced diet
and engage in consistent physical exercise. Cessation of smoking is a pivotal determinant
in mitigating the likelihood of developing breast cancer. Consuming a moderate amount
of alcohol, which is defined as no more than one drink per day for women, is also advan-
tageous. Additional factors, such as genetics and family history, can add to the level of
risk. It is advisable to seek guidance from the doctor for tailored treatment programmes
(Ulagamuthalvi et al. 2022).

The present paper is structured in the following manner. Section 2 provides a compre-
hensive review of several surveys that have been published in the field of deep models for
mammogram breast density analysis. Section 3 shows how mammography breast density
affects breast cancer detection and survival. Section 4 describes the architecture of deep
models like CNN, pre-trained model and Ensemble model Sect. 5 illustrates the detailed
review of published CNN-based solutions in the area of breast density classification. Sec-
tion 6 examines the various available datasets, performance evaluation, and its usage level.
Section 7 presents an overview of the research findings derived from the comprehensive
survey. Lastly, Sect. 8 provides the concluding remarks and outlines potential avenues for
further research.

1.2 Survey constraints

The scope and limitations of the data collection used in this survey are outlined here. In
this study, we review and analyze literature proposed for breast cancer detection using deep
learning models in the past two decades. There are several major digital repositories utilized
by the survey to choose a wide range of deep learning models, including: Explore, Science
Direct, CrossRef, MedPub, and Google Scholar. Also, the survey examines the literature
that supports the development of interpretable models as well as methods for optimizing
hyperparameters. Primarily the survey considers the studies that apply learning-based mod-
els using the dataset available to the public. Also, the focus of the study is chosen based on
the mammogram breast density classification method along with the application of CNN,
TL, EL, Contemporary models and Interpretable models. Additionally, segmentation, pre-
diction, image retrieval, and preprocessing techniques are not included in this survey so
more attention may be paid to the topic at hand.

2 Research motivation

Medical image classification has reached its peak with the advent of deep learning and it
has become the focus of many recent researches. Breast cancer detection and classification
methods have been the subject of extensive investigation during the past two decades. How-
ever, breast density has a strong association with breast cancer, and the performance of the
classification model and the imaging modalities are affected due to the dense breast. There-
fore, a deep learning model for breast density categorization will be the primary emphasis
of this study. A single survey may not encompass all research publications in a particular
domain (Daly et al. 2021). The primary aim of the survey is to lay a solid groundwork for
future research in the selected topic and to investigate the existing body of knowledge in
this area. This review also seeks to emphasize the strategies and techniques employed in
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implementation, as well as indicate gaps for prospective future research. Therefore, this
evaluation presents in-depth responses to the following concerns.

Why mammogram breast density is a prominent factor in breast cancer detection?
Whether the association of mammogram density and survival rate is correlated?
Identify various methodologies used in breast density classification.

Address the significance of Deep Learning models in determining breast density.
Expose the many measures the academics have used to evaluate the efficacy of the Deep
Learning categorization algorithm.

6. To what extent the model can be trained on the datasets available in the current deep
learning architecture?

DAEE IRl

2.1 Flow of the survey

Figure 3 depicts the review process flow and design model. To begin with, this system
model contains mammographic breast density to analyse the correlation between breast
density and breast cancer. The subsequent step is to use the open-source Dataset for mam-
mographic imaging to process the input images. The survey also includes a deep learning-
based system for correctly categorizing breast density which includes CNN, TL, and EL.
Finally, the study digs into the evaluation measures and provides a performance analysis of
the numerous pre-trained architectures, including AlexNet, ResNet, MobileNet, and so on.
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3 Related works

Few analyses have been conducted during the past two decades in the field of image pro-
cessing with an emphasis on the deep model architecture and its performance. The diagnosis
and staging of breast cancer were the primary topics of this survey. This review focuses on
recent studies that have linked mammographic breast density to increased cancer detection
and better patient outcomes. The works of literature published in the field of mammogra-
phy breast density classification methods and various deep learning models are included
in the survey to gain additional insights. The interrelation of breast density and breast can-
cer has been the subject of a literature review (Bond-Smith and Stone 2018) the review
mainly focuses on methodological challenges that arose when using mammogram breast
density. Moreover, the survey considers 165 samples from the published articles and is also
explained using the Bayesian approach. The advantages of using continuous data for differ-
ent patient populations are also described.

In the past two decades, Li has surveyed the articles and proposed a computer-aided
diagnosis for breast density measurement method on mammograms. Several commonly
used methods with difficulties, challenges, limitations, metrics, and disadvantages were
also addressed (Xue et al. 2020). Abdelrahman has reviewed the computer-assisted detec-
tion using a convolution neural network for identifying breast cancer. Classifying breast
density, detecting breast asymmetry, observing calcifications, and identifying and categoriz-
ing masses were the four main focuses of the study. The survey also provided a road map
for providing a CNN-based solution to enhance mammographic diagnosis of breast cancer
and discussed a CNN-CAD algorithm based on a Food and Drug Administration (FDA)
approved model (Abdelrahman et al. 2021).

Rehman reviewed some machine-learning techniques for breast mammogram grading.
The survey considers 110 papers for analysis to find out the techniques that are suitable for
breast density detection and classification. In addition, the survey draws attention to a range
of imaging modalities and factors that may prove helpful in determining mammographic
grading (ur Rehman et al. 2022). Breast density on mammograms has been connected to a
high rise in breast cancer risk, as described in a recent study by Allison. The survey aimed
to highlight the interconnection of breast density on mammograms and the danger of devel-
oping breast cancer. The survey also contrasts the benefits and drawbacks of various mam-
mogram density detection methods used in several studies (Allison et al. 2022).

Puliti evaluated the risk of breast cancer and volumetric mammogram density. Breast
cancer incidence was determined by analyzing data from 16,752 women who had their
first screening mammogram between the ages of 49 and 54. Breast density was found to
be a significant risk factor for developing breast cancer. The study finds that breast density
is strongly associated with breast cancer risk (Puliti et al. 2018). Kehm studied a cohort of
mothers and daughters in Santigo, Chile. With a sample size of 42 mother-daughter couples.
Clinical dual-energy X-ray absorptiometry (DXA) was used to calculate the percentage of
fibro glandular volume, while optical spectroscopy (OS) was employed to measure colla-
gen, water, and lipid concentration. The findings demonstrated that information on breast
density and breast tissue is related yet separate from the obtained OS, DXA, and mammo-
gram (Kehm et al. 2022).

The breast density analysis using Al-based CAD is compared and contrasted in a recent
study. The author classifies 488 mammograms taken in a single institution on Asian women,
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which are categorized into BIRADS (Breast Imaging Reporting and Data System) density
categories. Like the agreement seen between the Volpara tool and radiologist, the results
demonstrate that AI-CAD density assessment exhibits fair agreement with those of radi-
ologists (Lee et al. 2022). Rampun offers a complete analysis of the findings as well as
a thorough evaluation of the relevant literature and methodology. It also describes breast
density categorization by incorporating the Local Septenary Pattern (LSP). Also, it analyzes
different methods of encoding local patterns in mammograms to categorize breast density.
LSP beats the other methods on the MIAS and in the breast dataset with the highest accuracy
values of 83.3% and 80.5% respectively (Rampun et al. 2020). Table 1 depicts the associa-
tion of MBDWBC, MBDCM, CNN, TL and EL.

4 State of mammogram breast density and breast cancer

This section outlines the mammogram density followed by awareness and significance of
mammograms with respect to breast cancer. Subsequently, this section goes on to detail the
interconnection of mammogram breast density and the likelihood of rising breast cancer.
Despite the fact, that a great number of studies concentrate on determining the location of
breast cancer, segmentation, and classing, but interconnection of mammogram density and
breast cancer as well as the categorization of breast density are the primary focus of this
survey.

4.1 Breast density

Breast tissue is composed of Adipose, fibro glandular, and connective tissue (Cohn and Terry
2019). Women'’s breast density is not always proportional to breast size, perhaps breast den-
sity cannot be felt or touched. Moreover, dense breasts are common among women and it
is not abnormal but it lowers the sensitivity of mammograms (Vargas-Hakim et al. 2021).
Because of this effect experienced during screening mammography, finding unusual tissue
in heavy breast mammograms is a difficult process. The masking effect occurs when mam-
mogram tissue covers up malignant cells in the breast (Posso et al. 2019). Due to this mask-
ing effect abnormalities may likely blend with normal breast tissues. To measure the density
radiologist assigns a certain level of breast density by computing the ratio of fibro glandular
tissue (dense tissue) and connective tissue (non-dense or fatty tissue) (Wengert et al. 2018).

