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Abstract
Breast cancer is a globally prevalent and potentially fatal illness affecting women. Timely 
identification of screening mammography may decrease the occurrence of incorrect posi-
tive results and enhance the rate of patient survival. Nevertheless, the density of breast 
tissue in mammograms can impact the precision and effectiveness of detecting breast 
cancer. This paper examines the existing body of research on the analysis of breast den-
sity in mammograms utilising advanced deep learning models, including convolutional 
neural networks (CNN), transfer learning (TL), and ensemble learning (EL). Additionally, 
it examines various datasets and evaluation measures employed in the investigations. The 
study demonstrates that deep learning models can attain exceptional accuracy in categoris-
ing breast density. However, they encounter obstacles such as limited data availability, 
intricate model structures, and difficulties in interpreting the results. The research asserts 
that categorising breast density is an essential undertaking in order to enhance the identi-
fication and survival rates of breast cancer. Further investigation is warranted to examine 
the most effective deep learning structures, data augmentation methods, and interpretable 
models for this undertaking.

Keywords  Mammogram · Breast density classification · Convolutional neural network · 
Transfer learning · Ensemble learning

1  Introduction

Breast cancer exhibits a high prevalence within the population of India, and its incidence is 
similar in cities and villages. Studies in the year of 2020, suggested that around 2.3 million 
women would be diagnosed with breast cancer and 6,85,000 were succumbing to the dis-
ease (Tice et al. 2015). Due to the higher death rate, steps have been initiated to reduce the 
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death rate by detecting breast cancer at an early stage. The early detection of breast cancer is 
typically achieved through the use of mammography, which is considered a widely accepted 
and reliable imaging technique in the medical field (Oza et al. 2021). Screening mammo-
grams and diagnostic mammograms are the two various techniques involved in mammog-
raphy (Mathur and Taurin 2022). Screening mammograms can be used when the women 
have no signs or symptoms related to breast cancer (Murtaza Mendes and Matela 2021). A 
diagnostic mammogram is used when a lump or any other symptoms are found in the breast.

Women can gain awareness and understanding of breast cancer and breast density 
through risk factors associated with the disease. Both modifiable and non-modifiable risk 
variables have been identified (Kaiser et al. 2019). During a Patient’s lifetime, people are 
unable to alter risk variables such as family history, genetic alterations, mensuration, and 
menopause. Lifestyle choices of women may lead to cancer but that would change or lower 
the risk of the development of breast cancer when a healthy lifestyle is practiced. This can 
be achieved by breastfeeding children, maintaining a healthy weight, getting enough sleep, 
exercising frequently, staying against alcohol, and having a proper diet.

The application of CAD in the field of medical image processing and deep learning has 
significantly simplified the detection of breast cancer. In previous studies, breast density 
was estimated and classified with the use of feature extraction and a variety of segmentation 
techniques. However, segmenting and classifying breast density remains challenging due 
to the low quality of images and the intervention of radiologists. Deep Learning negates 
the necessity for human involvement (Braithwaite et al. 2018). Since feature extraction and 
selection are integrated within the network architecture itself. Moreover, the development of 
conventional neural networks has proven to be particularly effective in classification tasks. 
Over the past years, a large number of researches has focussed on breast cancer, especially 
on breast cancer detection and classification using mammogram images. However, there is a 
limited body of research that specifically examines the classification of breast density and its 
potential influence on the progression of breast cancer. The primary focus of the survey is to 
examine and explore the interrelation between mammographic density and the risk factors 
associated with breast cancer. Additionally, the present study aims to conduct a comprehen-
sive review of the application of CNN, TL, and EL, in breast density classification methods 
(Lester et al. 2022).

1.1  Sources of breast cancer

Breast cancer is a multifaceted ailment that arises from a confluence of hereditary predispo-
sition and environmental influences. The precise aetiology of breast cancer remains elusive, 
while it is hypothesised to stem from alterations in the DNA of breast tissue cells. In normal 
cells, DNA serves as a blueprint for cellular growth and apoptosis, whereas in cancer cells, 
it imparts altered instructions that promote rapid cell proliferation. This can result in the 
development of a neoplasm, which has the ability to infiltrate and eradicate normal bodily 
tissue (Kressin et al. 2022). Cancer cells can eventually detach and disseminate to different 
regions of the body, leading to the development of metastatic cancer. The genetic alterations 
associated with breast cancer predominantly occur in the milk ducts, which serve as con-
duits for transporting milk to the nipple, and in the milk glands, responsible for producing 
breast milk. Although infrequent, other breast cells can undergo malignant transformation 
and become cancerous.
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Factors that increase the risk of breast cancer include having a family history of breast 
cancer, having a personal experience of breast cancer, and having a personal history of 
specific breast disorders. Females have a higher propensity for developing breast cancer 
compared to males (Miles et al. 2019). Additionally, the presence of dense breast tissue, 
characterised by a combination of fatty and dense tissue, can impede the detection of breast 
cancer during mammography. Consuming alcohol elevates the likelihood of developing 
breast cancer, while delaying the age at which one has their first child may also heighten 
the risk.

Genetic mutations that are passed down from parents, such as BRCA1 and BRCA2, can 
elevate the likelihood of developing breast cancer and other types of cancer. Combining 
oestrogen and progesterone in menopausal hormone therapy may potentially elevate the 
likelihood of developing breast cancer, obesity is associated with a greater chance of devel-
oping breast cancer, whereas exposure to radiation on the chest during childhood or early 
adulthood can also elevate the risk (Saffari et al. 2020).

To summarise, Fig. 1 depicts the risk of breast cancer can be influenced by factors such 
as familial history, personal history of breast cancer, and genetic predisposition. Engaging 
in a discussion with healthcare specialists is crucial to ascertain the optimal approach for 
managing and preventing this disease.

Figure 2 illustrates four lifestyle habits that have the potential to reduce the chance of 
developing breast cancer. These factors encompass the maintenance of a desirable body 
weight, participation in consistent physical exercise, cessation of smoking, and restriction 

Fig. 2  Factors that can help lower the risk of breast cancer

 

Fig. 1  Risk factors of breast cancer
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of alcohol consumption. Women of all age groups should adhere to a well-balanced diet 
and engage in consistent physical exercise. Cessation of smoking is a pivotal determinant 
in mitigating the likelihood of developing breast cancer. Consuming a moderate amount 
of alcohol, which is defined as no more than one drink per day for women, is also advan-
tageous. Additional factors, such as genetics and family history, can add to the level of 
risk. It is advisable to seek guidance from the doctor for tailored treatment programmes 
(Ulagamuthalvi et al. 2022).

The present paper is structured in the following manner. Section 2 provides a compre-
hensive review of several surveys that have been published in the field of deep models for 
mammogram breast density analysis. Section 3 shows how mammography breast density 
affects breast cancer detection and survival. Section 4 describes the architecture of deep 
models like CNN, pre-trained model and Ensemble model Sect. 5 illustrates the detailed 
review of published CNN-based solutions in the area of breast density classification. Sec-
tion 6 examines the various available datasets, performance evaluation, and its usage level. 
Section 7 presents an overview of the research findings derived from the comprehensive 
survey. Lastly, Sect. 8 provides the concluding remarks and outlines potential avenues for 
further research.

1.2  Survey constraints

The scope and limitations of the data collection used in this survey are outlined here. In 
this study, we review and analyze literature proposed for breast cancer detection using deep 
learning models in the past two decades. There are several major digital repositories utilized 
by the survey to choose a wide range of deep learning models, including: Explore, Science 
Direct, CrossRef, MedPub, and Google Scholar. Also, the survey examines the literature 
that supports the development of interpretable models as well as methods for optimizing 
hyperparameters. Primarily the survey considers the studies that apply learning-based mod-
els using the dataset available to the public. Also, the focus of the study is chosen based on 
the mammogram breast density classification method along with the application of CNN, 
TL, EL, Contemporary models and Interpretable models. Additionally, segmentation, pre-
diction, image retrieval, and preprocessing techniques are not included in this survey so 
more attention may be paid to the topic at hand.

2  Research motivation

Medical image classification has reached its peak with the advent of deep learning and it 
has become the focus of many recent researches. Breast cancer detection and classification 
methods have been the subject of extensive investigation during the past two decades. How-
ever, breast density has a strong association with breast cancer, and the performance of the 
classification model and the imaging modalities are affected due to the dense breast. There-
fore, a deep learning model for breast density categorization will be the primary emphasis 
of this study. A single survey may not encompass all research publications in a particular 
domain (Daly et al. 2021). The primary aim of the survey is to lay a solid groundwork for 
future research in the selected topic and to investigate the existing body of knowledge in 
this area. This review also seeks to emphasize the strategies and techniques employed in 
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implementation, as well as indicate gaps for prospective future research. Therefore, this 
evaluation presents in-depth responses to the following concerns.

1.	 Why mammogram breast density is a prominent factor in breast cancer detection?
2.	 Whether the association of mammogram density and survival rate is correlated?
3.	 Identify various methodologies used in breast density classification.
4.	 Address the significance of Deep Learning models in determining breast density.
5.	 Expose the many measures the academics have used to evaluate the efficacy of the Deep 

Learning categorization algorithm.
6.	 To what extent the model can be trained on the datasets available in the current deep 

learning architecture?

2.1  Flow of the survey

Figure  3 depicts the review process flow and design model. To begin with, this system 
model contains mammographic breast density to analyse the correlation between breast 
density and breast cancer. The subsequent step is to use the open-source Dataset for mam-
mographic imaging to process the input images. The survey also includes a deep learning-
based system for correctly categorizing breast density which includes CNN, TL, and EL. 
Finally, the study digs into the evaluation measures and provides a performance analysis of 
the numerous pre-trained architectures, including AlexNet, ResNet, MobileNet, and so on.

Fig.  3  Flow of survey
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3  Related works

Few analyses have been conducted during the past two decades in the field of image pro-
cessing with an emphasis on the deep model architecture and its performance. The diagnosis 
and staging of breast cancer were the primary topics of this survey. This review focuses on 
recent studies that have linked mammographic breast density to increased cancer detection 
and better patient outcomes. The works of literature published in the field of mammogra-
phy breast density classification methods and various deep learning models are included 
in the survey to gain additional insights. The interrelation of breast density and breast can-
cer has been the subject of a literature review (Bond-Smith and Stone 2018) the review 
mainly focuses on methodological challenges that arose when using mammogram breast 
density. Moreover, the survey considers 165 samples from the published articles and is also 
explained using the Bayesian approach. The advantages of using continuous data for differ-
ent patient populations are also described.

