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Domain Adaptation for Medical Image Analysis:
A Survey

Hao Guan and Mingxia Liu , Senior Member, IEEE

Abstract—Machine learning techniques used in
computer-aided medical image analysis usually suffer
from the domain shift problem caused by different
distributions between source/reference data and target
data. As a promising solution, domain adaptation has
attracted considerable attention in recent years. The
aim of this paper is to survey the recent advances of
domain adaptation methods in medical image analysis.
We first present the motivation of introducing domain
adaptation techniques to tackle domain heterogeneity
issues for medical image analysis. Then we provide a
review of recent domain adaptation models in various
medical image analysis tasks. We categorize the existing
methods into shallow and deep models, and each of them
is further divided into supervised, semi-supervised and
unsupervised methods. We also provide a brief summary
of the benchmark medical image datasets that support
current domain adaptation research. This survey will
enable researchers to gain a better understanding of the
current status, challenges and future directions of this
energetic research field.

Index Terms—Domain adaptation, domain shift, machine
learning, deep learning, medical image analysis.

I. INTRODUCTION

MACHINE learning has been widely used in medical
image analysis, and typically assumes that the train-

ing dataset (source/reference domain) and test dataset (target
domain) share the same data distribution [1]. However, this
assumption is too strong and may not hold in practice. Previous
studies have revealed that the test error generally increases in
proportion to the distribution difference between training and
test datasets [2], [3]. This is referred to as the “domain shift”
problem [4]. Even in the deep learning era, deep Convolutional
Neural Networks (CNNs) trained on large-scale image datasets
may still suffer from domain shift [5]. Thus, how to handle
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Fig. 1. Illustration of source and target data with (left) original feature
distributions, and (right) new feature distributions after domain adapta-
tion, where domain adaptation techniques help to alleviate the “domain
shift” problem [4] between source and target domains.

domain shift is a crucial issue to effectively apply machine
learning methods to medical image analysis.

Unlike natural image analysis with large-scale labeled
datasets such as ImageNet [6], [7], in medical image analysis,
a major challenge for medical image analysis is the lack of
labeled data to construct reliable and robust models. Labeling
medical images is generally expensive, time-consuming and
tedious, requiring labor-intensive participation of physicians,
radiologists and other experts. An intuitive solution is to reuse
pre-trained models for some related domains [8]. However, the
domain shift problem is still widespread among different med-
ical image datasets due to different scanners, scanning parame-
ters, and subject cohorts, etc. As a promising solution to tackle
the domain shift/heterogeneity among medical image datasets,
domain adaptation has attracted increasing attention in the field,
aiming to minimize distribution gap among different but related
domains, as shown in Fig. 1. Many researchers have engaged in
leveraging domain adaptation methods to solve various tasks in
medical image analysis.

There have been a number of surveys on domain adap-
tation [9]–[15] and transfer learning [16]–[21] with natural
images. However, there are only very limited reviews related
to domain adaptation and their applications in medical image
analysis which is a broad and important research area. Cheply-
gina et al. [22] provide a broad survey covering semi-supervised,
multi-instance, and transfer learning for medical image analysis.
Due to the wide scope, they only review general transfer learning
methods in medical imaging applications without focusing on
domain adaptation. Valverde et al. [23] conduct a survey on
transfer learning in magnetic resonance (MR) brain imaging.
Morid et al. [24] review transfer learning methods based on
pre-training on ImageNet [6] that can benefit from knowledge
from large-scale labeled natural images. Recent studies propose
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to design deep learning based domain adaptation models for
medical image analysis, but many of them are not included in
these review/survey papers.

In this paper, we review and discuss recent advances and
challenges of domain adaptation for medical image analysis.
We systematically summarize the existing methods according
to their characteristics. Specifically, we categorize different
methods into two groups: 1) shallow models, and 2) deep
models. Each group is further divided into three categories,
i.e., supervised, semi-supervised and unsupervised methods. To
the best of our knowledge, this is among the first attempts to
systematically review domain adaptation methods for analyzing
multi-site multi-modality medical imaging data. Unlike previous
review/survey papers that usually focus on a single modality or
organ/object (e.g., brain MRI [23]), this survey reviews studies
that cover multiple imaging modalities and organs/objects (e.g.,
brain, lung and heart). In addition, we also review the most ad-
vanced deep domain adaptation models recently used in medical
image analysis.

The rest of this paper is organized as follows. We firstly intro-
duce some background knowledge in Section II. In Sections III–
IV, we review the recent advances of domain adaptation methods
in medical image analysis. Challenges and future research di-
rections are discussed in Section V. Finally, the conclusion is
given in Section VI. A summary of benchmark medical image
datasets used in domain adaptation problems can be found in
Supplementary Materials.

II. BACKGROUND

A. Domain Shift in Medical Image Analysis

For a machine learning model, domain shift [4], [26]–[28]
refers to the change of data distribution between its training
dataset (source/reference domain) and test dataset (target
domain). The domain shift problem is very common in practical
applications of various machine learning algorithms and
may cause significant performance degradation. Especially for
multi-center studies, domain shift is widespread among different
imaging centers/sites that may use different scanners, scanning
protocols, and subject populations, etc. Fig. 2 illustrates the
problem of inter-center domain shift in terms of the intensity
distribution of structural magnetic resonance imaging (MRI)
from four independent sites (i.e., UCL, Montreal, Zurich and
Vanderbilt) in the Gray Matter segmentation challenge [25],
[29]. Fig. 3 illustrates the image-level distribution heterogeneity
caused by different scanners [30]. From Figs. 2-3, one can
observe that there are clear distribution shifts in these medical
imaging data. However, many conventional machine learning
methods ignore this problem, which would lead to performance
degradation [27], [31]. Recently, domain adaptation has
attracted increasing interests and attention of researchers, and
become an important research topic in machine learning based
medical image analysis [22], [32]–[34].

B. Domain Adaptation and Transfer Learning

This survey focuses on domain adaptation for medical image
analysis. Since domain adaptation can be regarded as a special

Fig. 2. Intensity distribution of MRI axial-slice pixels from four different
datasets (i.e., UCL, Montreal, Zurich, and Vanderbilt) that collected for
gray matter segmentation. Intensity is normalized between 0 and 1 for
each site. Image courtesy to C. Perone [25].

Fig. 3. Image slices (top) and corresponding intensity distribution (bot-
tom) of normalized T1-weighted (a), (b) and T2-weighted (c), (d) MRIs
from different scanners. Image courtesy to N. Karani [30].

type of transfer learning, we first review their definitions to
provide a clear understanding of their differences. In a typical
transfer learning setting, there are two concepts: “domain” and
“task” [16]–[18]. A domain relates to the feature space of a
specific dataset and the marginal probability distribution of
features. A task relates to the label space of a dataset and an
objective predictive function. The goal of transfer learning is to
transfer the knowledge learned from the task Ta on domain A
to the task Tb on domain B. Note that either the domain and the
task may change during the transfer learning process.

Domain adaptation, the focus of this survey, is a particular
and popular type of transfer learning [9]–[13]. For domain
adaptation, it is assumed that the domain feature spaces and tasks
remain the same while the marginal distributions are different
between the source and target domains (datasets). It can be math-
ematically depicted as follows. Let X × Y represent the joint
feature space and the corresponding label space, respectively. A
source domain S and a target domain T are defined on X × Y ,
with different distributions Ps and Pt, respectively. Suppose we
have ns labeled samples (subjects) in the source domain, i.e.,
DS = {(xS

i , y
S
i )}ns

i=1, and also havent samples (with or without

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 



GUAN AND LIU: DOMAIN ADAPTATION FOR MEDICAL IMAGE ANALYSIS: A SURVEY 1175

Fig. 4. An overview of different categories of domain adaptation methods for medical image analysis.

labels) in the target domain, i.e., DT = {(xT
j )}nt

j=1. Then the
goal of domain adaptation (DA) is to transfer knowledge learned
from S to T to perform a specific task on T, and this task is shared
by S and T.

C. Problem Settings of Domain Adaptation

In DA, the source domain and target domain share the same
learning tasks. In practice, DA can be categorized into differ-
ent groups according to different scenarios, constraints, and
algorithms. In Fig. 4, we summarize different categories of
DA methods for medical image analysis based on six problem
settings, i.e., model type, label availability, modality difference,
number of sources, and adaptation steps. Each group is not
mutually exclusive to each other, and we employ the model type
as the main criterion in this paper.

1) Model Type: Shallow DA & Deep DA. In terms of whether
the learning model is shallow or deep, the DA methods can
be divided into shallow DA and deep DA [9], [10], [13]. Shal-
low DA methods usually rely on human-engineered imaging
features and conventional machine learning models. To avoid
hand-crafted feature engineering, deep learning based domain
adaptation methods have emerged and achieved state-of-the-art
performance in many applications. Existing deep DA methods
(especially those with CNN architectures) generally integrate
feature learning and model training into end-to-end learning
models, where the data adaptation is performed in a task-oriented
manner.

