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A B S T R A C T

The deep learning technique has been shown to be effectively addressed several image analysis tasks in
the computer-aided diagnosis scheme for mammography. The training of an efficacious deep learning model
requires large data with diverse styles and qualities. The diversity of data often comes from the use of various
scanners of vendors. But, in practice, it is impractical to collect a sufficient amount of diverse data for training.
To this end, a novel contrastive learning, MSVCL+, is developed to equip the deep learning models with
better style generalizability. Specifically, the multi-style and multi-view unsupervised self-learning scheme
is carried out to seek robust feature embedding against style diversity as a pretrained model. Afterward,
the pretrained network is further fine-tuned to the downstream tasks, e.g., mass detection, matching, BI-
RADS rating, and breast density classification. The proposed method has been evaluated extensively and
rigorously with mammograms from various vendor style domains and several public datasets. The experimental
results suggest that the proposed domain generalization method can effectively improve performance of
four mammographic image tasks on the data from both seen and unseen domains, and outperform many
state-of-the-art (SOTA) generalization methods.
1. Introduction

Breast cancer is one of the leading causes of cancer-related deaths
among women [1]. Mammography is the conventional imaging tech-
nique for early screening of breast cancer. It has been shown in many
studies [2–5] that advances in deep learning (DL) techniques have re-
markably improved the computer-aided detection and diagnosis (CAD)
schemes of mammography. The CAD schemes are composed of several
components, such as lesion detection [6], lesion matching [7], ma-
lignancy classification [8], density classification [9], and others [10].
However, most CAD schemes are not well tested for out-of-distribution
generalization, i.e., the applicability to the unseen domains in the
training process. Domain shift may result in a significant decline in
performance across various vendors [11,12].

As shown in Fig. 1, the styles of images from various vendors vary
significantly. The diversity in image style among mammograms from
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different vendors can be attributed to various factors, such as imaging
hardware and processing pipeline. With different hardware settings, the
following reconstruction and post-processing algorithms may need to
be specially tailored and tuned. Therefore, the style of finally generated
image can appear very distinctive from vendor to vendor.

These differences in image style pose a significant challenge for CAD
systems, particularly those equipped with deep learning. This is because
these systems require training data that are diverse and representative
of the variability in the real world. However, it is extremely expensive
and impossible to gather vast amounts of diverse data from numerous
vendors. Meanwhile, it is well known that domain gaps exist between
datasets from different hospitals, primarily due to the differences in
institutional imaging conventions and protocols. Accordingly, the gen-
eralization of DL-based CAD systems may be limited if the data of each
vendor is not sufficiently included in the training stage. To overcome
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Fig. 1. Appearance differences across six styles/domains of mammograms: (a) GE, (b)
United Imaging Healthcare (UIH), (c) Hologic, (d) Siemens, (e) INbreast, and (f) DDSM.
For each style/domain, a zoomed-in of MLO view is provided to facilitate the visual
comparison.

this challenge, a domain generalization method is needed to alleviate
the burden of collecting large and diverse data from various vendors
for DL-based CAD schemes.

To address the specific challenges in mammography analysis we
propose a novel application of contrastive learning techniques to en-
hance the generalizability. While contrastive learning has shown
promise in various medical imaging domains, such as chest radio-
graphy [13,14] and dermatology [13], its potential for extracting
domain-invariant features in mammography remains largely unex-
plored. Our work specifically targets the vendor domain gap and view
position variations unique to mammography. We introduce a multi-
style and multi-view contrastive learning (MSVCL+) method designed
to improve CAD performance across different vendor styles and view
positions in mammography. To tackle the challenge of generalization
across multiple vendor styles, we first employ CycleGAN [15] to gener-
ate diverse vendor-style images from a single source. These multi-style
images are then used as positive samples in our multi-style contrastive
learning (MSCL+) approach. Additionally, to address the variability
between Craniocaudal (CC) and Mediolateral Oblique (MLO) views, we
pair these views of the same breast as positive samples in our multi-
view contrastive learning (MVCL+) scheme. This combined approach
aims to create a more robust feature representation that is invariant
to both vendor-specific image characteristics and view position differ-
ences. Following self-supervised training, we utilize the backbone of
our contrastive learning model for various downstream tasks critical
in mammography analysis. These tasks include mass detection, multi-
view mass matching, BI-RADS rating, and breast density classification.
For the multi-view mass matching task, we further employ contrastive
learning by treating input Region of Interest (ROI) patches from the CC
and MLO views of the same mass as positive pairs. This comprehensive
approach addresses multiple aspects of the domain generalization
problem specific to mammography, potentially improving the overall
performance and reliability of CAD systems across different clinical
settings and imaging equipments.

