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Objectives: Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to com- 

plement ultrasound examinations and x-ray mammography for early detection and diagnosis of breast 

cancer. However, images generated by various MRI scanners (e.g., GE Healthcare, and Siemens) differ both 

in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize 

to data from other scanners. In this work, we propose a method to solve this problem by normalizing 

images between various scanners. 

Methods: MRI normalization is challenging because it requires normalizing intensity values and map- 

ping noise distributions between scanners. We utilize a cycle-consistent generative adversarial network 

to learn a bidirectional mapping and perform normalization between MRIs produced by GE Healthcare 

and Siemens scanners in an unpaired setting. Initial experiments demonstrate that the traditional Cy- 

cleGAN architecture struggles to preserve the anatomical structures of the breast during normalization. 

Thus, we propose two technical innovations in order to preserve both the shape of the breast as well as 

the tissue structures within the breast. First, we incorporate mutual information loss during training in 

order to ensure anatomical consistency. Second, we propose a modified discriminator architecture that 

utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue. 

Results: Quantitative and qualitative evaluations show that the second innovation consistently preserves 

the breast shape and tissue structures while also performing the proper intensity normalization and noise 

distribution mapping. 

Conclusion: Our results demonstrate that the proposed model can successfully learn a bidirectional map- 

ping and perform normalization between MRIs produced by different vendors, potentially enabling im- 

proved diagnosis and detection of breast cancer. All the data used in this study are publicly available at 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226903 . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is one of the leading causes of death among 

omen around the globe [1] . Dynamic contrast-enhanced mag- 

etic resonance imaging (DCE-MRI) is widely used to complement 

ammography and ultrasound when evaluating breast cancer, par- 

icularly when assessing the extent of cancer before surgery [2] . In 

ome high-risk cases, it is also used for screening. 

A significant challenge related to the use of DCE-MRI is the lack 

f standardized imaging protocols [3,4] . Different MRI scanners use 

ifferent parameters, which previous research [5] has shown to 
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rastically alter image appearance, quality, as well as the radiomics 

nalysis. When the same patient is imaged using a different scan- 

er or even the same scanner with different scanner parameters, 

he produced MR images may vary significantly [6,7] . The incon- 

istencies present in the radio-frequency (RF) coil produce inten- 

ity variations in the underlying tissue across the scanned image 

8] . Additionally, varying scanner parameters alter the noise distri- 

ution of the images. An illustration of the difference in intensity 

nd noise distribution between images obtained from two different 

RI scanner manufacturers (GE Healthcare and Siemens) is shown 

n Fig. 1 . 

The high degree of inter-scanner variation proves to be a sig- 

ificant obstacle to the effective usage of DCE-MRI. In the context 

f radiomics, where a multitude of features are extracted from im- 

https://doi.org/10.1016/j.cmpb.2021.106225
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106225&domain=pdf
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Fig. 1. Example of images from two scanner displaying differences in intensity and 

noise distribution (a) GE Healthcare (b) Siemens. 

a

m

c

b

i

l

n

w

t

c

m

i

s

t

t

f

m

a

t

n

o

d

b

n

m

a

f

s

p

q

c

t

S

t

S

6

S

S

2

s

e

j

h

i

f

t

l

c

e

c

t

i

a

m

s

m

t

i

H

p

l

t

t

i

t

g

t

i

b

t

h

i

m

p

t

c

2

f

s

a

a

t

G

s

M

ges for further processing, the features from different modalities 

ay turn out to be incomparable, thus rendering them useless for 

lassification and prediction. The impact of scanner parameters on 

reast MRI radiomic features is demonstrated by [5] . Variability in 

mages has been shown to have an impact on the training of deep 

earning as well [9] . Algorithms trained on images from one scan- 

er may not perform well on exams at a different institution that 

as acquired using a different scanner [10] . Finally, the inconsis- 

ency between images from different scanners may affect the out- 

ome of computer-aided diagnosis. The ability to translate and nor- 

alize between images acquired by different vendors with vary- 

ng parameters of scanner would have tremendous positive con- 

equences. It would enable quantitative comparison of image fea- 

ures across various institutions. It would also improve generaliza- 

ion as deep models trained on one dataset could still perform in- 

erence on new datasets generated by different scanners. 