2) Label Availability: Supervised DA & Semi-Supervised DA
& Unsupervised DA. In terms of label availability, existing DA
methods can be divided into supervised DA, semi-supervised
DA, and unsupervised DA [11], [13]. In supervised DA, a small
number of labeled data in the target domain are available for
model training. Since labeling/annotating medical images is
usually time-consuming and tedious, there are often limited or
even no labeled data in some sites/domains. To address this
issue, semi-supervised and unsupervised DA methods have been
developed. In semi-supervised DA, a small number of labeled
data as well as redundant unlabeled data in the target domain
are available in the training process. In unsupervised DA, only
unlabeled target data are available for training the adaptation
model. There is an extreme case that even unlabeled target data
are not accessible during the training time. The learning model
is only allowed to be trained on several related source domains
to gain enough generalization ability for the target domain.

This problem is referred to as domain generalization, while
a few related research has been conducted for medical image
analysis [35].

3) Modality Difference: Single-Modality DA & Cross-
Modality DA. In terms of modality difference, the existing DA
methods can be divided into single-modality DA and cross-
modality DA [9], [36], [37]. In single modality DA, the source
and target domains share the same data modality. For example,
the source domain consists of MRIs collected in vendor A,
and the target domain contains MRIs acquired from vendor
B [38]. With the development of imaging techniques, more
multi-modality data (e.g., MRI, CT and PET) have been col-
lected. To bridge the distribution gap between different imaging
modalities, many cross-modality DA methods have emerged. In
cross-modality DA, the modalities of source and target domains
are different with various scanning technologies. For example,
the source domain consists of MR images, whereas the target
domain contains CT images [37].

4) Number of Sources: Single-Source DA & Multi-Source
DA. In terms of the number of source domains, the existing DA
methods can be divided into single-source DA and multi-source
DA approaches [12], [14], [15]. Single-source DA is usually
based on the assumption that there is only one source domain,
but this assumption is too strong and may not hold in practice.
To tackle scenarios where training data may come from multiple
sites/domains, multi-source DA has been proposed. Since there
is also data heterogeneity among different source domains,
multi-source DA is quite challenging. Most of the existing DA
methods for medical image analysis fall into the single-source
DA category.

5) Adaptation Step: One-Step DA & Multi-Step DA. In terms
of adaptation steps, existing methods can be divided into one-
step and multi-step DA [10], [39], [40]. In one-step DA, adaption
between source and target domains is accomplished in one step
due to a relatively close relationship between them. For scenarios
where data heterogeneity between source and target domains
is significant (e.g., from ImageNet to medical image datasets),
multi-step DA (also called distant/transitive DA) methods have
been proposed, where intermediate domains are often introduced
to bridge the distribution gap between source and target domains.

Since extensive domain adaptation methods have been
proposed, it is typically suggested to fully consider the
background and characteristics of specific problems when
applying different adaptation methods to medical image
analysis. When there are sufficient data and computation
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Fig. 5. Illustration of instance weighting which can alleviate domain
shift. (a) Source domain after feature matching (i.e., discovering a
shared feature representation by jointly reducing the distribution differ-
ence and preserving the important properties of input data). (b) Target
domain after feature matching. (c) Source domain after joint feature
matching and instance weighting, with unfilled markers indicating irrel-
evant source instances that have smaller weights. Image courtesy to
Long et al. [46].

resources, deep domain adaptation methods tend to achieve
better performance, compared with conventional machine
learning methods. For medical image based learning tasks,
domain adaptation can be performed at two levels, i.e.,
feature-level and image-level. Generally, feature-level methods
are more suitable for classification or regression problems. When
there are well-defined image features (e.g., tissue intensity), it is
also a good choice to utilize feature-level methods for domain
adaptation. Image-level adaptation methods, e.g., via generative
adversarial networks (GANs), are often suitable for segmen-
tation tasks to preserve more original structure information of
pixels/voxels. For cross-modality tasks, GAN-based adaptation
is also a good choice for bridging different data modalities.

III. SHALLOW DOMAIN ADAPTATION METHODS

In this section, we review shallow domain adaptation methods
based on human-engineered features and conventional machine
learning models for medical image analysis. We first introduce
two commonly-used strategies in shallow DA methods: 1) in-
stance weighting, and 2) feature transformation.

Instance weighting is one of the most popular strategies
adopted by shallow DA methods for medical image analy-
sis [41]–[45]. In this strategy, samples/instances in the source
domain are assigned with different weights according to their
relevance with target samples/instances. Generally, source in-
stances that are more relevant to the target instances will be
assigned larger weights. After instance weighting, a learning
model (e.g., classifier or regressor) is trained on the re-weighted
source samples, thus reducing domain shift between the source
and target domains. Fig. 5 illustrates the effect of instance
weighting strategy on the source and target domains. From
Fig. 5(a)-(b), we can see that the domain difference between
the source and target domain is large. After instance weighting,
the domain difference is reduced based on those re-weighted
source instances, as shown in Fig. 5(b)-(c).

Feature transformation strategy focuses on transforming
source and target samples from their original feature spaces to a
new shared feature representation space [47]–[49]. As shown in
Fig. 6, the goal of feature transformation for DA is to construct a
common/shared feature space for the source and target domains
to reduce their distribution gap, based on various techniques

Fig. 6. Illustration of feature transformation to reduce domain shift.
Each color denotes a specific domain. (a) Data distributions of two
source and one target domains before feature transformation, and
(b) data distributions after feature transformation. Image courtesy to
Wang et al. [49].

such as low-rank representation [49]. Then, a learning model
can be trained on the new feature space, which is less affected
by the domain shift in the original feature space between the two
domains.

A. Supervised Shallow DA

Wachinger et al. [41] propose an instance weighting-based
DA method for Alzheimer’s disease (AD) classification. Specif-
ically, labeled target samples are used to estimate the target
distribution. Then source samples are re-weighted by calcu-
lating the probability of source samples in the target domain.
A multi-class logistic regression classifier is finally trained on
the re-weighted samples and labeled target data (with volume,
thickness, and anatomical shape features), and applied to the
target domain. Experiments on the ADNI [50], AIBL [51] and
CADDementia challenge datasets [52] show that the DA model
can achieve better results than methods that only use data from
either the source or target domain. Goetz et al. [42] propose an
instance weighting-based DA method for brain tumor segmen-
tation. To compute the weights of source samples, a domain
classifier (logistic regression) is trained with paired samples
from source and target domains. The output of the domain
classifier (in terms of probability) is then used to calculate the
adjusted weights for source samples. A random forest classifier
is trained to perform segmentation. Experiments on the BraTS
dataset [53] demonstrate the effectiveness of this method. Van
Opbroek et al. [43] propose an instance weighting-based DA
method for brain MRI segmentation. In their approach, each
training image in the source domain is assigned a weight that
can minimize the difference between the weighted probability
density functions (PDFs) of voxels in the source and target
data. The re-weighted training data are then used to train a
classifier for segmentation. Experiments on three segmentation
tasks (i.e., brain-tissue segmentation, skull stripping, and white-
matter-lesion segmentation) demonstrate its effectiveness.

Becker et al. [47] propose a feature transformation-based
DA method for microscopy image analysis. Specifically, they
propose to learn a nonlinear mapping that can project samples
in both domains to a shared discriminative latent feature space.
Then, they develop a boosting classifier trained on the data in the
transformed common space. In [54], [55], the authors propose
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a domain transfer support vector machine (DTSVM) for mild
cognitive impairment (MCI) classification. Based on the close
relationship of Alzheimer’s disease (AD) and MCI, DTSVM
is trained on MCI subjects in the target domain and fine-tuned
with an auxiliary AD dataset to enhance its generalization ability.
They validate their method on ADNI and achieve good perfor-
mance in MCI conversion prediction.

B. Semi-Supervised Shallow DA

Conjeti et al. [56] propose a two-step DA framework for ul-
trasound image classification. In the first step, they use principle
component analysis (PCA) to transform the source and target
domains to a common latent space, through which the global
domain difference is minimized. In the second stage, a random
forest classifier is trained on the transformed source domain, and
then fine-tuned with a few labeled target data to further reduce
the domain shift.

C. Unsupervised Shallow DA

Cheplygina et al. [44] employ the instance weighting strategy
for lung disease classification. Specifically, Gaussian texture
features are first extracted from all CT images, based on which
a weighted logistic classifier is trained. Source samples that are
similar to the target data are assigned high weights to reduce
domain shift. Experiments on four chest CT image datasets show
that this method can significantly improve the classification
performance. Heimann et al. [45] use instance weighting-based
DA strategy for ultrasound transducer localization in X-ray
images. The instance weights are computed through a domain
classifier (i.e., logistic regression). Based on Haar-like features
of X-ray images, a cascade of tree-based classifiers is trained
for ultrasound transducer localization. Li et al. [57] propose
a subspace alignment DA method for AD classification using
functional MRI (fMRI) data. They first conduct feature extrac-
tion and selection for source and target samples, followed by a
modified subspace alignment strategy to align samples from both
domains into a shared subspace. Finally, the aligned samples in
the shared subspace are used as an integrated dataset to train a
discriminant analysis classifier. This method is validated on both
ADNI and a private fMRI datasets. Kamphenkel et al. [58] pro-
pose an unsupervised DA method for breast cancer classification
based on diffusion-weighted MR images (DWI). They use the
Diffusion Kurtosis Imaging (DKI) algorithm to transform the
target data to the source domain without any label information
of target data.