The domain generalization for the DL technique can be classified
into three categories: (1) Conventional data augmentation methods,
e.g., rotation, flip, deformation, and color jittering [16,17]. These aug-
mentation methods can help the model adopt images from slightly dif-
ferent domains. (2) Learning-based methods with generative deep neu-
ral networks that synthesize data in the target domain [18–20]. These
networks are implemented by learning an image-to-image mapping
from the original to the target domain. (3) Learning-based methods for
the exploration of task-specific and domain-invariant features [21–24].
Instead of learning an image-to-image mapping, these methods directly
learn a representation-to-representation mapping. However, all of these
learning-based approaches rely on labeled data which can be expensive
to acquire and is often limited in availability. It is crucial to develop a
novel approach for automatically extracting domain-invariant features
from large, unlabeled datasets.
2 
To address the above-mentioned issues, here we explore the con-
trastive learning technique to augment the generalizability of DL-based
CAD. Contrastive learning has also been shown to generate better pre-
trained models for several medical image problems, e.g., diagnosis of
chest radiography [25,26] and dermatology images [25], but is less ex-
ploited for extracting domain-invariant features. To specifically address
the issue of the vendor domain gap, MSVCL+ is proposed to boost the
CAD performance in mammography. Specifically, to attain the goal of
generalization robustness to multiple vendor styles, the CycleGAN [27]
technique is employed to generate multiple vendor-style images from
a single vendor-style image. The generated multi-style images from
the same source are randomly paired as positive samples for MSCL+.
To further gain generalizability for the position view, the CC and
MLO views of the same breast are also paired as positive samples in
the scheme of MVCL+. After self-supervised training, the backbone of
the contrastive learning model is employed for the downstream tasks,
including mass detection, multi-view mass matching, BI-RADS rating,
and breast density classification. For the multi-view mass matching
task, we also employ the contrastive learning approach in which the
input region of interest (ROI) patches from the CC and MLO views of
the same mass are treated as a positive pair. The ‘‘+’’ signs of MSVCL+,
MSCL+, and MVCL+ are to distinguish them from the same notations
in the previous work [15].

Our main contributions are summarized in threefold:

• A novel contrastive learning scheme is proposed to boost the gen-
eralizability and augment the robustness of the mammographic
image analysis tasks. With style samples augmented by CycleGAN
and style blending methods, the contrastive learning scheme can
seek a robust feature embedding against various vendor styles. To
our best knowledge, this is the first thorough study to explore the
self-learning technique in addressing the mammographic domain
gap problem w.r.t. vendor styles and views.

• The proposed method has been shown to be helpful in boosting
the domain generalizability for the four mammographic tasks,
namely mass detection, matching, BI-RADS rating, and breast
density classification. The performances of the four tasks have
been extensively and thoroughly evaluated on both seen and
unseen domains.

• A relatively large dataset, 27,000 unlabeled and 2700 labeled
images, was involved in the development and testing of the
contrastive learning and the deep learning schemes for the mam-
mographic tasks. The proposed method is trained on three seen
vendor domains and evaluated on data from six vendor domains,
including seen and unseen domains. In particular, two public
datasets of unseen domains were collected from populations with
ethics distinctive from the in-house data. Meanwhile, a rigorous
data-hungry experiment is conducted to illustrate that the pro-
posed domain generalization method may promise better task
performance than other compared SOTA methods.

This study is an extension work of [15] with significant improve-
ments. These improvements can be summarized in threefold. (1) Previ-
ous work [15] employed CycleGAN to synthesize discrete vendor styles.
Therefore, the scope of vendor styles may be finite for contrastive
learning. To further enrich the diversity of the vendor styles, a simple
blending method is adopted to augment the variation of synthesized
styles. Higher variation of styles may offer more search space for
contrastive learning to seek better feature embedding. (2) In this study,
the bundling strategy for the positive and negative pairs in contrastive
learning is revised based on the knowledge of mammography. The
strategy may better help the contrastive learning to find a more robust
feature embedding. (3) The size of labeled data is expanded by 75%,
encompassing a larger training and validation dataset, along with the
addition of a new unseen testing dataset, while the proposed method is
also subjected to more thorough and rigorous evaluation across three
additional downstream tasks.
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The rest of the paper is organized as follows: Section 2 gives a brief
review of related works. Section 3 demonstrates the details of the pro-
posed domain generalization method. Section 4 describes experimental
results and visualizations. Finally, Section 5 concludes the paper.

2. Related works

2.1. Domain generalization

Domain generalization is an important research area to overcome
performance degradation caused by cross-domain variations in medical
image analysis. Many methods [14,22,23,28,29] have been proposed to
improve generalizability through data augmentation or exploiting the
general learning strategy. However, learning-based methods are more
desirable and related to our work, we focus on this category in the
following.

With the recent developments in machine learning techniques,
plenty of works utilize representation learning to address the do-
main generalization problem. They can be mainly divided into four
categories: kernel-based methods [30,31]; domain adversarial learn-
ing [32,33]; explicit feature alignment [34–36]; and invariant risk
minimization [13,37]. Explicit feature alignment aims to align the
features from source domains to learn domain-invariant represen-
tations. For example, Motiian et al. [34] develop a cross-domain
contrastive loss for representation learning in which mapped domains
are semantically matched, while remaining maximally separated. Pan
et al. [35] implement instance normalization layers to CNNs to improve
model generalization. Recently, Fan et al. [36] present that adaptively
learning the normalization with the combination of multiple normal-
ization strategies can improve domain generalization capabilities. The
method [38] combines both the data argumentation and domain invari-
ant feature extraction strategies to improve the domain generalization
ability. The algorithms [39,40] first split the seen domain to various
new domains, following by a model, e.g., meta-learning, to extract
representative features.

Following the success of self-supervised learning [41], several stud-
ies [42–44] build self-supervised tasks from large-scale unlabeled data
to learn generalized representations. For instance, Carlucci et al. [42]
present a self-supervision task of solving jigsaw puzzles to learn the con-
cepts of spatial correlation. Daehee et al. [43] propose a self-supervised
contrastive regularization approach that utilizes only positive data
pairs. Seogkyu et al. [44] exploit stylized features for regularization
via consistency loss and domain-aware supervised contrastive loss.
However, these methods were not specifically designed for medical
images. Therefore, the efficacy of these methods [42–44] for medical
image analysis is unknown.

