
Pattern Recognition 137 (2023) 109347 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

A Comprehensive Survey of Image Augmentation Techniques for Deep 

Learning 

Mingle Xu 

a , Sook Yoon 

b , ∗, Alvaro Fuentes c , Dong Sun Park 

c , ∗

a Department of Electronics Engineering, Jeonbuk National University, Jeonbuk 54896, South Korea 
b Department of Computer Engineering, Mokpo National University, Jeonnam 58554, South Korea 
c Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonbuk 54896, South Korea 

a r t i c l e i n f o 

Article history: 

Received 28 April 2022 

Revised 22 November 2022 

Accepted 15 January 2023 

Available online 18 January 2023 

Keywords: 

Image augmentation 

Deep learning 

Image variation 

Vicinity distribution 

Data augmentation 

Computer vision 

a b s t r a c t 

Although deep learning has achieved satisfactory performance in computer vision, a large volume of im- 

ages is required. However, collecting images is often expensive and challenging. Many image augmenta- 

tion algorithms have been proposed to alleviate this issue. Understanding existing algorithms is, therefore, 

essential for finding suitable and developing novel methods for a given task. In this study, we perform 

a comprehensive survey of image augmentation for deep learning using a novel informative taxonomy. 

To examine the basic objective of image augmentation, we introduce challenges in computer vision tasks 

and vicinity distribution. The algorithms are then classified among three categories: model-free, model- 

based, and optimizing policy-based. The model-free category employs the methods from image process- 

ing, whereas the model-based approach leverages image generation models to synthesize images. In con- 

trast, the optimizing policy-based approach aims to find an optimal combination of operations. Based 

on this analysis, we believe that our survey enhances the understanding necessary for choosing suitable 

methods and designing novel algorithms. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Over the recent years, deep learning has achieved significant 

mprovements in computer vision based on three key elements, ef- 

cient computing devices, powerful algorithms, and large volumes 

f images. A main work over the last decade was designing a pow- 

rful model with numerous trainable parameters 1 . The training of 

uch a model requires a large volume of images to achieve com- 

etitive performance. However, collecting images is frequently an 

xpensive and challenging process. Obtaining satisfactory perfor- 

ance with a limited dataset is particularly challenging in practical 

pplications, such as medical [1] and agricultural images [2] . 

To address this issue, image augmentation has been confirmed 

o be an effective and efficient strategy [3,4] . As listed in Table 1 ,

any image augmentation methods have been utilized for image 

lassification and object detection. Understanding existing image 

ugmentation methods is, therefore, crucial in deploying suit- 

ble algorithms. Although similar surveys have been conducted 
∗ Corresponding authors. 
1 https://spectrum.ieee.org/andrew- ng- data- centric- ai 
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reviously [5–7] , our study is characterized by several essential 

ifferences. First, we do not confine ourselves to a specific type 

f image, such as facial images [8] . Likewise, we consider many 

ypes of image augmentation algorithms, including generative 

dversarial networks [9] and image mixing [10] . Third, we do 

ot focus on a specific application, such as object detection [5] . 

onversely, we consider image classification and object detection 

s two primary applications, along with other image and video 

pplications such as segmentation and tracking. Finally, unlike 

wo related studies [6,7] , our survey encompasses more recent yet 

ffective image augmentation algorithms such as instance level 

ultiple image mixing, as well as a comprehensive analysis of 

odel-based methods. Consequently, this paper encompasses a 

ider range of algorithms that yield a novel informative taxonomy. 

Specifically, we first explain why different image augmentation 

lgorithms have been designed and leveraged across diverse appli- 

ations. More specifically, challenges in computer vision and vicin- 

ty distribution are introduced to illustrate the necessity of image 

ugmentation. By augmenting image data, the aforementioned 

hallenges can be mitigated, and the vicinity distribution space can 

e dilated, thereby improving the trained model’s generalizability. 

ased on this analysis, we argue that novel image augmentation 
under the CC BY-NC-ND license 
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Table 1 

Image augmentation algorithms used studies pertaining to image classification (up) 

and object detection (bottom). 

Paper Image augmentation method 

AlexNet [11] Translate, Flip, Intensity Changing 

ResNet [12] Crop, Flip 

DenseNet [13] Flip, Crop, Translate 

MobileNet [14] Crop, Elastic distortion 

NasNet [15] Cutout, Crop, Flip 

ResNeSt [16] AutoAugment, Mixup, Crop 

DeiT [17] AutoAugmentat, RandAugment, Random Erasing, 

Mixup, CutMix 

Swin Transformer [18] RandAugment, Mixup, CutMix, Random Erasing 

Faster R-CNN [19] Flip 

YOLO [20] Scale, Translate, Color space 

SSD [21] Crop, Resize, Flip, Color Space, Distortion 

YOLOv4 [22] Mosaic, Distortion, Scale, Color space, Crop, Flip, 

Rotate, Random erase, Cutout, Hide-and-Seek, 

GridMask, Mixup, CutMix, StyleGAN 
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Fig. 1. Example of image variations from Class CS231n. 
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ethods are promising when new challenges are recognized. 

imultaneously, once a challenge is observed in an application, it 

an be mitigated using an appropriate augmentation method. 

In summary, our study makes the following contributions. 

• We examine challenges and vicinity distribution to demonstrate 

the necessity of image augmentation for deep learning. 
• We present a comprehensive survey on image augmentation 

with a novel informative taxonomy that encompasses a wider 

range of algorithms. 
• We discuss the current situation and future direction for image 

augmentation, along with three relevant topics: understanding 

image augmentation, new strategy to leverage image augmen- 

tation, and feature augmentation. 

The remainder of this paper is organized as follows. The second 

ection introduces the research taxonomy. We then present two 

asic inspirations of image augmentation in the third section: the 

hallenges of computer vision tasks and the vicinity distribution. 

odel-free image augmentation is covered in the fourth section, 

hereas the model-based methods are discussed in the fifth sec- 

ion. The process of determining an optimal image augmentation 

s introduced in the sixth section, followed by a discussion section. 

oncluding remarks are presented in the final section. 