Researchers are naturally curious about whether or not there is a correlation between
breast density and breast cancer. The Breast Imaging Reporting and Data System (BIRADS),
created by the American College of Radiology is widely used in the scientific community
for clinical classification of mammographic density (Kyanko et al. 2020). Dense breast is
classed as extremely dense (B), scattered (A), heterogenous (c), or extremely dense (D)
based on the BI-RADS scale. Researchers typically utilize BI-RADS fifth edition to cat-
egorize breast density, make predictions about breast density, and examine the correlation
between mammogram density and breast cancer risk (Lin et al. 2023; Verma et al. 2021).
Table 2 depicts the BIRADS scale of breast density.
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Table 1 Existing review articles in the Association of Mammogram Breast Density with Breast Cancer (MB-
DWBC), Mammogram Breast Density Classification Method (MBDCM), CNN, TL, EL

Review Description MBDCM MBDWBC CNN TL EL
article
Yu and Ye Review on epidemiological factors associated v
(2022) with breast density
Bond-Smith Discussed methodological challenges associ- v
and Stone ated with breast density
(2018)
Xue et al. Analysis of breast density, focussing mainly on v
(2020) both qualitative and quantitative measurement

approaches
Abdelrah- The Survey was conducted to assess the exist- 4
man et al. ing knowledge base on CNN in mammography
(2021)
ur Rehman  Survey on various machine learning tech- v v
etal. (2022) niques employed in the assessment of image

grading
Pulitietal.  This research investigates the interconnection v
(2018) of volumetric breast density and the likelihood

of breast cancer
Kehmetal. Comparative investigation of breast density v v
(2022) methods
Lee et al. A comparative study of Al-based breast den- v v
(2022) sity methods
Rampunet A survey on investigation of channel encoding v
al. (2020) techniques in breast density classification

method
Shamshiri et A Critical analysis of the biological factors v
al. (2023) implicated in breast density
Alison et al. Investigate the correlation between breast v
(2022) cancer associated with tumour macrophage
Bodewes et Study examines the interconnection of mam- v

al. (2022) mographic breast density and the risk of
developing cancer

Mendes A Review of mammogram-based breast cancer v
and Matela  risk assessment
(2021)

Nazari and  The administration of a survey investigates the v
Mukherjee  relationship between breast cancer and breast
(2018) density

This survey  This study underscores the relationship be- v v v v /
tween mammogram density and breast cancer
as well as the various classification methods on
deep learning models

Tabl’j’ 2 BI-RADS scale of breast  BI.RADS class Density range Breast density class
density A 00-25 Entirely fatty
B 26-50 Fibro glandular tissue
C 51-75 Heterogeneously dense
D 76-100 Extremely dense
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4.2 Mammogram breast density

The widely used technique for identifying malignancy in women is mammography. Screen-
ing mammograms cannot detect all types of cancer in women because their sensitivity is
affected by the dense cells present in the breast tissue. Radiologists use diagnostic mam-
mography to determine breast density (MBD) by comparing the amount of fatty tissue
(radiolucent) to the amount of epithelial and stromal components (radio-opaque in a breast).
Epithelial and stromal elements which filter X-rays efficiently and absorb more energy,
appear white or radio-opaque. By contrast, white fatty tissue appears black on the radio-
graph. Very little fatty tissue presents in dense breasts. Compared to less dense breasts with
more fatty tissue, they have a higher risk of developing cancer. It also implies that both false
positive and false negative occurrences in mammography interpretations are higher in dense
breast tissue cases (Kumar et al. 2019; Yamada et al. 2022; Kim et al. 2022; Dayaratna and
Jackson 2022; Moini et al. 2022; Pizzato et al. 2022).

4.3 Mammogram breast density correlation with breast cancer

Mammography has an overall sensitivity of 70 to 80% for a woman at reduced risk for
breast cancer (Wanders et al. 2017). According to BIRADS, Women who fall under category
A will have 80-90% of sensitivity (Kocer 2021). Whereas having the high density (30—48%
were categorized into category D. Women who fall under category D may likely to develop
breast cancer 4-6 times more than the one who falls under category A. So, women having
higher breast density who fall under the category C and D should be aware of the risk of
breast cancer (Schifferdecker et al. 2019).

The association between mammographic breast density and breast cancer was investi-
gated in a cohort study of the Saudi population. The study by Aloufi incorporates both auto-
matic and visual assessment of breast density and it uses approximately 1140 mammogram
data. Finally, the study result shows that the mammogram breast density is highly associated
with breast cancer. According to Kolb screening mammograms detected breast cancer in
11,130 women who showed no signs of disease. Women with extremely dense breasts have
dropped to 48% of mammogram sensitivity. However, when compared to the normal breast
the obtained mammogram sensitivity is 78%. The author concludes that women with excep-
tionally dense breasts are at a higher risk of developing breast cancer due to their decreased
sensitivity. It has been suggested by Saftlas that the proportion of mammographic densities
visible in the breast is not more reliable than a qualitative analysis of mammographic pat-
terns for determining the risk of developing breast cancer (Aloufi et al. 2022; Zhang et al.
2022; Duffy et al. 2018).

Ali evaluated the distribution of breast density among women in Sulaimaniyah, Iraq (Ali
et al. 2022). 750 women who underwent mammogram routine at the Sulaimaniyah Cancer
Institute. The findings indicate that 54% of breast cancer cases of BIRADS Classes C and
D. Moreover, Age, BMI, and Family were all correlated with breast density. I observed a
strong association between mammogram density and sensitivity of mammography (Li et
al. 2022). Hence it is observed that mammogram breast density was the major risk factor
while detecting breast cancer. Puliti made a cohort study with 16,752 women under the age
of 49-54 with two rounds of screening programs. The incidence of breast cancer formed in
the dense breast is found in the second round of screening. Moreover, the author calculated
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breast density by using automated tools and found a strong correlation between increasing
density and an increased risk of breast cancer.

Another Study was conducted with 329 breast patients over a period of 8 years. At dif-
ferent times it is observed that mammogram density for all the breast cancer patients falls
under categories D to D. Only 19% of the tumors were correctly diagnosed and 81% of
breast cancer was missed due to the overlap of dense tissue. In addition, it should be noted
that the risk of breast cancer can also be influenced by variations in breast density. Advani
has addressed some factors that influence mammogram breast density namely age, Body
Mass Index (BMI). Hormonal radiation Therapy (HRT), family history, and menopause
(Advani et al. 2021). The association of BMI is evaluated with the density of the mammo-
gram. Further, the risk factor of breast cancer may also vary based on the association and
the influence of breast density. The correlation between the mammography sensitivity and
the breast cancer risk is presented clearly in Table 3.

5 Deep Learning models in Breast Density Classification
This section provides an overview and general architecture of convolution neural networks,

Transfer Learning, and Ensemble Learning along with its pros and cons. These models
significantly help to overcome the pitfalls in cancer detection at the early stage by learning

from the existing information.

Table 3 Relationship of breast density with breast cancer

Review Population used Observation

articles

Aloufi et al. 1140 screening mammograms col- There was a significant correlation observed

(2022) lected from Saudi females between elevated mammographic density and the
likelihood of developing breast cancer

Ali et al. 750 women screening mammograms  The breast density profile of Sulaimaniyah, Iraq

(2022) from Sulaimaniyah Breast Cancer, Iraq revealed that increased risk of breast cancer

Kimetal. 3.9 million Korean women’s ‘Women who possess dense breast tissue are at

(2022) mammograms an increased susceptibility to developing breast
cancer

Mai Tran et A total of 48.35507 women’s mam- Women Possess a familial background character-

al. (2022)  mograms have been collected. Among ized by a prevalence of breast cancer cases

those 79,153 reports originated from a
history of breast cancer

Puliti etal. 16,752 women under the age of 49—54

(2018)
Hanis etal. Mammogram reports collected from
(2022) Hospital University Sains, Malaysia
Choietal. 290,448 women’s report were taken
(2021) from the Korean National Cancer
Screening Program (KNCSP)
Barnardet 160,804 women with mammogram im-
al. (2022)  ages were estimated based on racial
Zhang et al. 11,130 women’s mammograms have
(2022) been analyzed

The density of breast tissue significantly influences
the occurrence and progression of breast cancer
The density of mammograms has been identi-

fied as a substantial indicator of the likelihood of
developing breast cancer

Korean-specific natural history parameters of
breast cancer with higher dense breast

Association between Body Mass Index (BMI) and
Breast density

A significant correlation has been observed, indi-
cating that individuals with a fully dense category
have an increased probability of developing breast
cancer
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5.1 CNN

The convolutional neural network (CNN) is a popular Deep Learning architecture for image
classification and recognition. Convolutional layers, pooling layers, and fully connected
layers are just a few types of layers that make up a CNN architecture. The convolution layer
integrates two functions, f and g combines two functions f and g to generate an output. The
convolution layer applies a filter to the image to extract relevant features. As there are sev-
eral sequences of convolution layers, the progress from one input layer to one output layer is
performed accurately and precisely to extract features and this process is repeated to all the
layers present in the CNN. When CNN applies filters to the input image, the output would
be a complex feature map (Gargouri et al. 2022; Greenspan et al. 2016; Khan et al. 2020).
The feature map is obtained by computing the following expression.

5.1.1 Feature map=Inputimage x feature detector

When the input image passes through a convolutional layer then the image would transform
into a feature map or activation map and send the same to the pooling layer for reducing
dimension. The activation function determines which bits of information progress to the
next neuron, as identical to the neuron model of the human brain. Ech neuron in a neural
network takes the value produced by the neurons in the layer below it as input and passes
on the result of its processing to the layer above it (Joshva Devadas and Arumugam 2010).

(fxg)(@y) =Y D> (i,4) fle—iz—j)

i=—00 j=—00

It is formally expressed as a discrete bi-dimensional convolution operation between two
functions, f and g. Where i and j are the row and column indexes of the pixel, and x and y
are the two variables of f and g respectively. The primary purpose of the pooling layer is to
reduce the dimension of an image (Lawrence and Zhang 2019). Utilizing a pooling layer
accelerates computation, conserves memory, and guards against overfitting. Pooling layers
come in two common varieties: Max pooling and Average pooling. The Max pooling layer
reduces background noise by returning the highest value from the portion of the image that
the kernel has covered. It eliminates the noisy activations, dimensionality reduction, and
denoising. The average pooling layer, on the other hand, displays the average of all the val-
ues from the region of the image that the kernel has covered (Shrestha and Mahmood 2019).

