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ABSTRACT

Although deep learning has achieved satisfactory performance in computer vision, a large volume of im-
ages is required. However, collecting images is often expensive and challenging. Many image augmenta-
tion algorithms have been proposed to alleviate this issue. Understanding existing algorithms is, therefore,
essential for finding suitable and developing novel methods for a given task. In this study, we perform
a comprehensive survey of image augmentation for deep learning using a novel informative taxonomy.
To examine the basic objective of image augmentation, we introduce challenges in computer vision tasks
and vicinity distribution. The algorithms are then classified among three categories: model-free, model-
based, and optimizing policy-based. The model-free category employs the methods from image process-
ing, whereas the model-based approach leverages image generation models to synthesize images. In con-
trast, the optimizing policy-based approach aims to find an optimal combination of operations. Based
on this analysis, we believe that our survey enhances the understanding necessary for choosing suitable

Computer vision

methods and designing novel algorithms.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Over the recent years, deep learning has achieved significant
improvements in computer vision based on three key elements, ef-
ficient computing devices, powerful algorithms, and large volumes
of images. A main work over the last decade was designing a pow-
erful model with numerous trainable parameters'. The training of
such a model requires a large volume of images to achieve com-
petitive performance. However, collecting images is frequently an
expensive and challenging process. Obtaining satisfactory perfor-
mance with a limited dataset is particularly challenging in practical
applications, such as medical [1] and agricultural images [2].

To address this issue, image augmentation has been confirmed
to be an effective and efficient strategy [3,4]. As listed in Table 1,
many image augmentation methods have been utilized for image
classification and object detection. Understanding existing image
augmentation methods is, therefore, crucial in deploying suit-
able algorithms. Although similar surveys have been conducted

* Corresponding authors.
1 https://spectrum.ieee.org/andrew- ng-data-centric-ai

https://doi.org/10.1016/j.patcog.2023.109347

previously [5-7], our study is characterized by several essential
differences. First, we do not confine ourselves to a specific type
of image, such as facial images [8]. Likewise, we consider many
types of image augmentation algorithms, including generative
adversarial networks [9] and image mixing [10]. Third, we do
not focus on a specific application, such as object detection [5].
Conversely, we consider image classification and object detection
as two primary applications, along with other image and video
applications such as segmentation and tracking. Finally, unlike
two related studies [6,7], our survey encompasses more recent yet
effective image augmentation algorithms such as instance level
multiple image mixing, as well as a comprehensive analysis of
model-based methods. Consequently, this paper encompasses a
wider range of algorithms that yield a novel informative taxonomy.

Specifically, we first explain why different image augmentation
algorithms have been designed and leveraged across diverse appli-
cations. More specifically, challenges in computer vision and vicin-
ity distribution are introduced to illustrate the necessity of image
augmentation. By augmenting image data, the aforementioned
challenges can be mitigated, and the vicinity distribution space can
be dilated, thereby improving the trained model’s generalizability.
Based on this analysis, we argue that novel image augmentation
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Table 1
Image augmentation algorithms used studies pertaining to image classification (up)
and object detection (bottom).

Paper Image augmentation method

AlexNet [11] Translate, Flip, Intensity Changing

ResNet [12] Crop, Flip

DenseNet [13] Flip, Crop, Translate

MobileNet [14] Crop, Elastic distortion

NasNet [15] Cutout, Crop, Flip

ResNeSt [16] AutoAugment, Mixup, Crop

DeiT [17] AutoAugmentat, RandAugment, Random Erasing,
Mixup, CutMix

Swin Transformer [18] RandAugment, Mixup, CutMix, Random Erasing

Faster R-CNN [19] Flip

YOLO [20] Scale, Translate, Color space

SSD [21] Crop, Resize, Flip, Color Space, Distortion

YOLOv4 [22] Mosaic, Distortion, Scale, Color space, Crop, Flip,

Rotate, Random erase, Cutout, Hide-and-Seek,
GridMask, Mixup, CutMix, StyleGAN

methods are promising when new challenges are recognized.
Simultaneously, once a challenge is observed in an application, it
can be mitigated using an appropriate augmentation method.

In summary, our study makes the following contributions.

o We examine challenges and vicinity distribution to demonstrate
the necessity of image augmentation for deep learning.

e We present a comprehensive survey on image augmentation
with a novel informative taxonomy that encompasses a wider
range of algorithms.

o We discuss the current situation and future direction for image
augmentation, along with three relevant topics: understanding
image augmentation, new strategy to leverage image augmen-
tation, and feature augmentation.

The remainder of this paper is organized as follows. The second
section introduces the research taxonomy. We then present two
basic inspirations of image augmentation in the third section: the
challenges of computer vision tasks and the vicinity distribution.
Model-free image augmentation is covered in the fourth section,
whereas the model-based methods are discussed in the fifth sec-
tion. The process of determining an optimal image augmentation
is introduced in the sixth section, followed by a discussion section.
Concluding remarks are presented in the final section.

2. Taxonomy

As shown in Table 2, we classify the image augmentation algo-
rithms among three main categories. A model-free approach does

Table 2
Taxonomy with relevant methods.
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Fig. 1. Example of image variations from Class CS231n.

not utilize a pre-trained model to perform image augmentation,
and may use single or multiple images. Conversely, model-based
algorithms require the image augmentation algorithms to gener-
ate images using trained models. The augmentation process may
be unconditional, label-conditional, or image-conditional. Finally,
optimizing policy-based algorithms determine the optimal oper-
ations with suitable parameters from a large parameter space.
These algorithms can further be sub-categorized into reinforce-
ment learning-based and adversarial learning-based methods. The
former leverages a massive search space consisting of diverse op-
erations and their magnitudes, along with an agent to find the
optimal policy within the search space. In contrast, adversarial
learning-based methods locate algorithms with the corresponding
magnitude to allow the task model to have a sufficiently large
loss.