In order to address this issue, we frame the problem of nor- 

alization between images generated by different MRI scanners 

s an application of unpaired image-to-image translation. Most of 

he literature in the domain of MRI pre-processing has focused on 

ormalizing intensities but does not account for noise patterns. To 

ur knowledge, no one has yet proposed a method for MRI ven- 

or normalization. This process is challenging because it requires 

oth normalizing the intensity and learn the mapping between the 

oise patterns. In this work, we present a vendor normalization 

ethod that attempts to perform intensity normalization as well 

s noise distribution mapping between MRIs obtained from dif- 

erent scanners. The significant contributions of this work can be 

ummarized as follows: 

• We present a method for MRI vendor normalization that per- 

forms unpaired bidirectional normalization between DCE-MRIs 

produced by different scanner models. 
• We investigate the challenges of the standard CycleGAN ap- 

proach for normalization of medical images, primarily the diffi- 

culty in maintaining the breast shape and structures within the 

breast between the original image and the normalized image. 

Then, we propose and evaluate two technical solutions to this 

issue, as described below. 
• We propose the incorporation of a mutual information loss 

with the standard CycleGAN architecture in order to ensure 

that the breast shape and tissue structures within the breast 

is maintained. 
• We propose a modified discriminator capable of preserving 

the breast shape as well as the dense tissues and evaluate 
the effect of changing the field-of-view on the performance. i

2 
We further present and compare the performance of the pro- 

osed vendor normalization methods using both quantitative and 

ualitative approaches. We also highlight how the proposed work 

an potentially enable the synthesis of larger and richer datasets 

hat mitigate issues related to class imbalance. 

The remainder of the article is organized as follows. 

ection 2 describes the related work. Section 3 presents de- 

ails about the dataset, and the proposed methods are detailed in 

ection 4 . Information about training is furnished in Sections 5 and 

 presents the metrics for the evaluation of the proposed method. 

ection 7 reports the experimental results and discussions. Finally, 

ection 8 concludes with a summary. 

. Related work 

Unlike other imaging modalities, MRIs span a wide, non-linear 

pectrum of raw intensity values. They lack uniformity and often 

xhibit high variance between subjects. Even within a single sub- 

ect, intensity variations of 10–40% have been observed [11] . This 

eterogeneity makes it difficult to effectively train robust medical 

mage analysis algorithms on MRIs [12] . 

In response, various statistical approaches have been proposed 

or MRI intensity normalization. These include histogram equaliza- 

ion [6,13] , intensity scaling based on regions of interest [14] and 

andmarks [15] . However, histogram-based methods rely on dis- 

rete approximations of intensity distributions, leading to high lev- 

ls of inexactness [16] . Meanwhile, obtaining a high level of ac- 

uracy with landmark-based algorithms requires obtaining mul- 

iple landmarks from various tissue types in the image. Design- 

ng algorithms to perform this landmark selection task is difficult 

nd time-consuming [15] . Another limitation of many MRI nor- 

alization methods [17,18] is that they require auxiliary inputs 

uch as segmentation masks. This adds an intrinsic reliance on the 

odels that perform these preprocessing tasks. Alternatively, some 

echniques [19] attempt to leverage the physics of MR acquisition 

n order to develop intensity invariant segmentation algorithms. 

owever, using this type of approach requires integrating explicit 

hysics-based embedding into the segmentation algorithm, thus 

imiting this system’s ability to generalize to other downstream 

asks. 

Additionally, some of the methods discussed above [6,14,15] at- 

empt to perform intensity transformation between two fixed 

maging settings. That is, they make the assumption that the in- 

ensity relationship of the tissues is constant between the target 

roup and the reference group, which is not always true [20] . If 

he intensity standardization needs to be done for images com- 

ng from multiple centers, multiple transforming models need to 

e established. Resultantly, these methods do not have the ability 

o process new images that are not from an MR image group that 

as already been included in their training data. This severely lim- 

ts its usability. Work [21] presents a model based method for har- 

onization between patients scanned with differences in imaging 

arameters. 

Recently, GANs have been used in a variety of applications to 

he domain of medical imaging. An excellent review of GANs’ re- 

ent applications to the medical domain was presented by [22–

4] . Most of the previous work [25–28] has focused on using GANs 

or multimodal translation that in turn, improved diagnosis across 

everal modalities (e.g., ultrasound, PET, CT, and MRI). Addition- 

lly, GANs have successfully generated synthetic images [29–34] to 

ugment training datasets for algorithms that perform downstream 

asks—diagnosis, prognosis, segmentation, and registration. Lately, 

ANs have also been used for normalizing MRIs across different 

canners. Work by [20] proposed standardization method for brain 

RIs using GANs with a weak paired data strategy with focus on 

ntensity normalization only. Another work [30] applies CycleGAN 
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Table 1 

Distribution of patients & typical scanner parameters across different manufacturer. 