To obtain more low-level features, the number of convolution layers and pooling layers
may be expanded. However, this will require additional computational power depending
on the complexity of the image. To classify the images, the output is later flattened and fed
into a standard neural network. For learning non-linear combinations of high-level features,
fully connected layers are incorporated thus reducing the cost. Due to this image is flattened
into a column vector and the flattened output is fed forward as input to the neural network.
The training process is carried out with the back propagation method and the same is applied
to all the iterations. Now, the model can categorize images using the SoftMax Classifica-
tion method across several epochs by identifying dominant and specific low-level features
(Simonyan and Zisserman 2015; Thomaz et al. 2017; Li et al. 2021a).
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It’s common knowledge that deep learning models need a lot of training data to func-
tion properly. Since deep learning is effective when there are several training possibilities
applied to the model (Vargas-Hakim et al. 2021). The CNN can be trained from scratch if
large enough training samples are given to them. The most challenging task involved select-
ing hyperparameters, such as the number of layers, dropout rates for each layer, filter sizes,
acquisition of knowledge regarding to choose the regularization parameters and kind of suit-
able activation function. As a result, the entire training process usually takes a long time and
requires a strong GPU. The CNN can be trained from scratch if large enough training sam-
ples are given to them. The most challenging task involved selecting hyperparameters, such
as the number of layers, dropout rates for each layer, filter sizes, acquisition of knowledge
regarding to choose the regularization parameters, and the kind of suitable activation func-
tion. As a result, the entire training process usually takes a long time and requires a strong
GPU (Turay and Vladimirova 2022). Table 4 depicts the comparison of various approaches.

5.2 Transfer learning

In 1976, Stevo Bozinovski and Ante Fulgosi introduced a mathematical and geometrical
model of transfer learning. The use of transfer learning in the context of training a neural
network using a dataset representing letters of computer terminals was first published in
another paper in 1981. Experimental research confirms the existence of both positive and
negative types of transfer learning, both of which made use of datasets including images of
letters A-Z. In 1993, Thrun developed the discriminability-based transfer (DBT) algorithm
to emphasize the significance of Transfer Learning. In 2016, Andrew Ng stated that transfer
Learning would be the next factor in determining the commercial success of Machine Learn-
ing. Recently, Transfer learning has been eminent in the field of deep Learning (Bozinovski
2020; Prasad et al. 2021; Li et al. 2019).

One common method for training a CNN model is Transfer Learning. The main role
of Transfer Learning is to adapt the data from a network that has already been trained to
carry out a similar function but different task (Rafiq and Albert 2022). Transfer Learning
is more efficient and simpler to implement because it does not require a large labeled data
set for training. The three most common conditions can be used to facilitate transfer learn-
ing (Shah 2020). They are shallow tuning, fine-tuning and deep learning. Shallow tuning
just modifies the classification layer to make it suitable for the new task, while leaving the
weights of the other layer to remain same. Fine-tuning is a method of gradually training the

Table 4 Comparison of various approaches

Models Advantages Disadvantages
CNN without a Fully automated with reduced Substantial dataset is required to train the model
pre-pre-trained manpower Computation time is more
model Simple and easy to understand and
implement
Transfer Model efficiency is high Pre-trained model may not fit some specific case
learning Only less amount of data is required ~ Training time is more to train the pre-trained
Less training time model

A substantial quantity of data is required to train
a model from its original state

Ensemble Higher accuracy when combining Very difficult to interpret

learning various model Computation time is increased
Complexity increases due to stacking
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subsequent layers by adjusting the learning parameters until a major performance gain is
achieved. Lastly, deep learning tries to relearn all the weights of the deployed pre-trained
network from end to end (Kandel and Castelli 2020). Figure 4 depicts the architecture of
transfer Learning.

The field of medicine has recently given a significant amount of attention to the concept
of employing transfer Learning rather than training a full CNN it starts with random initial-
ization (Abdelhafiz et al. 2019). Abdelhafiz stated that due to the high cost and small size of
the available datasets, medical image analysis is increasingly turning towards transfer learn-
ing to improve accuracy and efficiency. In addition, the time it takes radiologists to collect
data and categorize it can be substantial. Training a deep CNN also requires a large amount
of memory and CPU time.

5.3 Pretrained model

In computer vision, transfer Learning is often implemented through the use of pre-trained
models. Pretrained models, as defined by Abd-Elsalam are those that have already been
trained to solve a certain problem using a large benchmark dataset. Table 5 shows the sum-
mary of the Pretrained model (Abd-Elsalam et al. 2020).

5.3.1 AlexNet

AlexNet was the first pre-trained CNN to achieve performance levels superior to the current
gold standard approaches for classification and object detection tasks. Alex Krizhevsky and
his colleagues proposed this model in 2013 hence the name is AlexNet. It is comprised of
eight layers, each with its own set of learnable parameters. The model has five distinct lay-
ers. Including a max pooling level, and a fully connected layer. Each of these levels, exclud-

ing the output level, makes use of the rectified Linear Unit (Relu) activation function. The
Relu’s activation function was also found to dramatically accelerate the training process by

Training from scratch Convolution layer Fullly Connected layer

(| B Yy -
S [ [ Predicted Output
L [D D | \
Input Image

J M
Transfer Learning 74 Weight Transfer =
Training from scratch
/ S
|— 3 Glandular

“' ]](tﬂ /I

Fully connected Layer
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Input Mammogram Image Convolution layer

Fig. 4 Transfer learning
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a factor of about six. Additionally, dropout layer is used to prevent overfitting of the model.
The image net dataset is used to train the model. Almost 14 million images spread across
and 1000 varieties make up the ImageNet collection (Krizhevsky et al. 2012).

5.3.2 VGGNet

Simonyan and Zisserman of Oxford University proposed the visual Geometry Group (VGG)
network in 2014. The necessity to speed up the training process and decrease the number of
parameters used in the subsequent layers led to the development of VGGNet. The impact
of network depth was examined by academics from the University of Oxford under the
assumption that conventional filters are relatively small. Moreover, they demonstrated that
increasing the depth to 1619 layers was associated with a considerable improvement in the
outcome. The architecture input is a fixed-size input with the value 224 x224. Moreover,
the VGG model was able to increase the network’s effectiveness and broaden its receptive
field while simultaneously reducing the number of parameters. This was accomplished by
stacking many layers of convolution with a very small kernel size. The authors examined
the number of combinations with different depths of 9,11,16 and 19 layers (Simonyan and
Zisserman 2015).

5.3.3 ResNet

To solve the vanishing gradient problem, the concept of residual blocks in design was devel-
oped. The skip connections strategy is used in the residual network. Some intermediate lay-
ers between the activation layer and the next layer are skipped over by the skip connection
called residual block (Veit et al. 2016). ResNet is a stack of these surplus blocks. Among the
many advantages of including this type of skip connection. One of the notable advantages
of regularization is its ability to circumvent the influence of any layer on the performance
of the design, provided that layer exists. Consequently, this property enables the training
of deep neural networks without encountering the challenges associated with vanishing or
exploding gradients. According to the authors, adopting this kind of network makes opti-
mization easier and allows for a significant depth improvement. This network employs a
34-layer simple network architecture that was influenced by VGG-19 and the shortcut con-
nection was added towards the end of the process. The presence of shortcut connections in
the design leads to the subsequent transformation of the network into a residual network
(Lizzi et al. 2019).

5.3.4 GoogleNet

One of the key developments in the field of CNN was the inception network. Inception net-
work currently has three version, known as Inception Version 1, 2 and 3. The initial version
of GoogleNet launched in 2014. The aim of this study is to identify the most effective local
structure and subsequently develop it in sequential stages, leading to the development of a
multi layered network. The following the publication of inception-v1 in 2014, the authors
proceeded their model, focusing on enhancing its performance through improvements in
accuracy and reductions in time complexity. In particular, Inception V3 was proposed in
2016 by Szegedy et al. (2017).
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5.3.5 XceptionNet

Chollet who initially presented the Xception architecture. Xception is an acronym that
stands for extreme inception. The distinguishing characteristic of this methodology lies
in its utilisation of depth-wise separable convolution to substitute the inception modules
within the inception network, afterward being followed by a further pointwise separable
convolution. It is entirely, the network is made up of 71 layers, and it has 22.9 million differ-
ent parameters. According to the findings of an experiment that was carried out by Kandel
and Castelli in the year 2020. A notable benefit of this network is its ability to achieve depth
while utilizing a limited number of parameters (Chollet 2017).

5.3.6 DenseNet

In 2017, Haung introduced DenseNet, which stands for densely connected convolutional
network. The purpose of this study was to achieve the establishment of a high level of
connectivity in the channel-wise concatenation. In this particular design, the input for each
subsequent layer is the preceding feature map, thereby addressing the problem of vanish-
ing gradients. The author stated that the inclusion of dense connections in the model also
contributes to a reduction in the overall number of parameters utilized. This phenomenon
occurs due to the network’s usage of feature map data from the preceding stage and at each
subsequent layer, instead of creating new parameters. The densely connected architecture of
this network has achieved a reduction in parameter count by a factor of five while preserv-
ing the number of layers in comparison to the ResNet architecture (Huang and Lin 2021).

5.3.7 MobileNet

Howard was the one who initially proposed the idea of portable CNN architecture. The
author suggested depth-wise separable convolution in place of the conventional convolu-
tions used in the earliest models in order to create a lighter weight model. The point wise
convolution and the depth wise convolution are two separate processes that make up the
depth wise separable convolution. The resolution multiplier and the width multiplier are
both examples of global hyper parameters that have been incorporated into this design as
a means of controlling the input image’s channel depth and resolution, respectively. While
the model was being developed to meet the requirements of the user, these hyper parameters
assisted in providing a trade-off between miniaturization of the model creator (Howard et
al. 2017).