. Taxonomy 

As shown in Table 2 , we classify the image augmentation algo- 

ithms among three main categories. A model-free approach does 
able 2 

axonomy with relevant methods. 

Categories Rele

Model-free Single-image Geometrical transformation tran

Color image processing jitte

Intensity transformation blur

Grid

Multiple-image Non-instance-level Sam

AugM

Instance-level CutP

CutP

Model-based Unconditional DCG

Label-conditional BDA

Image-conditional Label-preserving S + U

Label-changing Emo

SCIT

Optimizing 

policy-based 

Reinforcement learning-based Auto

MAD

Adversarial learning-based ADA

[74] 

2 
ot utilize a pre-trained model to perform image augmentation, 

nd may use single or multiple images. Conversely, model-based 

lgorithms require the image augmentation algorithms to gener- 

te images using trained models. The augmentation process may 

e unconditional, label-conditional, or image-conditional. Finally, 

ptimizing policy-based algorithms determine the optimal oper- 

tions with suitable parameters from a large parameter space. 

hese algorithms can further be sub-categorized into reinforce- 

ent learning-based and adversarial learning-based methods. The 

ormer leverages a massive search space consisting of diverse op- 

rations and their magnitudes, along with an agent to find the 

ptimal policy within the search space. In contrast, adversarial 

earning-based methods locate algorithms with the corresponding 

agnitude to allow the task model to have a sufficiently large 

oss. 

. Motivation to perform image augmentation 

.1. Challenges 

Table 3 describes the four types of challenges faced in computer 

ision tasks. The first challenge is image variation , resulting from 

ffects such as illumination and deformation. Fig. 1 illustrates im- 
vant methods 

slation, rotation, flip, scale, elastic distortion. 

ring. 

ring and adding noise, Hide-and-Seek [23] , Cutout [24] , Random Erasing [25] , 

Mask [26] . 

plePairing [27] , Mixup [28] , BC Learning [29] , CutMix [30] , Mosaic [22] , 

ix [31] , PuzzleMix [32] , Co-Mixup [33] , SuperMix [34] , GridMix [35] . 

as [36] , Scale and Blend [37] , Context DA [38] , Simple CutPas [39] , Continuous 

as [40] . 

AN [41] , [42–44] 

 [45] , ImbCGAN [46] , BAGAN [47] , DAGAN [48] , MFC-GAN [49] , IDA-GAN [50] . 

 Learning [51] , AugGAN [52] , Plant-CGAN [53] , StyleAug [54] , Shape bias [55] . 

GAN [56] , δ-encoder [57] , Debiased NN [58] , StyleMix [59] , GAN-MBD [60] , 

 [2] . 

Augment [61] , Fast AA [62] , PBA [63] , Faster AA [64] , RandAugment [65] , 

AO [66] , LDA [67] , LSSP [68] . 

 [69] , CDST-DA [70] , AdaTransform [71] , Adversarial AA [72] , IF-DA [73] , SPA 

. 
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Table 3 

Challenges in computer vision tasks from the perspectives of datasets and deep learning models. 

Challenges Descriptions Strategies and related studies 

Images variations The following basic variations exist in many datasets 

and applications, including illumination, deformation, 

occlusion, background, viewpoint, and multiscale, as 

shown in Fig. 1 . 

Geometrical transformation and color image processing improve the majority 

of the variations. Occlusion: Hide-and-Seek [23] , Cutout [24] , Random Erasing 

[25] , GridMask [26] . Background or context: CutMix [30] , Mosaic [22] , CutPas 

[36] . Multiscale: Scale and Blend [37] , Simple CutPas [39] . 

Class imbalance 

and few images 

Number of images vary between classes or some 

classes have only few images. 

Reusing instance from minority class is one strategy by instance-level 

operation, Simple Copy-Paste [39] . Most studies attempt to generate images for 

the minority class: ImbCGAN [46] , DAGAN [48] , MFC-GAN [49] , EmoGAN [56] , 

δ-encoder [57] , GAN-MBD [60] , SCIT [2] . 

Domain shift Training and testing datasets represent different 

domains, commonly referring to styles. 

Changing styles for existing images is a main strategy, including S + U Learning 

[51] , StyleAug [54] , Shape bias [55] , Debiased NN [58] , StyleMix [59] . 

Data remembering Larger models with many learnable parameters tend to 

remember specific data points, which may result in 

overfitting. 

The mechanism is increasing dataset size within or between vicinity 

distributions. Within version assumes label-preserving while between version 

changes labels, such as Mixup [28] , AugMix [31] , Co-Mixup [33] . 
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ge variations 2 . Class imbalance is another challenge, wherein dif- 

erent objects are observed with different frequencies. In medical 

maging, abnormal cases often occur with a low probability, which 

s further exacerbated by privacy. When trained with an imbal- 

nced dataset, a model assigns a higher probability to the normal 

ase. Besides, class imbalance becomes few images from multiple 

lasses to one class. Furthermore, domain shift represents a chal- 

enge where the training and testing datasets exhibit different dis- 

ributions. This is exemplified by the night and day domains in the 

ontext of automatic driving. Because it is more convenient to col- 

ect images during the daytime, we may desire to train our model 

ith a daytime dataset but evaluate it at nighttime. 

A new challenge introduced by deep learning is data remember- 

ng . In general, a larger set of learnable parameters requires more 

ata for training, which is referred to as structural risk [75] . With 

n increase in parameters, a deep learning model may remember 

pecific data points with an insufficient number of training images, 

hich introduces a generalizability problem in the form of overfit- 

ing [76] . 

Fortunately, image augmentation methods can mitigate these 

hallenges and improve model generalizability by increasing the 

umber and variance of images in the training dataset. To utilize 

n image augmentation algorithm efficiently, it is crucial to un- 

erstand the challenges of application and apply suitable methods. 

his study was conducted to provide a survey that enhances the 

nderstanding of a wide range of image augmentation algorithms. 