Vendor/Manufacturer Scanner model Acquisition matrix Echo time Repetition time # Subjects 

GE Healthcare 

Signa HDx 340 ×340 2.3 ms 5 ms 43 

Signa HDxt 
340 ×340 2.4 ms 5.5 ms 33 

384 ×360 2.4 ms 5.5 ms 1 

Siemens MAGNETOM Avanto 448 ×448 1.4 ms 4.1 ms 30 

320 ×320 1.4 ms 4.1 ms 17 

Table 2 

Details about training, test and validation dataset. 

GE Healthcare (GE) Siemens (SE) 

Train Set 5045 2776 

Test Set 1563 843 

Validation Set 173 93 
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o brain MRI normalization. However, CycleGAN has an intrinsic 

mbiguity with respect to geometric transformations [35] . More 

pecifically, since the anatomical structure of the images in a set 

f patient data is highly variable, CycleGAN is unlikely to utilize 

natomical features in order to determine the realness of an im- 

ge. However, algorithms for multi-modal translation and synthe- 

is of medical images should ensure shape consistency, as these 

natomical structures are crucial information for computer-based 

ancer detection algorithms. 

One of the research work by [35] has tried to solve the problem 

y adding an extra penalty based on a segmentation mask gener- 

ted from the CycleGAN output. However, this requires a ground- 

ruth annotation of the dense tissue regions in the breast, which 

s not available in a typical use case for breast MRI normaliza- 

ion. Meanwhile, [36] introduce deformable convolutional layers 

nd novel cycle-consistency losses. Other papers [25–28] utilize 

ycleGAN for translation between various modalities (e.g., ultra- 

ound PET, CT and MRI) and reports many of the same issues dis- 

ussed above. In this article, we present a fully unpaired algorithm 

or image normalization using CycleGAN. We propose and evaluate 

wo technical solutions in order to effectively preserve the breast 

hape and tissue structures within the breast MRI. 

. Dataset and pre-processing 

In this study, we utilize Duke-Breast-Cancer-MRI data 1 obtained 

rom GE Healthcare (GE) and Siemens (SE) scanners (1.5 T) in the 

xial plane. Our dataset consists of 124 subjects: 77 imaged with a 

E Healthcare scanner, and the remaining 47 with a Siemens scan- 

er. Details about the distribution of patients & scanner parame- 

ers across different manufacturer is presented in Table 1 . Each MR 

olume contains more than 160 2D axial image slices. The top 1% 

f pixel values in the entire dataset are truncated at 255, and the 

emaining intensities are linearly scaled to the 0–255 pixel range. 

he dataset are randomly divided into train, validation, and test set 

espectively at the patient level. We only use slices from the mid- 

le 50% of each patient volume throughout our experiment. Details 

egarding the number of slices used for training, testing, and vali- 

ation are given in Table 2 . 
1 All images used in this study are publicly available at https://wiki. 

ancerimagingarchive.net/pages/viewpage.action?pageId=70226903 

L

3 
. Methods 

In this section, we present various frameworks to perform nor- 

alization between MRI images acquired by GE Healthcare (GE) 

nd Siemens (SE) scanners. 

.1. CycleGAN 

We utilize the CycleGAN [37] —a bidirectional image-to-image 

ranslation method—for the normalization between the GE and SE 

RIs. It consists of two generators (G 1 , G 2 ) and two discrimina- 

ors (D 1 , D 2 ) . Each generator has a corresponding discriminator, 

nd they are trained in an adversarial setting in which the two 

etworks compete against each other to fool their counterparts. 

ig. 2 illustrates the CycleGAN network configuration where, I 1 and 

 2 are training samples from P data (GE) and P data (SE) , respectively. 

enerator G 1 normalizes from GE → SE while G 2 normalizes from 

E → GE. 

The discriminator network D 1 discriminates between the im- 

ges generated by the generator G 1 (I 1 ) and the target image I 2 
hile generator G 1 tries to improve the quality of the transformed 

mage so that it can fool the discriminator. Similarly, D 2 discrim- 

nates between images generated by G 2 (I 2 ) and the target image 

 1 , while G 2 tries to transform I 2 effectively enough to fool D 2 . The

bove task is formulated as a min-max optimization problem. 