5.3.8 ShuffleNet

The ShuffleNet architecture was offered by the Megvii group in 2019, and two additional
operational elements were also presented at that time. These features consisted of pointwise
group convolution and channel shuffle, both of which were designed to reduce the amount
of computation cost and maintain high-level accuracy. In recent years, CNN architectural
designs have increasingly incorporated billions of floating-point calculations every second.
This is done in an effort to improve accuracy. Because it can perform approximately 10-50
mega floating-point operations per second. ShuffleNet is ideally suited for use in mobile
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applications, where the available processing power is more constrained. As a result of this,
the aforementioned architecture exhibits superiority over MobileNet in terms of reduced
top-1 error rates during the process of ImageNet classification. Additionally, it exhibits a
computational speed that is 13 times faster than AlexNet in practical applications, while
maintaining an equivalent level of accuracy and generating results with comparable preci-
sion (Bobo et al. 2004).

5.3.9 EfficientNet

Tan and LE introduced scaling and in the same year, EfficientNet distinguishes from other
network architectures. The authors demonstrated that it is possible to successfully scale
up ResNet and MobileNet designs by using compound coefficients, which they did so by
presenting this architecture. In order to provide further clarity, the designers have put forth
a proposed methodology that ensures the proportional adjustment of all dimensions. While
simultaneously preserving the healthy relationship between dimension and the network. The
dimensions encompassed in this context consist of picture resolution. Which pertains to the
size of the image, depth, which refers to the number of layers, and width, which denotes the
number of channels (Tan and Le 2019).

5.4 Ensemble learning

Figure 5 illustrates, Deep Ensemble modelling combines the predictions of multiple neural
network models to minimise generalisation error. It is used to boost the quality of the final
model’s performance. Baseline classifiers that have been trained on input data and can make
predictions are the building block of every ensemble. An aggregate forecast is then derived
from the individual techniques that can be used to enhance the machine learning proce-
dure (Putten and Bamford 2023). Table 6 depicts the strengths and weakness of pretrained
models.

Cc1

Cc2

G(C1,C2,C3..CN) ———»  Final prediction

C3

Data set

ca

Classifiers

Fig.5 Ensemble learning
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Table 6 Strength and weakness of pretrained models

Merits

Demerits

Model Model variant
LeNet LeNet-5
(1998)
AlexNet AlexNet
(2012)
VGGNet VGG 16
(2014) VGG 19
GoogleNet  Inception V3
(2015)
Xception Xception
(2016)
DenseNet DenseNet-121
(2017) DenseNet 169
DenseNet 201
MobileNet MobileNet V1
(2017) MobileNet V2
ShuffleNet  ShuffleNet
(2017)

EfficientNet EfficientNet-b0
(2019) EfficientNet-b3
EfficientNet-b7

Successful milestones for
optical character task
Features are not lost much
Relu does not limit output

VSS’s receptive fields are
much smaller than AlexNet

GoogleNet is faster than
VGG pre-trained

GoogleNet is 96mb and
inception V3 is 92 MB

The accuracy is higher than
inception model

Efficiency decreasing the gra-
dient disappearance problem

Fewer parameters better
classification accuracy than
others

Reduced the cost of computa-
tion while retaining accuracy

Efficient net achieved greater
accuracy and efficiency with
fewer parameters

Increasing the number of
chances will enhance overall
capacity

LeNet-5 type structure is not enough
to achieve high recognition capability
This model is swallow and struggles
to learn features from image

It takes more time to get high ac-
curacy than future model

Normal distribution weight initializa-
tion cannot solve gradient vanishing
VGG required more memory and
parameter

Cost is high

More parameters induce over fitting
Parameters explosion on Inception
layer

Each layer’s feature maps are spliced
with the previous layer and duplicated
Each layer within the system is inter-
connected with other layers, resulting
in potential duplication of data across
these connected layers

MobileNet is much smaller in size
than others

Property of ShuffleNet prevents com-
munication between channel groups
and degrades representation

More data transfer as a result of
numerous channels

On hardware accelerators EfficientNet
perform poorly

6 Reviewed application of breast density classification method

This section covers three reviewed applications of breast density using Convolution Neural
Network (CNN), Transfer Learning (TL), and Ensemble Learning (EL).

6.1 Reviewed application of CNN based classification of breast density method

Breast density was classified using a deep convolution neural network trained on the
BIRADS database. According to Wu, the model was trained and evaluated using nearly
200 k labeled pictures from a clinically realistic dataset of screening mammography from
four different perspectives. The dataset included 19,939 grouped into class-0, 85,665 class-
1, 83,852 class-2, and 11,723 class-3 images. Due to the model’s ability to utilize a large and
varied clinically relevant dataset of high-resolution images. It is able to accomplish the task
as well as human experts (Wu et al. 2018; Lizzi et al. 2019).

According to the research, the CNN can detect masses and distinguish dense and non-
dense tissue in any type of breast tissue. The method demonstrated classification accuracies
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0f 95.6% and 97.72% for non-dense and dense tissue respectively. The model faces an issue
in effectively recognizing mass and non-mass categories since it uses the same CNN struc-
ture for both density categorization and identifying masses in breasts with varied densities
(Bandeira Diniz et al. 2018).

Benitez presented a hybrid algorithm UNET architecture based on CNN and identify-
based clustering using K-means clustering. 384 mammograms served as the training data in
this model and manually segmented by an expert. In order to segment the regions of interest,
this method integrated CNN based segmentation of fibro glandular tissue with a clustering
algorithm. This model underwent 8064 iteration of training and the intersection over union
showed accuracy of 93%. The network produces binary classification as its output (Benitez
et al. 2022).

Multi view DL technique for BIRADS density assessment of mammograms were pro-
duced by Nguyen. To predict BIRADS and density scores, the gathered characteristics are
subsequently consolidated and inputted into a light gradient boosting machine (Light GBM)
classifier. Two benchmark datasets were used in the experiments. The outcome showed that
the F1 score margin on clinical dataset and DDSM dataset were+ 5%+ 10% respectively.
These results showed that how important multi view information fusion for improving the
precision of breast cancer risk prediction (Nguyen et al. 2022).

Li constructed Deep CNN that effectively used to estimate the amount of breast tissue
in full-field digital mammography (FDM). One million picture patches were created and
used in the process of training DCNN. The (PD) Percent density was determined using
(PMD) Probability map of breast density) as a starting point by dividing the dense region
of the breast. Backpropagation and mini-batch stochastic gradient descent (mSGD) were
used in each training cycle to optimise the parameters. Furthermore, feature-based learning
obtained DC=0.620 and r=0.75 whereas DCNN obtained DC=0.76 and r=0.94. These
findings showed that the prospective value of DCNN is more trustworthy for automated
categorization of breast density and risk prediction (Li et al. 2021b).

Mohammed investigated breast density classifiers on deep learning to effectively dif-
ferentiate between scattered-dense and heterogeneously dense categories of breast density.
Further, intended to provide a potential automated tool to aid radiologists in the process of
designating a BIRADS category. A convolution neural network-based model was trained
using 22,000 mammogram images as training samples to determine how effectively is dis-
tinguished the breast density groups. The classifier’s efficacy was evaluated using receiver
operating characteristics (ROC) curves and the area under the curve (AUC). The obtained
AUC was 0.9421 and the accuracy rose steadily as the training sample size increased
(Mohamed et al. 2017a).

Saffari suggested an automatic method for determining mammographic breast density
in accordance with the ACR BIRADS. Over 20,000 mammography images were used to
train a deep CNN, which was then tested using an augmented dataset. In accordance with
the fatty and dense category, MLO projections obtained 99% and CC projections obtained
96%. Mohammed used a CNN, a type of deep learning architecture in order to build a
breast density classifier for two class. Six-fold cross validation was used for CNN training
and validation. The AUC of breast density classifier was determined and the obtained AUC
is 0.95 when using mammography images from two views MLO and CC (Mohamed et al.
2017b) Table 7 gives the summary of CNN without pretrained model for breast density
classification.
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Table 7 Summary of CNN without pretrained model for breast density classification

Authors Database  Purpose CNN Class Augmentation Cross Accuracy AUC
Based Obtained Validation
Method

Diniz DDSM Breast CNN from 2 Class No No 94.8 -
et al. density scratch dense and
(2018) and breast non-dense
(Ban- mass clas-
deira sification
Diniz
et al.
2018)
Wu Clinical Breast CNN from 2 Class No No 82.5 69.4
et al. Dataset density scratch dense and
(2018) classifica- non-dense

tion
Mo- ImageNet  Breast CNN from 2 Hetero- No Yes - 0.94
hamed density scratch geneous
et al. classifica- dense and
(2017a) tion scattered

dense

Nguyen CBIS- Breast CNN from 2 Class Yes No -
et al. DDSM density scratch dense and
(2022) classifica- non-dense

tion
Lietal. DDSM Breast CNN from 2 Class No Yes - 0.91
(2021b) density scratch dense and

classifica- non-dense

tion
Mo- Clinical Breast CNN from 2 Class No Yes 82.5 0.95
ham- Dataset density scratch dense and
med classifica- non-dense
et al. tion
(2017b)
Duffy  Clinical Breast CNN from 2 Class Yes Yes 99-MLO -
et al. Dataset density scratch dense and 96-CC
(2018) classifica- non-dense

tion
Shi Breast CNN from 2 Class Yes Yes 94.6
et al. density scratch dense and
(2019) classifica- non-dense

tion
Nithya MIAS Breast CNN from 2 Class Yes Yes 98.5 -
and Dataset density scratch dense and
Santhi classifica- non-dense
(2021) tion
(2021)

6.2 Breast density classification based on transfer learning

A radiomics approach to mammographic density categorization using dilation and atten-
tion guided learning has been reported (Li et al. 2018). This technique involves extensive
training from beginning to end as well as it includes advanced pre-processing of mammo-
graphic image. Both the clinical and publicly available dataset were used to verify and test
the model. Furthermore, it was shown that multi-view mammogram images such as CC
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and MLO views were significant in improving the accuracy of breast density classification
problems. Overall, this model was 88.7% accurate.