.2. Vicinity distribution 

In a supervised learning paradigm, we expect to find a function 

f ∈ F that reflects the relationship between an input x and target 

 in a joint distribution P (x, y ) . To learn f , a loss l is defined to

educe the discrepancy between the prediction f (x ) and actual 

arget y for all examples in P (x, y ) . We can then optimize f by

inimizing l over P (x, y ) , which is known as the expected risk

75] and can be formulated as R ( f ) = 

∫ 
l( f (x ) , y ) dP (x, y ) . However, 

 (x, y ) is unknown in most applications [77] . Alternatively, we 

ay use the empirical distribution P e (x, y ) to approximate P (x, y ) .

n this case, the observed dataset D = (x i , y i ) 
n 
i =1 is considered to be 

he empirical distribution, where (x i , y i ) is in P e (x, y ) for a given i : 

 e (x, y ) = 

1 

n 

n ∑ 

i =1 

δ((x = x i , y = y i )] , (1)

here δ(x, y ) is a Dirac mass function centered at point (x i , y i ) ,

ssuming that all masses in the probability distribution cluster 

round a single point [78] . Another natural notion for approximat- 

ng P (x, y ) is the vicinity distribution P v (x, y ) , which replaces the
2 http://cs231n.stanford.edu/ 

c

w

t

3

irac mass function with an estimate of the density in the vicinity 

f point (x i , y i ) [79] : 

 v (x, y ) = 

1 

n 

n ∑ 

i =1 

δv (x = x i , y = y i ) , (2)

here δv is the vicinity point set of (x i , y i ) in D. The vicinity

istribution assumes that P (x, y ) is smooth around any point 

x i , y i ) [77] . In P v (x, y ) , models are less prone to memorizing

ll data points, and thus tend to yield higher performance in the 

esting process. One way to achieve vicinity distribution is to apply 

mage augmentation, by which an original data point (x i , y i ) can 

e moved within its vicinity. For example, the Gaussian vicinity 

istribution is equivalent to the addition of Gaussian noise to an 

mage [79] . 

. Model-free image augmentation 

Image processing methods, such as geometric transformation 

nd pixel-level manipulation, can be leveraged for augmentation 

urposes [6,7] . In this study, we refer to model-free image aug- 

entation as contrasting model-based image augmentation. The 

odel-free approach consists of single- and multi-image branches. 

s suggested by the names, the former produces augmented im- 

ges from a single image, whereas the latter generates output from 

ultiple images. 

.1. Single-image augmentation 

From the vicinity distribution, single-image augmentation (SiA) 

ims to fluctuate the data points in the training dataset and in- 

rease distribution density. In general, SiA leverages traditional im- 

ge processing, which is simple to understand and execute. SiA 

ethods include geometric transformations, color image process- 

ng, and intensity transformations. Geometric transformation tries 

o modify the spatial relationship between pixels [80] , including 

ffine transformation and elastic deformation, while color image 

rocessing aims to vary the color of an input image. In contrast, 

he last one is advocated to change parts of the images and has 

ecently received more attention. 

.1.1. Geometric transformation 

Objects in naturally captured images can appear in many varia- 

ions. Geometric transformations can be employed to increase this 

ariability. For instance, translation provides a way to augment ob- 

ects’ position. Furthermore, an image can be rotated , changing the 

erspectives of objects. The angle of rotation should be carefully 

onsidered to ensure the preservation of appropriate labels. Like- 

ise, a flip can be executed horizontally or vertically, according to 

he characteristics of the training and testing datasets. For instance, 
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Table 4 

Studies focusing upon intensity transformations. Each study is highlighted with its corresponding figure if available. 

Paper Year Highlight 

Hide-and-Seek [23] 2017 Split an image into patches that are randomly blocked. 

Cutout [24] 2017 Apply a fixed-size mask to a random location for each image. 

Random Erasing [25] 2020 Randomly select a rectangular region and displace its pixels with random values. Fig. 3 . 

GridMask [26] 2020 Apply multiscale grid masks to an image to mimic occlusions. Fig. 4 . 

t

v

i

t

h

l

s

[

o

v

4

C

i

s

p

t

i

c

l

4

i

e

p

o

e

m

i

c

b

fi

t

i

t

f

e

t

d

t

w

s

A

a

o

p

M

[

f

t

B

h

M

Fig. 2. Hide-and-Seek [23] carries out image augmentation where one image is 

split into several patches, and each patch is randomly blocked with a specified 

probability. 
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he Cityscapes [81] dataset can be augmented horizontally but not 

ertically. In addition, objects can be magnified or shrunk via scal- 

ng to mimic multiscale variation. Finally, elastic distortion can al- 

er the shape or posture of an object. Among these methods, flips 

ave been commonly utilized throughout many studies over the 

ast decade for various computer vision tasks, such as image clas- 

ification [11–13] , object detection [82,83] , and image translation 

84,85] . Two factors must be considered when using these meth- 

ds: the magnitude of the operation to preserve label identity and 

ariations in the dataset. 

.1.2. Color image processing 

Unlike greyscale images, color images consist of three channels. 

olor image processing for augmentation assumes that the train- 

ng and testing dataset distributions fluctuate in terms of colors, 

uch as contrast. Although color image processing yields superior 

erformance, it is rarely used because the color variations between 

he training and testing datasets are small. However, one interest- 

ng point is the use of robust features for contrast learning [86] via 

olor image processing, which represents a case of task-agnostic 

earning. 

.1.3. Intensity transformation 

Unlike geometric transformations and color image processing, 

ntensity transformations entail changes at the pixel or patch lev- 

ls. Random noise, such as Gaussian noise, is one of the sim- 

lest intensity transformation algorithms [75] . The classical meth- 

ds leverage random noise independently at the pixel level; how- 

ver, the patch level has recently exhibited significant improve- 

ent for deep learning algorithms [23–26] . Studies pertaining to 

ntensity transformations are listed in Table 4 . The underlying con- 

ept is that the changes push the model to learn robust features 

y avoiding trivial solutions [76] . 