D. Multi-Source Shallow DA

Wang et al. [48] propose a multi-source DA framework for
Autism Spectrum Disorder (ASD) classification with resting-
state functional MRI (rs-fMRI) data. Each subject/sample is
represented by both functional connectivity (FC) features in
gray matter regions and functional correlation tensor features
extracted from white matter regions. All subjects in each of
the multiple source domains are transformed to the target do-
main via low-rank regularization and graph embedding. Then,

a classifier is trained on the source samples (with transformed
features). This method is validated on the ABIDE dataset [59].
Wang et al. [49] propose a low-rank representation based multi-
source domain adaptation framework for ASD classification.
They assume that multiple domains share an intrinsic latent data
structure, and map multiple source data and target data into a
common latent space via a low-rank representation to reduce
the domain shift. Cheng et al. [60] propose a Multi-Domain
Transfer Learning (MDTL) framework for the early diagnosis
of AD and MCI. They first select a subset of discriminative
features (i.e., gray matter tissue volume) by using training data
from multiple auxiliary domains and target domain, and then
construct a final classifier based on multiple classifiers learned
from auxiliary domains.

IV. DEEP DOMAIN ADAPTATION METHODS

Deep learning [61], [62] has greatly pushed forward the devel-
opment of artificial intelligence and machine learning. Trained
with large-scale labeled data in a full supervision manner, CNN
has made breakthroughs in computer vision and medical image
analysis [63]–[65].

A. Supervised Deep DA

With deep features (e.g., extracted by CNNs), several studies
focus on using shallow DA models for medical image analysis.
Kumar et al. [66] use ResNet as the feature extractor of mammo-
graphic images. Based on the CNN features, they evaluate three
shallow domain adaptation methods, i.e., Transfer Component
Analysis (TCA) [67], Correlation Alignment (CORAL) [68],
and Balanced Distribution Adaptation (BDA) [69] for breast
cancer classification, and provide some empirical results on
the DDSM [70] and InBreast [71] datasets. Huang et al. [72]
propose to use LeNet-5 to extract features of histological images
from different domains for epithelium-stroma classification, and
then project them into a subspace (via PCA) to align them for
adaptation. Experiments on the NKI, VGH [73] and IHC [74]
datasets verify its effectiveness.

Another research direction is to transfer models learned on
the source domain onto the target domain with fine-tuning.
Ghafoorian et al. [32] evaluate the impact of fine-tuning strategy
on brain lesion segmentation, based on CNN models pre-trained
on brain MRI scans. Their experimental results reveal that using
only a small number of target training examples for fine-tuning
can improve the transferability of models. They further evaluate
the influence of both the size of the target training set and
different network architectures on the adaptation performance.
Based on similar findings, numerous methods have been pro-
posed to leverage CNNs that are well pre-trained on ImageNet
to tackle medical image analysis problems. Samala et al. [75]
propose to first pre-train an AlexNet-like network on ImageNet,
and then fine-tune it with regions-of-interest (ROI) from 2,454
mass lesions for breast cancer classification. Khan et al. [76]
propose to pre-train a VGG network on ImageNet, and then
use labeled MRI data to fine-tune it for Alzheimer’s disease
(AD) classification. They propose to use image entropy to select
the most informative training samples in the target domain,
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and verify their method on the ADNI database [50]. Similarly,
Swati et al. [77] pre-train a VGG network on ImageNet and
re-train the higher layers of the network with labeled MR images
for brain tumor classification. Experiments are conducted on a
publicly available CE-MRI dataset.1 Abbas et al. [78] employ
the ImageNet to pre-train CNNs for chest X-ray classification.
To deal with the irregularities in the datasets, they introduce class
decomposition into the network learning process, by partitioning
each class within the image dataset into k subsets and then assign
new labels to the new set. Three different cohorts of chest X-ray
images, histological images of human colorectal cancer, and
digital mammograms are used for performance evaluation.

The above-mentioned methods employ the one-step DA strat-
egy, i.e., directly transferring the pre-trained model to the target
domain. To handle the problem when the target samples are too
few to fine-tune a model, several studies propose to use interme-
diate domains to facilitate multi-step DA. Gu et al. [79] develop a
two-step adaptation method for skin cancer classification. First,
they fine-tune a ResNet on a relatively large medical image
dataset (for skin cancer). Then, the network is trained on the
target domain which is a relatively small medical image dataset.
Their experimental results on the MoleMap dataset2 and the
HAM10000 dataset3 show that the two-step adaptation method
achieves better results than the directly transferring methods.

Although adopting pre-trained models on a dataset (e.g.,
ImageNet) is a popular way for supervised DA for medical image
analysis, the 2D CNN structure may not be able to fully explore
the rich information conveyed in 3D medical images. To this end,
some researchers deliberately design task-specific 3D CNNs that
are trained with medical images as the backbone to facilitate the
subsequent data adaptation tasks. Hosseini-Asl et al. [80] design
a 3D CNN for brain MR images classification. The network
is pre-trained with MR images in the source domain. Then,
its upper fully-connected layers are fine-tuned with samples in
the target domain. Experiments on ADNI and CADDementia
demonstrate its effectiveness. Valverde et al. [81] propose a
similar 3D CNN for brain MR images segmentation. Instead
of using the whole brain MRI, their network takes 3D image
patches as input, while only partial fully-connected layers are
fine-tuned using the target data. This method is evaluated on the
ISBI2015 dataset [82] for MRI segmentation. Kaur et al. [83]
propose to first pre-train a 3D U-Net on a source domain that has
relevant diseases with a large number of samples, and then use
a few labeled target data to fine-tune the network. Experiments
on the BraTS dataset [53] show this strategy achieves a better
performance than the network trained from scratch. Similar
strategy is also used in [84] where a network is pre-trained
using a large number of X-ray computed tomography (CT)
and synthesized radial MRI datasets and then fine-tuned with
only a few labeled target MRI scans. Zhu et al. [85] propose a
boundary-weighted domain adaptive neural network for prostate
segmentation. A domain feature discriminator is co-trained with
the segmentation networks in an adversarial learning manner

1https://figshare.com/articles/brain_tumor_dataset/1512427
2http://molemap.co.nz
3https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000

to reduce domain shift. Aiming to tackle the difficulty caused
by unclear boundaries, they design a boundary-weighted loss
and add it into the training process for DA and segmentation.
The boundary contour needs to be extracted from the ground
truth label to generate a boundary-weighted map as the super-
vision information to minimize the loss. Experiments on the
PROMISE12 challenge dataset4 and BWH dataset [86] demon-
strate its effectiveness. Bermúdez-Chacón et al. [87] design a
two-stream U-Net for electron microscopy image segmentation.
One stream uses source domain samples while the other uses tar-
get data. They utilize Maximum Mean Discrepancy (MMD) and
correlation alignment as the domain regularization for DA. With
a few labeled target data to fine-tune the model, their method
achieves promising performance in comparison with several
state-of-the-art ones on a private dataset. Laiz et al. [88] propose
to use triplet loss for DA in endoscopy image classification. Each
triplet consists of an anchor sample A from the source domain,
a positive sample B from the target domain with the same label
of A, and a negative sample C in the source domain. Through
minimizing the triplet loss, their model can reduce the domain
shift while keeping discrimination on different diseases.

B. Semi-Supervised Deep DA

Roels et al. [89] propose a semi-supervised DA method for
electron microscopy image segmentation. They design a “Y-
Net” with one feature encoder and two decoders. One decoder
is used for segmentation, while a reconstruction decoder is
designed to reconstruct images from both the source and target
domains. The network is initially trained in an unsupervised
manner. Then, the reconstruction decoder is discarded, and the
whole network is fine-tuned with labeled target samples to make
the model adapt to the target domain.

Madani et al. [90] propose a semi-supervised generative ad-
versarial network (GAN) based DA framework for chest X-ray
image classification. Different from conventional GAN, this
model takes labeled source data, unlabeled target data and gener-
ated images as input. The discriminator performs three-category
classification (i.e., normal, disease, or generated image). During
training, unlabeled target data can be classified as any of those
three classes, but can contribute to loss computation when they
are classified as generated images. Through this way, both
labeled and unlabeled data can be incorporated into a semi-
supervised manner. Experiments on the NIH PLCO dataset [91]
and NIH Chest X-Ray dataset [92] demonstrate its effectiveness.

C. Unsupervised Deep DA

Unsupervised deep domain adaptation has attracted increas-
ing attention [11] in the field of medical image analysis, due
to its advantage that does not require any labeled target data.
We now introduce the existing unsupervised deep DA methods
based on their specific strategies for knowledge transfer.