Yi developed a model using ResNet 50. This model developed to analyse breast den-
sity, determine breast laterality and classify two-dimensional mammographic image. Totally
3034 two dimensional mammographic images used as a training data obtained from the
DDSM database. AUC obtained before augmentation was 0.75. The data augmentation
technique eventually raising the AUC to 0.93. In addition, it is possible to use DCNN to
automatic semantic labelling of 2D mammograms, and this can be done even with relatively
limited dataset. However, automated breast density classification is more complex and thus
required large dataset (Yi et al. 2019).

Lehman conducted a study and investigated the clinical implementation of deep learn-
ing model for evaluating breast density among patients who were undergoing screening
digital mammography. Furthermore, the methodology of deep learning can be employed to
asses’ breast density, without imposing limitations based on previous surgical interventions
or other breast related procedures. Moreover, DL has the ability to address issues with the
present regulations and assist physicians in order to give accurate information and optimal
utilization of additional screening resources (Lehman et al. 2019).

Zhao introduced a novel approach called the Bilateral View Adaptive Spatial and Chan-
nel Attention Network (BASCNET) which utilises ResNet-50 as the underlying architec-
ture. The primary objective of this network is to achieve fully automated breast density
classification. By incorporating data from both the left and right breast it dynamically
captures distinctive features in terms of spatial and channel dimensions. The DDSM and
INBREAST datasets were used for the training and validation process. The achieved accu-
racy was 85.10% and 90.5% (Zhao et al. 2021).

Gandomkar examined the breast density classification into various categories such as
fatty or dense based on BIRADS categorization. A network architecture known as incep-
tion V3 was utilised to train a dataset consisting of 3813 images sourced from nine distinct
mammography devices and three different vendors. A segmentation process was employed
to isolate breast tissue from the background and pectoral muscle in the MLO view. The
bounding box of the breast was utilised for the purpose of cropping and resizing the input
image of the network. The aforementioned technique had a Cohen’s Kappa coefficient of
0.775 and an accuracy rate of 83.33 percent (Gandomkar et al. 2019).

Wu proposed a methodology for classifying breast density by grouping breast tissue into
two categories dense and non-dense. The three-layer CNN utilised all four perspectives of
the mammogram as its input. The findings indicated that the super classes achieved an accu-
racy rate of 82.5%. Additionally, the four-class density classification demonstrated a macro
average AUC of 0.934. Specifically, class-0 achieved an AUC of 0.971, class-1 achieved an
AUC 0of 0.859, AUC of 0.905 in class-2 and AUC 1 in class-3.

Kate proposed technique to examined breast tissue density classification using VGG 16
and Inception V3 model. Further, image pre-processing technique was used to extract the
foreground image as well as to improve the image quality by reducing noise appear in that
image. The Inception V3 model obtained 97.98% and VGG 16 got 91.92% using DDSM
dataset (Kate and Shukla 2022).

Ma created multi path DCNN to classify digital mammography image into one of four
BIRADS category. Around 2068 mammogram instances were used for the breast density
based on BIRADS and obtained the accuracy of 80% for the dense category and 89% for
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the non-dense category. Xue modelled breast density assessment as a machine intelligence
problem that automatically extracts features of image and dynamically improves density
classification accuracy in clinical environments. Variety of deep learning networks are
investigated in order to extract the image features automatically. Transfer learning is used
to retain the pre-trained model that were already trained using clinical 2D digital mammog-
raphy images. As part of the human—machine gaming process, a comprehensive reinforce-
ment network is implemented. In this study, mammograms were pre-processed using CNN
models (Xue et al. 2020).

Lin proposed the CNN incorporated with AlexNet, DenseNet, and ShuffleNet. In this
study, breast density and breast mass such as benign and malignant were combined into a
single model. This was done so that the researchers could identify the difference between
breast density and the two forms of breast mass. A comparison was made between the pre
and post-data augmentation accuracies of the three models. Before applying data augmenta-
tion techniques, the accuracy of AlexNet for both the training and testing sets was recorded
as 40.47%. DenseNet achieved an accuracy of 90%, while ShuffleNet achieved an accuracy
0f 96.48%. Additionally, ShuffleNet’s accuracy was measured to be 38.57%. Following the
application of data augmentation techniques, the training and testing accuracies of AlexNet
were observed to be 99.35% and 95.46% respectively. Similarly, DenseNet exhibited accu-
racies of 99.91% and 97.84% for its respective sets (Lin et al. 2021).

Trivizakis employed the DenseNet model to categorise the three levels of breast density,
resulting in an accuracy rate of 73.9%. In their study, Mohammed et al. were able to achieve
an area under curve (AUC) value of 0.95 when employing an enhanced iteration of the
AlexNet model for the purpose of classifying breast density (Trivizakis et al. 2019). Table
8 Summarizes the previous work on mammogram breast density analysis with pretrained
model.

Pretrained models are employed in the categorization of breast density to automati-
cally evaluate the density of breasts based on mammography images (Li et al. 2018). It is
crucial to consider breast density since it significantly increases the risk of breast cancer.

Table 8 Summary of work included in mammogram breast density with pretrained model

Author Database CNN Method ~ Augmentation Cross Accuracy AUC
Validation (%)

Lietal. (2018) INbreast ResNet50 Yes Yes 88.7and 70  97.2
and clinical
database

Lehman et al. (2019)  INbreast ResNet-18 Yes No 95 94

Gandomkar et al. INbreast Inception-V3  Yes Yes 63.9 82.1

(2019)

Mohamed et al. INbreast AlexNet Yes Yes 59.6 82

(2017b)

Zhao et al. (2021) DDSM and ResNet No - - -
INbreast

Kate and Shukla DDSM Inception-V3 Yes Yes 97.98 -

(2022) VGG16 91.92

Rigaud et al. (2022) DDSM EfficientNetBO No No -

Yi et al. (2019) DDSM ResNet50 No No 68 93

Busaleh et al. (2022) DDSM and ResNet50 Yes No 91.36 99.51
INbreast DenseNet 90.89 97.44

EfficientNetBO 89.23
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Therefore, it is vital to accurately evaluate breast density in order to make well-informed
decisions on screening and treatment. Historically, radiologists have traditionally evaluated
breast density by visually inspecting mammography pictures. Nevertheless, this method
is based on personal opinion and may need a significant amount of time (Yi et al. 2019).
Pretrained models provide a more impartial and automated method for evaluating breast
density. Figure 6 presents a comparison of the performance of various pretrained models on
a task of classifying breast density (Lehman et al. 2019). The models under consideration
for comparison encompass AlexNet, ResNet, Inception, EfficientNet, Vggl6, DenseNet,
and MobileNet. In general, pretrained models have the capacity to fundamentally transform
the method of evaluating breast density. nevertheless, it is crucial to confront the obstacles
linked to this technology prior to its widespread implementation in clinical practice.

6.3 Breast density classification based on ensemble learning

The predictions from various neural network models are combined through ensemble learn-
ing to lower prediction variance and generalisation error. Ensemble learning techniques can
be categorised into various learning algorithm or models and training data (Rigaud et al.
2022). It integrates the data obtained from the several model to provide precise and effective
decision. The ensemble strategies can be broken down into three distinct categories namely
bagging, stacking, and boosting (Busaleh et al. 2022). Following are the few studies focused
on classification of mammogram breast density based on ensemble techniques. Table 9 Out-
lines the work included in ensemble learning.

Kumar introduced and described a model for classification to predict breast density. The
classification model has two-stage process. The first stage is made up of single four class
classifier, while another stage is made up of an ensemble of six class classifiers. The study
made use of 480 mammograms that were taken from the DDSM dataset. 90.80% accuracy
has been attained for the categorization (Kumar et al. 2017). The deep learning system that
detects breast density with noisy labels regularization was presented by Justaniah. Female
participants of 1395 were taken from a multi-centre and assessed by three highly quali-
fied radiologists. These mammograms were classified according to BIRADS categories
(Haque et al. 2018). The dataset was spliced into training data, validation data and testing

Fig. 6 Quantitative performance
analysis of pretrained models

in breast density classification
method

ResNet AlexNet Inception Vggl6é Efficient Mobile DenseNet
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Table 9 Summary of work included in ensemble learning

Author Sub Ensemble Database Purpose Augmentation Cross Ac- Class
architecture  learning validation cu- ob-
approach racy tained
(%)
Kumar Stage 1-Five ~ Model DDSM BIRADS  No No 90.2 Stage
et al. Neural averaging Classifica- 1:4
(2017) network stage tion Class
2 6 Neural Stage
network 2:2
Class
Haque Multilayer Model MIAS BIRADS No Yes 92.6 4
et al. perception averaging Classifica- Class
(2018) (MLP) Sup- tion
port Vector
Machine
Justan- VGG-19 Model ImageNet BIRADS No Yes 84.6 4
iah ResNet averaging Classifica- Class
etal. DenseNet 121 tion
(2022) Wide ResNet
50 Efficient-
Net Bl
Azour CNN Soft voting CBIS- Pathology Yes Yes 96.5 2
and EfficientNet DDSM Classifica- Class
Bouke- tion
rche
(2022)

data. Training data includes 892 mammograms, testing and validation includes 279 and 224
respectively. The accuracy and kappa indices of the ensemble model that were found to be
0.85 and 0.71 respectively (Justaniah et al. 2022).