Cutout [24] randomly masks the most significant area with a 

nding mechanism to mimic occlusion. However, the most impor- 

ant aspect is cost. Hide-and-Seek [23] directly blocks part of the 

mage with the objective of obscuring the most significant area 

hrough many iterations of a random process, which is simple and 

ast. Fig. 2 shows that images are divided into s × s patches, and 

ach patch is randomly blocked. One disadvantage is that the iden- 

ical size of each patch yields the same level of occlusion. To ad- 

ress this issue, Random Erasing [25] has been employed with 

hree random values: the size of the occluded area, height-to- 

idth ratio, and top-left corner of the area. Fig. 3 demonstrates 

ome examples of Random Erasing for three computer vision tasks. 

dditionally, this method can be leveraged in image- and object- 

ware conditions, thereby simplifying object detection. 

GridMask aims to balance deleting and reservation, with the 

bjective of blocking certain important areas of an object while 

reserving others to mimic real occlusion. To achieve this, Grid- 

ask uses a set of predefined masks, as opposed to a single mask 

23–25] . As illustrated in Fig. 4 , the generated mask is obtained 

rom four values, denoting the width and height of every grid and 

he vertical and horizontal distance of the neighboring grid mask. 

y adjusting these four values, grid masks of different sizes and 

eigh-width ratios can be obtained. Under these conditions, Grid- 

ask achieves a better balance between deleting and reservation, 
4

nd a preliminary experiment suggests that it has a lower chance 

f producing failure cases than Cutout [24] and Hide-and-See [23] . 

.2. Multiple-image augmentation 

Multiple-image augmentation (MiA) algorithms are executed on 

ore than one image. These methods can further be categorized as 

nstance- and non-instance-level. Because one image may include 

ore than one instance, we can mask instances and use them in- 

ependently. Unlike SiA, MiA requires algorithms to merge multi- 

le input instances. 

.2.1. Non-instance-level 

In the context of MiA algorithms, the non-instance-level ap- 

roach adopts and fuses the images. Studies pertaining to this con- 

ept are listed in Table 5 . One of the simplest methods is to com-

ute the average value of each pixel. In Pairing Samples [27] , two 

mages are fused to produce an augmented image with a label 

rom one source image. This assumption is generalized in Mixup 

28] , where the labels are also fused. Fig. 5 illustrates the dif- 

erence between Pairing Samples and Mixup. Mathematically, ˜ x = 

x i + (1 − λ) x j and ˜ y = λy i + (1 − λ) y j , where x i and x j are two

mages, y i and y j are the corresponding one-hot labels, and ˜ x and 

˜  denote the generated image and label, respectively. By adjust- 

ng 0 ≤ λ ≤ 1 , many images with different labels can be created, 

hereby smoothing out the gap between the two labels in the aug- 

ented images. Although Pairing Samples and Mixup produce sat- 

sfactory results, the fused images are not reasonable for humans. 

ccordingly, these fused images have been declared to make sense 

or machines from the perspective of a waveform [29] . In addition, 

icinity distribution can also be utilized to understand this situa- 

ion. To be more specific, changing image variations yet maintain- 

ng the label can be regarded a deviation in the vicinity distribu- 

ion space of a specific label, whereas image fusion can be consid- 

red as an interpolation between the vicinity distribution of two 

abels [28] . 

In contrast to BC Learning [29] , CutMix [30] spatially merges 

mages to obtain results that are interpretable by humans. The last 
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Fig. 3. Examples of Random Erasing [25] . 

Table 5 

Studies related to multiple-image augmentation, divided into non-instance- (up) and instance-level (bottom). 

Paper Year Highlight 

SamplePairing [27] 2018 Combine two images with a single label. 

Mixup [28] 2018 Linearly fuse images and their labels. Fig. 5 . 

BC Learning [29] 2018 Combine two images and their labels. Treat the image as a waveform, and declare that image mixing makes sense 

for machines. 

CutMix [30] 2019 Spatially fuse two images and linearly fuse the labels. Fig. 5 . 

Mosaic [22] 2020 Spatially mix four images and their annotations, thereby enriching the context for each class. 

AugMix [31] 2020 One image undergoes several basic augmentations, and the results are fused with the original image. 

PuzzleMix [32] 2020 Optimize a mask for fusing two images to utilize the salient information and underlying statistics. 

Co-Mixup [33] 2021 Maximize the salient signal of input images and diversity among the augmented images. 

SuperMix [34] 2021 Optimize a mask for fusing two images to exploit the salient region with the Newton iterative method, 65x faster 

than gradient descent. 

GridMix [35] 2021 Split two images into patches, spatially fuse the patches, and linearly merge the annotation. 

Cut, Paste and Learn [36] 2017 Cut object instances and paste them onto random backgrounds. Fig. 6 . 

Scale and Blend [37] 2017 Cut and scale object instances, and blend them in meaningful locations. 

Context DA [38] 2018 Combine object instances using context guidance to obtain meaningful images. 

Simple Copy-Paste [39] 2021 Randomly paste object instances to images with large-scale jittering. 

Continuous Copy-Paste [40] 2021 Deploy Cut, Paste and Learn to videos. 

Fig. 4. GridMask [26] and its setting. 

Fig. 5. Comparison of non-instance-level multiple-image algorithms [30] . 
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icture in Fig. 5 illustrates its strategy, wherein the merged image 

onsists of two source images spatially, and its label is obtained 

rom the ratio of certain pixels between two images. Although 

ultiple-image augmentation generally utilizes two images, more 
5 
mages can be used. For example, Mosaic [22] employs four images 

herein the number of objects in one image is increased, thus sig- 

ificantly reducing the need for a large mini-batch size for dense 

rediction. AugMix [31] randomly applies basic multiple methods 

f image augmentation, and the results are adopted to merge with 

he original image. 