.1.1. Network architectures 

The architecture for the generators is adapted from [38] . The 

enerator consists of an encoder, transformer, and decoder. The 

ncoder uses convolutional down-sampling to shrink the size of 

he input representation and increase the number of channels. It 

s followed by a transformation block which retains the size of 

epresentation using residual convolution blocks. Finally, a decoder 

lock is used which upsamples the size of representation using de- 

onvolution. 

The discriminator network uses a classical PatchGAN [39] . It 

s a fully convolutional neural network that processes overlapping 

atches of the input image instead of the entire input image. The 

utput of the discriminator is a matrix of binary classifications of 

hether each patch is real or fake. A standard PatchGAN has a field 

f view (FOV), or patch size, of 70 × 70 . Our experiments with dis- 

riminator architectures with varying FOV are detailed in Section 7 . 

.1.2. Losses 

The objective function contains two loss terms: adversarial loss 

L adv ) and cyclic loss (L cyc ) . The adversarial loss [40] ensures that

he generated images belong to the data distribution of the target 

omain. The adversarial loss is formulated as below: 

 adv (G 1 , D 1 , I 1 , I 2 ) = E I 2 ∼P data (SE) 

[
(D 1 (I 2 ) − 1) 2 

]
+ E I 1 ∼P data (GE) 

[
(D 1 (G 1 (I 1 ))) 

2 
]

(1) 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226903
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Fig. 2. CycleGAN network configuration for breast MRI normalization with two generators G 1 : normalizes P data (GE) → P data (SE) and G 2 normalizes P data (SE) → P data (GE) , and 

associated adversarial discriminators D 1 , D 2 . I 1 and I 2 are the unpaired training samples from P data (GE) and P data (SE) , respectively. 
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Fig. 3. An illustration of the proposed mutual information loss. 
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 adv (G 2 , D 2 , I 2 , I 1 ) = E I 1 ∼P data (GE) 

[
(D 2 (I 1 ) − 1) 2 

]
+ E I 2 ∼P data (SE) 

[
(D 2 (G 2 (I 2 ))) 

2 
]

(2) 

The generator tries to minimize the above adversarial loss, and 

he discriminator tries to maximize it. However, the adversarial 

oss alone is not sufficient enough to produce good target images. 

he adversarial loss will enforce the transformed output to be of 

he appropriate domain, but will not enforce the input and output 

o be recognizably the same. Thus an additional cycle-consistency 

oss is added to the overall objective. The cycle-consistency loss 

nsures that the translated image looks like the input image by en- 

orcing G 1 and G 2 to be inverses of each other i.e. (G 2 (G 1 (I 1 )) ≈ I 1 
nd (G 1 (G 2 (I 2 )) ≈ I 2 . 

 cyc (G 1 , G 2 ) = E I 1 ∼P data (GE) [ ‖ 

G 2 (G 1 (I 1 )) − I 1 ‖ 1 ] (3) 

 cyc (G 2 , G 1 ) = E I 2 ∼P data (SE) [ ‖ 

G 1 (G 2 (I 2 )) − I 2 ‖ 1 ] (4) 

The overall objective is given as below where λcyc is the weight- 

ng factor for cycle-consistency loss. 

 (G 1 , G 2 , D 1 , D 2 ) = L adv (G 1 , D 1 , I 1 , I 2 ) + L adv (G 2 , D 2 , I 2 , I 1 ) 

+ λcyc ∗ (L cyc (G 1 , G 2 ) + L cyc (G 2 , G 1 )) (5) 

.2. CycleGAN with mutual information 

The standard CycleGAN architecture detailed above, when used 

or normalization between GE and SE breast MRIs, may produce re- 

ults that are unable to preserve the breast shape and tissue char- 

cteristics. In order to preserve the breast shape and tissue char- 

cteristics, we propose to utilize mutual information maximization 

etween the real images and the generated images, as shown in 

ig. 3 . Our rationale is that while the intensity and texture of the 

mage may change, high mutual information will indicate that the 

hape of the breast and the structure of dense tissue remained the 

ame, which is desired in our application. 