In the past two decades, Li has surveyed the articles and proposed a computer-aided 
diagnosis for breast density measurement method on mammograms. Several commonly 
used methods with difficulties, challenges, limitations, metrics, and disadvantages were 
also addressed (Xue et al. 2020). Abdelrahman has reviewed the computer-assisted detec-
tion using a convolution neural network for identifying breast cancer. Classifying breast 
density, detecting breast asymmetry, observing calcifications, and identifying and categoriz-
ing masses were the four main focuses of the study. The survey also provided a road map 
for providing a CNN-based solution to enhance mammographic diagnosis of breast cancer 
and discussed a CNN-CAD algorithm based on a Food and Drug Administration (FDA) 
approved model (Abdelrahman et al. 2021).

Rehman reviewed some machine-learning techniques for breast mammogram grading. 
The survey considers 110 papers for analysis to find out the techniques that are suitable for 
breast density detection and classification. In addition, the survey draws attention to a range 
of imaging modalities and factors that may prove helpful in determining mammographic 
grading (ur Rehman et al. 2022). Breast density on mammograms has been connected to a 
high rise in breast cancer risk, as described in a recent study by Allison. The survey aimed 
to highlight the interconnection of breast density on mammograms and the danger of devel-
oping breast cancer. The survey also contrasts the benefits and drawbacks of various mam-
mogram density detection methods used in several studies (Allison et al. 2022).

Puliti evaluated the risk of breast cancer and volumetric mammogram density. Breast 
cancer incidence was determined by analyzing data from 16,752 women who had their 
first screening mammogram between the ages of 49 and 54. Breast density was found to 
be a significant risk factor for developing breast cancer. The study finds that breast density 
is strongly associated with breast cancer risk (Puliti et al. 2018). Kehm studied a cohort of 
mothers and daughters in Santigo, Chile. With a sample size of 42 mother-daughter couples. 
Clinical dual-energy X-ray absorptiometry (DXA) was used to calculate the percentage of 
fibro glandular volume, while optical spectroscopy (OS) was employed to measure colla-
gen, water, and lipid concentration. The findings demonstrated that information on breast 
density and breast tissue is related yet separate from the obtained OS, DXA, and mammo-
gram (Kehm et al. 2022).

The breast density analysis using AI-based CAD is compared and contrasted in a recent 
study. The author classifies 488 mammograms taken in a single institution on Asian women, 
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which are categorized into BIRADS (Breast Imaging Reporting and Data System) density 
categories. Like the agreement seen between the Volpara tool and radiologist, the results 
demonstrate that AI-CAD density assessment exhibits fair agreement with those of radi-
ologists (Lee et al. 2022). Rampun offers a complete analysis of the findings as well as 
a thorough evaluation of the relevant literature and methodology. It also describes breast 
density categorization by incorporating the Local Septenary Pattern (LSP). Also, it analyzes 
different methods of encoding local patterns in mammograms to categorize breast density. 
LSP beats the other methods on the MIAS and in the breast dataset with the highest accuracy 
values of 83.3% and 80.5% respectively (Rampun et al. 2020). Table 1 depicts the associa-
tion of MBDWBC, MBDCM, CNN, TL and EL.

4  State of mammogram breast density and breast cancer

This section outlines the mammogram density followed by awareness and significance of 
mammograms with respect to breast cancer. Subsequently, this section goes on to detail the 
interconnection of mammogram breast density and the likelihood of rising breast cancer. 
Despite the fact, that a great number of studies concentrate on determining the location of 
breast cancer, segmentation, and classing, but interconnection of mammogram density and 
breast cancer as well as the categorization of breast density are the primary focus of this 
survey.

4.1  Breast density

Breast tissue is composed of Adipose, fibro glandular, and connective tissue (Cohn and Terry 
2019). Women’s breast density is not always proportional to breast size, perhaps breast den-
sity cannot be felt or touched. Moreover, dense breasts are common among women and it 
is not abnormal but it lowers the sensitivity of mammograms (Vargas-Hakim et al. 2021). 
Because of this effect experienced during screening mammography, finding unusual tissue 
in heavy breast mammograms is a difficult process. The masking effect occurs when mam-
mogram tissue covers up malignant cells in the breast (Posso et al. 2019). Due to this mask-
ing effect abnormalities may likely blend with normal breast tissues. To measure the density 
radiologist assigns a certain level of breast density by computing the ratio of fibro glandular 
tissue (dense tissue) and connective tissue (non-dense or fatty tissue) (Wengert et al. 2018).

Researchers are naturally curious about whether or not there is a correlation between 
breast density and breast cancer. The Breast Imaging Reporting and Data System (BIRADS), 
created by the American College of Radiology is widely used in the scientific community 
for clinical classification of mammographic density (Kyanko et al. 2020). Dense breast is 
classed as extremely dense (B), scattered (A), heterogenous (c), or extremely dense (D) 
based on the BI-RADS scale. Researchers typically utilize BI-RADS fifth edition to cat-
egorize breast density, make predictions about breast density, and examine the correlation 
between mammogram density and breast cancer risk (Lin et al. 2023; Verma et al. 2021). 
Table 2 depicts the BIRADS scale of breast density.
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Table 1  Existing review articles in the Association of Mammogram Breast Density with Breast Cancer (MB-
DWBC), Mammogram Breast Density Classification Method (MBDCM), CNN, TL, EL
Review 
article

Description MBDCM MBDWBC CNN TL EL

Yu and Ye 
(2022)

Review on epidemiological factors associated 
with breast density

✓

Bond-Smith 
and Stone 
(2018)

Discussed methodological challenges associ-
ated with breast density

✓

Xue et al. 
(2020)

Analysis of breast density, focussing mainly on 
both qualitative and quantitative measurement 
approaches

✓ 

Abdelrah-
man et al. 
(2021)

The Survey was conducted to assess the exist-
ing knowledge base on CNN in mammography

✓ ✓

ur Rehman 
et al. (2022)

Survey on various machine learning tech-
niques employed in the assessment of image 
grading

✓ ✓

Puliti et al. 
(2018)

This research investigates the interconnection 
of volumetric breast density and the likelihood 
of breast cancer

✓

Kehm et al. 
(2022)

Comparative investigation of breast density 
methods

✓ ✓

Lee et al. 
(2022)

A comparative study of AI-based breast den-
sity methods

✓ ✓

Rampun et 
al. (2020)

A survey on investigation of channel encoding 
techniques in breast density classification 
method

✓

Shamshiri et 
al. (2023)

A Critical analysis of the biological factors 
implicated in breast density

✓

Alison et al. 
(2022)

Investigate the correlation between breast 
cancer associated with tumour macrophage

✓

Bodewes et 
al. (2022)

Study examines the interconnection of mam-
mographic breast density and the risk of 
developing cancer

✓

Mendes 
and Matela 
(2021)

A Review of mammogram-based breast cancer 
risk assessment

✓

Nazari and 
Mukherjee 
(2018)

The administration of a survey investigates the 
relationship between breast cancer and breast 
density

✓

This survey This study underscores the relationship be-
tween mammogram density and breast cancer 
as well as the various classification methods on 
deep learning models

✓ ✓ ✓ ✓ ✓

BI-RADS class Density range Breast density class
A 00–25 Entirely fatty
B 26–50 Fibro glandular tissue
C 51–75 Heterogeneously dense
D 76–100 Extremely dense

Table 2  BI-RADS scale of breast 
density
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4.2  Mammogram breast density

The widely used technique for identifying malignancy in women is mammography. Screen-
ing mammograms cannot detect all types of cancer in women because their sensitivity is 
affected by the dense cells present in the breast tissue. Radiologists use diagnostic mam-
mography to determine breast density (MBD) by comparing the amount of fatty tissue 
(radiolucent) to the amount of epithelial and stromal components (radio-opaque in a breast). 
Epithelial and stromal elements which filter X-rays efficiently and absorb more energy, 
appear white or radio-opaque. By contrast, white fatty tissue appears black on the radio-
graph. Very little fatty tissue presents in dense breasts. Compared to less dense breasts with 
more fatty tissue, they have a higher risk of developing cancer. It also implies that both false 
positive and false negative occurrences in mammography interpretations are higher in dense 
breast tissue cases (Kumar et al. 2019; Yamada et al. 2022; Kim et al. 2022; Dayaratna and 
Jackson 2022; Moini et al. 2022; Pizzato et al. 2022).

4.3  Mammogram breast density correlation with breast cancer

Mammography has an overall sensitivity of 70 to 80% for a woman at reduced risk for 
breast cancer (Wanders et al. 2017). According to BIRADS, Women who fall under category 
A will have 80–90% of sensitivity (Kocer 2021). Whereas having the high density (30–48% 
were categorized into category D. Women who fall under category D may likely to develop 
breast cancer 4–6 times more than the one who falls under category A. So, women having 
higher breast density who fall under the category C and D should be aware of the risk of 
breast cancer (Schifferdecker et al. 2019).

The association between mammographic breast density and breast cancer was investi-
gated in a cohort study of the Saudi population. The study by Aloufi incorporates both auto-
matic and visual assessment of breast density and it uses approximately 1140 mammogram 
data. Finally, the study result shows that the mammogram breast density is highly associated 
with breast cancer. According to Kolb screening mammograms detected breast cancer in 
11,130 women who showed no signs of disease. Women with extremely dense breasts have 
dropped to 48% of mammogram sensitivity. However, when compared to the normal breast 
the obtained mammogram sensitivity is 78%. The author concludes that women with excep-
tionally dense breasts are at a higher risk of developing breast cancer due to their decreased 
sensitivity. It has been suggested by Saftlas that the proportion of mammographic densities 
visible in the breast is not more reliable than a qualitative analysis of mammographic pat-
terns for determining the risk of developing breast cancer (Aloufi et al. 2022; Zhang et al. 
2022; Duffy et al. 2018).

Ali evaluated the distribution of breast density among women in Sulaimaniyah, Iraq (Ali 
et al. 2022). 750 women who underwent mammogram routine at the Sulaimaniyah Cancer 
Institute. The findings indicate that 54% of breast cancer cases of BIRADS Classes C and 
D. Moreover, Age, BMI, and Family were all correlated with breast density. I observed a 
strong association between mammogram density and sensitivity of mammography (Li et 
al. 2022). Hence it is observed that mammogram breast density was the major risk factor 
while detecting breast cancer. Puliti made a cohort study with 16,752 women under the age 
of 49–54 with two rounds of screening programs. The incidence of breast cancer formed in 
the dense breast is found in the second round of screening. Moreover, the author calculated 
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breast density by using automated tools and found a strong correlation between increasing 
density and an increased risk of breast cancer.