1) Feature Alignment: This line of research aims to learn
domain-invariant features across domains through specifically
designed CNN models. Most of the models adopt a siamese

4https://promise12.grand-challenge.org/
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Fig. 7. Illustration of Domain Adversarial Neural Network (DANN)
framework. It is a classic and efficient DA model for domain-
invariant feature learning through adversarial training. Image courtesy
to Ganin et al. [93].

architecture similar to the Domain Adversarial Neural Network
(DANN) structure [93] as shown in Fig. 7. Kamnitsas et al. [34]
propose a DANN-based multi-connected adversarial network
for brain lesion segmentation. In their model, the domain dis-
criminator is trained simultaneously with a segmentation net-
work. In addition, the authors argue that only adapting the last
layers of the segmentor is not ideal, thus the domain discrim-
inator is connected at multiple layers of the network to make
it less susceptible to image-quality variations between different
domains. Javanmardi et al. [94] propose a DANN-based model
for eye vasculture segmentation. A U-Net and a domain discrim-
inator are co-trained during the training process. Experiments
on the DRIVE [95] and STARE [96] datasets demonstrate its
effectiveness. Their work won the first place in the optic disc
(OD) and optic cup (OC) segmentation tasks in the MICCAI
2018 Retinal Fundus Glaucoma Challenge. Wang et al. [97] pro-
pose a DANN-based framework for fundus image segmentation.
Besides segmentation and adversarial losses, they also introduce
a smoothness loss to enforce the network to make homoge-
neous predictions in neighbor regions. Ren et al. [98] propose a
DANN-based method for prostate histopathology classification.
They introduce a Siamese structure in target domain to enforce
patches from the same image to have the same classification
score. Experiments on the Cancer Genome Atlas (TCGA)5 and
a local dataset verify its effectiveness. Yang et al. [99] employ
the DANN for lung texture classification, with experiments
performed on the SPIROMICS dataset.6 Panfilov et al. [100]
develop an adversarial learning based model for knee tissue
segmentation. A U-Net-based segmentor and a domain dis-
criminator with adversarial learning are co-trained for DA.
Experiments on three knee MRI datasets verify its effectiveness.
Zhang et al. [101] propose an adversarial learning based DA
method for AD/MCI classification on ADNI. A classifier and
a domain discriminator are co-trained to enhance the model’s
transferability across different domains.

Different from the above-mentioned studies, Dou et al. [102]
develop a cross-modality DA framework for cardiac MR and CT
image segmentation, by only adapting low-level layers (with

5https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga

6https://www.spiromics.org/spiromics/

higher layers fixed) to reduce domain shift during training.
They assume that the data shift between cross-modality domains
mainly lies in low-level characteristics, and validate this as-
sumption through experiments on the MM-WHS dataset [103].
Shen et al. [104] employ adversarial learning for fundus image
quality assessment. Due to the demand for image assessment,
they fix high-level weights during the adversarial training to
focus on low-level feature adaptation. Yan et al. [105] propose an
adversarial learning based DA method for MR image segmenta-
tion. A domain discriminator is co-trained with the segmentor to
learn domain-invariant features for the task of segmentation. To
enhance the model’s attention to edges, Canny edge detector is
introduced into the adversarial learning process. Experiments on
images from three independent MR vendors (Philips, Siemens,
and GE) demonstrate the effectiveness. Shen et al. [106] propose
an adversarial learning based method for mammogram detection
which is an essential step in breast cancer diagnosis. A segmentor
based on fully convolutional network (FCN) and a domain dis-
criminator are co-trained for domain adaptation. Experiments on
the public CBIS-DDSM [70], InBreast [71] and a self-collected
dataset demonstrate its effectiveness. Yang et al. [107] propose
an adversarial learning based DA method for lesion detection
within the Faster RCNN framework [108]. Besides global fea-
ture alignment, they also extract ROI-based region proposals to
facilitate local feature alignment.

Gao et al. [109] propose an unsupervised method for classi-
fication of brain activity based on fMRI data from the Human
Connectome Project (HCP) dataset [110]. They use the central
moment discrepancy (CMD) which matches the higher-order
central moments of the data distributions as the domain regular-
ization loss to facilitate adaptation. They assume that the high-
level features extracted by fully-connected layers have large
domain shift, thus CMD is imposed on these layers to perform
adaptation. Bateson et al. [111] propose an unsupervised con-
strained DA framework for disc MR image segmentation. They
propose to use some useful prior knowledge that is invariant
across domains as an inequality constraint, and impose such
constraints on the predicted results of unlabeled target samples
as the domain adaptation regularization. Mahapatra et al. [112]
develop a deep DA approach for cross-modality image registra-
tion. To transfer knowledge across domains, they design a con-
volutional auto-encoder to learn latent feature representations
of images, followed by a generator to synthesize the registered
image.

2) Image Alignment: Image-level alignment is also used
for domain adaptation based on deep generative models, such
as Generative Adversarial Network (GAN) [115]. The origi-
nal GAN takes random noise as input. Zhu et al. [113] pro-
pose a cycle-consistent GAN (CycleGAN) model which can
translate one image domain into another without the demand
for paired training samples. The CycleGAN has been used
for medical image synthesis (see Fig. 8), where an MR im-
age is firstly mapped to the target domain (CT image) and
then mapped back to the input domain. A cycle consistency
loss is used to measure the difference between input im-
age and reconstructed image. By minimizing this loss, the
CycleGAN can realize image-to-image translation without
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Fig. 8. Image-to-image translation via cycle consistency loss (Cycle-
GAN) [113], [114]. The source domain MR image is mapped to the target
domain CT image, and then mapped back to the source domain. The
difference between the input MR image and the reconstructed MR image
is minimized.

paired training samples. Cai et al. [116] propose a CycleGAN-
based framework for cross-modality segmentation, by introduc-
ing a shape-consistency loss during a cross-modality synthe-
sis process to ensure consistent anatomical structures between
source and target images. Experiments on self-collected MR/CT
datasets and two public mammogram datasets demonstrate the
effectiveness. Gadermayr et al. [117] leverage CycleGAN to fa-
cilitate image-image translation between different domains (dig-
ital pathology datasets), followed by a U-Net for kidney histol-
ogy segmentation. Wollmann et al. [118] propose a CycleGAN-
based DA method for breast cancer classification. They first use
CycleGAN to transform whole-slide images (WSIs) of lymph
nodes from a source domain (i.e., a medical center) to the target
domain (i.e., another medical center). Then a densely connected
deep neural network (DenseNet) is used for breast cancer classi-
fication. Image patches from regions-of-interest (ROIs) are used
as the input to facilitate two-level classification. Experiments on
the CAMELYON17 challenge dataset7 demonstrate the effec-
tiveness. Manakov et al. [119] propose to leverage unsupervised
DA to tackle retinal optical coherence tomography (OCT) image
denoising problem. They treat image noises as domain shift
between high and low noise domains. A CycleGAN-based DA
mode is designed to learn a mapping between the source (i.e.,
high noise) and the target domain (i.e., low noise) on unpaired
OCT images, thus achieving the goal of image denoising. Ex-
periments on numerous in-house OCT images demonstrate the
effectiveness of this method. Gholami et al. [120] propose to
use CycleGAN to generate more training data for brain tu-
mor segmentation. They first generate synthetic tumor-bearing
MR images using their in-house simulation model, and then
transform them to real MRIs using CycleGAN to augment
training samples. They conduct experiment on the BraST [53]
dataset and achieve good segmentation results for brain tumors.
Jiang et al. [121], [122] propose to employ CycleGAN to
generate MRIs from CT scans for lung tumor segmentation.

7https: //camelyon17.grand-challenge.org/

The generated MRIs are helpful to segment tumors that are
close to soft tissues. Zhang et al. [123] leverage CycleGAN
for multi-organ segmentation in X-ray images. They first create
Digitally Reconstructed Radiographs (DDRs) from labeled CT
scans and train a segmentation model based on DDRs. Then, they
use CycleGAN to map X-ray images (target domain) to DDRs
(source domain) for segmentation via the trained network.

Zhang et al. [124] propose a Noise Adaptation Generative
Adversarial Network (NAGAN) for eye blood vessel segmen-
tation, by formulating DA as a noise style transfer task. They
use an image-to-image translation generator to map the target
image to the source domain. Besides a normal discriminator
which enforces the content similarity between generated im-
ages and real images, they also design a style discriminator
which enforces the generated images to have the same noise
patterns as those from the target domain. Experiments on the
SINA [125] and a local dataset demonstrate the effectiveness.
Mahmood et al. [126] propose a Reverse Domain Adaptation
method based on GAN for endoscopy image analysis. This
method reverses the flow and transforms real images to synthetic
images, based on the insight that subjects with optical endoscopy
images have patient-specific details and these details do not
generalize across patients. Xing et al. [127], [128] leverage
CycleGAN for cell detection across multi-modality microscopy
images. Source images are firstly mapped to the target domain
which are used to train a cell detector. Then the detector is used
to generate pseudo-labels on target training data. The detector
is further fine-tuned with labeled target data to boost learning
performance.

3) Image+feature Alignment: Chen et al. [37], [129] com-
bine image alignment and feature alignment for cross-modality
cardiac image segmentation. They firstly use CycleGAN to
transform labeled source images into target-like images. Then,
the synthesized target images and real target images are fed
into a two-stream CNN with a domain discriminator which
can further reduce the domain gap via adversarial learning.
Experiments on the MM-WHS dataset [103] demonstrate its
effectiveness. Yan et al. [38] propose a similar unsupervised
framework for cross-vendor cardiac cine MRI segmentation.
They first train a U-Net using labeled source samples, and
then train a CycleGAN to facilitate image-level adaptation. In
addition, they design a feature-level alignment mechanism by
computing the Mean Square Error (MSE) of features between the
original and translated images. Three major vendors including
Philips, Siemens, and GE, are treated as three domains. For
example, the Philips data are treated as the source domain, while
the Siemens and GE data are defined as two target domains. The
short-axis steady-state free precession (SSFP) cine MR images
of 144 subjects acquired by those three vendors are used for
performance evaluation.