In practice, estimation of mutual information in images is chal- 

enging as we only have access to samples rather than the underly- 

ng distributions [41,42] . Additionally, previous sample-based esti- 

ators are brittle and do not scale well to higher dimensions [43] . 

ecently, Mutual Information Neural Estimation (MINE) [44] was 

ntroduced to approximate the mutual information using observed 

amples even when the true distribution is unknown. Their ap- 

roach also scales to higher dimensions. Hence, we adopt their 
4 
ethod to estimate and maximize mutual information and uti- 

ize mutual information as a loss along with adversarial and cycle- 

onsistency loss. 

The mutual information is equivalent to the Kullback-Leibler 

KL) divergence between the joint distribution, P (X, Z) , and the 

roduct of the marginal distributions P (X ) and P (Z) , as expressed 

elow 

(X, Z) = D KL (P XZ || P X � P Z ) (6) 

here D KL is defined as, 

 KL (P || Q ) := E P 

[
log 

∂P 

∂Q 

]
(7) 

It uses the Donsker–Varadhan (DV) representation [45] of KL di- 

ergence, which leads to the following definition of approximate 

utual information: 

 φ(X, Z) = sup θ∈ φ
[
E P XZ 

[ T θ ] − log( E P X �P Z 
[ e T θ ]) 

]
(8) 

The approximate mutual information I φ(X, Z) is obtained by 

aximizing the lower bound of the objective function shown in 

q. 8 . The maximization is achieved by using a neural network 

T θ ) with parameters θ . The neural network (T θ ) is optimized us- 

ng gradient descent to characterise a family of functions which 

ltimately maximizes the lower bound of the above objective. 
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Fig. 4. Proposed discriminator architecture. 
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To enforce and preserve breast shape and tissue characteristics, 

e propose to include mutual information as a loss in the overall 

bjective as specified below. 

 (G 1 , G 2 , D 1 , D 2 ) = L adv (G 1 , D 1 , I 1 , I 2 ) + L adv (G 2 , D 2 , I 2 , I 1 ) 

+ λcyc ∗ (L cyc (G 1 , G 2 ) + L cyc (G 2 , G 1 )) 

−λmut ∗ (L mut (I 1 , G 1 (I 1 )) + L mut (I 2 , G 2 (I 2 ))) 

(9) 

here λmut is the weight factor for mutual information loss. 

.3. CycleGAN with modified discriminator 

We also modify our discriminator to test the effects of varying 

elds of view (FOV)—the size of the input pixel window that con- 

ributes to a single pixel in the output map. As suggested in [39] ,

e focus on smaller FOV to encourage the transformation learned 

y the generator to maintain sharp, high-frequency detail which is 

equired in order to adequately preserve both the overall structure 

f the breast and the structure of the dense tissue regions inside 

he breast. Preliminary results were presented in [46] . Our experi- 

ents demonstrate that a ( 34 × 34 ) FOV discriminator architecture 

shown in Fig. 4 ) is better at preserving morphological features 

f the breast tissue in comparison to the original ( 70 × 70 ) FOV.

uantitative analysis is presented in Table 3 . Further details about 

he various discriminator architectures corresponding to different 

OV are presented in appendix Appendix A . 

.4. CycleGAN with modified discriminator + mutual information 

We also test the proposed Mutual Information loss in conjunc- 

ion with the discriminator modification highlighted above. 

. Training 

We optimize the network using mean squared error (MSE) in- 

tead of cross-entropy, as suggested in [47] . As a result, training 

ecomes more stable, and higher quality images are produced. Ad- 

itionally, to prevent the model from oscillation, the discriminator 

s fed a history of the 50 most recently generated images rather 

han solely the most recently generated image. Adam optimizer 

ith the parameters lr = 0 . 002 , β1 = 0.5, and β2 = 0.999 is used

o train the network weights. 

With the addition of mutual information loss, the proposed 

ramework has additional parameters to optimize. During experi- 

ents, we found that normalization quality is susceptible to these 

arameters. We optimized CycleGAN for different values of λcyc 

please refer Table A.5 ). The model with an optimal λcyc (Std. Cy- 

leGAN) was used as a baseline for comparison. We then experi- 

ented for optimal λmut (please refer Table A.6 ) and compared it 

ith baseline model. The value of λcyc and λmut used in the exper- 

ments are 5.0 and 0.5 respectively. 
5 
. Evaluation metrics 

Quantitative evaluation of the normalized images is difficult in 

he case of unpaired images [37] as there is no standard/universal 

etric for assessing accuracy [48] . Hence, evaluating the quality of 

ynthesized images is an open and challenging problem for which 

etrics vary depending on the specific needs of the application. 

ost previously published work relies either on the visual exam- 

nation of the transformed images by human subjects or some 

pplication-specific metrics. Visual evaluation of the transformed 

mage is still the most common and intuitive method for deter- 

ining the quality of the transformed images. 