Another Study was conducted with 329 breast patients over a period of 8 years. At dif-
ferent times it is observed that mammogram density for all the breast cancer patients falls 
under categories D to D. Only 19% of the tumors were correctly diagnosed and 81% of 
breast cancer was missed due to the overlap of dense tissue. In addition, it should be noted 
that the risk of breast cancer can also be influenced by variations in breast density. Advani 
has addressed some factors that influence mammogram breast density namely age, Body 
Mass Index (BMI). Hormonal radiation Therapy (HRT), family history, and menopause 
(Advani et al. 2021). The association of BMI is evaluated with the density of the mammo-
gram. Further, the risk factor of breast cancer may also vary based on the association and 
the influence of breast density. The correlation between the mammography sensitivity and 
the breast cancer risk is presented clearly in Table 3.

5  Deep Learning models in Breast Density Classification

This section provides an overview and general architecture of convolution neural networks, 
Transfer Learning, and Ensemble Learning along with its pros and cons. These models 
significantly help to overcome the pitfalls in cancer detection at the early stage by learning 
from the existing information.

Table 3  Relationship of breast density with breast cancer
Review 
articles

Population used Observation

Aloufi et al. 
(2022)

1140 screening mammograms col-
lected from Saudi females

There was a significant correlation observed 
between elevated mammographic density and the 
likelihood of developing breast cancer

Ali et al. 
(2022)

750 women screening mammograms 
from Sulaimaniyah Breast Cancer, Iraq

The breast density profile of Sulaimaniyah, Iraq 
revealed that increased risk of breast cancer

Kim et al. 
(2022)

3.9 million Korean women’s 
mammograms

Women who possess dense breast tissue are at 
an increased susceptibility to developing breast 
cancer

Mai Tran et 
al. (2022)

A total of 48.35507 women’s mam-
mograms have been collected. Among 
those 79,153 reports originated from a 
history of breast cancer

Women Possess a familial background character-
ized by a prevalence of breast cancer cases

Puliti et al. 
(2018)

16,752 women under the age of 49–54 The density of breast tissue significantly influences 
the occurrence and progression of breast cancer

Hanis et al. 
(2022)

Mammogram reports collected from 
Hospital University Sains, Malaysia

The density of mammograms has been identi-
fied as a substantial indicator of the likelihood of 
developing breast cancer

Choi et al. 
(2021)

290,448 women’s report were taken 
from the Korean National Cancer 
Screening Program (KNCSP)

Korean-specific natural history parameters of 
breast cancer with higher dense breast

Barnard et 
al. (2022)

160,804 women with mammogram im-
ages were estimated based on racial

Association between Body Mass Index (BMI) and 
Breast density

Zhang et al. 
(2022)

11,130 women’s mammograms have 
been analyzed

A significant correlation has been observed, indi-
cating that individuals with a fully dense category 
have an increased probability of developing breast 
cancer

1 3
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5.1  CNN

The convolutional neural network (CNN) is a popular Deep Learning architecture for image 
classification and recognition. Convolutional layers, pooling layers, and fully connected 
layers are just a few types of layers that make up a CNN architecture. The convolution layer 
integrates two functions, f and g combines two functions f and g to generate an output. The 
convolution layer applies a filter to the image to extract relevant features. As there are sev-
eral sequences of convolution layers, the progress from one input layer to one output layer is 
performed accurately and precisely to extract features and this process is repeated to all the 
layers present in the CNN. When CNN applies filters to the input image, the output would 
be a complex feature map (Gargouri et al. 2022; Greenspan et al. 2016; Khan et al. 2020). 
The feature map is obtained by computing the following expression.

5.1.1  Feature map = Input image x feature detector

When the input image passes through a convolutional layer then the image would transform 
into a feature map or activation map and send the same to the pooling layer for reducing 
dimension. The activation function determines which bits of information progress to the 
next neuron, as identical to the neuron model of the human brain. Ech neuron in a neural 
network takes the value produced by the neurons in the layer below it as input and passes 
on the result of its processing to the layer above it (Joshva Devadas and Arumugam 2010).

	
(f × g) (x, y) =

∞∑
i=−∞

∞∑
j=−∞

(i, j) f(x − i, x − j)

It is formally expressed as a discrete bi-dimensional convolution operation between two 
functions, f and g. Where i and j are the row and column indexes of the pixel, and x and y 
are the two variables of f and g respectively. The primary purpose of the pooling layer is to 
reduce the dimension of an image (Lawrence and Zhang 2019). Utilizing a pooling layer 
accelerates computation, conserves memory, and guards against overfitting. Pooling layers 
come in two common varieties: Max pooling and Average pooling. The Max pooling layer 
reduces background noise by returning the highest value from the portion of the image that 
the kernel has covered. It eliminates the noisy activations, dimensionality reduction, and 
denoising. The average pooling layer, on the other hand, displays the average of all the val-
ues from the region of the image that the kernel has covered (Shrestha and Mahmood 2019).

To obtain more low-level features, the number of convolution layers and pooling layers 
may be expanded. However, this will require additional computational power depending 
on the complexity of the image. To classify the images, the output is later flattened and fed 
into a standard neural network. For learning non-linear combinations of high-level features, 
fully connected layers are incorporated thus reducing the cost. Due to this image is flattened 
into a column vector and the flattened output is fed forward as input to the neural network. 
The training process is carried out with the back propagation method and the same is applied 
to all the iterations. Now, the model can categorize images using the SoftMax Classifica-
tion method across several epochs by identifying dominant and specific low-level features 
(Simonyan and Zisserman 2015; Thomaz et al. 2017; Li et al. 2021a).
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It’s common knowledge that deep learning models need a lot of training data to func-
tion properly. Since deep learning is effective when there are several training possibilities 
applied to the model (Vargas-Hakim et al. 2021). The CNN can be trained from scratch if 
large enough training samples are given to them. The most challenging task involved select-
ing hyperparameters, such as the number of layers, dropout rates for each layer, filter sizes, 
acquisition of knowledge regarding to choose the regularization parameters and kind of suit-
able activation function. As a result, the entire training process usually takes a long time and 
requires a strong GPU. The CNN can be trained from scratch if large enough training sam-
ples are given to them. The most challenging task involved selecting hyperparameters, such 
as the number of layers, dropout rates for each layer, filter sizes, acquisition of knowledge 
regarding to choose the regularization parameters, and the kind of suitable activation func-
tion. As a result, the entire training process usually takes a long time and requires a strong 
GPU (Turay and Vladimirova 2022). Table 4 depicts the comparison of various approaches.

5.2  Transfer learning

In 1976, Stevo Bozinovski and Ante Fulgosi introduced a mathematical and geometrical 
model of transfer learning. The use of transfer learning in the context of training a neural 
network using a dataset representing letters of computer terminals was first published in 
another paper in 1981. Experimental research confirms the existence of both positive and 
negative types of transfer learning, both of which made use of datasets including images of 
letters A-Z. In 1993, Thrun developed the discriminability-based transfer (DBT) algorithm 
to emphasize the significance of Transfer Learning. In 2016, Andrew Ng stated that transfer 
Learning would be the next factor in determining the commercial success of Machine Learn-
ing. Recently, Transfer learning has been eminent in the field of deep Learning (Bozinovski 
2020; Prasad et al. 2021; Li et al. 2019).

One common method for training a CNN model is Transfer Learning. The main role 
of Transfer Learning is to adapt the data from a network that has already been trained to 
carry out a similar function but different task (Rafiq and Albert 2022). Transfer Learning 
is more efficient and simpler to implement because it does not require a large labeled data 
set for training. The three most common conditions can be used to facilitate transfer learn-
ing (Shah 2020). They are shallow tuning, fine-tuning and deep learning. Shallow tuning 
just modifies the classification layer to make it suitable for the new task, while leaving the 
weights of the other layer to remain same. Fine-tuning is a method of gradually training the 

Table 4  Comparison of various approaches
Models Advantages Disadvantages
CNN without a 
pre-pre-trained 
model

Fully automated with reduced 
manpower
Simple and easy to understand and 
implement

Substantial dataset is required to train the model
Computation time is more

Transfer 
learning

Model efficiency is high
Only less amount of data is required
Less training time

Pre-trained model may not fit some specific case
Training time is more to train the pre-trained 
model
A substantial quantity of data is required to train 
a model from its original state

Ensemble 
learning

Higher accuracy when combining 
various model

Very difficult to interpret
Computation time is increased
Complexity increases due to stacking
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subsequent layers by adjusting the learning parameters until a major performance gain is 
achieved. Lastly, deep learning tries to relearn all the weights of the deployed pre-trained 
network from end to end (Kandel and Castelli 2020). Figure 4 depicts the architecture of 
transfer Learning.

The field of medicine has recently given a significant amount of attention to the concept 
of employing transfer Learning rather than training a full CNN it starts with random initial-
ization (Abdelhafiz et al. 2019). Abdelhafiz stated that due to the high cost and small size of 
the available datasets, medical image analysis is increasingly turning towards transfer learn-
ing to improve accuracy and efficiency. In addition, the time it takes radiologists to collect 
data and categorize it can be substantial. Training a deep CNN also requires a large amount 
of memory and CPU time.

5.3  Pretrained model

In computer vision, transfer Learning is often implemented through the use of pre-trained 
models. Pretrained models, as defined by Abd-Elsalam are those that have already been 
trained to solve a certain problem using a large benchmark dataset. Table 5 shows the sum-
mary of the Pretrained model (Abd-Elsalam et al. 2020).

5.3.1  AlexNet

AlexNet was the first pre-trained CNN to achieve performance levels superior to the current 
gold standard approaches for classification and object detection tasks. Alex Krizhevsky and 
his colleagues proposed this model in 2013 hence the name is AlexNet. It is comprised of 
eight layers, each with its own set of learnable parameters. The model has five distinct lay-
ers. Including a max pooling level, and a fully connected layer. Each of these levels, exclud-
ing the output level, makes use of the rectified Linear Unit (Relu) activation function. The 
Relu’s activation function was also found to dramatically accelerate the training process by 

Fig. 4  Transfer learning
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a factor of about six. Additionally, dropout layer is used to prevent overfitting of the model. 
The image net dataset is used to train the model. Almost 14 million images spread across 
and 1000 varieties make up the ImageNet collection (Krizhevsky et al. 2012).