3. Motivation to perform image augmentation
3.1. Challenges
Table 3 describes the four types of challenges faced in computer

vision tasks. The first challenge is image variation, resulting from
effects such as illumination and deformation. Fig. 1 illustrates im-

Categories

Relevant methods

Geometrical transformation
Color image processing
Intensity transformation

Model-free Single-image

Multiple-image Non-instance-level

Instance-level
Model-based Unconditional
Label-conditional
Image-conditional Label-preserving
Label-changing

Optimizing
policy-based

Reinforcement learning-based

Adversarial learning-based

translation, rotation, flip, scale, elastic distortion.

jittering.

blurring and adding noise, Hide-and-Seek [23], Cutout [24], Random Erasing [25],
GridMask [26].

SamplePairing [27], Mixup [28], BC Learning [29], CutMix [30], Mosaic [22],
AugMix [31], PuzzleMix [32], Co-Mixup [33], SuperMix [34], GridMix [35].

CutPas [36], Scale and Blend [37], Context DA [38], Simple CutPas [39], Continuous
CutPas [40].

DCGAN [41], [42-44]

BDA [45], ImbCGAN [46], BAGAN [47], DAGAN [48], MFC-GAN [49], IDA-GAN [50].
S+U Learning [51], AugGAN [52], Plant-CGAN [53], StyleAug [54], Shape bias [55].
EmoGAN [56], §-encoder [57], Debiased NN [58], StyleMix [59], GAN-MBD [60],
SCIT [2].

AutoAugment [61], Fast AA [62], PBA [63], Faster AA [64], RandAugment [65],
MADAO [66], LDA [67], LSSP [68].

ADA [69], CDST-DA [70], AdaTransform [71], Adversarial AA [72], IF-DA [73], SPA
[74].
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Challenges in computer vision tasks from the perspectives of datasets and deep learning models.

Challenges Descriptions

Strategies and related studies

Images variations The following basic variations exist in many datasets
and applications, including illumination, deformation,
occlusion, background, viewpoint, and multiscale, as

shown in Fig. 1.

Number of images vary between classes or some

classes have only few images.

Class imbalance
and few images

Domain shift Training and testing datasets represent different
domains, commonly referring to styles.

Larger models with many learnable parameters tend to
remember specific data points, which may result in

overfitting.

Data remembering

Geometrical transformation and color image processing improve the majority
of the variations. Occlusion: Hide-and-Seek [23], Cutout [24], Random Erasing
[25], GridMask [26]. Background or context: CutMix [30], Mosaic [22], CutPas
[36]. Multiscale: Scale and Blend [37], Simple CutPas [39].

Reusing instance from minority class is one strategy by instance-level
operation, Simple Copy-Paste [39]. Most studies attempt to generate images for
the minority class: ImbCGAN [46], DAGAN [48], MFC-GAN [49], EmoGAN [56],
§-encoder [57], GAN-MBD [60], SCIT [2].

Changing styles for existing images is a main strategy, including S+U Learning
[51], StyleAug [54], Shape bias [55], Debiased NN [58], StyleMix [59].

The mechanism is increasing dataset size within or between vicinity
distributions. Within version assumes label-preserving while between version
changes labels, such as Mixup [28], AugMix [31], Co-Mixup [33].

age variations?. Class imbalance is another challenge, wherein dif-
ferent objects are observed with different frequencies. In medical
imaging, abnormal cases often occur with a low probability, which
is further exacerbated by privacy. When trained with an imbal-
anced dataset, a model assigns a higher probability to the normal
case. Besides, class imbalance becomes few images from multiple
classes to one class. Furthermore, domain shift represents a chal-
lenge where the training and testing datasets exhibit different dis-
tributions. This is exemplified by the night and day domains in the
context of automatic driving. Because it is more convenient to col-
lect images during the daytime, we may desire to train our model
with a daytime dataset but evaluate it at nighttime.

A new challenge introduced by deep learning is data remember-
ing. In general, a larger set of learnable parameters requires more
data for training, which is referred to as structural risk [75]. With
an increase in parameters, a deep learning model may remember
specific data points with an insufficient number of training images,
which introduces a generalizability problem in the form of overfit-
ting [76].

Fortunately, image augmentation methods can mitigate these
challenges and improve model generalizability by increasing the
number and variance of images in the training dataset. To utilize
an image augmentation algorithm efficiently, it is crucial to un-
derstand the challenges of application and apply suitable methods.
This study was conducted to provide a survey that enhances the
understanding of a wide range of image augmentation algorithms.