Non-instance-level image augmentation has extensions similar 

o those of intensity transformations. To account for the most im- 

ortant area, PuzzleMix [32] discriminates the foreground from 

he background, and mixes important information within the fore- 

round. Further, salient areas from multiple input images are 

aximized to synthesize each augmented image [33] , simultane- 

usly maximizing the diversity among the augmented images. To 

uickly locate dominant regions, SuperMix [34] employs a variant 

f the Newton iterative method. As in Hide-and-Seek [23] , Grid- 

ix [35] divides images into fixed-size grids, and each patch of the 

utput image is randomly taken from the corresponding patches of 

wo input images. Through this analysis, we believe that GridMask 

87] can be adapted to fuse image pairs with changeable sizes. 

.2.2. Instance-level 

Whereas the non-instance-level approach employs images di- 

ectly, the instance-level approach leverages instances masked 

rom images. Related studies are listed in the second part of 

able 5 . The instance-level approach comprises two main steps. 

s shown in Fig. 6 , the first step involves cutting instances 

rom source images given a semantic mask, and obtaining clean 

ackground senses. Next, the obtained instances and background 

re merged. Cut, Paste and Learn [36] is an early instance-level 

ethod, wherein local artifacts are noticed after pasting instances 

o the background. Because local region-based features are impor- 

ant for object detection, various blending modes are employed to 
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Table 6 

Studies relating to model-based image augmentation, label-conditional (top), label-preserving image-conditional (middle), and label-changing image- 

conditional (bottom). 

Paper Year Highlight 

BDA [45] 2017 Use CGAN to generate images optimized by a Monte Carlo EM algorithm. Fig. 7 . 

ImbCGAN [46] 2018 Deploy CGAN as image augmentation for unbalanced classes. 

BAGAN [47] 2018 Train an auto-encoder to initialize generator. 

DAGAN [48] 2018 Image is taken as the class condition for generator and discriminator. Fig. 8 . 

MFC-GAN [49] 2019 Use multiple fake classes to obtain a fine-grained image for minority class. 

IDA-GAN [50] 2021 Train a variational auto-encoder and CGAN simultaneously. 

S + U Learning [51] 2017 Translate synthetic images from a graphic model to realistic images using CGAN. 

AugGAN [52] 2018 Aim to semantically preserve object when changing its style. 

Plant-CGAN [53] 2018 Translate semantic instance layout to real images using CGAN. 

StyleAug [54] 2019 Change image style via style transfer. 

Shape bias [55] 2019 Transfer image style from painted images to mitigate texture bias of CNN. 

EmoGAN [56] 2018 Translate a neutral face with another emotion. 

δ-encoder [57] 2018 Image is taken as a class condition to generate images for new or infrequent class. 

Debiased NN [58] 2021 Merge style and content via style transfer and appropriate labels. Fig. 10 . 

StyleMix [59] 2021 Merge two images with style, content, and labels. Fig. 11 . 

GAN-MBD [60] 2021 Translate an image from one class to another while preserving semantics via multi-branch discriminator. Fig. 9 . 

SCIT [2] 2022 Translate healthy leaves to abnormal one while retaining its style. 

Fig. 6. Cut, Paste and Learn in training and testing process [36] . 
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educe local artifacts. With the exception of boundaries, the in- 

tance scale and position are not trivial, as objects may be multi- 

cale and recognizable with the help of their contexts, as addressed 

n [37] . 

Interestingly, instance-level image augmentation can mitigate 

he challenges posed by class imbalance. By repurposing rare in- 

tances, the number of images in the corresponding class increases. 

imple Copy-Paste [39] indicates that the instance level enables 

trong image augmentation methods, for instance, segmentation. 

hile it is based on Copy, Paste and Learn, Simple Copy-Paste 

iffers in two characteristics. First, the background image is ran- 

omly selected from the dataset, and subjected to random scale 

ittering and horizontal flipping. Second, large-scale jittering is 

everaged to obtain more significant performance. The copy-paste 

oncept has also been utilized for time-series tasks [40] such as 

racking. 

. Model-based image augmentation 

A model must be pre-trained in model-based image augmen- 

ation to generate augmented images. The present study classi- 

es this process among three categories, according to the con- 

itions to generate images: unconditional, label-conditional, and 

mage-conditional. Table 6 provides information regarding appro- 

riate studies. 
6 
.1. Unconditional image generation 

An image synthesis model benefits image augmentation, which 

nables it to produce new images. Theoretically, the distribution 

f generated images is similar to that in the original dataset for 

 generative adversarial network (GAN) model after training [88] . 

owever, the generated images are not the same as the original 

mages and can be considered as points located in the vicinity dis- 

ribution. In DCGAN [41] , two random noises or latent vectors can 

e interpolated to generate intermediate images, which can be re- 

arded as fluctuations between two original data points. Generally, 

 generative model with noise as input is deemed an uncondi- 

ional model, and the corresponding image generation process is 

onsidered unconditional image generation. If the datasets encom- 

ass a single class, as in the case of medical images with one ab- 

ormal class [42] , an unconditional image generation model can be 

irectly applied to perform augmentation. Furthermore, a specific 

nconditional model can be leveraged for an individual class in the 

resence of multiple classes [43 , 44] . 

.2. Label-conditional image generation 

Although unconditional image generation has potential, the 

hared information of different classes cannot be utilized. In con- 

rast, label-conditional image generation is expected to leverage 

he shared information and learn variations for minority classes 

sing majority-class data. Label-conditional image generation re- 

uires one specific label as an extra input, and the generated image 

hould align with the label condition. 