In this work, the evaluation of our algorithms is done in two 

ays. First, we perform a combination of quantitative and qual- 

tative analyses to determine the robustness of the normaliza- 

ion. For the quantitative analysis, we manually annotate a breast 

ask for 20 images both before normalization and after nor- 

alization for GE to Siemens as well as Siemens to GE, re- 

pectively. We then compute the Dice coefficient between these 

nnotations. A higher Dice coefficient suggests that the normal- 

zation successfully preserved breast shape, while a lower value 

ndicates distortion in breast shape. To evaluate the preservation 

f dense tissue, we perform qualitative analysis through visual 

bservation. 

Secondly, we evaluate the intensity normalization by manually 

nnotating the dense tissue (10 cases) and subsequently comput- 

ng the mean intensity value before and after normalization. The 

xpectation is that while the mean intensities of dense tissue dif- 

er significantly between GE and Siemens before the normalization, 

hey should be similar after the normalization. 

. Results and discussion 

The result of the proposed MRI normalization using CycleGAN is 

resented in Fig. 5 . Qualitatively, it can be observed that the stan- 

ard CycleGAN model is unable to preserve the shape of the breast 

nd dense tissue. Our proposed modified discriminator framework 

erformed the best out of all explored algorithms. 

A surprising result visible in Fig. 5 is that the introduction of 

utual information loss is unable to preserve the shape of the 

reast. After further analysis, we determine that the noise pat- 

ern in the GE images is the primary cause of this failure. Specif- 

cally, the mutual information neural estimator (MINE) network 

ries to maximize the mutual information by matching the shape 

f the breast to the noisy “halo” around the breast, and in do- 

ng so, actually increases the size of the breast. Similarly, for the 

iemens to GE normalization, it maximizes the mutual informa- 

ion by decreasing the shape of the breast. This is illustrated 

n Fig. 6 . 

We propose a modified CycleGAN framework that involves al- 

ering the discriminator architecture in order to put more stress on 

eatures pertaining to breast tissue. We experiment with various 

OV in the discriminator architecture and present the effects that 

hese changes have on performance in Fig. 7 . It can be observed 

hat the 70 × 70 FOV frequently modifies the dense tissues of the 

reast. It also modifies the shape of the breast, which is apparent 

rom the lower Dice coefficients ( Table 3 ). A 1 × 1 FOV, i.e. Pixel-

AN, has no effect on spatial statistics and is thus unable to learn 

he mapping between the noise distributions of the two domains. 

dditionally, the normalized images look extremely pixelated and 

xhibit a checkerboard pattern. The performance of a 45 × 45 FOV 

s comparatively better than the 70 × 70 FOV in terms of preserv- 

ng both the breast shape as well as the dense tissue structures. 

owever, visual inspection leads us to conclude that the 34 × 34 

OV discriminator preserves the dense tissue better and produces 
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Fig. 5. Representative results of the proposed image normalization (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare. 
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Fig. 6. Effect of mutual information loss (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare. Difference between the input and normalized image is shown using a 

composite image, where magenta shows negative value and green shows the positive value. 

Fig. 7. Experiment with the field of view (FOV) in the discriminator architecture (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare. Red ellipse shows the change 

in breast shape and dense tissue structure as compared to input. 

s

c

b

n

n

t

t

t

p

harper images compared to the 45 × 45 FOV. The Dice coefficients 

onfirm that the 34 × 34 FOV is able to preserve the shape of the 

reast as well. This improved performance, along with its lower 

umber of parameters, lead us to select the 34 × 34 FOV discrimi- 

ator architecture. 
Table 3 

Dice coefficients between breast mask before and after 

normalization obtained on validation data. 

GE to SE SE to GE 

FOV Mean Std Mean Std 

1 × 1 – – – –

34 × 34 0.9762 0.0091 0.9794 0.0070 

45 × 45 0.9236 0.0164 0.9310 0.0177 

70 × 70 0.9138 0.0577 0.9021 0.0443 

7 
Quantitative results are presented in Table 4 . It can be observed 

hat during GE to Siemens normalization, the Dice coefficient of 

he breast masks is the highest for the CycleGAN framework ob- 

ained by modifying the discriminator architecture. It is also ap- 

arent from Table 4 that applying the mutual information loss to 
Table 4 

Quantitative results: Dice coefficients between breast mask before and af- 

ter normalization on test data. 