3.2. Vicinity distribution

In a supervised learning paradigm, we expect to find a function
f e F that reflects the relationship between an input x and target
y in a joint distribution P(x,y). To learn f, a loss [ is defined to
reduce the discrepancy between the prediction f(x) and actual
target y for all examples in P(x,y). We can then optimize f by
minimizing | over P(x,y), which is known as the expected risk
[75] and can be formulated as R(f) = [ I(f(x),y)dP(x,y). However,
P(x,y) is unknown in most applications [77]. Alternatively, we
may use the empirical distribution P.(x,y) to approximate P(x,y).
In this case, the observed dataset D = (x;, ¥;)[; is considered to be
the empirical distribution, where (x;,y;) is in P.(x,y) for a given i:

l n
Po(x.y) == > 8((x=x.y =y, (1)
i=1
where §(x,y) is a Dirac mass function centered at point (x;,y;),
assuming that all masses in the probability distribution cluster

around a single point [78]. Another natural notion for approximat-
ing P(x,y) is the vicinity distribution P,(x,y), which replaces the

2 http://cs231n.stanford.edu/

Dirac mass function with an estimate of the density in the vicinity
of point (x;,y;) [79]:

n
Pt y) = 13 Bule =y =), 2)
i=1
where §, is the vicinity point set of (x;,y;) in D. The vicinity
distribution assumes that P(x,y) is smooth around any point
(xi,y1) [77]. In Py(x,y), models are less prone to memorizing
all data points, and thus tend to yield higher performance in the
testing process. One way to achieve vicinity distribution is to apply
image augmentation, by which an original data point (x;,y;) can
be moved within its vicinity. For example, the Gaussian vicinity
distribution is equivalent to the addition of Gaussian noise to an
image [79].

4. Model-free image augmentation

Image processing methods, such as geometric transformation
and pixel-level manipulation, can be leveraged for augmentation
purposes [6,7]. In this study, we refer to model-free image aug-
mentation as contrasting model-based image augmentation. The
model-free approach consists of single- and multi-image branches.
As suggested by the names, the former produces augmented im-
ages from a single image, whereas the latter generates output from
multiple images.

4.1. Single-image augmentation

From the vicinity distribution, single-image augmentation (SiA)
aims to fluctuate the data points in the training dataset and in-
crease distribution density. In general, SiA leverages traditional im-
age processing, which is simple to understand and execute. SiA
methods include geometric transformations, color image process-
ing, and intensity transformations. Geometric transformation tries
to modify the spatial relationship between pixels [80], including
affine transformation and elastic deformation, while color image
processing aims to vary the color of an input image. In contrast,
the last one is advocated to change parts of the images and has
recently received more attention.

4.1.1. Geometric transformation

Objects in naturally captured images can appear in many varia-
tions. Geometric transformations can be employed to increase this
variability. For instance, translation provides a way to augment ob-
jects’ position. Furthermore, an image can be rotated, changing the
perspectives of objects. The angle of rotation should be carefully
considered to ensure the preservation of appropriate labels. Like-
wise, a flip can be executed horizontally or vertically, according to
the characteristics of the training and testing datasets. For instance,
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Table 4
Studies focusing upon intensity transformations. Each study is highlighted with its corresponding figure if available.
Paper Year Highlight
Hide-and-Seek [23] 2017 Split an image into patches that are randomly blocked.
Cutout [24] 2017  Apply a fixed-size mask to a random location for each image.
Random Erasing [25] 2020  Randomly select a rectangular region and displace its pixels with random values. Fig. 3.
GridMask [26] 2020  Apply multiscale grid masks to an image to mimic occlusions. Fig. 4.

the Cityscapes [81] dataset can be augmented horizontally but not
vertically. In addition, objects can be magnified or shrunk via scal-
ing to mimic multiscale variation. Finally, elastic distortion can al-
ter the shape or posture of an object. Among these methods, flips
have been commonly utilized throughout many studies over the
last decade for various computer vision tasks, such as image clas-
sification [11-13], object detection [82,83], and image translation
[84,85]. Two factors must be considered when using these meth-
ods: the magnitude of the operation to preserve label identity and
variations in the dataset.

4.1.2. Color image processing

Unlike greyscale images, color images consist of three channels.
Color image processing for augmentation assumes that the train-
ing and testing dataset distributions fluctuate in terms of colors,
such as contrast. Although color image processing yields superior
performance, it is rarely used because the color variations between
the training and testing datasets are small. However, one interest-
ing point is the use of robust features for contrast learning [86] via
color image processing, which represents a case of task-agnostic
learning.

4.1.3. Intensity transformation

Unlike geometric transformations and color image processing,
intensity transformations entail changes at the pixel or patch lev-
els. Random noise, such as Gaussian noise, is one of the sim-
plest intensity transformation algorithms [75]. The classical meth-
ods leverage random noise independently at the pixel level; how-
ever, the patch level has recently exhibited significant improve-
ment for deep learning algorithms [23-26]. Studies pertaining to
intensity transformations are listed in Table 4. The underlying con-
cept is that the changes push the model to learn robust features
by avoiding trivial solutions [76].

Cutout [24] randomly masks the most significant area with a
finding mechanism to mimic occlusion. However, the most impor-
tant aspect is cost. Hide-and-Seek [23] directly blocks part of the
image with the objective of obscuring the most significant area
through many iterations of a random process, which is simple and
fast. Fig. 2 shows that images are divided into s x s patches, and
each patch is randomly blocked. One disadvantage is that the iden-
tical size of each patch yields the same level of occlusion. To ad-
dress this issue, Random Erasing [25] has been employed with
three random values: the size of the occluded area, height-to-
width ratio, and top-left corner of the area. Fig. 3 demonstrates
some examples of Random Erasing for three computer vision tasks.
Additionally, this method can be leveraged in image- and object-
aware conditions, thereby simplifying object detection.