5.3.2  VGGNet

Simonyan and Zisserman of Oxford University proposed the visual Geometry Group (VGG) 
network in 2014. The necessity to speed up the training process and decrease the number of 
parameters used in the subsequent layers led to the development of VGGNet. The impact 
of network depth was examined by academics from the University of Oxford under the 
assumption that conventional filters are relatively small. Moreover, they demonstrated that 
increasing the depth to 16–19 layers was associated with a considerable improvement in the 
outcome. The architecture input is a fixed-size input with the value 224 × 224. Moreover, 
the VGG model was able to increase the network’s effectiveness and broaden its receptive 
field while simultaneously reducing the number of parameters. This was accomplished by 
stacking many layers of convolution with a very small kernel size. The authors examined 
the number of combinations with different depths of 9,11,16 and 19 layers (Simonyan and 
Zisserman 2015).

5.3.3  ResNet

To solve the vanishing gradient problem, the concept of residual blocks in design was devel-
oped. The skip connections strategy is used in the residual network. Some intermediate lay-
ers between the activation layer and the next layer are skipped over by the skip connection 
called residual block (Veit et al. 2016). ResNet is a stack of these surplus blocks. Among the 
many advantages of including this type of skip connection. One of the notable advantages 
of regularization is its ability to circumvent the influence of any layer on the performance 
of the design, provided that layer exists. Consequently, this property enables the training 
of deep neural networks without encountering the challenges associated with vanishing or 
exploding gradients. According to the authors, adopting this kind of network makes opti-
mization easier and allows for a significant depth improvement. This network employs a 
34-layer simple network architecture that was influenced by VGG-19 and the shortcut con-
nection was added towards the end of the process. The presence of shortcut connections in 
the design leads to the subsequent transformation of the network into a residual network 
(Lizzi et al. 2019).

5.3.4  GoogleNet

One of the key developments in the field of CNN was the inception network. Inception net-
work currently has three version, known as Inception Version 1, 2 and 3. The initial version 
of GoogleNet launched in 2014. The aim of this study is to identify the most effective local 
structure and subsequently develop it in sequential stages, leading to the development of a 
multi layered network. The following the publication of inception-v1 in 2014, the authors 
proceeded their model, focusing on enhancing its performance through improvements in 
accuracy and reductions in time complexity. In particular, Inception V3 was proposed in 
2016 by Szegedy et al. (2017).
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5.3.5  XceptionNet

Chollet who initially presented the Xception architecture. Xception is an acronym that 
stands for extreme inception. The distinguishing characteristic of this methodology lies 
in its utilisation of depth-wise separable convolution to substitute the inception modules 
within the inception network, afterward being followed by a further pointwise separable 
convolution. It is entirely, the network is made up of 71 layers, and it has 22.9 million differ-
ent parameters. According to the findings of an experiment that was carried out by Kandel 
and Castelli in the year 2020. A notable benefit of this network is its ability to achieve depth 
while utilizing a limited number of parameters (Chollet 2017).

5.3.6  DenseNet

In 2017, Haung introduced DenseNet, which stands for densely connected convolutional 
network. The purpose of this study was to achieve the establishment of a high level of 
connectivity in the channel-wise concatenation. In this particular design, the input for each 
subsequent layer is the preceding feature map, thereby addressing the problem of vanish-
ing gradients. The author stated that the inclusion of dense connections in the model also 
contributes to a reduction in the overall number of parameters utilized. This phenomenon 
occurs due to the network’s usage of feature map data from the preceding stage and at each 
subsequent layer, instead of creating new parameters. The densely connected architecture of 
this network has achieved a reduction in parameter count by a factor of five while preserv-
ing the number of layers in comparison to the ResNet architecture (Huang and Lin 2021).

5.3.7  MobileNet

Howard was the one who initially proposed the idea of portable CNN architecture. The 
author suggested depth-wise separable convolution in place of the conventional convolu-
tions used in the earliest models in order to create a lighter weight model. The point wise 
convolution and the depth wise convolution are two separate processes that make up the 
depth wise separable convolution. The resolution multiplier and the width multiplier are 
both examples of global hyper parameters that have been incorporated into this design as 
a means of controlling the input image’s channel depth and resolution, respectively. While 
the model was being developed to meet the requirements of the user, these hyper parameters 
assisted in providing a trade-off between miniaturization of the model creator (Howard et 
al. 2017).

5.3.8  ShuffleNet

The ShuffleNet architecture was offered by the Megvii group in 2019, and two additional 
operational elements were also presented at that time. These features consisted of pointwise 
group convolution and channel shuffle, both of which were designed to reduce the amount 
of computation cost and maintain high-level accuracy. In recent years, CNN architectural 
designs have increasingly incorporated billions of floating-point calculations every second. 
This is done in an effort to improve accuracy. Because it can perform approximately 10–50 
mega floating-point operations per second. ShuffleNet is ideally suited for use in mobile 
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applications, where the available processing power is more constrained. As a result of this, 
the aforementioned architecture exhibits superiority over MobileNet in terms of reduced 
top-1 error rates during the process of ImageNet classification. Additionally, it exhibits a 
computational speed that is 13 times faster than AlexNet in practical applications, while 
maintaining an equivalent level of accuracy and generating results with comparable preci-
sion (Bobo et al. 2004).

5.3.9  EfficientNet

Tan and LE introduced scaling and in the same year, EfficientNet distinguishes from other 
network architectures. The authors demonstrated that it is possible to successfully scale 
up ResNet and MobileNet designs by using compound coefficients, which they did so by 
presenting this architecture. In order to provide further clarity, the designers have put forth 
a proposed methodology that ensures the proportional adjustment of all dimensions. While 
simultaneously preserving the healthy relationship between dimension and the network. The 
dimensions encompassed in this context consist of picture resolution. Which pertains to the 
size of the image, depth, which refers to the number of layers, and width, which denotes the 
number of channels (Tan and Le 2019).

5.4  Ensemble learning

Figure 5 illustrates, Deep Ensemble modelling combines the predictions of multiple neural 
network models to minimise generalisation error. It is used to boost the quality of the final 
model’s performance. Baseline classifiers that have been trained on input data and can make 
predictions are the building block of every ensemble. An aggregate forecast is then derived 
from the individual techniques that can be used to enhance the machine learning proce-
dure (Putten and Bamford 2023). Table 6 depicts the strengths and weakness of pretrained 
models. 

Fig. 5  Ensemble learning
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6  Reviewed application of breast density classification method

This section covers three reviewed applications of breast density using Convolution Neural 
Network (CNN), Transfer Learning (TL), and Ensemble Learning (EL).

6.1  Reviewed application of CNN based classification of breast density method

Breast density was classified using a deep convolution neural network trained on the 
BIRADS database. According to Wu, the model was trained and evaluated using nearly 
200 k labeled pictures from a clinically realistic dataset of screening mammography from 
four different perspectives. The dataset included 19,939 grouped into class-0, 85,665 class-
1, 83,852 class-2, and 11,723 class-3 images. Due to the model’s ability to utilize a large and 
varied clinically relevant dataset of high-resolution images. It is able to accomplish the task 
as well as human experts (Wu et al. 2018; Lizzi et al. 2019).

According to the research, the CNN can detect masses and distinguish dense and non-
dense tissue in any type of breast tissue. The method demonstrated classification accuracies 

Table 6  Strength and weakness of pretrained models
Model Model variant Merits Demerits
LeNet 
(1998)

LeNet-5 Successful milestones for 
optical character task

LeNet-5 type structure is not enough 
to achieve high recognition capability

AlexNet 
(2012)

AlexNet Features are not lost much
Relu does not limit output

This model is swallow and struggles 
to learn features from image
It takes more time to get high ac-
curacy than future model
Normal distribution weight initializa-
tion cannot solve gradient vanishing

VGGNet 
(2014)

VGG 16
VGG 19

VSS’s receptive fields are 
much smaller than AlexNet

VGG required more memory and 
parameter
Cost is high

GoogleNet 
(2015)

Inception V3 GoogleNet is faster than 
VGG pre-trained
GoogleNet is 96mb and 
inception V3 is 92 MB

More parameters induce over fitting
Parameters explosion on Inception 
layer

Xception 
(2016)

Xception The accuracy is higher than 
inception model

Each layer’s feature maps are spliced 
with the previous layer and duplicated

DenseNet 
(2017)

DenseNet-121
DenseNet 169
DenseNet 201

Efficiency decreasing the gra-
dient disappearance problem

Each layer within the system is inter-
connected with other layers, resulting 
in potential duplication of data across 
these connected layers

MobileNet 
(2017)

MobileNet V1
MobileNet V2

Fewer parameters better 
classification accuracy than 
others

MobileNet is much smaller in size 
than others

ShuffleNet 
(2017)

ShuffleNet Reduced the cost of computa-
tion while retaining accuracy

Property of ShuffleNet prevents com-
munication between channel groups 
and degrades representation

EfficientNet 
(2019)

EfficientNet-b0
EfficientNet-b3
EfficientNet-b7

Efficient net achieved greater 
accuracy and efficiency with 
fewer parameters
Increasing the number of 
chances will enhance overall 
capacity

More data transfer as a result of 
numerous channels
On hardware accelerators EfficientNet 
perform poorly
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of 95.6% and 97.72% for non-dense and dense tissue respectively. The model faces an issue 
in effectively recognizing mass and non-mass categories since it uses the same CNN struc-
ture for both density categorization and identifying masses in breasts with varied densities 
(Bandeira Diniz et al. 2018).

Benitez presented a hybrid algorithm UNET architecture based on CNN and identify-
based clustering using K-means clustering. 384 mammograms served as the training data in 
this model and manually segmented by an expert. In order to segment the regions of interest, 
this method integrated CNN based segmentation of fibro glandular tissue with a clustering 
algorithm. This model underwent 8064 iteration of training and the intersection over union 
showed accuracy of 93%. The network produces binary classification as its output (Benitez 
et al. 2022).

Multi view DL technique for BIRADS density assessment of mammograms were pro-
duced by Nguyen. To predict BIRADS and density scores, the gathered characteristics are 
subsequently consolidated and inputted into a light gradient boosting machine (Light GBM) 
classifier. Two benchmark datasets were used in the experiments. The outcome showed that 
the F1 score margin on clinical dataset and DDSM dataset were + 5% + 10% respectively. 
These results showed that how important multi view information fusion for improving the 
precision of breast cancer risk prediction (Nguyen et al. 2022).