4) Disentangled Representation: Yang et al. [36] propose
a cross-modality (between CT and MRI) DA method via disen-
tangled representation for liver segmentation. Through disentan-
gle presentation learning, images from each domain are embed-
ded into two spaces, i.e., a shared domain-invariant content space
and a domain-specific style space. Then, domain adaptation is
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performed in the domain-invariant space. Experiments on the
LiTS benchmark dataset [130] and a local dataset demonstrate
the effectiveness of this method.

5) Ensemble Learning: Following [131], Perone et al. [25]
propose a self-ensemble based DA method for medical image
segmentation. A baseline CNN, called student network, takes
labeled samples from the source domain, and makes its pre-
dictions after training with a task (segmentation) loss. Another
network, called teacher network, gives its predictions using only
unlabeled samples in the target domain. The teacher network
is updated by the exponential moving average of the weights
of the student network (a temporal ensemble strategy). During
training, the domain shift is minimized by a consistency loss
by comparing predictions from both the student and teacher
networks. This method is evaluated on the SCGM challenge
dataset [132], which is a multi-center multi-vendor dataset of
spinal cord anatomical MR images from healthy subjects. Sha-
nis et al. [133] employ a similar DA architecture for brain tumor
segmentation. Besides a consistency loss that measures the dif-
ference between predictions of the teacher and student networks,
they also utilize an adversarial loss to further improve adaptation
performance. Effectiveness is validated with experiments on the
BraTS dataset [53].

6) Soft Labels: Bermúdez-Chacón et al. [134] propose an
unsupervised DA method to reduce domain shift in electron
microscopy images. Based on the observation that some ROIs
in medical images still resemble each other across domains, the
authors propose to use Normalized Cross Correlation (NCC)
which computes the similarity of two structures from two dif-
ferent images (visual correspondence) to construct a consensus
heatmap. The high-scoring regions of the heatmap are used as
soft labels for the target domain, which are then used to train the
target classifier for segmentation.

7) Feature Learning: Ahn et al. [135], [136] introduce a
convolutional auto-encoder to learn features for domain adap-
tation. Other than using labeled target data to fine-tune a pre-
trained AlexNet, the authors propose to use a zero-bias convo-
lutional auto-encoder as an adapter to transform the feature maps
from the last convolution layer of AlexNet to relevant medical
image features. The learned features can further be used for
classification tasks.

D. Multi-Target Deep DA

Orbes-Arteaga et al. [137] propose an unsupervised DA
framework with two target domains for brain lesion segmen-
tation. Their network is first trained with labeled source data.
During the adaptation phase, labeled source data and the paired
unlabeled data from the two target domains are fed into the
DA model. An adversarial loss is imposed to reduce domain
differences. To minimize the output probability distribution on
the target data, a consistency loss is imposed on the paired target
data. Experiments are performed on the MICCAI 2017 WMH
Challenge [138] and two independent datasets. Karani et al. [30]
propose a life-long multi-domain adaptation framework for

brain structure segmentation. In their method, batch normal-
ization plays the key role in adaptation, as suggested in [139].
They first train a network on d source domains with shared
convolutional filters but different batch normalization (BN) pa-
rameters, and each domain corresponds to a specific set of BN
parameters. By fine-tuning the BN parameters with a few labeled
data in each new target domain, the model can then be adapted
to those multi-target domains. This method is evaluated on 4
publicly available datasets, including HCP [110], ADNI [50],
ABIDE [59], and IXI.8

V. DISCUSSION

A. Challenges of Data Adaptation for Medical Image
Analysis

1) 3D/4D Volumetric Representation: Medical images are
generally high-dimensional and stored in 3D or 4D formats (e.g.,
with the temporal dimension). Especially for time-series data,
e.g., functional MRI, there are a series of 3D volumes for each
subject, and each 3D volume is composed of hundreds of 2D
image slices. These slices usually contain rich structural context
information that is significant for representing medical images. It
is challenging to design advanced domain adaptation models to
effectively capture the 3D or 4D structural information convened
in medical images.

2) Limited Training Data: The existing medical image
datasets usually contain a limited number of samples, ranging
from a few hundred [51] to several hundred thousand [140].
Also, labeled medical images are generally even fewer, since
labeling medical images is a time-consuming and expensive task
which demands for the participation of medical experts. Even
though one can adapt/transfer models pre-trained on large-scale
ImageNet, the existing off-the-shelf deep models may not be
well adapted to medical images, since they are designed for
2D image analysis and have a huge number of parameters at
the higher layers for classification of a large number of cate-
gories (e.g., >1, 000). Raghu et al. [33] conduct an empirical
study on two large-scale medical imaging datasets, and find that
transferring standard CNN models pre-trained on ImageNet to
medical imaging analysis does not benefit performance a lot.
The problem of limited data has posed a great challenge to
effective training of domain adaptation models, especially for
deep learning based ones.

3) Inter-Modality Heterogeneity: Various digital imaging
techniques have been developed to generate heterogeneous vi-
sual representations of each subject, such as CT, structural MRI,
function MRI, and positron emission tomography (PET). While
these multi-modality data provide complementary information,
the inter-modality heterogeneity brings many challenges for do-
main adaptation [37]. For instance, a pair of structural MRI and
PET scans from the same subject contains large inter-modality
discrepancy [141]. The large inter-modality difference brings
many difficulties actually for efficient knowledge transfer be-
tween different domains.

8https://brain-development.org/ixi-dataset/

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 

https://brain-development.org/ixi-dataset/


1182 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 3, MARCH 2022

B. Future Research Trends

1) Task-Specific 3D/4D Models for Domain Adaptation:
Compared with 2D CNNs pre-trained on ImageNet, 3D mod-
els are usually more powerful to explore medical image fea-
tures and yield better learning performance [142]. For more
high-dimensional medical images such as fMRI that involves
temporal information, a 4D CNN has been introduced in the
literature [143]. Besides, medical images usually contain re-
dundant or noisy regions, while task-specific ROIs can help
filter out these redundant/noisy regions. For instance, brain
structural changes caused by AD usually locate in a limited
number of ROIs in structural MRIs, such as hippocampus [144]
and ventricles [145]. However, effectively defining these task-
specific ROIs in medical images has always been an open issue.
Currently, there are very few works on developing 3D/4D DA
models with task-specific ROI definitions for medical image
analysis, and we believe this is a promising future direction.

2) Unsupervised Domain Adaptation: The lack of labeled
data is one of the most significant challenges for medical image
research. To tackle this problem, many recent studies tend to
avoid using labeled target data for model fine-tuning, by using
various unsupervised domain adaptation methods [11], [12] for
medical image analysis. Also, completely avoiding any target
data (even those unlabeled ones) for model training is an interest-
ing research topic. Thus, research on domain generalization [35],
[146]–[148] and zero-shot learning [149]–[151] will be welcome
in the future.

3) Multi-Modality Domain Adaptation: To make use of
complementary but heterogeneous multi-modality neuroimag-
ing data, it is desired to develop domain adaptation models
that are trained on one modality and can be well generalized
to another modality. For more challenging problems where
each domain contains multiple modalities (e.g., MRI and CT),
it is meaningful to consider both inter-modality heterogeneity
and inter-domain difference when designing domain adaptation
models. Several techniques including CycleGAN [37], [114] and
disentangle learning [36], [141] have been introduced into this
emerging area, while further exploration of multi-modality DA
is required for medical image analysis.

4) Multi-Source/Multi-Target Domain Adaptation: Exist-
ing DA methods usually focus on single-source domain adapta-
tion, i.e., training a model on one source domain, but there may
be multiple source domains (e.g., multiple imaging centers) in
real-world applications. Multi-source domain adaptation [14],
[15], [152]–[154], aiming to utilize training data from multi-
source domains to improve models’ transferability on the target
domain, is of great clinical significance. It is also practical to
transfer a model to multiple target domains, i.e., multi-target
DA. Currently, very limited works have been done on multi-
source/multi-target DA in medical image analysis, so there is
still a lot of room for future research.

5) Source-Free Domain Adaptation: Existing domain
adaptation methods usually require full access to source and
target data. However, for privacy protection considerations, it is
not always allowed to share medical image data between differ-
ent sites/domains. Source-free domain adaptation, an emerging

topic that avoids potential violation of data privacy policies,
has drawn increasing attention recently [155]–[158]. It is in-
teresting to develop source-free domain adaptation methods to
handle multi-site/domain medical image data in accordance with
corresponding data privacy policies.

VI. CONCLUSION

In this paper, we provide a survey of recent advances in
domain adaptation for medical image analysis. We categorize
existing methods into shallow and deep models, and each cat-
egory is further divided into supervised, semi-supervised and
unsupervised methods. We also introduce existing benchmark
medical image datasets used for domain adaptation, summarize
potential challenges and discuss future research directions.

ACKNOWLEDGMENT

We thank Dr. Dinggang Shen for his valuable suggestions on
this paper.

REFERENCES

[1] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, 1984.

[2] S. Ben-David et al., “Analysis of representations for domain adaptation,”
Adv. Neural Inf. Process. Syst., vol. 19, pp. 137–144, 2007.

[3] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 1521–1528.

[4] J. Quiñonero-Candela et al., Dataset Shift in Machine Learning. Cam-
bridge, MA, USA: MIT Press, pp. 1–229, 2009.

[5] J. Donahue et al., “DeCAF: A deep convolutional activation feature
for generic visual recognition,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 647–655.

[6] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[7] D. Mahajan et al., “Exploring the limits of weakly supervised pretrain-
ing,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 181–196.