GridMask aims to balance deleting and reservation, with the
objective of blocking certain important areas of an object while
preserving others to mimic real occlusion. To achieve this, Grid-
Mask uses a set of predefined masks, as opposed to a single mask
[23-25]. As illustrated in Fig. 4, the generated mask is obtained
from four values, denoting the width and height of every grid and
the vertical and horizontal distance of the neighboring grid mask.
By adjusting these four values, grid masks of different sizes and
heigh-width ratios can be obtained. Under these conditions, Grid-
Mask achieves a better balance between deleting and reservation,

Training image

CNN

Fig. 2. Hide-and-Seek [23] carries out image augmentation where one image is
split into several patches, and each patch is randomly blocked with a specified
probability.

and a preliminary experiment suggests that it has a lower chance
of producing failure cases than Cutout [24] and Hide-and-See [23].

4.2. Multiple-image augmentation

Multiple-image augmentation (MiA) algorithms are executed on
more than one image. These methods can further be categorized as
instance- and non-instance-level. Because one image may include
more than one instance, we can mask instances and use them in-
dependently. Unlike SiA, MiA requires algorithms to merge multi-
ple input instances.

4.2.1. Non-instance-level

In the context of MiA algorithms, the non-instance-level ap-
proach adopts and fuses the images. Studies pertaining to this con-
cept are listed in Table 5. One of the simplest methods is to com-
pute the average value of each pixel. In Pairing Samples [27], two
images are fused to produce an augmented image with a label
from one source image. This assumption is generalized in Mixup
[28], where the labels are also fused. Fig. 5 illustrates the dif-
ference between Pairing Samples and Mixup. Mathematically, ¥ =
Ax;j+ (1 —=A)x; and §=Ay;+ (1 —A)y;, where x; and x; are two
images, y; and y; are the corresponding one-hot labels, and ¥ and
¥y denote the generated image and label, respectively. By adjust-
ing 0 <X <1, many images with different labels can be created,
thereby smoothing out the gap between the two labels in the aug-
mented images. Although Pairing Samples and Mixup produce sat-
isfactory results, the fused images are not reasonable for humans.
Accordingly, these fused images have been declared to make sense
for machines from the perspective of a waveform [29]. In addition,
vicinity distribution can also be utilized to understand this situa-
tion. To be more specific, changing image variations yet maintain-
ing the label can be regarded a deviation in the vicinity distribu-
tion space of a specific label, whereas image fusion can be consid-
ered as an interpolation between the vicinity distribution of two
labels [28].

In contrast to BC Learning [29], CutMix [30] spatially merges
images to obtain results that are interpretable by humans. The last
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(a) Image classification

(b) Person re-ID

Image d o Random [

(c) Object detection

Fig. 3. Examples of Random Erasing [25].

Table 5
Studies related to multiple-image augmentation, divided into non-instance- (up) and instance-level (bottom).
Paper Year Highlight
SamplePairing [27] 2018 Combine two images with a single label.
Mixup [28] 2018 Linearly fuse images and their labels. Fig. 5.
BC Learning [29] 2018 Combine two images and their labels. Treat the image as a waveform, and declare that image mixing makes sense
for machines.
CutMix [30] 2019 Spatially fuse two images and linearly fuse the labels. Fig. 5.
Mosaic [22] 2020 Spatially mix four images and their annotations, thereby enriching the context for each class.
AugMix [31] 2020 One image undergoes several basic augmentations, and the results are fused with the original image.
PuzzleMix [32] 2020 Optimize a mask for fusing two images to utilize the salient information and underlying statistics.
Co-Mixup [33] 2021 Maximize the salient signal of input images and diversity among the augmented images.
SuperMix [34] 2021 Optimize a mask for fusing two images to exploit the salient region with the Newton iterative method, 65x faster
than gradient descent.
GridMix [35] 2021 Split two images into patches, spatially fuse the patches, and linearly merge the annotation.
Cut, Paste and Learn [36] 2017 Cut object instances and paste them onto random backgrounds. Fig. 6.
Scale and Blend [37] 2017 Cut and scale object instances, and blend them in meaningful locations.
Context DA [38] 2018 Combine object instances using context guidance to obtain meaningful images.
Simple Copy-Paste [39] 2021 Randomly paste object instances to images with large-scale jittering.
Continuous Copy-Paste [40] 2021 Deploy Cut, Paste and Learn to videos.

Fig. 4. GridMask [26] and its setting.

Pairing samples Mixup Cutout CutMix

Dog 1.0 Dog 0.5 Dog 1.0 Dog 0.6
Ccat0.5 Ccat0.4

Fig. 5. Comparison of non-instance-level multiple-image algorithms [30].

picture in Fig. 5 illustrates its strategy, wherein the merged image
consists of two source images spatially, and its label is obtained
from the ratio of certain pixels between two images. Although
multiple-image augmentation generally utilizes two images, more

images can be used. For example, Mosaic [22] employs four images
wherein the number of objects in one image is increased, thus sig-
nificantly reducing the need for a large mini-batch size for dense
prediction. AugMix [31] randomly applies basic multiple methods
of image augmentation, and the results are adopted to merge with
the original image.

Non-instance-level image augmentation has extensions similar
to those of intensity transformations. To account for the most im-
portant area, PuzzleMix [32] discriminates the foreground from
the background, and mixes important information within the fore-
ground. Further, salient areas from multiple input images are
maximized to synthesize each augmented image [33], simultane-
ously maximizing the diversity among the augmented images. To
quickly locate dominant regions, SuperMix [34| employs a variant
of the Newton iterative method. As in Hide-and-Seek [23], Grid-
Mix [35] divides images into fixed-size grids, and each patch of the
output image is randomly taken from the corresponding patches of
two input images. Through this analysis, we believe that GridMask
[87] can be adapted to fuse image pairs with changeable sizes.