Li constructed Deep CNN that effectively used to estimate the amount of breast tissue 
in full-field digital mammography (FDM). One million picture patches were created and 
used in the process of training DCNN. The (PD) Percent density was determined using 
(PMD) Probability map of breast density) as a starting point by dividing the dense region 
of the breast. Backpropagation and mini-batch stochastic gradient descent (mSGD) were 
used in each training cycle to optimise the parameters. Furthermore, feature-based learning 
obtained DC = 0.620 and r = 0.75 whereas DCNN obtained DC = 0.76 and r = 0.94. These 
findings showed that the prospective value of DCNN is more trustworthy for automated 
categorization of breast density and risk prediction (Li et al. 2021b).

Mohammed investigated breast density classifiers on deep learning to effectively dif-
ferentiate between scattered-dense and heterogeneously dense categories of breast density. 
Further, intended to provide a potential automated tool to aid radiologists in the process of 
designating a BIRADS category. A convolution neural network-based model was trained 
using 22,000 mammogram images as training samples to determine how effectively is dis-
tinguished the breast density groups. The classifier’s efficacy was evaluated using receiver 
operating characteristics (ROC) curves and the area under the curve (AUC). The obtained 
AUC was 0.9421 and the accuracy rose steadily as the training sample size increased 
(Mohamed et al. 2017a).

Saffari suggested an automatic method for determining mammographic breast density 
in accordance with the ACR BIRADS. Over 20,000 mammography images were used to 
train a deep CNN, which was then tested using an augmented dataset. In accordance with 
the fatty and dense category, MLO projections obtained 99% and CC projections obtained 
96%. Mohammed used a CNN, a type of deep learning architecture in order to build a 
breast density classifier for two class. Six-fold cross validation was used for CNN training 
and validation. The AUC of breast density classifier was determined and the obtained AUC 
is 0.95 when using mammography images from two views MLO and CC (Mohamed et al. 
2017b) Table 7 gives the summary of CNN without pretrained model for breast density 
classification.
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6.2  Breast density classification based on transfer learning

A radiomics approach to mammographic density categorization using dilation and atten-
tion guided learning has been reported (Li et al. 2018). This technique involves extensive 
training from beginning to end as well as it includes advanced pre-processing of mammo-
graphic image. Both the clinical and publicly available dataset were used to verify and test 
the model. Furthermore, it was shown that multi-view mammogram images such as CC 

Table 7  Summary of CNN without pretrained model for breast density classification
Authors Database Purpose CNN 

Based 
Method

Class 
Obtained

Augmentation Cross 
Validation

Accuracy AUC

Diniz 
et al. 
(2018) 
(Ban-
deira 
Diniz 
et al. 
2018)

DDSM Breast 
density 
and breast 
mass clas-
sification

CNN from 
scratch

2 Class 
dense and 
non-dense

No No 94.8 –

Wu 
et al. 
(2018)

Clinical 
Dataset

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

No No 82.5 69.4

Mo-
hamed 
et al. 
(2017a)

ImageNet Breast 
density 
classifica-
tion

CNN from 
scratch

2 Hetero-
geneous 
dense and 
scattered 
dense

No Yes – 0.94

Nguyen 
et al. 
(2022)

CBIS-
DDSM

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

Yes No –

Li et al. 
(2021b)

DDSM Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

No Yes – 0.91

Mo-
ham-
med 
et al. 
(2017b)

Clinical 
Dataset

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

No Yes 82.5 0.95

Duffy 
et al. 
(2018)

Clinical 
Dataset

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

Yes Yes 99-MLO
96-CC

–

Shi 
et al. 
(2019)

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

Yes Yes 94.6

Nithya 
and 
Santhi 
(2021) 
(2021)

MIAS 
Dataset

Breast 
density 
classifica-
tion

CNN from 
scratch

2 Class 
dense and 
non-dense

Yes Yes 98.5 –

1 3

240  Page 20 of 44



Recent trends on mammogram breast density analysis using deep…

and MLO views were significant in improving the accuracy of breast density classification 
problems. Overall, this model was 88.7% accurate.

Yi developed a model using ResNet 50. This model developed to analyse breast den-
sity, determine breast laterality and classify two-dimensional mammographic image. Totally 
3034 two dimensional mammographic images used as a training data obtained from the 
DDSM database. AUC obtained before augmentation was 0.75. The data augmentation 
technique eventually raising the AUC to 0.93. In addition, it is possible to use DCNN to 
automatic semantic labelling of 2D mammograms, and this can be done even with relatively 
limited dataset. However, automated breast density classification is more complex and thus 
required large dataset (Yi et al. 2019).

Lehman conducted a study and investigated the clinical implementation of deep learn-
ing model for evaluating breast density among patients who were undergoing screening 
digital mammography. Furthermore, the methodology of deep learning can be employed to 
asses’ breast density, without imposing limitations based on previous surgical interventions 
or other breast related procedures. Moreover, DL has the ability to address issues with the 
present regulations and assist physicians in order to give accurate information and optimal 
utilization of additional screening resources (Lehman et al. 2019).

Zhao introduced a novel approach called the Bilateral View Adaptive Spatial and Chan-
nel Attention Network (BASCNET) which utilises ResNet-50 as the underlying architec-
ture. The primary objective of this network is to achieve fully automated breast density 
classification. By incorporating data from both the left and right breast it dynamically 
captures distinctive features in terms of spatial and channel dimensions. The DDSM and 
INBREAST datasets were used for the training and validation process. The achieved accu-
racy was 85.10% and 90.5% (Zhao et al. 2021).

Gandomkar examined the breast density classification into various categories such as 
fatty or dense based on BIRADS categorization. A network architecture known as incep-
tion V3 was utilised to train a dataset consisting of 3813 images sourced from nine distinct 
mammography devices and three different vendors. A segmentation process was employed 
to isolate breast tissue from the background and pectoral muscle in the MLO view. The 
bounding box of the breast was utilised for the purpose of cropping and resizing the input 
image of the network. The aforementioned technique had a Cohen’s Kappa coefficient of 
0.775 and an accuracy rate of 83.33 percent (Gandomkar et al. 2019).

Wu proposed a methodology for classifying breast density by grouping breast tissue into 
two categories dense and non-dense. The three-layer CNN utilised all four perspectives of 
the mammogram as its input. The findings indicated that the super classes achieved an accu-
racy rate of 82.5%. Additionally, the four-class density classification demonstrated a macro 
average AUC of 0.934. Specifically, class-0 achieved an AUC of 0.971, class-1 achieved an 
AUC of 0.859, AUC of 0.905 in class-2 and AUC 1 in class-3.

Kate proposed technique to examined breast tissue density classification using VGG 16 
and Inception V3 model. Further, image pre-processing technique was used to extract the 
foreground image as well as to improve the image quality by reducing noise appear in that 
image. The Inception V3 model obtained 97.98% and VGG 16 got 91.92% using DDSM 
dataset (Kate and Shukla 2022).

Ma created multi path DCNN to classify digital mammography image into one of four 
BIRADS category. Around 2068 mammogram instances were used for the breast density 
based on BIRADS and obtained the accuracy of 80% for the dense category and 89% for 
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the non-dense category. Xue modelled breast density assessment as a machine intelligence 
problem that automatically extracts features of image and dynamically improves density 
classification accuracy in clinical environments. Variety of deep learning networks are 
investigated in order to extract the image features automatically. Transfer learning is used 
to retain the pre-trained model that were already trained using clinical 2D digital mammog-
raphy images. As part of the human–machine gaming process, a comprehensive reinforce-
ment network is implemented. In this study, mammograms were pre-processed using CNN 
models (Xue et al. 2020).

Lin proposed the CNN incorporated with AlexNet, DenseNet, and ShuffleNet. In this 
study, breast density and breast mass such as benign and malignant were combined into a 
single model. This was done so that the researchers could identify the difference between 
breast density and the two forms of breast mass. A comparison was made between the pre 
and post-data augmentation accuracies of the three models. Before applying data augmenta-
tion techniques, the accuracy of AlexNet for both the training and testing sets was recorded 
as 40.47%. DenseNet achieved an accuracy of 90%, while ShuffleNet achieved an accuracy 
of 96.48%. Additionally, ShuffleNet’s accuracy was measured to be 38.57%. Following the 
application of data augmentation techniques, the training and testing accuracies of AlexNet 
were observed to be 99.35% and 95.46% respectively. Similarly, DenseNet exhibited accu-
racies of 99.91% and 97.84% for its respective sets (Lin et al. 2021).

Trivizakis employed the DenseNet model to categorise the three levels of breast density, 
resulting in an accuracy rate of 73.9%. In their study, Mohammed et al. were able to achieve 
an area under curve (AUC) value of 0.95 when employing an enhanced iteration of the 
AlexNet model for the purpose of classifying breast density (Trivizakis et al. 2019). Table 
8 Summarizes the previous work on mammogram breast density analysis with pretrained 
model.

Pretrained models are employed in the categorization of breast density to automati-
cally evaluate the density of breasts based on mammography images (Li et al. 2018). It is 
crucial to consider breast density since it significantly increases the risk of breast cancer. 

Table 8  Summary of work included in mammogram breast density with pretrained model
Author Database CNN Method Augmentation Cross 

Validation
Accuracy 
(%)

AUC

Li et al. (2018) INbreast 
and clinical 
database

ResNet50 Yes Yes 88.7 and 70 97.2

Lehman et al. (2019) INbreast ResNet-18 Yes No 95 94
Gandomkar et al. 
(2019)

INbreast Inception-V3 Yes Yes 63.9 82.1

Mohamed et al. 
(2017b)

INbreast AlexNet Yes Yes 59.6 82

Zhao et al. (2021) DDSM and 
INbreast

ResNet No – – –

Kate and Shukla 
(2022)

DDSM Inception-V3 
VGG16

Yes Yes 97.98
91.92

–

Rigaud et al. (2022) DDSM EfficientNetB0 No No –
Yi et al. (2019) DDSM ResNet50 No No 68 93
Busaleh et al. (2022) DDSM and 

INbreast
ResNet50 
DenseNet 
EfficientNetB0

Yes No 91.36
90.89
89.23

99.51
97.44
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Therefore, it is vital to accurately evaluate breast density in order to make well-informed 
decisions on screening and treatment. Historically, radiologists have traditionally evaluated 
breast density by visually inspecting mammography pictures. Nevertheless, this method 
is based on personal opinion and may need a significant amount of time (Yi et al. 2019). 
Pretrained models provide a more impartial and automated method for evaluating breast 
density. Figure 6 presents a comparison of the performance of various pretrained models on 
a task of classifying breast density (Lehman et al. 2019). The models under consideration 
for comparison encompass AlexNet, ResNet, Inception, EfficientNet, Vgg16, DenseNet, 
and MobileNet. In general, pretrained models have the capacity to fundamentally transform 
the method of evaluating breast density. nevertheless, it is crucial to confront the obstacles 
linked to this technology prior to its widespread implementation in clinical practice.