Haque developed an automated system capable of analysing mammograms and effec-
tively differentiating breast density. This system utilises a two-dimensional discrete cosine
transform (D-DCT) and a principal component analysis (PCA) extract a minimal feature
set from the mammogram image (Azour and Boukerche 2022). The extracted features are
subsequently utilised as input for three classifiers, namely, multi-layer perceptron (MLP),
support vector machine (SVM), and K nearest neighbour (KNN). The combination of the
output from multiple classifiers was subjected to a majority vote, resulting in a significantly
high level of classification performance.

7 Summary onTL, CNN and ensemble models

Transfer learning can significantly reduce the amount of labelled data needed for training,
as it leverages pre-trained models on large datasets. This approach can lead to faster model
development and improved accuracy in breast cancer detection. Additionally, it allows for
the adaptation of advanced neural network architectures fine-tuned for image recognition
tasks. However, transfer learning may not always capture the specific nuances of medical
imaging data, as pre-trained models are often based on general datasets that differ from
mammograms. This can result in suboptimal performance if the source and target domains
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are not sufficiently similar. Moreover, there may be a reliance on potentially outdated or
biased datasets, which could affect the accuracy and reliability of predictions.

Ensemble modelling can enhance breast cancer detection in mammogram images by
combining the predictions of multiple models, which leads to more robust and accurate
results. This approach mitigates the weaknesses of individual models by leveraging their
diverse strengths, reducing the likelihood of false positives and negatives. Furthermore,
ensemble methods can improve generalization, making the system more reliable across dif-
ferent patient populations and imaging conditions.

Implementing ensemble models in breast cancer detection can be computationally expen-
sive, requiring significant resources for training and maintaining multiple models. Addi-
tionally, combining predictions from multiple models can introduce complexity in model
interpretation, making it harder for clinicians to understand and trust the results. Finally, the
integration of ensemble models into existing clinical workflows may face resistance due to
increased complexity and the need for specialized expertise.

7.1 Contemporary model

Over the past decade, a variety of deep-learning models have been proposed to improve
model prediction. Several techniques can be integrated with deep learning models to
improve performance, such as self-attention, transformer models, semi supervised learn-
ing, interpretable techniques, and uncertainty estimation. This section introduces some of
the recently proposed pioneering breast cancer prediction models that have recently been
proposed.

A novel Computer-Aided Diagnosis (CAD) framework leveraging Artificial Intelligence
(AI) techniques has been developed to detect and classify breast cancer images (Al-Tam et
al. 2024). The framework is meticulously structured into two pipelines (Stage 1 and Stage
2) and was trained and evaluated using various multimodal ultrasound and mammogram
datasets. The framework explores the potential of combining cutting-edge Al techniques
and the ViT-based Resnet50 model to create an innovative CAD model for detecting and
classifying breast cancer. Grad-CAM is used to visualize the model’s predictions for better
understanding. Grad-CAM plays a crucial role in this framework by providing visual expla-
nations for the model’s predictions. It highlights the specific regions in the breast cancer
images that the model focused on when making its classification, thereby offering insights
into the decision-making process. This transparency helps radiologists verify the model’s
accuracy and understand its reasoning, ultimately increasing trust in Al-assisted diagnoses.

A Yolo-based model for breast cancer detection was proposed (Prinzi et al. 2024). A
gradient-free Eigen-CAM method is used to highlight all suspicious ROIs, including incor-
rect predictions, allowing us to integrate our model into a clinical decision support system.
This enhancement allows clinicians to visualize which areas of the image the model focuses
on when making predictions, thus providing insights into its decision-making process. By
highlighting the regions of interest, Eigen-CAM helps in understanding the rationale behind
both correct and incorrect predictions. This transparency increases trust and reliability in the
model’s outputs, essential for its integration into clinical workflows.

A quantum spinal network is proposed to detect breast cancer using mammogram images
(MG) (Sathish et al. 2024). The system is designed using a Deep Quantum Neural Network
(DQNN) and SpinalNet, and it achieves 90.3% accuracy, 90.9% True Negative Rate (TNR),
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and 90% True Positive Rate (TPR). An NLM filter is applied to mammogram images to
detect breast cancer, Edge Attention-SegNet is applied to extract features, and Q-SpinalNet
is introduced by incorporating DQNN and SpinalNet. Edge Attention-SegNet focuses on
enhancing the key structural details in mammogram images by emphasizing the edges and
contours, which are critical for accurate feature extraction. This allows for more precise
detection of abnormalities by highlighting the relevant areas that could indicate the presence
of cancer. By doing so, the model can better differentiate between benign and malignant
tissues, improving the overall diagnostic accuracy. Using this model, we achieve maximum
accuracy, TNR, and TPR values of 90.3%, 90.9%, and 90% respectively.

CNN-based mammogram image enhancement techniques have been proposed and
shown promising results in improving breast cancer prediction accuracy (Singla et al. 2020).
By leveraging convolutional neural networks, these methods can enhance critical features
on mammograms, facilitating more reliable and early detection of cancerous tissues. This
makes CNN-based approaches a valuable tool in the ongoing efforts to improve diagnostic
outcomes in breast cancer screening.

The author proposes a hybrid model to improve representativeness in breast cancer
detection (Kalpana and Selvy 2024). Transfer learning and probabilistic principal compo-
nent analysis are used for feature extraction and classification. The hyperparameters of these
models are optimized using firefly binary grey optimization and metaheuristic moth flame
lion, respectively. Metaheuristic optimization techniques, such as firefly binary grey opti-
mization and metaheuristic moth flame lion, help enhance model performance by efficiently
searching for optimal hyperparameter settings. These techniques explore a wide solution
space to identify configurations that improve accuracy and reduce error rates. By optimizing
hyperparameters, the models can better capture complex patterns within the data, leading to
more robust and reliable predictions.

Researcher (Chai et al. 2024) proposed an uncertainty-based interpretable deep neural
network for breast cancer outcome prediction called Uncertainty-based Integrated Semisu-
pervised Net UISNet to overcome the interpretability challenge. An innovative multitask
deep neural network called UISNet was proposed for predicting breast cancer outcomes.
In addition to incorporating prior biological pathway knowledge, UISNet utilizes patient
heterogeneity information to improve prediction. A model identified 20 genes as associated
with breast cancer, of which 11 have been proven to be associated with breast cancer in
previous studies.

The longitudinal trajectory of mammographic breast density is one method of under-
standing a woman’s breast cancer risk over time. Using data from a large Swedish mam-
mography cohort, (Illipse et al. 2023) fitted three joint models (cumulative, current value
and slope, and current value association structures). Across all models, MD trajectory was
associated with BC risk, but models with cumulative association structures and with current
value and slope association structures performed better.

Mammographic breast density is well-established and cross-sectional international data
suggest that it is a strong risk factor for breast cancer (Jiang et al. 2023). However, ret-
rospective data from Korea show that a change in density over time is associated with a
change in breast cancer diagnosis risk. We hypothesized that there is a difference in the rate
of change in breast density in women who develop breast cancer.

To predict breast cancer risk, authors (Karaman et al. 2024) proposed the Longitudi-
nal Mammogram Risk (LoMaR) model, which combines a transformer architecture with
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convolutional feature extraction. Even using just the most recent mammogram, it achieves
state-of-the-art prediction results. With the help of longitudinal mammograms, we extend
a state-of-the-art machine-learning model to predict future breast cancer risks. The results
of our study show that predicting future breast cancer risk with longer histories is more
accurate.

7.2 Interpretable models

Interpretability is crucial because it allows clinicians to understand the reasoning behind
a model’s predictions, which can enhance trust in its recommendations. This transparency
is essential for making informed decisions about patient care and for identifying potential
errors or biases in the model. Additionally, interpretable models can facilitate better com-
munication between healthcare professionals and patients, improving overall treatment out-
comes. Techniques such as feature visualization, SHAP values, and LIME can be employed
to enhance the interpretability of these models. Additionally, integrating attention mecha-
nisms and providing clear visual explanations can help clinicians understand the model’s
decision-making process. Regular consultations with domain experts can further refine
these interpretability methods to align with clinical needs. Achieving model interpretability
in these contexts presents several challenges, including the complexity of deep learning
models, which often function as "black boxes." Furthermore, the need to balance accuracy
with interpretability can limit the model’s performance, as more interpretable models may
sacrifice precision. Additionally, ensuring that the interpretability methods are clinically
relevant and understandable to medical professionals adds another layer of complexity.

A hybrid explainable deep model for cardiac prediction is proposed by Wani et al. 2024a,
which uses CNN and the Light Gradient Boosting method to effectively learn representa-
tional features. The integration process involves initially employing the CNN to extract
high-level features from the cardiac data. These features are then fed into the Light Gradient
Boosting framework, which refines the model’s predictions by leveraging its efficient gradi-
ent-based optimization. This combined approach enhances the model’s accuracy and inter-
pretability, leading to improved prediction performance in cardiac analysis. The model uses
one of the most widely used XAl techniques, SHAP, to provide comprehensive and detailed
explanations. SHAP scores are computed by calculating the contribution of each feature to
the prediction made by the model. This is done by considering all possible combinations
of features and using Shapley values from cooperative game theory to fairly distribute the
prediction among the features. The result is a clear and interpretable insight into how each
feature influences the model’s output. The explanations are provided in the form of several
graphs, which will assist medical practitioners in improving their diagnostic abilities. A
similar explainable hybrid framework is proposed using CNN and XGBoost for lung cancer
detection (Wani et al. 2024b). One of the main advantages of using SHAP scores is that they
provide a consistent and unified measure of feature importance, which helps in understand-
ing the model’s decision-making process. Additionally, SHAP scores enhance transparency
and trust in machine learning models by making complex models interpretable to stakehold-
ers who may not have technical expertise. Furthermore, they allow for the identification of
potential biases or errors in the model, leading to more robust and fair predictions.