4.2.2. Instance-level

Whereas the non-instance-level approach employs images di-
rectly, the instance-level approach leverages instances masked
from images. Related studies are listed in the second part of
Table 5. The instance-level approach comprises two main steps.
As shown in Fig. 6, the first step involves cutting instances
from source images given a semantic mask, and obtaining clean
background senses. Next, the obtained instances and background
are merged. Cut, Paste and Learn [36] is an early instance-level
method, wherein local artifacts are noticed after pasting instances
to the background. Because local region-based features are impor-
tant for object detection, various blending modes are employed to
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Studies relating to model-based image augmentation, label-conditional (top), label-preserving image-conditional (middle), and label-changing image-

conditional (bottom).

Paper Year Highlight
BDA [45] 2017 Use CGAN to generate images optimized by a Monte Carlo EM algorithm. Fig. 7.
ImbCGAN [46] 2018  Deploy CGAN as image augmentation for unbalanced classes.
BAGAN [47] 2018  Train an auto-encoder to initialize generator.
DAGAN [48] 2018 Image is taken as the class condition for generator and discriminator. Fig. 8.
MFC-GAN [49] 2019  Use multiple fake classes to obtain a fine-grained image for minority class.
IDA-GAN[50] 2021 Train a variational auto-encoder and CGAN simultaneously.
S + U Learning [51] 2017  Translate synthetic images from a graphic model to realistic images using CGAN.
AugGAN [52] 2018  Aim to semantically preserve object when changing its style.
Plant-CGAN [53] 2018  Translate semantic instance layout to real images using CGAN.
StyleAug [54] 2019  Change image style via style transfer.
Shape bias [55] 2019  Transfer image style from painted images to mitigate texture bias of CNN.
EmoGAN [56] 2018  Translate a neutral face with another emotion.
8-encoder [57] 2018  Image is taken as a class condition to generate images for new or infrequent class.
Debiased NN [58] 2021 Merge style and content via style transfer and appropriate labels. Fig. 10.
StyleMix [59] 2021 Merge two images with style, content, and labels. Fig. 11.
GAN-MBD [60] 2021  Translate an image from one class to another while preserving semantics via multi-branch discriminator. Fig. 9.
SCIT [2] 2022  Translate healthy leaves to abnormal one while retaining its style.

Cut 5.1. Unconditional image generation

Object Instances Background Scenes

[ Y

Paste

Generated Scenes (Training Data)

Learn
Detections on Real Images

Fig. 6. Cut, Paste and Learn in training and testing process [36].

reduce local artifacts. With the exception of boundaries, the in-
stance scale and position are not trivial, as objects may be multi-
scale and recognizable with the help of their contexts, as addressed
in [37].

Interestingly, instance-level image augmentation can mitigate
the challenges posed by class imbalance. By repurposing rare in-
stances, the number of images in the corresponding class increases.
Simple Copy-Paste [39] indicates that the instance level enables
strong image augmentation methods, for instance, segmentation.
While it is based on Copy, Paste and Learn, Simple Copy-Paste
differs in two characteristics. First, the background image is ran-
domly selected from the dataset, and subjected to random scale
jittering and horizontal flipping. Second, large-scale jittering is
leveraged to obtain more significant performance. The copy-paste
concept has also been utilized for time-series tasks [40] such as
tracking.

5. Model-based image augmentation

A model must be pre-trained in model-based image augmen-
tation to generate augmented images. The present study classi-
fies this process among three categories, according to the con-
ditions to generate images: unconditional, label-conditional, and
image-conditional. Table 6 provides information regarding appro-
priate studies.

An image synthesis model benefits image augmentation, which
enables it to produce new images. Theoretically, the distribution
of generated images is similar to that in the original dataset for
a generative adversarial network (GAN) model after training [88].
However, the generated images are not the same as the original
images and can be considered as points located in the vicinity dis-
tribution. In DCGAN [41], two random noises or latent vectors can
be interpolated to generate intermediate images, which can be re-
garded as fluctuations between two original data points. Generally,
a generative model with noise as input is deemed an uncondi-
tional model, and the corresponding image generation process is
considered unconditional image generation. If the datasets encom-
pass a single class, as in the case of medical images with one ab-
normal class [42], an unconditional image generation model can be
directly applied to perform augmentation. Furthermore, a specific
unconditional model can be leveraged for an individual class in the
presence of multiple classes [43,44].

5.2. Label-conditional image generation

Although unconditional image generation has potential, the
shared information of different classes cannot be utilized. In con-
trast, label-conditional image generation is expected to leverage
the shared information and learn variations for minority classes
using majority-class data. Label-conditional image generation re-
quires one specific label as an extra input, and the generated image
should align with the label condition.

The primary issue in label-conditional image generation is the
use of label conditions. CGAN [89] uses the label for a generator,
whereas the authenticator does not use the label. Consequently,
the generator tends to ignore label information, as the authen-
ticator cannot provide feedback regarding the condition. ACGAN
[90] introduces an auxiliary classifier in the discriminator, which
encourages the generator to produce images aligned with label
conditions. With a more complex classifier, BDA [45] separates the
classifier from the discriminator. Fig. 7 illustrates the differences
between BDA and other label-conditional algorithms. In addition,
MFC-GAN [49] adopts multiple fake classes in the classification loss
to stabilize the training.