The primary issue in label-conditional image generation is the 

se of label conditions. CGAN [89] uses the label for a generator, 

hereas the authenticator does not use the label. Consequently, 

he generator tends to ignore label information, as the authen- 

icator cannot provide feedback regarding the condition. ACGAN 

90] introduces an auxiliary classifier in the discriminator, which 

ncourages the generator to produce images aligned with label 

onditions. With a more complex classifier, BDA [45] separates the 

lassifier from the discriminator. Fig. 7 illustrates the differences 

etween BDA and other label-conditional algorithms. In addition, 

FC-GAN [49] adopts multiple fake classes in the classification loss 

o stabilize the training. 

One of the main applications of label-conditional image gen- 

ration is the class imbalance [49 , 46 , 50] . The generative model is

xpected to learn useful features from the majority class, and use 

hem to generate images for the minority classes. The generated 
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Fig. 7. GAN and variants of label-conditional GANs [45] . G: generator, A: authenticator, C: classifier, D: discriminator. 

Fig. 8. Flowchart of DAGAN [48] , where label information is obtained from an image via an encoder, rather than a label. 
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mages are used to rebalance the original training dataset. How- 

ver, it may be challenging to train a GAN model with an unbal- 

nced dataset, as the majority class dominates the discriminator 

oss and the generator tends to produce images within the ma- 

ority class. To address this challenge, a pretrained autoencoder 

ith reconstruction loss has been employed to initialize a gener- 

tor [47 , 50] . 

Although various discriminators and classifiers may be em- 

loyed, the aforementioned algorithms utilize the class condition 

n a one-hot label. One resulting limitation is that the trained 

odel can generate only known-class images. To overcome this 

imitation, DAGAN [48] utilizes an image encoder to extract the 

lass, so that the generated image is assumed to have the same 

lass as the original image. Fig. 8 illustrates the DAGAN algorithm. 

.3. Image-conditional image generation 

In image generation, images can be employed as conditions, 

nown as image translation. Generally, an image consists of con- 

ent and style [91,92] . Content refers to class-dependent attributes, 

uch as dogs and cats, whereas style denotes class-independent el- 

ments, such as color and illumination. Image-conditional image 

eneration can be subcategorized into two types: label-preserving 

nd label-changing. The former requires content to be retained, 

hereas the latter requires content to be changed. 
7 
.3.1. Label-preserving image generation 

Label-preserving assumes that the label of a generated image 

s the same as that of the input image. One active field to deploy 

his approach is the domain shift, where the style of the source 

omain is different from that of the target domain. To address 

his challenge, original images can be translated from the source 

omain to the target domain. To preserve the object during im- 

ge translation, AugGAN employs a segmentation module that ex- 

racts context-aware features to share parameters with a genera- 

or [52] . For practical applications, synthetic images generated by 

 graphical model are translated into natural images [51] , and the 

eaf layout is translated as a real leaf image [53] . In addition, im- 

ge translation can be utilized for semantic segmentation with a 

omain shift [93] . Furthermore, label-preserving can be leveraged 

o improve the robustness of a trained model. Inspired by the ob- 

ervation that CNNs exhibit bias on texture toward shape, original 

mages are translated to have different textures, which allows the 

NN to allocate more attention to shape [55] . 

It is often challenging to obtain the desired style during the 

mage generation process. Most algorithms utilize an encoder to 

xtract style from an image, as in the case of DRIT++ [94] and 

PADE [95] . This approach to perform image translation can be re- 

arded as image fusion. In contrast, Jackson et al. [54] proposed 

tyle augmentation, where the style is generated from a multivari- 

te normal distribution. Another challenge is that the one model 
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Fig. 9. Semantic level matching by GAN-MBD [60] for label-changing image aug- 

mentation, including position, number, and pose. 

Fig. 10. Label assignment for the biased and unbiased model with respect to shape 

and texture [58] . 

c

t

a

5

l

i

p

I

i

v

a

l

i

d

j

a

e

A  

i

i

n

t

n

a

a

t

c

i

i

a

e

Fig. 11. Examples of label assignment with different algorithms [59] . 

t  

t

6

r

t

w

m

H

c

t

t

i

f

m

m

t

n

m

G

r

m

m

6

f

fi

s

b

v

t

a

m

f

T

d

s

i

m

t

o

t

r

m

an be adopted to generate images for multiple domains with fewer 

rained images. To address this, MetalGAN leverages domain loss 

nd meta-learning strategies [96] . 

.3.2. Label-changing image generation 

In contrast to label-preserving, label-changing changes the 

abel-dependent. For example, a neutral face can be transformed 

nto a different emotion [56] . Although the generated images have 

oor fidelity, the approach improves the classification of emotions. 

n addition to changing label dependence, the preservation of label 

ndependence has recently received attention as a way to improve 

ariability within the target class, thereby mitigating class imbal- 

nce. To take variation from one to another class, a style loss is 

everaged to retain the style when translating an image [2] . Sim- 

larly, a multi-branch discriminator with fewer channels is intro- 

uced to achieve semantic consistency such as the number of ob- 

ects [60] . Fig. 9 shows several satisfactory translated images. To 

ddress severe class imbalance, a δ-encoder has been proposed to 

xtract label-independent features from one label to another [57] . 

s in the case of DAGAN [48] , class information is provided by an

mage. The δ-encoder and decoder aim to reconstruct the given 

mage in the training phase, whereas the decoder is provided a 

ew label image and required to generate the same label in the 

esting phase. 

Compared to label-preserving, label-changing yields more sig- 

ificant improvements in model robustness by changing the label 

nd style simultaneously. As illustrated in Fig. 10 , traditional image 

ugmentation does not change the label after altering the color of 

he chimpanzee to that of a lemon, which incurs shape bias. By 

ontrast, when a texture-biased model is trained, the translated 

mage is labeled as a lemon. To balance the bias, the translated 

mage by style transfer is taken with two labels [58] – chimpanzee 

nd lemon – which eliminates bias. Inspired by Mixup [28] , Hong 

t al. developed StyleMix [59] , which merges the two inputs to ob- 
8 
ain content and style labels, as shown in Fig. 11 . These labels are

hen fused to obtain the final label for the generated images. 