In response to the rapid expansion of the Internet of Medical Things (IoMT) and the
increasing prevalence of automation, end-users have become increasingly apprehensive
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about their trust. In (Wani et al. 2024d), author reviewed different explainable Al Artificial
Intelligence (AI) frameworks that explain the Internet of Medical Things have emerged as
essential tools for addressing trust concerns. A similar hybrid model using CNN and Light
Gradient Boosting is proposed for breast cancer prediction (Yan et al. 2024). Model predict-
ability is improved by these enhanced representational features. SHAP scores are used to
understand model prediction and feature importance in model output.

An interpretable Al system (Yan et al. 2024) that provides an overall cancer risk assess-
ment from multimodal US images could enhance patient outcomes and reduce unnecessary
biopsies. Deep learning frameworks have previously been used in medical imaging, and
their superiority over hand-crafted features has been demonstrated. However, deep learn-
ing’s black-box nature has made it difficult to build trust among human experts. As part of
the work, the author proposes the use of multimodal US images to generate an interpretable
Al system based on domain knowledge.

An interpretable Al system using multimodal ultrasound images is presented for breast
cancer classification (Klanecek et al. 2024). A domain-based interpretable Al system that
predicts cancer risk from multimodal US images could improve patients’ outcomes. Despite
their superiority over hand-crafted features, deep learning frameworks lack the trust of
human experts due to their black-box nature. This understandable MUP-Net was compa-
rable to popular black-box models and outperformed junior radiologists while remaining
competitive with senior radiologists. In the case of inaccurate malignant probabilities,
explainable features can help readers stay on course. A domain expert supervises the Al
learning process, making sure that output features are explainable. As part of clinical prac-
tice, learned contribution scores are calculated.

A unique methodological approach was proposed to determine how early the BCR model
can identify morphological changes associated with oncogenic processes (Yan et al. 2024).
Different attribution methods such as Class Activation Map (CAM), Grad-CAM, Integrated
Gradients, Guided backpropagation, and Input x Gradients are used to visualize tumor
region growth. Results showed that the model relies more on the signal from the breast
with cancer in patients where breast cancer is already screen-detected, but less on the breast
without cancer.

7.3 Model hyperparameter optimizations

Proper hyperparameter optimization can significantly improve the performance and accu-
racy of a learning model. It ensures that the model is well-tuned to the specific dataset,
leading to better generalization and reduced overfitting. Additionally, it can also enhance the
model’s efficiency by reducing training time and resource consumption. Common methods
for hyperparameter optimization include grid search, random search, and Bayesian optimi-
zation (Eid and Abualigah 2024). Grid search involves exhaustive searching over a specified
parameter grid, while random search randomly samples from the parameter space. Bayesian
optimization uses probabilistic models to predict which hyperparameters are likely to lead
to better performance, allowing for more efficient exploration. Metaheuristic algorithms,
such as genetic algorithms and particle swarm optimization, are also employed for hyperpa-
rameter optimization. These algorithms mimic natural processes, like evolution and swarm
behavior, to efficiently explore the hyperparameter space (Yassen et al. 2024). They are par-
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ticularly useful in navigating complex, high-dimensional spaces where traditional methods
may be less effective.

In breast cancer detection, bio-inspired deep model hyperparameter optimization can
play a crucial role in enhancing diagnostic accuracy. Techniques such as genetic algorithms
can be used to fine-tune deep learning models, ensuring that they are optimized for the intri-
cate patterns in medical imaging data (Wani et al. 2024c¢). This approach not only improves
the detection rates but also reduces false positives, leading to more reliable and early diag-
nosis of breast cancer. Despite its benefits, hyperparameter optimization faces several chal-
lenges. The search space can be vast and complex, making it computationally expensive
and time-consuming to explore thoroughly. Additionally, the optimal hyperparameters can
vary significantly between different datasets and models, requiring a tailored approach for
each scenario. Moreover, there is often a trade-off between the depth of exploration and the
available computational resources, which can limit the effectiveness of the optimization
process (Wani et al. 2024c).

8 Data set and performance evaluation

In this section, the resources or data sources as well as the evaluation measures to measure
the performance of the model, that research scientist employ in the process of generating
and reviewing the studies that are being examined are described.

8.1 Mammogram dataset

Mammography datasets are increasingly needed by researchers to create diagnostic system
to design, test and evaluate automatic breast cancer in (CAD) Computer Aided Detection
System. Few mammography datasets are publicly available that can be use by the research-
ers in the creation of breast cancer prediction tools, whereas some of the mammogram
databases are private. Despite the fact, that there have been some recent studies at mam-
mography classification, employing confidential mammogram records has been a common
approach. To provide enhanced insights for researchers lacking access to proprietary data-
sets, we choose to concentrate on the datasets that are available for the public (Thiagarajan
and Ganesan 2012).

8.1.1 Mammographic Image Analysis Society

One of the earliest and oldest databases is MIAS database. It is confidential dataset com-
piled by the research organization in the U.K. There are a total of 161 samples and 322
images included, including those of benign, malignant and normal mammogram. Annota-
tion images in the form of circles surrounding the ROI are included in the dataset (Alsolami
et al. 2021).

8.1.2 Digital Database for Screening Mammography (DDSM)

The Institution referred to as the University of South Florida established DDSM dataset

which was publicly released in 1999. The dataset comprises mammography images accom-
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panied by pertinent information, including the patient’s age, mammogram screening date,
the nature of the anomaly detected, and the breast density. The dataset containing the highest
number of mammograms which consist of 2620 instances, with each instance comprising
four distinct views. The cases have been systematically categorized into 43 volumes, each
volume containing images that are classified as normal, malignant or benign (Hath 2018).

8.1.3 Curated Breast Imaging Subset of DDSM (CBIS-DDSM)

The DDSM dataset has undergone recent updates, resulting in the inclusion of numerous
updated images. The revised iteration of the Digital Database for Screening Mammography
(DDSM) dataset is referred as the curated Breast Imaging Subset of the Digital Databse
for Screening mammography (CBIS DDSM) dataset. The primary aim of this dataset is
to improve the classification results in order to address the health-related issues. Region
of Interest (ROI) annotation is updated by the CBIS-DDSM, which also assess segmenta-
tion and specialized approaches. The dataset is used to train and evaluate any breast cancer
detection model, The dataset comprises over 1000 images which have been categorised into
two distinct groups: calcification and mass (Tahmoush and Samet 2008).

8.1.4 INBreast

The breast research group released a publicly accessible mammography dataset, which is
commonly referred to INBreast dataset and initially released to the public in 2010. The data-
set was acquired from the Breast Cancer Institute at porto Hospital of St john, encompassing
all available sources. It included a total of115 cases that were formatted in DICOM, each of
which contained 90 images in two different views (CC and MLO). According to BIRADS
categorical, the images of dense mammogram, calcification and normal tissue were included
in the INBreast dataset. It is no longer possible to locate the dataset (Moreira et al. 2012).

8.1.5 Breast Cancer Digital Repository (BCDR)

Breast cancer resource is currently being employed in the field of mammography classifica-
tion. The dataset comprises a total of 736 lesions obtained from 344 patients who have under-
gone biopsy and received positive result by the radiologist. The dataset including MLO and
CC views, that has enabled lesion counter coordinate collection (Li and Nishikawa 2015).

8.1.6 Other datasets

There are many factors considered as the Risk factor of breast cancer. One among the risk
factor associated with culture and society. Therefore, the provision of local and public mam-
mography datasets is imperative for facilitating global research efforts at the detection and
classification of breast abnormalities in women. The Abdul Aziz University Breast Cancer
Mammogram Dataset KAU-BCMD) was one of the first datasets to be established in Saudi
Arabia. The dataset comprises a total of 1416 cases, each of which includes the information
of the BIRADS category. the dataset consists of 5662 images, which includes two views
of the breast. The MIRACLE dataset is another publicly available dataset that contain 204
mammogram images from 196 cases or patients. The Magic 5 Italian dataset was compiled
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and stored the information received from a wide variety of medical facilities. It contains 967
cases altogether, depending on the type of pathology. The LLNL dataset has a total of 197
images, both of which have been saved in the format known as Image Cytometry Standard
format (ICS). Patient records and biopsy results are also included in the dataset. The IRAM
dataset is a unique dataset that combines the contents of several other datasets (Becker 2005;
Antoniou et al. 2009; Tangaro et al. 2008; Karssemeijer et al. 2012). Table 10 gives the
concise overview of the dataset.