[8] O. Ronneberger et al., “U-Net: Convolutional networks for biomedical
image segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervention, 2015, pp. 234–241.

[9] G. Csurka, “A comprehensive survey on domain adaptation for visual
applications,” in Proc. Domain Adapt. Comput. Vis. Appl., 2017, pp. 1–35.

[10] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, 2018.

[11] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain
adaptation,” ACM Trans. Intell. Syst. Technol., vol. 11, no. 5, pp. 1–46,
2020.

[12] W. M. Kouw and M. Loog, “A review of domain adaptation without
target labels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 3,
pp. 766–785, Mar. 2021.

[13] V. M. Patel et al., “Visual domain adaptation: A survey of recent ad-
vances,” IEEE Signal Process. Mag., vol. 32, no. 3, pp. 53–69, May 2015.

[14] S. Sun et al., “A survey of multi-source domain adaptation,” Inf. Fusion,
vol. 24, pp. 84–92, 2015.

[15] S. Zhao et al., “Multi-source domain adaptation in the deep learning era:
A systematic survey,” 2020, arXiv:2002.12169.

[16] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[17] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categoriza-
tion: A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2015.

[18] J. Zhang et al., “Recent advances in transfer learning for cross-dataset vi-
sual recognition: A problem-oriented perspective,” ACM Comput. Surv.,
vol. 52, no. 1, pp. 1–38, 2019.

[19] C. Tan et al., “A survey on deep transfer learning,” in Proc. Int. Conf.
Artif. Neural Netw., 2018, pp. 270–279.

[20] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc.
IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 



GUAN AND LIU: DOMAIN ADAPTATION FOR MEDICAL IMAGE ANALYSIS: A SURVEY 1183

[21] L. Zhang and X. Gao, “Transfer adaptation learning: A decade survey,”
2019, arXiv:1903.04687.

[22] V. Cheplygina et al., “Not-so-supervised: A survey of semi-supervised,
multi-instance, and transfer learning in medical image analysis,” Med.
Image Anal., vol. 54, pp. 280–296, 2019.

[23] J. M. Valverde et al., “Transfer learning in magnetic resonance brain
imaging: A systematic review,” J. Imag., vol. 7, no. 4, pp. 1–21, 2021.

[24] M. A. Morid et al., “A scoping review of transfer learning research on
medical image analysis using ImageNet,” Comput. Biol. Med., 2020,
Art. no. 104115.

[25] C. S. Perone et al., “Unsupervised domain adaptation for medical imaging
segmentation with self-ensembling,” NeuroImage, vol. 194, pp. 1–11,
2019.

[26] J. G. Moreno-Torres et al., “A unifying view on dataset shift in classifi-
cation,” Pattern Recognit., vol. 45, no. 1, pp. 521–530, 2012.

[27] E. H. Pooch et al., “Can we trust deep learning models diagnosis?
The impact of domain shift in chest radiograph classification,” 2019,
arXiv:1909.01940.

[28] K. Stacke et al., “A closer look at domain shift for deep learning in
histopathology,” 2019, arXiv:1909.11575.

[29] F. Prados et al., “Spinal cord grey matter segmentation challenge,”
NeuroImage, vol. 152, pp. 312–329, 2017.

[30] N. Karani et al., “A lifelong learning approach to brain MR segmentation
across scanners and protocols,” in Proc. Int. Conf. Med. Image Comput.
Comput.- Assist. Intervention, 2018, pp. 476–484.

[31] E. A. AlBadawy et al., “Deep learning for segmentation of brain tumors:
Impact of crossinstitutional training and testing,” Med. Phys., vol. 45,
no. 3, pp. 1150–1158, 2018.

[32] M. Ghafoorian et al., “Transfer learning for domain adaptation in MRI:
Application in brain lesion segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2017, pp. 516–524.

[33] M. Raghu et al., “Transfusion: Understanding transfer learning for
medical imaging,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 3347–3357.

[34] K. Kamnitsas et al., “Unsupervised domain adaptation in brain lesion
segmentation with adversarial networks,” in Proc. Int. Conf. Inf. Process.
Med. Imag., 2017, pp. 597–609.

[35] L. Zhang et al., “Generalizing deep learning for medical image segmen-
tation to unseen domains via deep stacked transformation,” IEEE Trans.
Med. Imag., vol. 39, no. 7, pp. 2531–2540, Jul. 2020.

[36] J. Yang et al., “Unsupervised domain adaptation via disentangled repre-
sentations: Application to cross-modality liver segmentation,” in Proc.
Int. Conf. Med. Image Comput. Comput.- Assist. Intervention, 2019,
pp. 255–263.

[37] C. Chen et al., “Unsupervised bidirectional cross-modality adaptation
via deeply synergistic image and feature alignment for medical image
segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 7, pp. 2494–2505,
Jul. 2020.

[38] W. Yan et al., “The domain shift problem of medical image segmentation
and vendor-adaptation by Unet-GAN,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2019, pp. 623–631.

[39] B. Tan et al., “Transitive transfer learning,” in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2015, pp. 1155–1164.

[40] B. Tan et al., “Distant domain transfer learning,” in Proc. AAAI Conf.
Artif. Intell., 2017, vol. 31, no. 1, pp. 2604–2610.

[41] C. Wachinger and M. Reuter, “Domain adaptation for Alzheimer’s dis-
ease diagnostics,” NeuroImage, vol. 139, pp. 470–479, 2016.

[42] M. Goetz et al., “DALSA: Domain adaptation for supervised learning
from sparsely annotated MR images,” IEEE Trans. Med. Imag., vol. 35,
no. 1, pp. 184–196, Jan. 2016.

[43] A. van Opbroek et al., “Weighting training images by maximizing dis-
tribution similarity for supervised segmentation across scanners,” Med.
Image Anal., vol. 24, no. 1, pp. 245–254, 2015.

[44] V. Cheplygina et al., “Transfer learning for multicenter classification
of chronic obstructive pulmonary disease,” IEEE J. Biomed. Health
Informat., vol. 22, no. 5, pp. 1486–1496, 2017.

[45] T. Heimann et al., “Learning without labeling: Domain adaptation for ul-
trasound transducer localization,” in Proc. Int. Conf. Med. Image Comput.
Comput.- Assist. Intervention, 2013, pp. 49–56.

[46] M. Long et al., “Transfer joint matching for unsupervised domain adap-
tation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,
pp. 1410–1417.

[47] C. Becker, C. M. Christoudias, and P. Fua, “Domain adaptation
for microscopy imaging,” IEEE Trans. Med. Imag., vol. 34, no. 5,
pp. 1125–1139, May 2015.

[48] J. Wang et al., “Multi-class ASD classification based on functional
connectivity and functional correlation tensor via multi-source domain
adaptation and multi-view sparse representation,” IEEE Trans. Med.
Imag., vol. 39, no. 10, pp. 3137–3147, Oct. 2020.

[49] M. Wang et al., “Identifying autism spectrum disorder with multi-site
fMRI via low-rank domain adaptation,” IEEE Trans. Med. Imag., vol. 39,
no. 3, pp. 644–655, Mar. 2020.

[50] C. R. Jack Jr et al., “The Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI): MRI methods,” J. Magn. Reson. Imag., vol. 27, no. 4,
pp. 685–691, 2008.

[51] K. A. Ellis et al., “The Australian Imaging, Biomarkers and lifestyle
(AIBL) study of aging: Methodology and baseline characteristics of 1112
individuals recruited for a longitudinal study of Alzheimer’s disease,” Int.
Psychogeriatrics, vol. 21, no. 4, pp. 672–687, 2009.

[52] E. E. Bron et al., “Standardized evaluation of algorithms for computer-
aided diagnosis of dementia based on structural MRI: The CADDementia
challenge,” NeuroImage, vol. 111, pp. 562–579, 2015.

[53] B. H. Menze et al., “The multimodal brain tumor image segmenta-
tion benchmark (BRATS),” IEEE Trans. Med. Imag., vol. 34, no. 10,
pp. 1993–2024, 2014.

[54] B. Cheng et al., “Domain transfer learning for MCI conversion predic-
tion,” in Proc. Int. Conf. Med. Image Comput. Comput.- Assist. Interven-
tion, 2012, pp. 82–90.

[55] B. Cheng et al., “Domain transfer learning for MCI conversion predic-
tion,” IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1805–1817, Jul. 2015.

[56] S. Conjeti et al., “Supervised domain adaptation of decision forests:
Transfer of models trained in vitro for in vivo intravascular ultra-
sound tissue characterization,” Med. Image Anal., vol. 32, pp. 1–17,
2016.

[57] W. Li et al., “Detecting Alzheimer’s disease on small dataset: A knowl-
edge transfer perspective,” IEEE J. Biomed. Health Informat., vol. 23,
no. 3, pp. 1234–1242, May 2019.

[58] J. Kamphenkel et al., “Domain adaptation for deviating acquisition
protocols in CNN-based lesion classification on diffusion-weighted MR
images,” in Proc. Image Anal. Moving Organ, Breast, and Thoracic
Images, 2018, pp. 73–80.

[59] A. Di Martino et al., “The autism brain imaging data exchange: Towards
a large-scale evaluation of the intrinsic brain architecture in autism,” Mol.
Psychiatry, vol. 19, no. 6, pp. 659–667, 2014.