2.2. Contrastive learning

Recently, contrastive learning has been proven to be notably ef-
fective in self-supervised learning. It draws samples from the same
class (a positive pair) close together while drives different samples (or
negative pairs) apart in the latent embedding space through contrastive
loss. Chen et al. [45] propose SimCLR, a contrastive learning-based
system for learning effective presentations by maximizing the similarity
between two different augmented views from the original image. He
et al. [46] utilize momentum contrast (MoCo) which divides each
image into a query, and then generates a key by performing two distinct
augmentations. MoCo v2 [47] incorporates enhancements such as the
integration of a two-layer MLP head with ReLU during the unsuper-
vised training stage, and the implementation of a data augmentation
technique involving blurring. SimCLR and MoCo provide promising
results that are much closer to supervised-learning compared to other
self-supervised learning methods. These frameworks are widely used
in the pre-train stage and showed constant improvement for various
downstream tasks. Later, Grill et al. [48] introduce a technique called
3 
Fig. 2. Our domain generalization method for mammograms involves two main steps.
In stage (a), the CycleGAN augmented with an image blending technique is adopted to
generate diverse vendor styles. The contrastive learning scheme is further applied to
learn better feature embedding against various domains, from the generated styles. In
stage (b), the feature embedding encoded in the backbone of the contrastive learning
model serves as the pre-trained model for downstream tasks.

BYOL for learning feature representations without the massive number
of negative pairs. Basically, BYOL added another MLP on the SimCLR
to create an asymmetrical architecture. In this paper, we adopt the
SimCLR as the pre-training method, because of its advantage of easy
implementation. Meanwhile, we further replace the SimCLR with both
MoCo v2 and BYOL as the pretraining methods. The experimental
results suggest there is no significant difference among all pre-training
methods.

2.3. Mammographic image analysis

Mass detection is one of the most fundamental problems in mam-
mographic image analysis [6]. Jung et al. [49] use the RetinaNet [50]
model as a one-stage mass detector in mammograms. Shen et al. [51]
propose a framework that depends on adversarial learning to detect the
mass in mammograms. The adversarial learning helps align the latent
target features from unlabeled datasets with labeled source domain
latent features. Moreover, CAD schemes also require supplementary
mammographic image analysis functions such as mass matching, ma-
lignancy classification, and breast density classification. Yan et al. [7]
exploit multi-tasking properties of deep networks to jointly learn mass
matching and classification. Yang et al. [52] present MommiNet-v2 to
incorporate the malignant information from both biopsies and BI-RADS
categories. Zhao et al. [9] present an innovative bilateral-view adap-
tive spatial and channel attention network (BASCNet) for fully auto-
mated breast density classification. Despite the many existing methods
for mammographic image analysis, few of them have been evalu-
ated on unseen domains, which means that their out-of-distribution
generalization has not been thoroughly examined.
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Fig. 3. Illustration of the MSVCL+ scheme. P1 and P2 indicate different patients. The letters A, B, and C represent different vendor styles generated from one source domain.
The right box shows the concept of bundling positive and negative pairs for the contrastive learning schemes. Specifically, the red circle with a minus sign inside stands for the
negative pair, while the yellow circle with a plus sign inside indicates the positive pair.
3. Method

Fig. 2 illustrates the proposed domain generalization framework for
mammography analysis. Our approach consists of two main stages.
In stage (a), a style-robust backbone is trained with the contrastive
learning technique as the pre-trained model for the downstream tasks.
To facilitate contrastive learning, the CycleGAN technique is first em-
ployed to diversify the vendor styles. In the following, a multi-style
and multi-view contrastive learning scheme is carried out to embed
a general feature space, which is more robust to both the vendor-
style and view domains, in the pre-trained backbone. The common
downstream tasks of mammography analysis, including mass detection,
matching, BI-RADS rating, and breast density classification, are further
fine-tuned with the pre-trained backbone for better generalizability.

3.1. Contrastive learning scheme

Contrastive learning is a self-supervised learning method that trains
a network to encode the image representation into a proper vector
space without the requirement of explicit annotations. The derived
model from contrastive learning commonly serves as a pre-trained
model for the training of various downstream tasks.

The basic idea of contrastive learning is to pack the diversified
images of the same class/object/subject as positive pairs for the explo-
ration of proper feature embedding. Specifically, given a mini-batch of
𝑁 images, each example is randomly augmented twice with diversify-
ing operations, e.g., cropping and rotation, to generate an augmented
mini-batch with 2𝑁 samples. In the augmented mini-batch, two sam-
ples from the same image source are treated as a positive pair (𝑖, 𝑗),
whereas the other 2(𝑁 − 1) samples within the mini-batch are regarded
as negative pairs. With the positive and negative pairs, contrastive
learning is driven by the contrastive loss to maximize the agreement
for the positive pairs. The contrastive loss is defined as:

𝓁𝑖,𝑗 = − log exp(sim(𝑧𝑖, 𝑧𝑗 )∕𝜏)
∑2𝑁

𝑘=1 1[𝑘≠𝑖] exp(sim(𝑧𝑖, 𝑧𝑘)∕𝜏)
, (1)

where sim(⋅) is the dot product and 𝑧 refers to the extracted features.
1[𝑘≠𝑖] ∈ {0, 1} is an indicator function equaling 1 when 𝑘 ≠ 𝑖. 𝜏 is a
temperature parameter.