GE to SE SE to GE 

Models Mean Std Mean Std 

Std. CycleGAN 0.8913 0.0941 0.9089 0.0471 

Std. CycleGAN + MINE 0.8976 0.0510 0.8949 0.0391 

Proposed Discrim 0.9801 0.0061 0.9813 0.0049 

Proposed Discrim + MINE 0.9082 0.0714 0.8912 0.0706 
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Fig. 8. Mean intensity value distribution of dense tissues (DT) in (a) original GE and original Siemens (b) original GE and normalized Siemens (c) and original Siemens and 

normalized GE. 
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he proposed discriminator causes a reduction in the Dice coeffi- 

ient value ( 0 . 9801 → 0 . 9082 ) due to a decrease in the shape of

he breast. However, the standard CycleGAN model and its variant 

ith mutual information both have comparable Dice coefficients. 

his can be explained by both methods’ inability to preserve the 

reast shape. Similar observations can be made for the normal- 

zation between Siemens to GE. This confirms that the modified 

rchitecture with the field of view of 34 × 34 results in superior 

erformance. 

In summary, from a qualitative point of view, the standard Cy- 

leGAN along with mutual information leads to the worst result 

See Fig. 5 ) This is also reflected in the quantitative results, where 

t achieves almost the minimum dice coefficient score. On the 

ther hand, the proposed modified CycleGAN framework obtained 

y altering the discriminator architecture is able to consistently 

reserve the dense tissue as well as the breast shape. These ob- 

ervations also align with the quantitative results on test data pre- 

ented in Table 4 . 

To evaluate the intensity transformation, we manually annotate 

he dense tissue in 10 cases and then measure the mean inten- 

ity of these annotated regions both before normalization and af- 

er normalization. The result is presented in Fig. 8 where Fig. 8 (a) 

llustrates the mean intensity distribution of the dense tissue in 

E and Siemens before the normalization. It can be observed from 

ig. 8 (b) that the mean intensity distribution of the original GE 

s comparable to the normalized Siemens. A similar observation 

an also be made from Fig. 8 (c) for the original Siemens and nor-

alized GE. This demonstrates that the proposed method is able 

o successfully adjust the intensity of the image as it pertains 

o dense tissue. It should also be noted that along with inten- 

ity adjustment, the proposed method learns to map the noise 

halo” around the breast, which is a crucial aspect of vendor nor- 

alization. The proposed vendor normalization method will thus 

otentially increase the robustness of downstream models that do 

ot have access to adequate training data from multiple vendors by 

ynthesizing larger and richer datasets, which will mitigate issues 

elated to class imbalance. 

. Conclusions 

In this article, we have shown that a fully convolutional neu- 

al network can be successfully trained to learn a bidirectional 

apping and perform normalization between DCE-MRI images 

enerated from different scanners (GE Healthcare & Siemens). In 
8 
ontrast to previous works, our proposed method not only per- 

orms intensity normalization but also learns the noise distribution 

attern. 

Our evaluation shows that when the standard CycleGAN is ap- 

lied to this task, it matches the desired intensity of images but 

truggles with the shape of the breast and dense tissue. This is 

aused by the limited constraint on the images generated by the 

ANs and in turn, liberty that it takes to freely generate breast 

mages. In response to this, we propose two solutions. The first 

ne is to incorporate mutual information into the loss function. 

ur rationale is that this modification will ensure that the struc- 

ure of the breast is maintained between the input and the out- 

ut of the generator. This first solution fails to solve the problem 

ue to a very specific characteristic of the data, which is the noise 

halo” around the breast. Incorporating mutual information into a 

ycleGAN is not a trivial task and we believe that the method of 

oing so proposed in this paper will be helpful for other similar 

asks in medical imaging and beyond. The second solution to the 

roblem of maintaining the structure of the breast that we pro- 

ose in this paper is a modification to the discriminator. This solu- 

ion proves to be highly successful for this task as verified by our 

xperiments. 