[60] B. Cheng et al., “Multi-domain transfer learning for early diagnosis
of Alzheimer’s disease,” Neuroinformatics, vol. 15, no. 2, pp. 115–132,
2017.

[61] I. Goodfellow et al., Deep Learning. Cambridge, MA, USA: MIT Press,
2016, pp. 1–802.

[62] A. Khan et al., “A survey of the recent architectures of deep convolu-
tional neural networks,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516,
2020.

[63] D. Shen et al., “Deep learning in medical image analysis,” Annu. Rev.
Biomed. Eng., vol. 19, pp. 221–248, 2017.

[64] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, 2017.

[65] M. A. Mazurowski et al., “Deep learning in radiology: An overview of
the concepts and a survey of the state of the art with focus on MRI,” J.
Magn. Reson. Imag., vol. 49, no. 4, pp. 939–954, 2019.

[66] D. Kumar et al., “Cross-database mammographic image analysis through
unsupervised domain adaptation,” in Proc. IEEE Int. Conf. Big Data,
2017, pp. 4035–4042.

[67] S. J. Pan et al., “Domain adaptation via transfer component analysis,”
IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199–210, Feb. 2011.

[68] B. Sun et al., “Return of frustratingly easy domain adaptation,” in Proc.
AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1, pp. 2058–2065.

[69] J. Wang et al., “Balanced distribution adaptation for transfer learning,”
in Proc. IEEE Int. Conf. Data Mining, 2017, pp. 1129–1134.

[70] R. S. Lee et al., “A curated mammography data set for use in computer-
aided detection and diagnosis research,” Sci. Data, vol. 4, no. 1, pp. 1–9,
2017.

[71] I. C. Moreira et al., “INbreast: Toward a full-field digital mammographic
database,” Academic Radiol., vol. 19, no. 2, pp. 236–248, 2012.

[72] Y. Huang et al., “Epithelium-stroma classification via convolutional
neural networks and unsupervised domain adaptation in histopatho-
logical images,” IEEE J. Biomed. Health Informat., vol. 21, no. 6,
pp. 1625–1632, Nov. 2017.

[73] A. H. Beck et al., “Systematic analysis of breast cancer morphology
uncovers stromal features associated with survival,” Sci. Transl. Med.,
vol. 3, no. 108, pp. 108–113, 2011.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 



1184 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 3, MARCH 2022

[74] N. Linder et al., “Identification of tumor epithelium and stroma in
tissue microarrays using texture analysis,” Diagn. Pathol., vol. 7, no. 22,
pp. 1–11, 2012.

[75] R. K. Samala et al., “Cross-domain and multi-task transfer learning
of deep convolutional neural network for breast cancer diagnosis in
digital breast tomosynthesis,” Med. Imag.: Comput.-Aided Diagnosis,
vol. 10575, no. 2, pp. 1–8, 2018.

[76] N. M. Khan et al., “Transfer learning with intelligent training data
selection for prediction of Alzheimer’s disease,” IEEE Access, vol. 7,
pp. 72726–72735, 2019.

[77] Z. N. K. Swati et al., “Brain tumor classification for MR images using
transfer learning and fine-tuning,” Comput. Med. Imag. Graph., vol. 75,
pp. 34–46, 2019.

[78] A. Abbas et al., “DeTrac: Transfer learning of class decomposed med-
ical images in convolutional neural networks,” IEEE Access, vol. 8,
pp. 74901–74913, 2020.

[79] Y. Gu et al., “Progressive transfer learning and adversarial domain
adaptation for cross-domain skin disease classification,” IEEE J. Biomed.
Health Informat., vol. 24, no. 5, pp. 1379–1393, May 2020.

[80] E. Hosseini-Asl et al., “Alzheimer’s disease diagnostics by adaptation
of 3D convolutional network,” in Proc. IEEE Int. Conf. Image Process.,
2016, pp. 126–130.

[81] S. Valverde et al., “One-shot domain adaptation in multiple sclerosis
lesion segmentation using convolutional neural networks,” NeuroImage:
Clin., vol. 21, 2019, Art. no. 101638.

[82] A. Carass et al., “Longitudinal multiple sclerosis lesion segmentation:
Resource and challenge,” NeuroImage, vol. 148, pp. 77–102, 2017.

[83] B. Kaur et al., “Improving pathological structure segmentation via trans-
fer learning across diseases,” in Proc. Domain Adapt. Representation
Transfer Med. Image Learn. Less Labels Imperfect Data. Springer, 2019,
pp. 90–98.

[84] Y. Han et al., “Deep learning with domain adaptation for accelerated
projection-reconstruction MR,” Magn. Reson. Med., vol. 80, no. 3,
pp. 1189–1205, 2018.

[85] Q. Zhu, B. Du, and P. Yan, “Boundary-weighted domain adaptive neural
network for prostate MR image segmentation,” IEEE Trans. Med. Imag.,
vol. 39, no. 3, pp. 753–763, Mar. 2020.

[86] A. Fedorov et al., “An annotated test-retest collection of prostate multi-
parametric MRI,” Sci. Data, vol. 5, no. 1, pp. 1–14, 2018.

[87] R. Bermúdez-Chacón et al., “A domain-adaptive two-stream U-Net for
electron microscopy image segmentation,” in Proc. 15th IEEE Int. Symp.
Biomed. Imag., 2018, pp. 400–404.

[88] P. Laiz et al., “Using the triplet loss for domain adaptation in WCE,” in
Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2019, pp. 1–7.

[89] J. Roels et al., “Domain adaptive segmentation in volume electron mi-
croscopy imaging,” in Proc. 16th IEEE Int. Symp. Biomed. Imag., 2019,
pp. 1519–1522.

[90] A. Madani et al., “Semi-supervised learning with generative adversarial
networks for chest X-ray classification with ability of data domain adapta-
tion,” in Proc. 15th IEEE Int. Symp. Biomed. Imag., 2018, pp. 1038–1042.

[91] M. M. Oken et al., “Screening by chest radiograph and lung cancer
mortality: The prostate, lung, colorectal, and ovarian (PLCO) randomized
trial,” JAMA, vol. 306, no. 17, pp. 1865–1873, 2011.

[92] D. Demner-Fushman et al., “Preparing a collection of radiology exam-
inations for distribution and retrieval,” J. Amer. Med. Informat. Assoc.,
vol. 23, no. 2, pp. 304–310, 2016.

[93] Y. Ganin et al., “Domain-adversarial training of neural networks,” J.
Mach. Learn. Res., vol. 17, no. 1, pp. 2096–2030, 2016.

[94] M. Javanmardi and T. Tasdizen, “Domain adaptation for biomedical
image segmentation using adversarial training,” in Proc. 15th IEEE Int.
Symp. Biomed. Imag., 2018, pp. 554–558.

[95] J. Staal et al., “Ridge-based vessel segmentation in color images of the
retina,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 501–509, Apr. 2004.

[96] A. Hoover et al., “Locating blood vessels in retinal images by piecewise
threshold probing of a matched filter response,” IEEE Trans. Med. Imag.,
vol. 19, no. 3, pp. 203–210, Mar. 2000.

[97] S. Wang et al., “Patch-based output space adversarial learning for joint
optic disc and cup segmentation,” IEEE Trans. Med. Imag., vol. 38, no. 11,
pp. 2485–2495, Feb. 2019.

[98] J. Ren et al., “Adversarial domain adaptation for classification of prostate
histopathology whole-slide images,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2018, pp. 201–209.

[99] J. Yang et al., “Unsupervised domain adaption with adversarial learn-
ing (UDAA) for emphysema subtyping on cardiac CT scans: The

mesa study,” in Proc. 16th IEEE Int. Symp. Biomed. Imag., 2019,
pp. 289–293.

[100] E. Panfilov et al., “Improving robustness of deep learning based knee
MRI segmentation: Mixup and adversarial domain adaptation,” in Proc.
IEEE Int. Conf. Comput. Vis. Workshops, 2019, pp. 1–10.

[101] J. Zhang et al., “Unsupervised conditional consensus adversarial net-
work for brain disease identification with structural MRI,” in Proc. Int.
Workshop Mach. Learn. Med. Imag., 2019, pp. 391–399.

[102] Q. Dou et al., “PnP-AdaNet: Plug-and-play adversarial domain adap-
tation network at unpaired cross-modality cardiac segmentation,” IEEE
Access, vol. 7, pp. 99065–99076, 2019.

[103] X. Zhuang and J. Shen, “Multi-scale patch and multi-modality atlases
for whole heart segmentation of MRI preparing a collection of radiology
examinations for distribution and retrieval,” Med. Image Anal., vol. 31,
pp. 77–87, 2016.

[104] Y. Shen et al., “Domain-invariant interpretable fundus image quality
assessment,” Med. Image Anal., vol. 61, 2020, Art. no. 101654.

[105] W. Yan et al., “Edge-guided output adaptor: Highly efficient adaptation
module for cross-vendor medical image segmentation,” IEEE Signal
Process. Lett., vol. 26, no. 11, pp. 1593–1597, Nov. 2019.

[106] R. Shen et al., “Unsupervised domain adaptation with adversarial learn-
ing for mass detection in mammogram,” Neurocomputing, vol. 393,
pp. 27–37, 2020.

[107] S. Yang et al., “Unsupervised domain adaptation for cross-device OCT
lesion detection via learning adaptive features,” in Proc. 17th IEEE Int.
Symp. Biomed. Imag., 2020, pp. 1570–1573.