By maximizing the agreement for the positive pairs, the learned
features of corresponding images are supposed to ‘‘attract’’ each other,
while the learned features of non-corresponding images ‘‘repel’’ each
other by minimizing the agreement for the negative pairs. We further
4 
Fig. 4. Visual comparison of style transfer results. The first three rows display the
results of style transfer using original images from style A, B, and C. The left column
displays generated outcomes of A→B and A→C, whereas the center column represents
generated outcomes of B→A and B→C. The right column presents the generated results
of C→A and C→B. Each style contains both non-dense and dense breast cases. The last
row demonstrates the series of synthesized styles from styles A and B with blending
method shown in Eq. (2).

leverage the concept of contrastive learning to explore the generaliza-
tion of various vendor styles and the domains of CC and MLO views.
The details of MSVCL+ are elaborated in the following section.

3.2. Multi-style and multi-view contrastive learning

To seek feature embedding with better generalizability for the
vendor-style and view domains, MSVCL+ is devised. The synergy of the
two learning schemes is illustrated in Fig. 3. Specifically, CycleGAN is
employed to diversify the vendor styles of the original data. The style
diversification is further augmented with an image blending operator.
Afterward, the positive and negative pairs are packaged for contrastive
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learning in the multi-style and multi-view schemes, respectively. The
synergized contrastive learning scheme is driven by the optimization
of both multi-style and multi-view contrastive losses.

3.2.1. Multi-style contrastive learning
The image styles vary for different vendors, see Fig. 1. Therefore, the

various vendor styles are regarded as distinctive domains. To endow
the backbones of downstream tasks with better generalizability, we
exploit the CycleGAN [27] augmented with a blending technique as
the diversifying operation for contrastive learning. Specifically, given
𝑀 seen vendor-style domains, we train

(𝑀
2

)

generators, which map the
data distribution of source domain 𝛺𝑖 to target 𝛺𝑗 domain, ∀𝑖, 𝑗 ∈ 𝑀 .
With the

(𝑀
2

)

generators, each of the original 𝑁 images in the training
set can be diversified into 𝑀− 1 transferred images, which is illustrated
in the first three rows of Fig. 4. Moreover, we further use the image
blending technique to achieve a smooth transition between two styles:

𝑠𝑡𝑦𝑙 𝑒𝑏𝑙 𝑒𝑛𝑑 = 𝑠𝑡𝑦𝑙 𝑒𝐴 × (1.0 − 𝑎𝑙 𝑝ℎ𝑎) + 𝑠𝑡𝑦𝑙 𝑒𝐵 × 𝑎𝑙 𝑝ℎ𝑎, (2)

where 𝑎𝑙 𝑝ℎ𝑎 is the interpolation factor randomly selected from a set of
values ranging from 0 to 1 with an interval of 0.1, 𝑠𝑡𝑦𝑙 𝑒𝐴 corresponds
to the style representation of an image from domain A, while 𝑠𝑡𝑦𝑙 𝑒𝐵
represents the style from domain B. The blending results are illustrated
in the last row of Fig. 4. In practice, for each original image, the samples
for the bundling of positive and negative pairs are randomly picked
from the pool of 𝐿 =

(𝑀
2

)

× 9 + 𝑀 blended style. With the aid of this
blending technique, the diversity of the style samples for the MSCL+
will be significantly enhanced. Compared to the previous MSCL, the
number of style samples has increased by 10 times.

In MSCL+, the two styles of the same source image (e.g., style A
and style B from the CC view of a patient) are attracted together, see
stage (a) in Fig. 2, while the same view of different patients (e.g., CCs
of two patients, regardless of styles) are repelled from each other. The
positive pairs for contrastive learning are constituted with any two
images diversified from the same source image in the original 𝑁 image
set. Therefore, there are possible 𝑁 ×

(𝐿
2

)

positive pairs available for
random selection in contrastive learning. Referring to the right box in
Fig. 3, the bundling strategy for negative pairs is further refined by only
considering the same view positions from different patients, e.g., CC
views from patient 1 and patient 2, to exclude the factor of domain gap
between distinct views. The combination of CC and MLO views from
different patients for a negative pair, which were involved in previous
MSCL, may confuse contrastive learning and not be informative samples
for effective training. The contrastive learning is then carried out by
minimizing the Eq. (1) to seek feature embedding space with better
generalizability to various vendor domains.

3.2.2. Multi-view contrastive learning
A standard examination of mammography consists of CC and MLO

views for each breast. Because the two standard views are taken from
different angles of the same breast, they are mutually complementary
for diagnosis. To seek domain-invariant feature embedding against
different view domains, we explore the contrastive learning scheme to
consider the distinctive view domains. Specifically, the CC and MLO
views of the same breast from the same patient (e.g., LCC and LMLO of
a patient) are treated as a positive pair, whereas the other combination
of the CC and MLO views from different patients (e.g., LCC of patient
1 and LMLO of patient 2) is a negative pair. Similarly to MSCL+, the
bundling strategy for negative pairs is further restricted to exclude the
pairing of the same view positions from different patients, e.g., LCC
views of patients 1 and 2, in MVCL+. This type of pairing was adopted
in previous MVCL and may be redundant for training. To further enrich
the sample diversity, we implement style-diversifying operations for
the CC and MLO in each positive or negative pair. With the prepared
sample pairs, MVCL+ can be carried out for the embedding of view-
invariant features. The outperformance of MSCL+ and MVCL+ to the
previous versions will be shown in the ablation experiments.
5 
Fig. 5. The multi-view mass matching scheme with contrastive learning. The green
boxes indicate regions of true positive mass, while the red boxes refer to false positives.
In addition, the purple dots represent the location of the nipple, and the blue line
suggests the chestwall.