Breast cancer prediction mammogram datasets from different demographics affect the
generalizability of the model because the data may not represent the entire population. This
can lead to biased results and limit the model’s ability to predict breast cancer in diverse
groups accurately. Therefore, it is essential to ensure that training datasets are diverse and
inclusive. One approach is to perform subgroup analysis, which involves evaluating the
model’s performance on different demographic groups separately. Another method is to
use fairness metrics that assess how equitably the model performs across these groups.
Additionally, cross-validation techniques can be employed to ensure the model’s robustness

Table 10 Concise overview of the dataset

Dataset Year of Views Classifica- Image Image  No of Over-  Description
Commence tion Classes Type Format Patients  all,
Image
DDSM 1999 4 Normal SFM  JPEG 2620 10,480 Non-
malignant Standard
and benign compres-
sion files
Non-
Standard
format
BCDR 2012 2 Malignant FFDM DICOM 736 736 Lesion
and benign location
available
Different
resolution
image
standard
format
MIAS 2015 1 Normal and SFM  PGM 161 322 Low-
abnormal resolution
image Only
one view is
available
INBreast 2017 2 Normal, FFDM DICOM 419 419 Lim-
malignant ited size
and benign standard
format
CBIS-DDSM 2017 2 Mass and SFM  DICOM 1566 10,239 The
calcification standard
version
of DDSM
image
pathology
information
KAU-BCMD 2020 3 BI-RADS-5 SFM DICOM 1416 5662  Annotated
categories images are
available
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and accuracy across diverse populations. Another method to increase dataset diversity is to
collect data from multiple geographical regions and include participants from various ethnic
backgrounds. Additionally, collaborations with international research institutions can help
acquire datasets that reflect different lifestyle factors and genetic predispositions. Imple-
menting these strategies will enhance breast cancer prediction models’ robustness and fair-
ness. However, implementing these strategies comes with challenges such as data privacy
concerns, which can hinder data sharing across institutions and regions. Moreover, logisti-
cal and financial constraints may limit the ability to collect and integrate data from diverse
populations. Additionally, ensuring that the datasets are representative of all demographics
requires ongoing collaboration and coordination between researchers worldwide.

High-quality datasets are crucial for accurate model outcomes, as they ensure the data is
representative and free from bias. Without this, the model’s predictions can be skewed and
unreliable. Ensuring diverse and comprehensive data collection can significantly enhance
the model’s ability to generalize across different populations.

8.2 Evaluation Criteria

The popularity and durability of standard works are contingent upon their quality, neces-
sitating the use of evaluation criteria such as accuracy, precision, recall, and F1 measure to
gauge prospective results. Accuracy measure is a metric that quantifies the proportion of
correctly categorized occurrences, specifically indicating the accuracy in identifying per-
sons with mass lesions and benign disease patients (Tajerian et al. 2021) with the use of a
confusion matrix. The metric of sensitivity quantifies the accuracy of correctly identifying
positive cases, specifically referring to the proportion of patients with cancerous pathology
among those who have malignant abnormalities (Qin et al. 2022). The measure of specific-
ity pertains to the proper identification of individuals with abnormal mammograms (Dewan-
gan et al. 2022). The percentage of accurately classified positive predictions is shown by
precision. The metric employed in the study emphasizes the influence of precision and recall
on memory by using harmonic means (Bouzar-Benlabiod et al. 2023). The confusion matrix
is a graphical representation that offers a complete evaluation of performance results in clas-
sification procedures, considering both actual and expected outcomes. (Rajpal et al. 2021).
Cross-validation is a widely used data analysis approach that involves the resampling of
data through the partitioning of the dataset into K folds. The process is then iterated K times
to extract concealed information. (Singh and Singh 2022).

B (T'P+TN)
AcC = (I'p+TN +FP+FN)

o (TP)

" (TP+FN)
g __ (TN)

P (TN +FN)
__ (TP

b= (TP + FP)
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(2 x Precision x recall)

F - =
Lseore (Precision + recall)

True Positive (TP): Both the current and predicted classes exhibit positive characteristics.
False Positive (FP): Misclassification arises when the observed class is positive, but the
predicted class is negative. True Negative (TN): Both the desired class and the true class
exhibit negative values. False Negative (FN): The imagined result is positive, and the final
outcome is negative. Table 11 depicts the confusion matrix.

9 Discussion

Several concerns were identified during the surveys, which added to our progression to the
closing remarks.

9.1 Effect of the dense breast on breast cancer

As the correlation between dense breast and breast cancer becomes more apparent. It is
imperative that women should be aware of the connection between breast density and can-
cer. According to the study by Albeshan, breast density is the only significant risk factor
linked to a diagnosis of breast cancer (Albeshan et al. 2019). Women who fall into BIRADS
categories C and D showed a significant decrease in mammography sensitivity and a linear
relationship was identified between mammography sensitivity and automated volumetric
breast density. According to a recent review by Santiago, breast cancer prevention and early
detection practices can benefit from an understanding of breast density (Santiago-Rivas et
al. 2017). From Table 3 it is observed that mammogram density is a major risk, and it affects
the sensitivity of mammograms leads to a false positive rate. Moreover, when employing
a completely automated breast density measurement, it has been found that women who
grouped under the category of extremely dense breast had a four times higher risk of devel-
oping cancer than other women.

9.2 Recent trends in breast density classification

In order to classify breast density, researchers using a deep learning architecture explored
the CNN. Initially, CNN began to train the model from scratch, because of the time com-
plexity and the large amount of data required to process. The approach has progressed to
transfer learning via the pre-trained model and ensemble model. Moreover, the use of tradi-
tional CNN has been reduced slowly in the past 5 years (Kamal et al. 2023). In Contrast, the
usage of transfer learning along with a pre-trained model has elevated over the last 5 years
for the task of mammogram breast density classification which is illustrated in Fig. 7.
Figure 8 depicts the researcher’s utilization of various models for the classification of
breast density regularly. Over 60% of the existing research is dedicated to the exploration

Table 11 Confusion matrix Predicted
Negative Positive
Actual Negative TP FP
Positive FP TP
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Fig.7 Usage of CNN and TL CNN and TL!
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Fig. 8 Comparing the popularity of objectivity among researchers

of transfer learning and its potential applications in addressing challenges related to mam-
mography density classification. Accordingly, Fig. 9 illustrates a significant proportion of
researchers primarily focus on the detection of abnormalities, neglecting the analysis of
mammogram density. In contrast, a notable proportion of researchers, specifically around
9%, effectively used both mammogram density and breast cancer diagnosis in their studies
(Arya and Saha 2022). Along with the pre-trained and CNN model, the most highly used
dataset by the researchers for the estimation of mammograms is illustrated in Fig. 10 and
this helps to improve the classification model performance. Figure 11 also depicts the com-
monly employed evaluation criteria for breast density classification.
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Ensemble Learning

CNN from Scratch

Transfer Learning

B Transfer Learning
B CNN from Scratch
mmm Ensemble Learning

Fig. 9 Popularity in various techniques

Fig. 10 Distribution of dataset CBIS DDSM
Clinical database

DDSM
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10 Challenges and research direction in mammogram breast density
analysis

Deep learning models have demonstrated remarkable precision in predicting breast density
from mammography images, thereby streamlining the data processing procedure. One of
the primary obstacles and potential avenues for the advancement in the analysis of mam-
mography breast density relies on the models that predict breast cancer at the early stage.
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Fig. 11 Analysis of evaluation Evaluation Metrices Analysis
metrics

No.Of Papers
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Evaluation Metrices

10.1 Major challenges in mammogram breast density classification

The deep learning model has numerous benefits in the realm of medical imaging. Moreover,
their implementation by categorization of mammography images needs to cross out the
obstacles mentioned below:

— Early prediction of breast cancer the potentially reduces the patient’s risk thus increas-
ing the overall lifespan of the patients.

— The mammography breast density measurement indicates its inadequacy in accuracy.
identifying the presence of breast cancer (Gade et al. 2023).

— Due to the masking effect of mammogram images false positive rate is increased.

— Deep learning models used in the process of predicting breast cancer need to train the
model with a greater number of mammographic images. But practically it is not feasible
to collect the number of mammographic images.

— The choice of selection of an appropriate deep learning model itself is vital because
the selection demonstrates its significant improvements in predicting the accuracy and
effectiveness of breast density analysis.

11 Research direction

This section highlights the potential possibilities for future research in the application that
uses deep learning techniques for mammography breast density analysis.

— The analysis and detection of mammogram breast density should be conducted prior
to the identification of breast cancer, thus deploying multitasking techniques for breast
cancer classification (Sehgal et al. 2022).

— Utilization of advanced deep learning models may enhance classification accuracy by
exploring concatenation or hybrid methodologies.

— Cooperative and collaborative work between radiologists and scientists needs to be built
for the investigation of multivariate hybrid data to carry out the subsequent analysis.
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—  Further, this survey paves directions for the deployment of an ensemble learning model
with pre-trained model to classify breast density.

— Furthermore, the need of a new technology or tool may help the patient to understand
the analysis of the breast density in a much better way by offering better guidance to
increase their survival rate (Priyadarshani and Singh 2023).

— In addition, it is imperative that an early prediction of breast cancer incorporates mam-
mogram breast density as an initial stage. This approach has the potential to decrease the
false prediction and improve overall classification accuracy.

12 Conclusion

This study provides a comprehensive assessment on the current trends and limitations in
utilising deep learning models for the interpretation of mammography breast density. A
comprehensive evaluation is conducted on the latest techniques and models, such as CNN,
TL, EL, and other, to assess their effectiveness and constraints. In addition, this paper exam-
ines several data sources and evaluation metrics used in this field. The study identifies sig-
nificant research gaps and future objectives in the field of breast density classification and
breast cancer detection. These areas include early prediction, model selection, and masking
effect. Addressing these gaps is crucial to improve the accuracy, and reliability of breast
density classification and breast cancer detection. This survey is expected to be a great
resource and guide for scholars and practitioners who are interested in this important and
promising field of research.
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