6.3  Breast density classification based on ensemble learning

The predictions from various neural network models are combined through ensemble learn-
ing to lower prediction variance and generalisation error. Ensemble learning techniques can 
be categorised into various learning algorithm or models and training data (Rigaud et al. 
2022). It integrates the data obtained from the several model to provide precise and effective 
decision. The ensemble strategies can be broken down into three distinct categories namely 
bagging, stacking, and boosting (Busaleh et al. 2022). Following are the few studies focused 
on classification of mammogram breast density based on ensemble techniques. Table 9 Out-
lines the work included in ensemble learning.

Kumar introduced and described a model for classification to predict breast density. The 
classification model has two-stage process. The first stage is made up of single four class 
classifier, while another stage is made up of an ensemble of six class classifiers. The study 
made use of 480 mammograms that were taken from the DDSM dataset. 90.80% accuracy 
has been attained for the categorization (Kumar et al. 2017). The deep learning system that 
detects breast density with noisy labels regularization was presented by Justaniah. Female 
participants of 1395 were taken from a multi-centre and assessed by three highly quali-
fied radiologists. These mammograms were classified according to BIRADS categories 
(Haque et al. 2018). The dataset was spliced into training data, validation data and testing 

Fig. 6  Quantitative performance 
analysis of pretrained models 
in breast density classification 
method
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data. Training data includes 892 mammograms, testing and validation includes 279 and 224 
respectively. The accuracy and kappa indices of the ensemble model that were found to be 
0.85 and 0.71 respectively (Justaniah et al. 2022).

Haque developed an automated system capable of analysing mammograms and effec-
tively differentiating breast density. This system utilises a two-dimensional discrete cosine 
transform (D-DCT) and a principal component analysis (PCA) extract a minimal feature 
set from the mammogram image (Azour and Boukerche 2022). The extracted features are 
subsequently utilised as input for three classifiers, namely, multi-layer perceptron (MLP), 
support vector machine (SVM), and K nearest neighbour (KNN). The combination of the 
output from multiple classifiers was subjected to a majority vote, resulting in a significantly 
high level of classification performance.

7  Summary on TL, CNN and ensemble models

Transfer learning can significantly reduce the amount of labelled data needed for training, 
as it leverages pre-trained models on large datasets. This approach can lead to faster model 
development and improved accuracy in breast cancer detection. Additionally, it allows for 
the adaptation of advanced neural network architectures fine-tuned for image recognition 
tasks. However, transfer learning may not always capture the specific nuances of medical 
imaging data, as pre-trained models are often based on general datasets that differ from 
mammograms. This can result in suboptimal performance if the source and target domains 

Table 9  Summary of work included in ensemble learning
Author Sub 

architecture
Ensemble 
learning 
approach

Database Purpose Augmentation Cross 
validation

Ac-
cu-
racy 
(%)

Class 
ob-
tained

Kumar 
et al. 
(2017)

Stage 1-Five 
Neural 
network stage 
2 6 Neural 
network

Model 
averaging

DDSM BIRADS 
Classifica-
tion

No No 90.2 Stage 
1:4 
Class
Stage 
2:2 
Class

Haque 
et al. 
(2018)

Multilayer 
perception 
(MLP) Sup-
port Vector 
Machine

Model 
averaging

MIAS BIRADS 
Classifica-
tion

No Yes 92.6 4 
Class

Justan-
iah 
et al. 
(2022)

VGG-19
ResNet
DenseNet 121 
Wide ResNet 
50 Efficient-
Net B1

Model 
averaging

ImageNet BIRADS 
Classifica-
tion

No Yes 84.6 4 
Class

Azour 
and 
Bouke-
rche 
(2022)

CNN
EfficientNet

Soft voting CBIS-
DDSM

Pathology 
Classifica-
tion

Yes Yes 96.5 2 
Class
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are not sufficiently similar. Moreover, there may be a reliance on potentially outdated or 
biased datasets, which could affect the accuracy and reliability of predictions.

Ensemble modelling can enhance breast cancer detection in mammogram images by 
combining the predictions of multiple models, which leads to more robust and accurate 
results. This approach mitigates the weaknesses of individual models by leveraging their 
diverse strengths, reducing the likelihood of false positives and negatives. Furthermore, 
ensemble methods can improve generalization, making the system more reliable across dif-
ferent patient populations and imaging conditions.

Implementing ensemble models in breast cancer detection can be computationally expen-
sive, requiring significant resources for training and maintaining multiple models. Addi-
tionally, combining predictions from multiple models can introduce complexity in model 
interpretation, making it harder for clinicians to understand and trust the results. Finally, the 
integration of ensemble models into existing clinical workflows may face resistance due to 
increased complexity and the need for specialized expertise.

7.1  Contemporary model

Over the past decade, a variety of deep-learning models have been proposed to improve 
model prediction. Several techniques can be integrated with deep learning models to 
improve performance, such as self-attention, transformer models, semi supervised learn-
ing, interpretable techniques, and uncertainty estimation. This section introduces some of 
the recently proposed pioneering breast cancer prediction models that have recently been 
proposed.

A novel Computer-Aided Diagnosis (CAD) framework leveraging Artificial Intelligence 
(AI) techniques has been developed to detect and classify breast cancer images (Al-Tam et 
al. 2024). The framework is meticulously structured into two pipelines (Stage 1 and Stage 
2) and was trained and evaluated using various multimodal ultrasound and mammogram 
datasets. The framework explores the potential of combining cutting-edge AI techniques 
and the ViT-based Resnet50 model to create an innovative CAD model for detecting and 
classifying breast cancer. Grad-CAM is used to visualize the model’s predictions for better 
understanding. Grad-CAM plays a crucial role in this framework by providing visual expla-
nations for the model’s predictions. It highlights the specific regions in the breast cancer 
images that the model focused on when making its classification, thereby offering insights 
into the decision-making process. This transparency helps radiologists verify the model’s 
accuracy and understand its reasoning, ultimately increasing trust in AI-assisted diagnoses.

A Yolo-based model for breast cancer detection was proposed (Prinzi et al. 2024). A 
gradient-free Eigen-CAM method is used to highlight all suspicious ROIs, including incor-
rect predictions, allowing us to integrate our model into a clinical decision support system. 
This enhancement allows clinicians to visualize which areas of the image the model focuses 
on when making predictions, thus providing insights into its decision-making process. By 
highlighting the regions of interest, Eigen-CAM helps in understanding the rationale behind 
both correct and incorrect predictions. This transparency increases trust and reliability in the 
model’s outputs, essential for its integration into clinical workflows.

A quantum spinal network is proposed to detect breast cancer using mammogram images 
(MG) (Sathish et al. 2024). The system is designed using a Deep Quantum Neural Network 
(DQNN) and SpinalNet, and it achieves 90.3% accuracy, 90.9% True Negative Rate (TNR), 
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and 90% True Positive Rate (TPR). An NLM filter is applied to mammogram images to 
detect breast cancer, Edge Attention-SegNet is applied to extract features, and Q-SpinalNet 
is introduced by incorporating DQNN and SpinalNet. Edge Attention-SegNet focuses on 
enhancing the key structural details in mammogram images by emphasizing the edges and 
contours, which are critical for accurate feature extraction. This allows for more precise 
detection of abnormalities by highlighting the relevant areas that could indicate the presence 
of cancer. By doing so, the model can better differentiate between benign and malignant 
tissues, improving the overall diagnostic accuracy. Using this model, we achieve maximum 
accuracy, TNR, and TPR values of 90.3%, 90.9%, and 90% respectively.

CNN-based mammogram image enhancement techniques have been proposed and 
shown promising results in improving breast cancer prediction accuracy (Singla et al. 2020). 
By leveraging convolutional neural networks, these methods can enhance critical features 
on mammograms, facilitating more reliable and early detection of cancerous tissues. This 
makes CNN-based approaches a valuable tool in the ongoing efforts to improve diagnostic 
outcomes in breast cancer screening.

The author proposes a hybrid model to improve representativeness in breast cancer 
detection (Kalpana and Selvy 2024). Transfer learning and probabilistic principal compo-
nent analysis are used for feature extraction and classification. The hyperparameters of these 
models are optimized using firefly binary grey optimization and metaheuristic moth flame 
lion, respectively. Metaheuristic optimization techniques, such as firefly binary grey opti-
mization and metaheuristic moth flame lion, help enhance model performance by efficiently 
searching for optimal hyperparameter settings. These techniques explore a wide solution 
space to identify configurations that improve accuracy and reduce error rates. By optimizing 
hyperparameters, the models can better capture complex patterns within the data, leading to 
more robust and reliable predictions.

Researcher (Chai et al. 2024) proposed an uncertainty-based interpretable deep neural 
network for breast cancer outcome prediction called Uncertainty-based Integrated Semisu-
pervised Net UISNet to overcome the interpretability challenge. An innovative multitask 
deep neural network called UISNet was proposed for predicting breast cancer outcomes. 
In addition to incorporating prior biological pathway knowledge, UISNet utilizes patient 
heterogeneity information to improve prediction. A model identified 20 genes as associated 
with breast cancer, of which 11 have been proven to be associated with breast cancer in 
previous studies.

The longitudinal trajectory of mammographic breast density is one method of under-
standing a woman’s breast cancer risk over time. Using data from a large Swedish mam-
mography cohort, (Illipse et al. 2023) fitted three joint models (cumulative, current value 
and slope, and current value association structures). Across all models, MD trajectory was 
associated with BC risk, but models with cumulative association structures and with current 
value and slope association structures performed better.

Mammographic breast density is well-established and cross-sectional international data 
suggest that it is a strong risk factor for breast cancer (Jiang et al. 2023). However, ret-
rospective data from Korea show that a change in density over time is associated with a 
change in breast cancer diagnosis risk. We hypothesized that there is a difference in the rate 
of change in breast density in women who develop breast cancer.

To predict breast cancer risk, authors (Karaman et al. 2024) proposed the Longitudi-
nal Mammogram Risk (LoMaR) model, which combines a transformer architecture with 
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convolutional feature extraction. Even using just the most recent mammogram, it achieves 
state-of-the-art prediction results. With the help of longitudinal mammograms, we extend 
a state-of-the-art machine-learning model to predict future breast cancer risks. The results 
of our study show that predicting future breast cancer risk with longer histories is more 
accurate.