3.3. Downstream tasks

3.3.1. Mass detection
In this study, the classic single-view detection network of FCOS [53]

is employed to identify mass in mammography. The derived pre-
trained model from the self-supervised learning stage is adopted as
the backbone of the FCOS architecture for the mass detection tasks.
The detected results from CC and MLO paired images are two sets
of candidate bounding boxes: 𝐵𝑐 𝑐 = {𝑏1𝑐 𝑐 ,… , 𝑏𝑖𝑐 𝑐 ,… , 𝑏𝑁𝑐 𝑐} and 𝐵𝑚𝑙 𝑜 =
{𝑏1𝑚𝑙 𝑜,… , 𝑏𝑗𝑚𝑙 𝑜,… , 𝑏𝑀𝑚𝑙 𝑜}.

3.3.2. Mass matching
In the clinical reading, two found mass instances in the CC and

MLO views are regarded as the same mass if several anatomical metrics,
e.g., distance to nipple, appearance, and shape, are satisfied. If a mass
can be found in both views, the diagnostic confidence is higher. On
the other hand, the contrastive learning technique naturally takes two
inputs for pair matching and can potentially be applied to realize the
mass matching process. Inspired by this, we address mass matching
with the incorporation of anatomical cues in contrastive learning.
Specifically, the two sets of true-positive (TP) and false-positive (FP)
bounding boxes from the FCOS are defined based on the IoU metrics
with the ground truth, and these boxes can be further named as 𝑇 𝑃𝑐 𝑐 ,
𝐹 𝑃𝑐 𝑐 , 𝑇 𝑃𝑚𝑙 𝑜 and 𝐹 𝑃𝑚𝑙 𝑜 w.r.t. MLO and CC views. The pair of 𝑇 𝑃𝑐 𝑐 and
𝑇 𝑃𝑚𝑙 𝑜 that satisfies anatomical metrics is treated as a positive pair with
the matching label Y of 1. On the other hand, the combination of boxes
with any one from either 𝐹 𝑃𝑐 𝑐 or 𝐹 𝑃𝑚𝑙 𝑜, is regarded as a negative pair
with label 𝑌 of 0.

As shown in Fig. 5, the CC/MLO patch matching is based on the
metrics of appearance similarity, distances to the nipple and chestwall,
and the box size. In the training process, the max margin contrastive
loss is adopted as the matching error:

𝐿𝑚𝑎𝑡 =
1
2𝐾

𝐾
∑

𝑘=1
𝑌 𝐷2 + (1 − 𝑌 )𝑚𝑎𝑥(𝑚 −𝐷 , 0)2, (3)

where 𝐷 = ‖

‖

𝑓1 − 𝑓2‖‖2 refers to the L2 distance between the embed-
ding features of paired samples. The label 𝑌 is 1 if the two sam-
ples are matched, otherwise 0. The margin 𝑚 is a hyper-parameter,
which suggests the lower bound distance between patches that are not
matched.
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Table 1
Distributions of data usage for different stages.

Domain Dataset Vendor Style transfer Self-supervision Downstream tasks (train/val/test)

Style A GE 1000 8000 600/100/100
Seen Style B UIH 1000 8000 600/100/100

Style C HOLOGIC 1000 8000 600/100/100

Style D SIEMENS 0 0 0/0/100
Unseen Style E INbreast 0 0 0/0/100

Style F DDSM 0 0 0/0/100
Table 2
Ablation analysis w.r.t. various pre-training settings for mass detection tasks. The assessment metric is mAP [%].

Pre-training method Pre-training dataset Seen domain Unseen domain

Style A Style B Style C Avg. Style D Style E Style F Avg.

Random None 59.8 70.5 66.5 65.6 ± 5.4 51.3 79.9 65.8 65.7 ± 14.3
Supervised ImageNet 84.0 85.7 79.1 82.9 ± 3.4 82.4 76.3 81.0 79.9 ± 3.2
SimCLR Mammo 84.4 91.6 84.1 86.7 ± 4.2 82.2 77.3 75.0 78.2 ± 3.7
SimCLR ImageNet → Mammo 86.9 92.0 86.0 88.3 ± 3.2 86.2 80.5 84.2 83.6 ± 2.9

MSCL ImageNet → Mammo 87.6 92.3 85.8 88.6 ± 3.4 88.5 85.2 86.0 86.6 ± 1.7
MVCL ImageNet → Mammo 88.9 92.4 84.3 88.5 ± 4.1 86.7 85.3 87.3 86.4 ± 1.0
MSVCL ImageNet → Mammo 91.8 94.0 89.1 91.6 ± 2.5 87.3 89.7 88.4 88.5 ± 1.2

MSCL+ ImageNet → Mammo 92.2 94.3 86.7 91.1 ± 3.9 89.5 86.2 89.0 88.2 ± 1.8
MVCL+ ImageNet → Mammo 90.8 94.1 86.7 90.5 ± 3.7 89.7 86.7 90.4 88.9 ± 2.0
MSVCL+ ImageNet → Mammo 92.9 93.8 87.0 91.2 ± 3.7 90.4 89.4 94.1 91.3 ± 2.5
Table 3
Ablation analysis w.r.t. various pre-training settings for the four tasks. The assessment metrics are mAP [%] for mass detection, and acc [%] for the tasks of mass matching,
BI-RADS rating, and breast density classification.