One of the main applications of label-conditional image gen-
eration is the class imbalance [49,46,50]. The generative model is
expected to learn useful features from the majority class, and use
them to generate images for the minority classes. The generated
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Fig. 7. GAN and variants of label-conditional GANs [45]. G: generator, A: authenticator, C: classifier, D: discriminator.
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Fig. 8. Flowchart of DAGAN [48], where label information is obtained from an image via an encoder, rather than a label.

images are used to rebalance the original training dataset. How-
ever, it may be challenging to train a GAN model with an unbal-
anced dataset, as the majority class dominates the discriminator
loss and the generator tends to produce images within the ma-
jority class. To address this challenge, a pretrained autoencoder
with reconstruction loss has been employed to initialize a gener-
ator [47,50].

Although various discriminators and classifiers may be em-
ployed, the aforementioned algorithms utilize the class condition
on a one-hot label. One resulting limitation is that the trained
model can generate only known-class images. To overcome this
limitation, DAGAN [48] utilizes an image encoder to extract the
class, so that the generated image is assumed to have the same
class as the original image. Fig. 8 illustrates the DAGAN algorithm.

5.3. Image-conditional image generation

In image generation, images can be employed as conditions,
known as image translation. Generally, an image consists of con-
tent and style [91,92]. Content refers to class-dependent attributes,
such as dogs and cats, whereas style denotes class-independent el-
ements, such as color and illumination. Image-conditional image
generation can be subcategorized into two types: label-preserving
and label-changing. The former requires content to be retained,
whereas the latter requires content to be changed.

5.3.1. Label-preserving image generation

Label-preserving assumes that the label of a generated image
is the same as that of the input image. One active field to deploy
this approach is the domain shift, where the style of the source
domain is different from that of the target domain. To address
this challenge, original images can be translated from the source
domain to the target domain. To preserve the object during im-
age translation, AugGAN employs a segmentation module that ex-
tracts context-aware features to share parameters with a genera-
tor [52]. For practical applications, synthetic images generated by
a graphical model are translated into natural images [51], and the
leaf layout is translated as a real leaf image [53]. In addition, im-
age translation can be utilized for semantic segmentation with a
domain shift [93]. Furthermore, label-preserving can be leveraged
to improve the robustness of a trained model. Inspired by the ob-
servation that CNNs exhibit bias on texture toward shape, original
images are translated to have different textures, which allows the
CNN to allocate more attention to shape [55].

It is often challenging to obtain the desired style during the
image generation process. Most algorithms utilize an encoder to
extract style from an image, as in the case of DRIT++ [94]| and
SPADE [95]. This approach to perform image translation can be re-
garded as image fusion. In contrast, Jackson et al. [54] proposed
style augmentation, where the style is generated from a multivari-
ate normal distribution. Another challenge is that the one model
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Fig. 9. Semantic level matching by GAN-MBD [60] for label-changing image aug-
mentation, including position, number, and pose.
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Fig. 10. Label assignment for the biased and unbiased model with respect to shape
and texture [58].

can be adopted to generate images for multiple domains with fewer
trained images. To address this, MetalGAN leverages domain loss
and meta-learning strategies [96].

5.3.2. Label-changing image generation

In contrast to label-preserving, label-changing changes the
label-dependent. For example, a neutral face can be transformed
into a different emotion [56]. Although the generated images have
poor fidelity, the approach improves the classification of emotions.
In addition to changing label dependence, the preservation of label
independence has recently received attention as a way to improve
variability within the target class, thereby mitigating class imbal-
ance. To take variation from one to another class, a style loss is
leveraged to retain the style when translating an image [2]. Sim-
ilarly, a multi-branch discriminator with fewer channels is intro-
duced to achieve semantic consistency such as the number of ob-
jects [60]. Fig. 9 shows several satisfactory translated images. To
address severe class imbalance, a §-encoder has been proposed to
extract label-independent features from one label to another [57].
As in the case of DAGAN [48], class information is provided by an
image. The &-encoder and decoder aim to reconstruct the given
image in the training phase, whereas the decoder is provided a
new label image and required to generate the same label in the
testing phase.

Compared to label-preserving, label-changing yields more sig-
nificant improvements in model robustness by changing the label
and style simultaneously. As illustrated in Fig. 10, traditional image
augmentation does not change the label after altering the color of
the chimpanzee to that of a lemon, which incurs shape bias. By
contrast, when a texture-biased model is trained, the translated
image is labeled as a lemon. To balance the bias, the translated
image by style transfer is taken with two labels [58] - chimpanzee
and lemon - which eliminates bias. Inspired by Mixup [28], Hong
et al. developed StyleMix [59], which merges the two inputs to ob-
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Fig. 11. Examples of label assignment with different algorithms [59].

tain content and style labels, as shown in Fig. 11. These labels are
then fused to obtain the final label for the generated images.

6. Optimizing policy-based image augmentation

All algorithms mentioned in the previous two sections rep-
resent specific schemes, wherein domain knowledge is required
to achieve better performance. In general, individual operations
with the desired magnitude are utilized to perform image aug-
mentation for specific datasets according to their characteristics.
However, hyperparameter optimization is challenging and time-
consuming. One way to mitigate this is to design algorithms
that determine optimal augmentation strategies. These algorithms,
termed policy-based optimization, encompass two categories: re-
inforcement learning-based, and adversarial learning-based. The
former category employs reinforcement learning (RL) to deter-
mine the optimal strategy, whereas the latter category adopts aug-
mented operations and their magnitudes that generates a large
training loss and small validation loss. As generative adversarial
networks (GANs) can be utilized for both model-based and opti-
mizing policy-based image augmentation, the objective to adopt
GANs is the primary difference. Model-based category aims to di-
rectly generate images, instead of other goals such as finding opti-
mal transformations [69]. Studies pertaining to policy-based opti-
mization are listed in Table 7.