. Optimizing policy-based image augmentation 

All algorithms mentioned in the previous two sections rep- 

esent specific schemes, wherein domain knowledge is required 

o achieve better performance. In general, individual operations 

ith the desired magnitude are utilized to perform image aug- 

entation for specific datasets according to their characteristics. 

owever, hyperparameter optimization is challenging and time- 

onsuming. One way to mitigate this is to design algorithms 

hat determine optimal augmentation strategies. These algorithms, 

ermed policy-based optimization, encompass two categories: re- 

nforcement learning-based, and adversarial learning-based. The 

ormer category employs reinforcement learning (RL) to deter- 

ine the optimal strategy, whereas the latter category adopts aug- 

ented operations and their magnitudes that generates a large 

raining loss and small validation loss. As generative adversarial 

etworks (GANs) can be utilized for both model-based and opti- 

izing policy-based image augmentation, the objective to adopt 

ANs is the primary difference. Model-based category aims to di- 

ectly generate images, instead of other goals such as finding opti- 

al transformations [69] . Studies pertaining to policy-based opti- 

ization are listed in Table 7 . 

.1. Reinforcement learning-based 

AutoAugment [61] is a seminal approach that employs rein- 

orcement learning. As shown in Fig. 12 , iterative steps are used to 

nd the optimal policy. The controller samples a strategy from a 

earch space with the operation type and its corresponding proba- 

ility and magnitude, and a task network subsequently obtains the 

alidation accuracy as feedback to update the controller. Because 

he search space is very large, lighter child networks are lever- 

ged. After training, the controller is used to train the original task 

odel and can be finetuned in other datasets. 

Although AutoAugment achieves satisfactory classification per- 

ormance across several datasets, it requires a long training time. 

o address this issue, several studies have been conducted from 

ifferent perspectives. For instance, RandAugment [65] replaces 

everal probabilities in AutoAugment with a uniform probabil- 

ty. Conversely, Fast AA [62] and Faster AA [64] leverage density 

atching, aligning the densities of the training and augmented 

raining datasets, instead of Proximal Policy Optimization [97] , to 

ptimize the controller in AutoAugment. Furthermore, PBA [63] at- 

empts to learn a policy schedule from population-based training, 

ather than a single policy. 

Except for the long training phase, AutoAugment utilizes child 

odels, by which the learned policy may not be optimal for the fi- 
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Table 7 

Studies relating to optimizing policy of image augmentation. The upper and the bottom suggest reinforcement learning- and adversarial learning-based image augmentation. 

Paper Year Highlight 

AutoAugment [61] 2019 Use reinforcement learning to determine the optimal augmentation strategies. Fig. 12 . 

Fast AA [62] 2019 Use efficient density matching for augmentation policy search. 

PBA [63] 2019 Adopt non-stationary augmentation policy schedules via population-based training. 

Faster AA [64] 2019 Use a differentiable policy search pipeline via approximate gradients. 

RandAugment [65] 2020 Reduce the search space of AutoAug via probability adjustment. 

MADAO [66] 2020 Train task model and optimize the search space simultaneously by implicit gradient with Neumann series approximation. 

LDA [67] 2020 Take policy search as a discrete optimization for object detection. 

LSSP [68] 2021 Learn a sample-specific policy for sequential image augmentation. 

ADA [69] 2016 Seek a small transformation that yields maximal classification loss on the transformed sample. 

CDST-DA [70] 2017 Optimize a generative sequence using GAN in which the transformed image is pushed to be within the same class 

distribution. 

AdaTransform [71] 2019 Use a competitive task to obtain augmented images with a high task loss in the training stage, and a cooperative task to 

obtain augmented images with a low task loss in the testing stage. Fig. 13 . 

Adversarial AA [72] 2020 Optimize a policy to increase task loss while allowing task model to minimize the loss. 

IF-DA [73] 2020 Use influence function to predict how validation loss is affected by image augmentation, and minimize the approximated 

validation loss. 

SPA [74] 2021 Select suitable samples to perform image augmentation. 

Fig. 12. Overview of AutoAugment [61] , a reinforcement learning-based image aug- 

mentation method. 
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al task model. To address this issue, Hataya et al. [66] trained the 

arget model and image augmentation policy simultaneously using 

he same differentiable image augmentation pipeline in Faster AA. 

n contrast, Adversarial AA [72] leverages adversarial loss simulta- 

eously with reinforcement learning. 

One limitation of the algorithms mentioned above is that the 

earned image augmentation policy is at the dataset level. Con- 

ersely, class- and sample-level image augmentation methods were 

onsidered in [98] and [68] , respectively, wherein each class or 

ample utilizes a specific policy. Furthermore, instance-level image 

ugmentation was considered in [67] for object detection, where 

perations were performed only inside the bounding box. 

.2. Adversarial learning-based 

The primary objective of image augmentation is to train a task 

odel with a training dataset to achieve sufficient generalizability 

n a testing dataset. One assumption is that hard samples are more 

seful, and the input images that cause a larger training loss are 
ig. 13. Overview of AdaTransform [71] . AdaTransform encompasses two tasks – comp

iscriminator D , and target network N. The transformer increases the variance of trainin

hase to reduce data variance. 

9 
onsidered hard samples. Adversarial learning-based image aug- 

entation aims to learn an image augmentation policy to generate 

ard samples based on the original training samples. 

An early method [69] attempts to find a small transformation 

hat maximizes training loss on the augmented samples, wherein 

earning optimization finds an optimal magnitude given an opera- 

ion. One of the main limitations is the label-preserving assump- 

ion that the augmented image retains the same label as the orig- 

nal image. To meet this assumption, a common strategy is to de- 

ign the type of operation and range of corresponding magnitude 

sing human knowledge. To weaken this assumption, Ratner et al. 

70] introduced generative adversarial loss to learn a transforma- 

ion sequence in which the discriminator pushes the generated im- 

ges to one of the original classes, instead of an unseen or null 

lass. 