Pre-training method Pre-training dataset Seen domain Unseen domain

Detection Match BI-RADS Density Detection Match BI-RADS Density

Random None 65.6 ± 5.4 75.0 ± 1.4 55.1 ± 3.9 65.3 ± 1.2 65.7 ± 14.3 60.3 ± 4.7 66.1 ± 34.7 40.3 ± 12.6
Supervised ImageNet 82.9 ± 3.4 86.3 ± 5.8 85.4 ± 3.5 90.3 ± 2.1 79.9 ± 3.2 87.4 ± 3.4 81.4 ± 17.1 77.0 ± 6.6
SimCLR Mammo 86.7 ± 4.2 79.7 ± 3.7 79.4 ± 4.7 92.3 ± 1.2 78.2 ± 3.7 81.5 ± 7.6 79.5 ± 17.2 73.0 ± 19.2
SimCLR ImageNet → Mammo 88.3 ± 3.2 80.0 ± 6.7 87.4 ± 6.7 91.7 ± 2.5 83.6 ± 2.9 85.0 ± 7.4 83.3 ± 18.4 76.3 ± 16.3

MSCL ImageNet → Mammo 88.6 ± 3.4 85.7 ± 4.1 86.4 ± 3.1 91.7 ± 1.5 86.6 ± 1.7 87.1 ± 6.6 85.8 ± 13.5 80.3 ± 6.2
MVCL ImageNet → Mammo 88.5 ± 4.1 89.3 ± 2.9 89.2 ± 4.8 90.7 ± 0.6 86.4 ± 1.0 84.6 ± 7.1 84.2 ± 18.3 80.3 ± 6.6
MSVCL ImageNet → Mammo 91.6 ± 2.5 89.6 ± 4.3 89.3 ± 4.9 91.7 ± 3.2 88.5 ± 1.2 91.5 ± 2.9 85.9 ± 9.4 81.0 ± 4.4

MSCL+ ImageNet → Mammo 91.1 ± 3.9 92.2 ± 1.9 90.0 ± 4.5 93.0 ± 1.0 88.2 ± 1.8 89.7 ± 4.2 86.8 ± 9.4 82.3 ± 5.8
MVCL+ ImageNet → Mammo 90.5 ± 3.7 89.0 ± 7.0 87.6 ± 3.5 92.3 ± 1.5 88.9 ± 2.0 86.9 ± 5.9 86.7 ± 14.8 83.3 ± 5.6
MSVCL+ ImageNet → Mammo 91.2 ± 3.7 90.6 ± 3.1 89.0 ± 5.5 92.0 ± 2.6 91.3 ± 2.5 92.9 ± 2.5 87.8 ± 9.3 84.3 ± 8.3
2

3.3.3. BI-RADS rating and breast density classification
In addition to mass detection and matching, we also illustrate the

domain generalization performance on the two major downstream
classification tasks of mammography analysis, i.e., BI-RADS rating and
breast density classification. For BI-RADS rating, we adopt the pre-
trained model for the classification model with five BI-RADS scores of
2∼3, 4 A, 4B, 4C, and 5. In the context of breast density classification,
the pre-trained model is also adopted for the classification model with
the input of a whole mammogram, either CC or MLO view. The breast
density classes are non-dense and dense, i.e., the density categories of
A∼B and C∼D.

4. Experiments and results

4.1. Datasets

Table 1 shows the details of data usage in this paper. One in-house
nd two public datasets are involved for model training and perfor-
ance evaluation. The in-house dataset was collected from machines

f four vendors: GE, United Imaging Healthcare (UIH), Hologic, and
iemens, denoted as A, B, C, and D, respectively, for short. All image

data from four vendors were acquired from Asian women. The data
from vendors A, B, and C are set as seen domains, whereas vendor D is
treated as an unseen domain. The annotation for the in-house dataset
was first carried out by two radiologists with 3–5 years of experience

and then reviewed by a senior radiologist with more than 10 years

6 
of experience. To further evaluate the generalizability of the proposed
method, the two public datasets, i.e., INbreast [54] and DDSM [55],
denoted as E and F, respectively, are treated as the unseen datasets.
In total, 29,700 mammograms (14,850 CC/MLO pairs) are involved in
this study. 27,000 unannotated images are used for the training of stage
(a) with style transfer and contrastive learning schemes. Specifically,
all of the unannotated images are from the seen domain, including
styles A, B, and C. The number of images used in each style is 1000 for
style transfer and 8000 for self-supervision, respectively. The remaining
700 annotated images are employed for the training, validation, and

testing of stage (b), i.e., the downstream tasks. For each style in the seen
domain, there are 600, 100, and 100 images for training, validation,
and testing, respectively. For each style in the unseen domain, there
are 100 images for testing. Datasets A, B, C, D, and E are tested on four
downstream tasks, while dataset F is tested on three downstream tasks
without BI-RADS rating, because the BI-RADS scores are not available
in the DDSM.

4.2. Implementation details

In stage (a), the generator of the CycleGAN is a ResNet with 9
blocks of 20 convolution layers, whereas the discriminator is PatchGAN
composed of 6 convolutional layers. The loss functions for the generator
and discriminator are L1 and MSE, respectively. Random cropping of
image patches with the size of 512 × 512 is implemented in the training
process. For data standardization, a preprocessing step is performed
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Table 4
Performance comparison among MSVCL+ and other SOTA domain generalization methods w.r.t mass detection task. The assessment metric is
mAP [%].