7.2  Interpretable models

Interpretability is crucial because it allows clinicians to understand the reasoning behind 
a model’s predictions, which can enhance trust in its recommendations. This transparency 
is essential for making informed decisions about patient care and for identifying potential 
errors or biases in the model. Additionally, interpretable models can facilitate better com-
munication between healthcare professionals and patients, improving overall treatment out-
comes. Techniques such as feature visualization, SHAP values, and LIME can be employed 
to enhance the interpretability of these models. Additionally, integrating attention mecha-
nisms and providing clear visual explanations can help clinicians understand the model’s 
decision-making process. Regular consultations with domain experts can further refine 
these interpretability methods to align with clinical needs. Achieving model interpretability 
in these contexts presents several challenges, including the complexity of deep learning 
models, which often function as "black boxes." Furthermore, the need to balance accuracy 
with interpretability can limit the model’s performance, as more interpretable models may 
sacrifice precision. Additionally, ensuring that the interpretability methods are clinically 
relevant and understandable to medical professionals adds another layer of complexity.

A hybrid explainable deep model for cardiac prediction is proposed by Wani et al. 2024a, 
which uses CNN and the Light Gradient Boosting method to effectively learn representa-
tional features. The integration process involves initially employing the CNN to extract 
high-level features from the cardiac data. These features are then fed into the Light Gradient 
Boosting framework, which refines the model’s predictions by leveraging its efficient gradi-
ent-based optimization. This combined approach enhances the model’s accuracy and inter-
pretability, leading to improved prediction performance in cardiac analysis. The model uses 
one of the most widely used XAI techniques, SHAP, to provide comprehensive and detailed 
explanations. SHAP scores are computed by calculating the contribution of each feature to 
the prediction made by the model. This is done by considering all possible combinations 
of features and using Shapley values from cooperative game theory to fairly distribute the 
prediction among the features. The result is a clear and interpretable insight into how each 
feature influences the model’s output. The explanations are provided in the form of several 
graphs, which will assist medical practitioners in improving their diagnostic abilities. A 
similar explainable hybrid framework is proposed using CNN and XGBoost for lung cancer 
detection (Wani et al. 2024b). One of the main advantages of using SHAP scores is that they 
provide a consistent and unified measure of feature importance, which helps in understand-
ing the model’s decision-making process. Additionally, SHAP scores enhance transparency 
and trust in machine learning models by making complex models interpretable to stakehold-
ers who may not have technical expertise. Furthermore, they allow for the identification of 
potential biases or errors in the model, leading to more robust and fair predictions.

In response to the rapid expansion of the Internet of Medical Things (IoMT) and the 
increasing prevalence of automation, end-users have become increasingly apprehensive 
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about their trust. In (Wani et al. 2024d), author reviewed different explainable AI Artificial 
Intelligence (AI) frameworks that explain the Internet of Medical Things have emerged as 
essential tools for addressing trust concerns. A similar hybrid model using CNN and Light 
Gradient Boosting is proposed for breast cancer prediction (Yan et al. 2024). Model predict-
ability is improved by these enhanced representational features. SHAP scores are used to 
understand model prediction and feature importance in model output.

An interpretable AI system (Yan et al. 2024) that provides an overall cancer risk assess-
ment from multimodal US images could enhance patient outcomes and reduce unnecessary 
biopsies. Deep learning frameworks have previously been used in medical imaging, and 
their superiority over hand-crafted features has been demonstrated. However, deep learn-
ing’s black-box nature has made it difficult to build trust among human experts. As part of 
the work, the author proposes the use of multimodal US images to generate an interpretable 
AI system based on domain knowledge.

An interpretable AI system using multimodal ultrasound images is presented for breast 
cancer classification (Klanecek et al. 2024). A domain-based interpretable AI system that 
predicts cancer risk from multimodal US images could improve patients’ outcomes. Despite 
their superiority over hand-crafted features, deep learning frameworks lack the trust of 
human experts due to their black-box nature. This understandable MUP-Net was compa-
rable to popular black-box models and outperformed junior radiologists while remaining 
competitive with senior radiologists. In the case of inaccurate malignant probabilities, 
explainable features can help readers stay on course. A domain expert supervises the AI 
learning process, making sure that output features are explainable. As part of clinical prac-
tice, learned contribution scores are calculated.

A unique methodological approach was proposed to determine how early the BCR model 
can identify morphological changes associated with oncogenic processes (Yan et al. 2024). 
Different attribution methods such as Class Activation Map (CAM), Grad-CAM, Integrated 
Gradients, Guided backpropagation, and Input x Gradients are used to visualize tumor 
region growth. Results showed that the model relies more on the signal from the breast 
with cancer in patients where breast cancer is already screen-detected, but less on the breast 
without cancer.

7.3  Model hyperparameter optimizations

Proper hyperparameter optimization can significantly improve the performance and accu-
racy of a learning model. It ensures that the model is well-tuned to the specific dataset, 
leading to better generalization and reduced overfitting. Additionally, it can also enhance the 
model’s efficiency by reducing training time and resource consumption. Common methods 
for hyperparameter optimization include grid search, random search, and Bayesian optimi-
zation (Eid and Abualigah 2024). Grid search involves exhaustive searching over a specified 
parameter grid, while random search randomly samples from the parameter space. Bayesian 
optimization uses probabilistic models to predict which hyperparameters are likely to lead 
to better performance, allowing for more efficient exploration. Metaheuristic algorithms, 
such as genetic algorithms and particle swarm optimization, are also employed for hyperpa-
rameter optimization. These algorithms mimic natural processes, like evolution and swarm 
behavior, to efficiently explore the hyperparameter space (Yassen et al. 2024). They are par-
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ticularly useful in navigating complex, high-dimensional spaces where traditional methods 
may be less effective.

In breast cancer detection, bio-inspired deep model hyperparameter optimization can 
play a crucial role in enhancing diagnostic accuracy. Techniques such as genetic algorithms 
can be used to fine-tune deep learning models, ensuring that they are optimized for the intri-
cate patterns in medical imaging data (Wani et al. 2024c). This approach not only improves 
the detection rates but also reduces false positives, leading to more reliable and early diag-
nosis of breast cancer. Despite its benefits, hyperparameter optimization faces several chal-
lenges. The search space can be vast and complex, making it computationally expensive 
and time-consuming to explore thoroughly. Additionally, the optimal hyperparameters can 
vary significantly between different datasets and models, requiring a tailored approach for 
each scenario. Moreover, there is often a trade-off between the depth of exploration and the 
available computational resources, which can limit the effectiveness of the optimization 
process (Wani et al. 2024c).

8  Data set and performance evaluation

In this section, the resources or data sources as well as the evaluation measures to measure 
the performance of the model, that research scientist employ in the process of generating 
and reviewing the studies that are being examined are described.

8.1  Mammogram dataset

Mammography datasets are increasingly needed by researchers to create diagnostic system 
to design, test and evaluate automatic breast cancer in (CAD) Computer Aided Detection 
System. Few mammography datasets are publicly available that can be use by the research-
ers in the creation of breast cancer prediction tools, whereas some of the mammogram 
databases are private. Despite the fact, that there have been some recent studies at mam-
mography classification, employing confidential mammogram records has been a common 
approach. To provide enhanced insights for researchers lacking access to proprietary data-
sets, we choose to concentrate on the datasets that are available for the public (Thiagarajan 
and Ganesan 2012).

8.1.1  Mammographic Image Analysis Society

One of the earliest and oldest databases is MIAS database. It is confidential dataset com-
piled by the research organization in the U.K. There are a total of 161 samples and 322 
images included, including those of benign, malignant and normal mammogram. Annota-
tion images in the form of circles surrounding the ROI are included in the dataset (Alsolami 
et al. 2021).

8.1.2  Digital Database for Screening Mammography (DDSM)

The Institution referred to as the University of South Florida established DDSM dataset 
which was publicly released in 1999. The dataset comprises mammography images accom-
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panied by pertinent information, including the patient’s age, mammogram screening date, 
the nature of the anomaly detected, and the breast density. The dataset containing the highest 
number of mammograms which consist of 2620 instances, with each instance comprising 
four distinct views. The cases have been systematically categorized into 43 volumes, each 
volume containing images that are classified as normal, malignant or benign (Hath 2018).

8.1.3  Curated Breast Imaging Subset of DDSM (CBIS-DDSM)

The DDSM dataset has undergone recent updates, resulting in the inclusion of numerous 
updated images. The revised iteration of the Digital Database for Screening Mammography 
(DDSM) dataset is referred as the curated Breast Imaging Subset of the Digital Databse 
for Screening mammography (CBIS DDSM) dataset. The primary aim of this dataset is 
to improve the classification results in order to address the health-related issues. Region 
of Interest (ROI) annotation is updated by the CBIS-DDSM, which also assess segmenta-
tion and specialized approaches. The dataset is used to train and evaluate any breast cancer 
detection model, The dataset comprises over 1000 images which have been categorised into 
two distinct groups: calcification and mass (Tahmoush and Samet 2008).

8.1.4  INBreast

The breast research group released a publicly accessible mammography dataset, which is 
commonly referred to INBreast dataset and initially released to the public in 2010. The data-
set was acquired from the Breast Cancer Institute at porto Hospital of St john, encompassing 
all available sources. It included a total of115 cases that were formatted in DICOM, each of 
which contained 90 images in two different views (CC and MLO). According to BIRADS 
categorical, the images of dense mammogram, calcification and normal tissue were included 
in the INBreast dataset. It is no longer possible to locate the dataset (Moreira et al. 2012).

8.1.5  Breast Cancer Digital Repository (BCDR)

Breast cancer resource is currently being employed in the field of mammography classifica-
tion. The dataset comprises a total of 736 lesions obtained from 344 patients who have under-
gone biopsy and received positive result by the radiologist. The dataset including MLO and 
CC views, that has enabled lesion counter coordinate collection (Li and Nishikawa 2015).

8.1.6  Other datasets

There are many factors considered as the Risk factor of breast cancer. One among the risk 
factor associated with culture and society. Therefore, the provision of local and public mam-
mography datasets is imperative for facilitating global research efforts at the detection and 
classification of breast abnormalities in women. The Abdul Aziz University Breast Cancer 
Mammogram Dataset KAU-BCMD) was one of the first datasets to be established in Saudi 
Arabia. The dataset comprises a total of 1416 cases, each of which includes the information 
of the BIRADS category. the dataset consists of 5662 images, which includes two views 
of the breast. The MIRACLE dataset is another publicly available dataset that contain 204 
mammogram images from 196 cases or patients. The Magic 5 Italian dataset was compiled 
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and stored the information received from a wide variety of medical facilities. It contains 967 
cases altogether, depending on the type of pathology. The LLNL dataset has a total of 197 
images, both of which have been saved in the format known as Image Cytometry Standard 
format (ICS). Patient records and biopsy results are also included in the dataset. The IRAM 
dataset is a unique dataset that combines the contents of several other datasets (Becker 2005; 
Antoniou et al. 2009; Tangaro et al. 2008; Karssemeijer et al. 2012). Table 10 gives the 
concise overview of the dataset.