Interestingly, SPA [74] attempts to select suitable samples, and 

mage augmentation is leveraged only on those samples in which 

he augmented image incurs a larger training loss than the orig- 

nal image. Although SPA trains the image augmentation policy 

nd task model simultaneously at the sample level, the impact of 

he learned policy in the validation dataset is unknown. To ad- 

ress this challenge, an influence function was adopted for approx- 

mating the change in validation loss without actually comparing 

erformance [73] . Another interesting concept is the use of im- 

ge augmentation in the testing stage . To achieve this, AdaTrans- 

orm [71] learns two tasks – competitive and cooperative – as il- 

ustrated in Fig. 13 . In a competitive task, the transformer learns to 

ncrease the input variance by increasing the loss of the target net- 

ork, while the discriminator attempts to push the augmented im- 

ge realistically. Conversely, the transformer learns to decrease the 

ariance of the augmented image in the cooperative task by reduc- 

ng the loss of the target network. After training, the transformer 
etitive training and cooperative testing – and three components: transformer T , 

g data by competing with both D and N. It also cooperates with N in the testing 
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s utilized to reduce the variance of the input image, thereby sim- 

lifying the testing process. 

. Discussions 

In this section, the usage of the mentioned strategies to per- 

orm image augmentation are first discussed. Several future direc- 

ions are then illustrated. Furthermore, three related topics are dis- 

ussed: understanding image augmentation from theory perspec- 

ive, adopting image augmentation with other strategy, and aug- 

enting features instead of images. 

Current situation. Datasets are assumed to be essential to ob- 

ain satisfactory performance. One way to generate an appropri- 

te dataset is through image augmentation algorithms, which have 

emonstrated impressive results across multiple datasets and het- 

rogeneous models. For instance, Mixup [28] increases the val- 

dation accuracy in ImageNet-2012 by 1.5 and 1.2 percent with 

esNet-50 and ResNet-101. Non-trivially, GAN-MBD [60] achieves 

4.28 classification accuracy with an unbalance dataset setting in 

02Flowers, 33.11, 31.44, and 14.05 higher than non-image aug- 

entation, geometrical transformation, and focal loss, respectively. 

urrently, model-free and optimizing policies are widely leveraged, 

hereas the model-based approach is an active research topic for 

pecific challenges, such as class imbalance and domain adaptation. 

n addition, although most algorithms are label-preserving, label- 

hanging algorithms have recently received attention. 

Future direction. Although many image augmentation algo- 

ithms exist, developing novel algorithms remains crucial to im- 

rove the performance of deep learning. We argue that recognizing 

ew challenges or variations may inspire novel methods if they can 

e mimicked using image augmentation. Further, most algorithms 

f image augmentation are designed for classification and hence 

xtending them to other applications is one of the most applica- 

le directions by incorporating application-based knowledge, such 

s time-series in video [40] . Another interesting direction is distin- 

uishing specific applications from general computer vision tasks 

uch as ImageNet [99] and COCO [100] and then finding new mo- 

ivations to design image augmentation. For example, most varia- 

ions in plant healthy and diseased leaves are shared and thus can 

e converted from one to another [2] . Finally, considering image 

ugmentation from a systematic perspective is appealing. For ex- 

mple, the effects of image augmentation schedules on optimiza- 

ion such as learning rate and batch size, are analyzed in [101] . 

Understanding image augmentation. This study was con- 

ucted to understand the objectives of image augmentation in the 

ontext of deep learning, from the perspectives of challenges and 

icinity distribution. Although it was also verified that image aug- 

entation is similar to regularization [79] , most of the evidences 

re empirically from experiments. Understanding them in theory is 

herefore appealing. Recently, kernel theory [102] and group theory 

103] have been used to analyze the effects of image augmenta- 

ion. In addition, the improvement yielded by image augmentation 

n the context of model generalizability has been quantified using 

ffinity and diversity [104] . 

New strategy to leverage image augmentation. Although im- 

ge augmentation is commonly used in a supervised manner, this 

ust not necessarily be the case. First, a pretext task can be cre- 

ted via image augmentation, such as predicting the degrees of ro- 

ation [105] and relative positions of image patches [106] . Second, 

mage augmentation can be leveraged to generate positive samples 

or contrast learning under the assumption that an augmented im- 

ge is similar to the corresponding original image [107–109] . Fur- 

hermore, semi-supervised learning benefits from image augmen- 

ation [79,110,111] . 

Feature augmentation attempts to perform augmentation in 

eature space instead of image space in image augmentation, and 
10 
hus reduces the computation cost but without visual evidences. 

 feature space generally has dense information in semantic level 

han an image space. Consequently, operation in feature space is 

ore efficient [112] , such as domain knowledge [113] . Simultane- 

usly, we believe that most of the techniques in image augmen- 

ation can be extended to feature augmentation, such as Manifold 

ixup [114] from Mixup [28] and occluded feature [115] . 

. Conclusion 

This study surveyed a wide range of image augmentation al- 

orithms with a novel taxonomy encompassing three categories: 

odel-free, model-based, and optimizing policy-based. To under- 

tand the objectives of image augmentation, we analyzed the chal- 

enges of deploying a deep learning model for computer vision 

asks, and adopted the concept of vicinity distribution. We found 

hat image augmentation significantly improves task performance, 

nd many algorithms have been designed for specific challenges, 

uch as intensity transformations for occlusion, and model-based 

lgorithms for class imbalance and domain shift. Based on this 

nalysis, we argue that novel methods can be inspired by new 

hallenges. Conversely, appropriate methods can be selected af- 

er recognizing the challenges posed by a dataset. Furthermore, 

e discussed the current situation and possible directions of im- 

ge augmentation with three relevant interesting topics. We hope 

hat our study will provide an enhanced understanding of image 

ugmentation and encourage the community to prioritize dataset 

haracteristics. 
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