Method Seen domain Unseen domain

Style A Style B Style C Avg. Style D Style E Style F Avg.

Baseline 86.9 92.0 86.0 88.3 ± 3.2 86.2 80.5 84.2 83.6 ± 2.9
BigAug 88.8 89.9 84.7 87.8 ± 2.7 88.4 86.5 84.3 86.4 ± 2.1
DD 86.9 90.7 86.1 87.9 ± 2.5 87.4 87.9 85.8 87.0 ± 1.1
EISNet 89.3 89.1 82.8 87.1 ± 3.7 86.2 83.8 85.6 85.2 ± 1.2
MSVCL 91.8 94.0 89.1 91.6 ± 2.5 87.3 89.7 88.4 88.5 ± 1.2
MSVCL+(ours) 92.9 93.8 87.0 91.2 ± 3.7 90.4 89.4 94.1 91.3 ± 2.5
Table 5
Performance comparison among MSVCL+ and other SOTA domain generalization methods w.r.t. the four tasks. The assessment metrics for the four tasks are the same with
Table 3.

Method Seen domain Unseen domain

Detection Match BI-RADS Density Detection Match BI-RADS Density

Baseline 88.3 ± 3.2 80.0 ± 6.7 87.4 ± 6.7 91.7 ± 2.5 83.6 ± 2.9 85.0 ± 7.4 83.3 ± 18.4 76.3 ± 16.3
BigAug 87.8 ± 2.7 88.9 ± 3.2 89.0 ± 4.4 90.0 ± 4.0 86.4 ± 2.1 87.9 ± 6.6 83.3 ± 17.0 78.7 ± 5.0
DD 87.9 ± 2.5 84.4 ± 4.8 87.5 ± 8.3 90.3 ± 5.5 87.0 ± 1.1 88.5 ± 2.7 85.3 ± 14.2 82.0 ± 6.2
EISNet 87.1 ± 3.7 86.8 ± 2.7 89.6 ± 4.7 88.7 ± 7.1 85.2 ± 1.2 90.9 ± 2.8 82.4 ± 17.0 80.7 ± 7.6
MSVCL 91.6 ± 2.5 89.6 ± 4.3 89.3 ± 4.9 91.7 ± 3.2 88.5 ± 1.2 91.5 ± 2.9 85.9 ± 9.4 81.0 ± 4.4
MSVCL+(ours) 91.2 ± 3.7 90.6 ± 3.1 89.0 ± 5.5 92.0 ± 2.6 91.3 ± 2.5 92.9 ± 2.5 87.8 ± 9.3 84.3 ± 8.3
to align all various mammograms into the physical pixel spacing of
0.1 mm. The epoch is empirically set to 100 for the training of Cy-
cleGAN, which can lead to the best mass detection performance in the
validation dataset. For balanced training, each pass of style transfer,
e.g., style A to style B, the training data of the source and target styles
are set to the same number. Codes and models of style transfer are
available at: https://github.com/lizheren/MSVCL_PLUS.

The backbone model for the contrastive learning scheme and down-
stream tasks is ResNet-50. For fair comparison, the learning rate and
batch size for all practices of the contrastive learning scheme are set
at 0.3 and 256, respectively. Meanwhile, all contrastive learnings in all
experiments share the same diversifying operations, including random
cropping, random rotation in ±10◦, horizontal flipping, and random
color jittering (strength = 0.2).

The model backbones of all downstream tasks are initialized with
the pre-trained models from the self-learning scheme, i.e., stage (a) in
Fig. 2. For the training of FCOS models, the SGD optimization method
is adopted with the parameters of learning rate, weight decay, and
momentum set as 0.005, 104, and 0.9, respectively. The epoch and
batch size are set to 50 and 8, respectively, throughout all experiments.
Several augmentation methods, e.g., random flipping and scaling, are
also implemented in the training of FCOS.

For the training of the remaining downstream tasks, the SGD
method is also employed, with the parameters of learning rate, weight
decay, and momentum set as 0.001, 105, and 0.9, respectively. The
epoch and batch size are set to 50 and 128, respectively. For the
tasks of mass matching and BI-RADS rating, the input of the model
is the squared ROI derived from the box identified by the detection
network. Specifically, the squared ROI is first defined by taking the
largest side length of the detected box with the same center. To consider
the context, the squared ROI is further enlarged by 20%. For the task
of breast density classification, the input to the model is the original
mammograms. For these three tasks, the input images are resized to
224 × 224 pixels with the data augmentation of random flipping and
scaling in the training process. The contrastive learning model for the
mass matching task is trained with the setting of the hyper-parameter
margin 𝑚 as 10 in Eq. (2). To facilitate the downstream mass matching
task, a nipple and muscle segmentation model is employed for the
computation of object-to-nipple and object-to-chestwall distances.

4.3. Ablation study

Table 2 reports the ablation study results on mass detection tasks
w.r.t. different styles, and Table 3 shows the ablation study results of
7 
Fig. 6. Performance comparison for all implemented domain generalization methods
in data hungry experiments.

averaged performances of the four downstream tasks over the seen and
unseen domains. The ablation experiments are considering three major
aspects: (1) pre-trained models, (2) various combinative contrastive
learning schemes on style and view domains, and (3) revised versions of
contrastive learning compared to our previous work [15]. Specifically,
the performance comparison of different pre-trained models can be
found in the first four rows of the Tables 2 and 3. The first row stands
for training from scratch, whereas the second row indicates perfor-
mances with a pre-trained model from ImageNet. The third ‘‘Mammo’’
row suggests that the SimCLR is trained from scratch with the unlabeled
images of vendors A, B, and C. The pre-trained model of the fourth
row, ‘‘ImageNet → Mammo’’ is derived by the SimCLR, which was
initialized with ImageNet parameters and tuned with the Mammo set
used in the third rows. As can be seen, the pre-trained model from
‘‘ImageNet → Mammo’’ derived by SimCLR is helpful for mass detection
and other tasks.