Our study has some limitations. One limitation of this work 

s that it provides the capability of translation using 2D images 

nly. While some effort in network design and parameter op- 

imization is certainly needed, the proposed methods naturally 

end themselves to 3D MR volumes. Another limitation is that 

ur dataset consists of only two vendors and a relatively limited 

umber of patients. While we still believe that the dataset used 

n this study represents the real-life problem faced in analyses 

f breast MRIs, further studies are needed to show that the pro- 

osed method generalizes beyond the data presented here. Finally, 

hile we were able to demonstrate that our method results in no 

r minimal changes to the dense tissue structure, additional val- 

dation of the applicability for specific applications should be a 

opic of future studies. For example, while for some clinical ap- 

lications, no changes in the breast tissue structure are acceptable, 

adiomics or deep learning applications are likely to be robust to 

ome changes of this type. Data generated using our method could 

dditionally be used to augment training data and improve deep 

earning model generalization. A deep learning model trained with 

ugmented data from the various scanner will enable model gen- 

ralization to real-world datasets with moderately different char- 

cteristics. 
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Table A.5 

Hyperparameter ( λcyc ): Dice coefficients between breast mask 

before and after normalization obtained on validation data. 

GE to SE SE to GE 

Mean Std Mean Std 

λcyc = 10 0.85660 0.04784 0.87012 0.03411 

λcyc = 7.5 0.85760 0.07617 0.88693 0.03765 

λcyc = 5.0 0.91381 0.05770 0.90209 0.04426 

λcyc = 2.5 0.90243 0.08136 0.90577 0.03307 

Table A.6 

Hyperparameter ( λmut ): Dice coefficients between breast mask 

before and after normalization obtained on validation data. 

GE to SE SE to GE 

Mean Std Mean Std 

λmut = 0.01 0.87322 0.05853 0.90161 0.03569 

λmut = 0.10 0.91552 0.03438 0.89473 0.03570 

λmut = 0.25 0.91112 0.04433 0.89564 0.05675 

λmut = 0.50 0.91801 0.04055 0.92319 0.03903 

λmut = 1.0 0.88428 0.04350 0.91006 0.03929 

R

 

In summary, we propose a framework for normalization of 

reast MRIs based on CycleGAN. We also propose a few technical 

nnovations that overcome various challenges that we experienced 

hile applying CycleGAN framework to our task of breast MRI nor- 

alization. While the framework has only been tested using breast 

RIs, it naturally lends itself to other medical imaging tasks where 

o paired data is available. 
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ppendix A. Architectures for discriminator 

Discriminator architectures with various field of view is pre- 

ented in this section. Each model uses a convolution after the last 

ayer to produce a 1-D output of size m × m . Instance Norm layer

as not applied to first layer in each of the architecture. The slope 

or LeakyReLU was 0.2. 
able A.1 

iscriminator architecture ( 70 × 70 ). 

Layer 

Input 

Channel 

Output 

Channel 

Filter 

Size (k) 

Stride 

(S) Activation 

Convolution 1 64 4 × 4 2 Leaky ReLU 

Convolution 64 128 4 × 4 2 Leaky ReLU 

Convolution 128 256 4 × 4 2 Leaky ReLU 

Convolution 256 512 4 × 4 1 Leaky ReLU 

Convolution 512 1 4 × 4 1 –

able A.2 

iscriminator architecture ( 45 × 45 ). 

Layer 

Input 

Channel 

Output 

Channel 

Filter 

Size (k) 

Stride 

(S) Activation 

Convolution 1 64 5 × 5 2 Leaky ReLU 

Convolution 64 128 5 × 5 2 Leaky ReLU 

Convolution 128 256 5 × 5 1 Leaky ReLU 

Convolution 256 1 5 × 5 1 –

able A.3 

iscriminator architecture ( 34 × 34 ). 

Layer 

Input 

Channel 

Output 

Channel 

Filter 

Size (k) 

Stride 

(S) Activation 

Convolution 1 64 4 × 4 2 Leaky ReLU 

Convolution 64 128 4 × 4 2 Leaky ReLU 

Convolution 128 256 4 × 4 1 Leaky ReLU 

Convolution 256 1 4 × 4 1 –

able A.4 

iscriminator architecture (PixelGAN). 

Layer 

Input 

Channel 

Output 

Channel 

Filter 

Size (k) 

Stride 

(S) Activation 

Convolution 1 64 1 × 1 1 Leaky ReLU 

Convolution 64 128 1 × 1 1 Leaky ReLU 

Convolution 128 1 1 × 1 1 –
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