6.1. Reinforcement learning-based

AutoAugment [61] is a seminal approach that employs rein-
forcement learning. As shown in Fig. 12, iterative steps are used to
find the optimal policy. The controller samples a strategy from a
search space with the operation type and its corresponding proba-
bility and magnitude, and a task network subsequently obtains the
validation accuracy as feedback to update the controller. Because
the search space is very large, lighter child networks are lever-
aged. After training, the controller is used to train the original task
model and can be finetuned in other datasets.

Although AutoAugment achieves satisfactory classification per-
formance across several datasets, it requires a long training time.
To address this issue, several studies have been conducted from
different perspectives. For instance, RandAugment [65] replaces
several probabilities in AutoAugment with a uniform probabil-
ity. Conversely, Fast AA [62] and Faster AA [64] leverage density
matching, aligning the densities of the training and augmented
training datasets, instead of Proximal Policy Optimization [97], to
optimize the controller in AutoAugment. Furthermore, PBA [63] at-
tempts to learn a policy schedule from population-based training,
rather than a single policy.

Except for the long training phase, AutoAugment utilizes child
models, by which the learned policy may not be optimal for the fi-
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Table 7
Studies relating to optimizing policy of image augmentation. The upper and the bottom suggest reinforcement learning- and adversarial learning-based image augmentation.

Paper Year Highlight

AutoAugment [61] 2019 Use reinforcement learning to determine the optimal augmentation strategies. Fig. 12.

Fast AA [62] 2019 Use efficient density matching for augmentation policy search.

PBA [63] 2019 Adopt non-stationary augmentation policy schedules via population-based training.

Faster AA [64] 2019 Use a differentiable policy search pipeline via approximate gradients.

RandAugment [65] 2020 Reduce the search space of AutoAug via probability adjustment.

MADAO [66] 2020 Train task model and optimize the search space simultaneously by implicit gradient with Neumann series approximation.

LDA [67] 2020 Take policy search as a discrete optimization for object detection.

LSSP [68] 2021 Learn a sample-specific policy for sequential image augmentation.

ADA [69] 2016 Seek a small transformation that yields maximal classification loss on the transformed sample.

CDST-DA [70] 2017 Optimize a generative sequence using GAN in which the transformed image is pushed to be within the same class
distribution.

AdaTransform [71] 2019 Use a competitive task to obtain augmented images with a high task loss in the training stage, and a cooperative task to
obtain augmented images with a low task loss in the testing stage. Fig. 13.

Adversarial AA [72] 2020 Optimize a policy to increase task loss while allowing task model to minimize the loss.

IF-DA [73] 2020 Use influence function to predict how validation loss is affected by image augmentation, and minimize the approximated
validation loss.

SPA [74] 2021 Select suitable samples to perform image augmentation.

Sample a strategy S (operation
type, probability, and —
magnitude)

Train a child network
with strategy S to get
validation accuracy R

[The controller (RNN)|
'y

{ Use R to update the controller I—

Fig. 12. Overview of AutoAugment [61], a reinforcement learning-based image aug-
mentation method.

nal task model. To address this issue, Hataya et al. [66] trained the
target model and image augmentation policy simultaneously using
the same differentiable image augmentation pipeline in Faster AA.
In contrast, Adversarial AA [72] leverages adversarial loss simulta-
neously with reinforcement learning.

One limitation of the algorithms mentioned above is that the
learned image augmentation policy is at the dataset level. Con-
versely, class- and sample-level image augmentation methods were
considered in [98] and [68], respectively, wherein each class or
sample utilizes a specific policy. Furthermore, instance-level image
augmentation was considered in [67] for object detection, where
operations were performed only inside the bounding box.

6.2. Adversarial learning-based

The primary objective of image augmentation is to train a task
model with a training dataset to achieve sufficient generalizability
on a testing dataset. One assumption is that hard samples are more
useful, and the input images that cause a larger training loss are

T: Transformer

D: Discriminator @ N 2 ( ? £>

)
Reward/Penalty | ’09

/T\ Increase
U Variance
]

Competitive Task

i g Input Decrease
\ N i \TJ Variance

considered hard samples. Adversarial learning-based image aug-
mentation aims to learn an image augmentation policy to generate
hard samples based on the original training samples.

An early method [69] attempts to find a small transformation
that maximizes training loss on the augmented samples, wherein
learning optimization finds an optimal magnitude given an opera-
tion. One of the main limitations is the label-preserving assump-
tion that the augmented image retains the same label as the orig-
inal image. To meet this assumption, a common strategy is to de-
sign the type of operation and range of corresponding magnitude
using human knowledge. To weaken this assumption, Ratner et al.
[70] introduced generative adversarial loss to learn a transforma-
tion sequence in which the discriminator pushes the generated im-
ages to one of the original classes, instead of an unseen or null
class.