By observing the groups of 5th to 7th rows and 8th to 10th rows
in Tables 2 and 3, the performance can be mostly boosted by con-
sidering both style and view domains in the contrastive learning.
Meanwhile, it may also be found that the pre-trained models from
the revised versions, i.e., MSCL+, MVCL+, and MSVCL+, can mostly
attain better performance on the five downstream tasks, particularly
on unseen domains. The underlying reasons for the performance boost
may be twofold. First, the increase in style diversity by the blending
method may be helpful in seeking better embedding of style-invariant
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Fig. 7. Visual comparison of downstream tasks results in different styles w.r.t. various implemented methods. The green boxes refer to the mass regions labeled by radiologists,
while the red boxes indicate the mass regions detected by computerized methods. The blue dotted lines indicate the outcomes of mass matching. The BI-RADS rating and breast
density classification results are annotated at the top of the CC views.
Fig. 8. t-SNE visualization for the pre-trained models from Baseline and MSVCL+.

features. Second, the new selection strategy provides more reason-
able and informative negative pairs for contrastive learning that may
render the sought feature embedding a better representative for the
mammographic image domain.

4.4. Comparison with state-of-the-art (SOTA) methods

To further compare with other domain generalization methods,
three SOTA methods, i.e., BigAug [28], Domain Diversification (DD)
[19], and EISNet [21] are implemented. The BigAug [28] is a con-
ventional data augmentation method, whereas the DD [19] proposes a
generative learning method for domain generalization. The EISNet [21]
is a learning-based method that explores task-specific and domain-
invariant features. Our method, on the other hand, can decouple the
downstream tasks intrinsically and provide task- and domain-invariant
features. For a fair comparison, the other methods, including BigAug,
DD, and EISNet, were fine-tuned with the pre-trained backbone of Sim-
CLR on ‘‘ImageNet → Mammo’’, to ensure the use of the same amount
of data. Table 4 reports the comparison results on the mass detection
task with different styles, whereas Table 5 presents the performance
comparison for the four downstream tasks across both seen and unseen
domains. The Baseline rows in Tables 4 and 5 suggest the results of
SimCLR with ‘‘ImageNet → Mammo’’. As can be found in Table 5, the
MSVCL+ method achieves the best performance on unseen domains for
the four downstream tasks.

A data-hungry experiment is also conducted for the comparison
of SOTA methods. Five fraction settings, i.e., 5%, 10%, 20%, 50%,
and 100% of labeled (training) data, are applied for the experiment
8 
to illustrate the learning capability of domain generalization methods
in terms of the amount of training data. The data-hungry experiment
is conducted on the detection task, and the corresponding results are
shown in Fig. 6. As can be observed, the MSVCL+ outperforms other
methods even with a very small amount of data, i.e., the 5% fraction
setting. Fig. 7 lists several results of the implemented downstream tasks
from different domain generalization methods for visual comparison.
It can be observed that MSVCL+ can help the tasks attain better
performance.

4.5. Visualization of feature space

The t-SNE [56] is employed to illustrate the feature distribution
of various vendor domains for visual evaluation of generalizability.
In Fig. 8, the t-SNE plots compare the distributions of Baseline and
MSVCL+, where features of various vendors are masked with distinctive
colors. As can be seen, the vendor features of MSVCL+ are well mixed.
It may be suggested that the generalization w.r.t. the vendor domain is
relatively promising.

5. Discussion and conclusion

The effectiveness of our style-based augmentations in improving
contrastive learning can be understood through the lens of represen-
tation learning theory. First, the Style-based augmentations encourage
the model to learn representations that are invariant to vendor-specific
image characteristics while remaining equivariant to clinically relevant
features. This aligns with the principle that good representations should
be sensitive to important variations in the input while being robust to
nuisance factors (in this case, vendor-specific imaging characteristics).
For example, the diagnosis information should be vendor invariant.
Moreover, contrastive learning can be viewed as maximizing mutual
information between different views of the data, which is successfully
demonstrated in previous works. By introducing style variations, we
create views that share high-level semantic content but differ in low-
level statistics. This challenges the model to extract more abstract,
semantically meaningful features, potentially leading to more robust
representations.

A novel domain generalization method, denoted as MSVCL+, is pro-
posed to endow the deep learning models with better generalizability
to the vendor style and view domains. The MSVCL+ has been shown
to be helpful for four mammographic image analysis tasks, i.e., detec-
tion, matching, BI-RADS rating, and breast density classification. The
MSVCL+ can provide more robust feature embedding against various
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vendor-style domains. Experimental results suggest that our method
can effectively improve mammographic image analysis tasks on unseen
omains compared to the four implemented SOTA domain generaliza-

tion methods. In particular, our method achieves the best performance
on the public datasets INbreast and DDSM, where the domain gaps
may not only include image styles but also population factors. The
INbreast and DDSM datasets were collected from Western women. In
contrast, our methods were trained on mammograms acquired from
Asian women. Therefore, the generalization efficacy of our proposed
method is further corroborated.
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