Breast cancer prediction mammogram datasets from different demographics affect the 
generalizability of the model because the data may not represent the entire population. This 
can lead to biased results and limit the model’s ability to predict breast cancer in diverse 
groups accurately. Therefore, it is essential to ensure that training datasets are diverse and 
inclusive. One approach is to perform subgroup analysis, which involves evaluating the 
model’s performance on different demographic groups separately. Another method is to 
use fairness metrics that assess how equitably the model performs across these groups. 
Additionally, cross-validation techniques can be employed to ensure the model’s robustness 

Table 10  Concise overview of the dataset
Dataset Year of 

Commence
Views Classifica-

tion Classes
Image 
Type

Image 
Format

No of 
Patients

Over-
all, 
Image

Description

DDSM 1999 4 Normal 
malignant 
and benign

SFM JPEG 2620 10,480 Non-
Standard 
compres-
sion files
Non-
Standard 
format

BCDR 2012 2 Malignant 
and benign

FFDM DICOM 736 736 Lesion 
location 
available
Different 
resolution 
image 
standard 
format

MIAS 2015 1 Normal and 
abnormal

SFM PGM 161 322 Low-
resolution 
image Only 
one view is 
available

INBreast 2017 2 Normal, 
malignant 
and benign

FFDM DICOM 419 419 Lim-
ited size 
standard 
format

CBIS-DDSM 2017 2 Mass and 
calcification

SFM DICOM 1566 10,239 The 
standard 
version 
of DDSM 
image 
pathology 
information

KAU-BCMD 2020 3 BI-RADS-5 
categories

SFM DICOM 1416 5662 Annotated 
images are 
available
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and accuracy across diverse populations. Another method to increase dataset diversity is to 
collect data from multiple geographical regions and include participants from various ethnic 
backgrounds. Additionally, collaborations with international research institutions can help 
acquire datasets that reflect different lifestyle factors and genetic predispositions. Imple-
menting these strategies will enhance breast cancer prediction models’ robustness and fair-
ness. However, implementing these strategies comes with challenges such as data privacy 
concerns, which can hinder data sharing across institutions and regions. Moreover, logisti-
cal and financial constraints may limit the ability to collect and integrate data from diverse 
populations. Additionally, ensuring that the datasets are representative of all demographics 
requires ongoing collaboration and coordination between researchers worldwide.

High-quality datasets are crucial for accurate model outcomes, as they ensure the data is 
representative and free from bias. Without this, the model’s predictions can be skewed and 
unreliable. Ensuring diverse and comprehensive data collection can significantly enhance 
the model’s ability to generalize across different populations.

8.2  Evaluation Criteria

The popularity and durability of standard works are contingent upon their quality, neces-
sitating the use of evaluation criteria such as accuracy, precision, recall, and F1 measure to 
gauge prospective results. Accuracy measure is a metric that quantifies the proportion of 
correctly categorized occurrences, specifically indicating the accuracy in identifying per-
sons with mass lesions and benign disease patients (Tajerian et al. 2021) with the use of a 
confusion matrix. The metric of sensitivity quantifies the accuracy of correctly identifying 
positive cases, specifically referring to the proportion of patients with cancerous pathology 
among those who have malignant abnormalities (Qin et al. 2022). The measure of specific-
ity pertains to the proper identification of individuals with abnormal mammograms (Dewan-
gan et al. 2022). The percentage of accurately classified positive predictions is shown by 
precision. The metric employed in the study emphasizes the influence of precision and recall 
on memory by using harmonic means (Bouzar-Benlabiod et al. 2023). The confusion matrix 
is a graphical representation that offers a complete evaluation of performance results in clas-
sification procedures, considering both actual and expected outcomes. (Rajpal et al. 2021). 
Cross-validation is a widely used data analysis approach that involves the resampling of 
data through the partitioning of the dataset into K folds. The process is then iterated K times 
to extract concealed information. (Singh and Singh 2022).

	
ACC = (TP + TN)

(Tp + TN + FP + FN)

	
Sn = (TP )

(TP + FN)

	
Sp = (TN)

(TN + FN)

	
Pr = (TP )

(TP + FP )
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F1-score = (2 × Precision × recall)

(Precision + recall)

True Positive (TP): Both the current and predicted classes exhibit positive characteristics. 
False Positive (FP): Misclassification arises when the observed class is positive, but the 
predicted class is negative. True Negative (TN): Both the desired class and the true class 
exhibit negative values. False Negative (FN): The imagined result is positive, and the final 
outcome is negative. Table 11 depicts the confusion matrix.

9  Discussion

Several concerns were identified during the surveys, which added to our progression to the 
closing remarks.

9.1  Effect of the dense breast on breast cancer

As the correlation between dense breast and breast cancer becomes more apparent. It is 
imperative that women should be aware of the connection between breast density and can-
cer. According to the study by Albeshan, breast density is the only significant risk factor 
linked to a diagnosis of breast cancer (Albeshan et al. 2019). Women who fall into BIRADS 
categories C and D showed a significant decrease in mammography sensitivity and a linear 
relationship was identified between mammography sensitivity and automated volumetric 
breast density. According to a recent review by Santiago, breast cancer prevention and early 
detection practices can benefit from an understanding of breast density (Santiago-Rivas et 
al. 2017). From Table 3 it is observed that mammogram density is a major risk, and it affects 
the sensitivity of mammograms leads to a false positive rate. Moreover, when employing 
a completely automated breast density measurement, it has been found that women who 
grouped under the category of extremely dense breast had a four times higher risk of devel-
oping cancer than other women.

9.2  Recent trends in breast density classification

In order to classify breast density, researchers using a deep learning architecture explored 
the CNN. Initially, CNN began to train the model from scratch, because of the time com-
plexity and the large amount of data required to process. The approach has progressed to 
transfer learning via the pre-trained model and ensemble model. Moreover, the use of tradi-
tional CNN has been reduced slowly in the past 5 years (Kamal et al. 2023). In Contrast, the 
usage of transfer learning along with a pre-trained model has elevated over the last 5 years 
for the task of mammogram breast density classification which is illustrated in Fig. 7.

Figure 8 depicts the researcher’s utilization of various models for the classification of 
breast density regularly. Over 60% of the existing research is dedicated to the exploration 

Predicted
Negative Positive

Actual Negative TP FP
Positive FP TP

Table 11  Confusion matrix 
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of transfer learning and its potential applications in addressing challenges related to mam-
mography density classification. Accordingly, Fig. 9 illustrates a significant proportion of 
researchers primarily focus on the detection of abnormalities, neglecting the analysis of 
mammogram density. In contrast, a notable proportion of researchers, specifically around 
9%, effectively used both mammogram density and breast cancer diagnosis in their studies 
(Arya and Saha 2022). Along with the pre-trained and CNN model, the most highly used 
dataset by the researchers for the estimation of mammograms is illustrated in Fig. 10 and 
this helps to improve the classification model performance. Figure 11 also depicts the com-
monly employed evaluation criteria for breast density classification.

Fig. 8  Comparing the popularity of objectivity among researchers

 

Fig. 7  Usage of CNN and TL 
over the years
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10  Challenges and research direction in mammogram breast density 
analysis

Deep learning models have demonstrated remarkable precision in predicting breast density 
from mammography images, thereby streamlining the data processing procedure. One of 
the primary obstacles and potential avenues for the advancement in the analysis of mam-
mography breast density relies on the models that predict breast cancer at the early stage.

Fig. 10  Distribution of dataset 

Fig. 9  Popularity in various techniques
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10.1  Major challenges in mammogram breast density classification

The deep learning model has numerous benefits in the realm of medical imaging. Moreover, 
their implementation by categorization of mammography images needs to cross out the 
obstacles mentioned below:

	– Early prediction of breast cancer the potentially reduces the patient’s risk thus increas-
ing the overall lifespan of the patients.

	– The mammography breast density measurement indicates its inadequacy in accuracy. 
identifying the presence of breast cancer (Gade et al. 2023).

	– Due to the masking effect of mammogram images false positive rate is increased.
	– Deep learning models used in the process of predicting breast cancer need to train the 

model with a greater number of mammographic images. But practically it is not feasible 
to collect the number of mammographic images.

	– The choice of selection of an appropriate deep learning model itself is vital because 
the selection demonstrates its significant improvements in predicting the accuracy and 
effectiveness of breast density analysis.

11  Research direction

This section highlights the potential possibilities for future research in the application that 
uses deep learning techniques for mammography breast density analysis.

	– The analysis and detection of mammogram breast density should be conducted prior 
to the identification of breast cancer, thus deploying multitasking techniques for breast 
cancer classification (Sehgal et al. 2022).

	– Utilization of advanced deep learning models may enhance classification accuracy by 
exploring concatenation or hybrid methodologies.

	– Cooperative and collaborative work between radiologists and scientists needs to be built 
for the investigation of multivariate hybrid data to carry out the subsequent analysis.

Fig. 11  Analysis of evaluation 
metrics
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	– Further, this survey paves directions for the deployment of an ensemble learning model 
with pre-trained model to classify breast density.

	– Furthermore, the need of a new technology or tool may help the patient to understand 
the analysis of the breast density in a much better way by offering better guidance to 
increase their survival rate (Priyadarshani and Singh 2023).

	– In addition, it is imperative that an early prediction of breast cancer incorporates mam-
mogram breast density as an initial stage. This approach has the potential to decrease the 
false prediction and improve overall classification accuracy.

12  Conclusion

This study provides a comprehensive assessment on the current trends and limitations in 
utilising deep learning models for the interpretation of mammography breast density. A 
comprehensive evaluation is conducted on the latest techniques and models, such as CNN, 
TL, EL, and other, to assess their effectiveness and constraints. In addition, this paper exam-
ines several data sources and evaluation metrics used in this field. The study identifies sig-
nificant research gaps and future objectives in the field of breast density classification and 
breast cancer detection. These areas include early prediction, model selection, and masking 
effect. Addressing these gaps is crucial to improve the accuracy, and reliability of breast 
density classification and breast cancer detection. This survey is expected to be a great 
resource and guide for scholars and practitioners who are interested in this important and 
promising field of research.
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