Interestingly, SPA [74] attempts to select suitable samples, and
image augmentation is leveraged only on those samples in which
the augmented image incurs a larger training loss than the orig-
inal image. Although SPA trains the image augmentation policy
and task model simultaneously at the sample level, the impact of
the learned policy in the validation dataset is unknown. To ad-
dress this challenge, an influence function was adopted for approx-
imating the change in validation loss without actually comparing
performance [73]. Another interesting concept is the use of im-
age augmentation in the testing stage. To achieve this, AdaTrans-
form [71] learns two tasks — competitive and cooperative - as il-
lustrated in Fig. 13. In a competitive task, the transformer learns to
increase the input variance by increasing the loss of the target net-
work, while the discriminator attempts to push the augmented im-
age realistically. Conversely, the transformer learns to decrease the
variance of the augmented image in the cooperative task by reduc-
ing the loss of the target network. After training, the transformer

Reward/Penalty

Fig. 13. Overview of AdaTransform [71]. AdaTransform encompasses two tasks - competitive training and cooperative testing - and three components: transformer T,
discriminator D, and target network N. The transformer increases the variance of training data by competing with both D and N. It also cooperates with N in the testing

phase to reduce data variance.
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is utilized to reduce the variance of the input image, thereby sim-
plifying the testing process.

7. Discussions

In this section, the usage of the mentioned strategies to per-
form image augmentation are first discussed. Several future direc-
tions are then illustrated. Furthermore, three related topics are dis-
cussed: understanding image augmentation from theory perspec-
tive, adopting image augmentation with other strategy, and aug-
menting features instead of images.

Current situation. Datasets are assumed to be essential to ob-
tain satisfactory performance. One way to generate an appropri-
ate dataset is through image augmentation algorithms, which have
demonstrated impressive results across multiple datasets and het-
erogeneous models. For instance, Mixup [28] increases the val-
idation accuracy in ImageNet-2012 by 1.5 and 1.2 percent with
ResNet-50 and ResNet-101. Non-trivially, GAN-MBD [60] achieves
84.28 classification accuracy with an unbalance dataset setting in
102Flowers, 33.11, 31.44, and 14.05 higher than non-image aug-
mentation, geometrical transformation, and focal loss, respectively.
Currently, model-free and optimizing policies are widely leveraged,
whereas the model-based approach is an active research topic for
specific challenges, such as class imbalance and domain adaptation.
In addition, although most algorithms are label-preserving, label-
changing algorithms have recently received attention.

Future direction. Although many image augmentation algo-
rithms exist, developing novel algorithms remains crucial to im-
prove the performance of deep learning. We argue that recognizing
new challenges or variations may inspire novel methods if they can
be mimicked using image augmentation. Further, most algorithms
of image augmentation are designed for classification and hence
extending them to other applications is one of the most applica-
ble directions by incorporating application-based knowledge, such
as time-series in video [40]. Another interesting direction is distin-
guishing specific applications from general computer vision tasks
such as ImageNet [99] and COCO [100] and then finding new mo-
tivations to design image augmentation. For example, most varia-
tions in plant healthy and diseased leaves are shared and thus can
be converted from one to another [2]. Finally, considering image
augmentation from a systematic perspective is appealing. For ex-
ample, the effects of image augmentation schedules on optimiza-
tion such as learning rate and batch size, are analyzed in [101].

Understanding image augmentation. This study was con-
ducted to understand the objectives of image augmentation in the
context of deep learning, from the perspectives of challenges and
vicinity distribution. Although it was also verified that image aug-
mentation is similar to regularization [79], most of the evidences
are empirically from experiments. Understanding them in theory is
therefore appealing. Recently, kernel theory [102] and group theory
[103] have been used to analyze the effects of image augmenta-
tion. In addition, the improvement yielded by image augmentation
in the context of model generalizability has been quantified using
affinity and diversity [104].

New strategy to leverage image augmentation. Although im-
age augmentation is commonly used in a supervised manner, this
must not necessarily be the case. First, a pretext task can be cre-
ated via image augmentation, such as predicting the degrees of ro-
tation [105] and relative positions of image patches [106]. Second,
image augmentation can be leveraged to generate positive samples
for contrast learning under the assumption that an augmented im-
age is similar to the corresponding original image [107-109]. Fur-
thermore, semi-supervised learning benefits from image augmen-
tation [79,110,111].

Feature augmentation attempts to perform augmentation in
feature space instead of image space in image augmentation, and
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thus reduces the computation cost but without visual evidences.
A feature space generally has dense information in semantic level
than an image space. Consequently, operation in feature space is
more efficient [112], such as domain knowledge [113]. Simultane-
ously, we believe that most of the techniques in image augmen-
tation can be extended to feature augmentation, such as Manifold
Mixup [114] from Mixup [28] and occluded feature [115].

8. Conclusion

This study surveyed a wide range of image augmentation al-
gorithms with a novel taxonomy encompassing three categories:
model-free, model-based, and optimizing policy-based. To under-
stand the objectives of image augmentation, we analyzed the chal-
lenges of deploying a deep learning model for computer vision
tasks, and adopted the concept of vicinity distribution. We found
that image augmentation significantly improves task performance,
and many algorithms have been designed for specific challenges,
such as intensity transformations for occlusion, and model-based
algorithms for class imbalance and domain shift. Based on this
analysis, we argue that novel methods can be inspired by new
challenges. Conversely, appropriate methods can be selected af-
ter recognizing the challenges posed by a dataset. Furthermore,
we discussed the current situation and possible directions of im-
age augmentation with three relevant interesting topics. We hope
that our study will provide an enhanced understanding of image
augmentation and encourage the community to prioritize dataset
characteristics.
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