[108] S. Ren et al., “Faster R-CNN: Towards real-time object detection with
region proposal networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 91–99.

[109] Y. Gao et al., “Decoding brain states from fMRI signals by using unsu-
pervised domain adaptation,” IEEE J. Biomed. Health Informat., vol. 24,
no. 6, pp. 1677–1685, Jun. 2020.

[110] D. C. Van Essen et al., “The WU-Minn human connectome project: An
overview,” NeuroImage, vol. 80, pp. 62–79, 2013.

[111] M. Bateson et al., “Constrained domain adaptation for segmentation,”
in Proc. Int. Conf. Med. Image Comput. Comput.- Assist. Intervention,
2019, pp. 326–334.

[112] D. Mahapatra and Z. Ge, “Training data independent image registration
using generative adversarial networks and domain adaptation,” Pattern
Recognit., vol. 100, 2020, Art. no. 107109.

[113] J. Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 2223–2232.

[114] J. M. Wolterink et al., “Deep MR to CT synthesis using unpaired data,”
in Proc. Int. Workshop Simul. Synth. in Med. Imag., 2017, pp. 14–23.

[115] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 1–9.

[116] J. Cai et al., “Towards cross-modal organ translation and segmentation: A
cycle-and shape-consistent generative adversarial network,” Med. Image
Anal., vol. 52, pp. 174–184, 2019.

[117] M. Gadermayr et al., “Generative adversarial networks for facilitat-
ing stain-independent supervised and unsupervised segmentation: A
study on kidney histology,” IEEE Trans. Med. Imag., vol. 38, no. 10,
pp. 2293–2302, Oct. 2019.

[118] T. Wollmann et al., “Adversarial domain adaptation to improve automatic
breast cancer grading in lymph nodes,” in Proc. 15th IEEE Int. Symp.
Biomed. Imag., 2018, pp. 582–585.

[119] I. Manakov et al., “Noise as domain shift: Denoising medical images
by unpaired image translation,” in Proc. Domain Adapt. Representation
Transfer Med. Image Learn. Less Labels Imperfect Data. Springer, 2019,
pp. 3–10.

[120] A. Gholami et al., “A novel domain adaptation framework for medi-
cal image segmentation,” in Proc. Int. MICCAI Brainlesion Workshop.
Springer, 2018, pp. 289–298.

[121] J. Jiang et al., “Integrating cross-modality hallucinated MRI with CT to
aid mediastinal lung tumor segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2019, pp. 221–229.

[122] J. Jiang et al., “Tumor-aware, adversarial domain adaptation from CT
to MRI for lung cancer segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2018, pp. 777–785.

[123] Y. Zhang et al., “Task driven generative modeling for unsupervised
domain adaptation: Application to X-ray image segmentation,” in Proc.
Int. Conf. Med. Image Comput. Comput.- Assist. Intervention, 2018,
pp. 599–607.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 



GUAN AND LIU: DOMAIN ADAPTATION FOR MEDICAL IMAGE ANALYSIS: A SURVEY 1185

[124] T. Zhang et al., “Noise adaptation generative adversarial network for
medical image analysis,” IEEE Trans. Med. Imag., vol. 39, no. 4,
pp. 1149–1159, Apr. 2020.

[125] A. D. Hoover et al., “Validated automatic segmentation of AMD pathol-
ogy including drusen and geographic atrophy in SD-OCT images,” Invest.
Ophthalmol. Vis. Sci., vol. 53, no. 1, pp. 53–61, 2012.

[126] F. Mahmood, R. Chen, and N. J. Durr, “Unsupervised reverse domain
adaptation for synthetic medical images via adversarial training,” IEEE
Trans. Med. Imag., vol. 37, no. 12, pp. 2572–2581, Dec. 2018.

[127] F. Xing et al., “Adversarial domain adaptation and pseudo-labeling
for cross-modality microscopy image quantification,” in Proc. Int.
Conf. Med. Image Comput. Comput.- Assist. Intervention, 2019,
pp. 740–749.

[128] F. Xing et al., “Bidirectional mapping-based domain adaptation for
nucleus detection in cross-modality microscopy images,” IEEE Trans.
Med. Imag., vol. 40, no. 10, pp. 2880–2896, Oct. 2021.

[129] C. Chen et al., “Synergistic image and feature adaptation: Towards cross-
modality domain adaptation for medical image segmentation,” in Proc.
AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 865–872.

[130] P. Bilic et al., “The liver tumor segmentation benchmark (LiTS),” 2019,
arXiv:1901.04056.

[131] G. French et al., “Self-ensembling for visual domain adaptation,” in Proc.
Int. Conf. Learn. Representations, 2018, pp. 1–20.

[132] F. Prados et al., “Spinal cord grey matter segmentation challenge,”
NeuroImage, vol. 152, pp. 312–329, 2017.

[133] Z. Shanis et al., “Intramodality domain adaptation using self ensem-
bling and adversarial training,” in Proc. Domain Adapt. Representa-
tion Transfer Med. Image Learn. Less Labels Imperfect Data, 2019,
pp. 28–36.

[134] R. Bermúdez-Chacón et al., “Visual correspondences for unsupervised
domain adaptation on electron microscopy images,” IEEE Trans. Med.
Imag., vol. 39, no. 4, pp. 1256–1267, Apr. 2020.

[135] E. Ahn et al., “Unsupervised deep transfer feature learning for medical
image classification,” in Proc. 16th IEEE Int. Symp. Biomed. Imag., 2019,
pp. 1915–1918.

[136] E. Ahn et al., “Unsupervised domain adaptation to classify medi-
cal images using zero-bias convolutional auto-encoders and context-
based feature augmentation,” IEEE Trans. Med. Imag., vol. 39, no. 7,
pp. 2385–2394, Jul. 2020.

[137] M. Orbes-Arteaga et al., “Multi-domain adaptation in brain MRI through
paired consistency and adversarial learning,” in Domain Adapt. Repre-
sentation Transfer Med. Image Learn. Less Labels Imperfect Data, 2019,
pp. 54–62.

[138] H. J. Kuijf et al., “Standardized assessment of automatic segmentation
of white matter hyperintensities and results of the WMH segmentation
challenge,” IEEE Trans. Med. Imag., vol. 38, no. 11, pp. 2556–2568,
Nov. 2019.

[139] Y. Li et al., “Revisiting batch normalization for practical domain
adaptation,” in Proc. Int. Conf. Learn. Representations Workshop,
2017, pp. 1–12.

[140] X. Wang et al., “ChestX-ray8: Hospital-scale chest X-ray database
and benchmarks on weakly-supervised classification and localization of
common thorax diseases,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 2097–2106.

[141] E. Yang et al., “Deep disentangled hashing with momentum triplets for
neuroimage search,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervention, 2020, pp. 191–201.

[142] S. P. Singh et al., “3D deep learning on medical images: A review,”
Sensors, vol. 20, no. 18, pp. 1–24, 2020.

[143] Y. Zhao et al., “Modeling 4D fMRI data via spatio-temporal convolutional
neural networks (ST-CNN),” in Proc. Int. Conf. Med. Image Comput.
Comput.- Assist. Intervention, 2018, pp. 181–189.

[144] Y. Mu and F. H. Gage, “Adult hippocampal neurogenesis and its role in
Alzheimer’s disease,” Mol. Neurodegener., vol. 6, no. 1, pp. 1–9, 2011.

[145] B. R. Ott et al., “Brain ventricular volume and cerebrospinal fluid
biomarkers of Alzheimer’s disease,” J. Alzheimer’s Dis., vol. 20, no. 2,
pp. 647–657, 2010.

[146] C. Gan et al., “Learning attributes equals multi-source domain gener-
alization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 87–97.

[147] M. Ghifary et al., “Scatter component analysis: A unified framework
for domain adaptation and domain generalization,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 7, pp. 1414–1430, Jul. 2017.

[148] H. Li et al., “Domain generalization with adversarial feature learning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5400–5409.

[149] W. Wang et al., “A survey of zero-shot learning: Settings, methods, and
applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1–37,
2019.

[150] E. Kodirov et al., “Unsupervised domain adaptation for zero-shot learn-
ing,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2452–2460.

[151] M. Palatucci et al., “Zero-shot learning with semantic output codes,” in
Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1410–1418.

[152] S. Zhao et al., “Multi-source distilling domain adaptation,” in Proc. AAAI
Conf. Artif. Intell., 2020, pp. 12975–12983.

[153] H. Zhao et al., “Adversarial multiple source domain adaptation,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 8559–8570.

[154] H. Guan et al., “Multi-source domain adaptation via optimal transport
for brain dementia identification,” in Proc. IEEE 18th Int. Symp. Biomed.
Imag., 2021, pp. 1514–1517.

[155] M. Bateson et al., “Source-relaxed domain adaptation for image seg-
mentation,” in Proc. Int. Conf. Med. Image Comput. Comput.- Assist.
Intervention, 2020, pp. 490–499.

[156] J. Liang et al., “Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation,” in Proc. Int.
Conf. Mach. Learn., 2020, pp. 6028–6039.

[157] J. N. Kundu et al., “Universal source-free domain adaptation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 4544–4553.

[158] Y. Liu et al., “Source-free domain adaptation for semantic segmenta-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 1215–1224.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 30,2025 at 06:59:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


