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Objectives: Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to com-
plement ultrasound examinations and x-ray mammography for early detection and diagnosis of breast
cancer. However, images generated by various MRI scanners (e.g., GE Healthcare, and Siemens) differ both
in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize
to data from other scanners. In this work, we propose a method to solve this problem by normalizing
images between various scanners.
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Methods: MRI normalization is challenging because it requires normalizing intensity values and map-
ping noise distributions between scanners. We utilize a cycle-consistent generative adversarial network
to learn a bidirectional mapping and perform normalization between MRIs produced by GE Healthcare
and Siemens scanners in an unpaired setting. Initial experiments demonstrate that the traditional Cy-
cleGAN architecture struggles to preserve the anatomical structures of the breast during normalization.
Thus, we propose two technical innovations in order to preserve both the shape of the breast as well as
the tissue structures within the breast. First, we incorporate mutual information loss during training in
order to ensure anatomical consistency. Second, we propose a modified discriminator architecture that
utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue.

Results: Quantitative and qualitative evaluations show that the second innovation consistently preserves
the breast shape and tissue structures while also performing the proper intensity normalization and noise
distribution mapping.

Conclusion: Our results demonstrate that the proposed model can successfully learn a bidirectional map-
ping and perform normalization between MRIs produced by different vendors, potentially enabling im-
proved diagnosis and detection of breast cancer. All the data used in this study are publicly available at
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=70226903.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Breast cancer is one of the leading causes of death among
women around the globe [1]. Dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) is widely used to complement
mammography and ultrasound when evaluating breast cancer, par-
ticularly when assessing the extent of cancer before surgery [2]. In
some high-risk cases, it is also used for screening.

A significant challenge related to the use of DCE-MRI is the lack
of standardized imaging protocols [3,4]. Different MRI scanners use
different parameters, which previous research [5] has shown to
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drastically alter image appearance, quality, as well as the radiomics
analysis. When the same patient is imaged using a different scan-
ner or even the same scanner with different scanner parameters,
the produced MR images may vary significantly [6,7]. The incon-
sistencies present in the radio-frequency (RF) coil produce inten-
sity variations in the underlying tissue across the scanned image
[8]. Additionally, varying scanner parameters alter the noise distri-
bution of the images. An illustration of the difference in intensity
and noise distribution between images obtained from two different
MRI scanner manufacturers (GE Healthcare and Siemens) is shown
in Fig. 1.

The high degree of inter-scanner variation proves to be a sig-
nificant obstacle to the effective usage of DCE-MRI. In the context
of radiomics, where a multitude of features are extracted from im-
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Fig. 1. Example of images from two scanner displaying differences in intensity and
noise distribution (a) GE Healthcare (b) Siemens.

ages for further processing, the features from different modalities
may turn out to be incomparable, thus rendering them useless for
classification and prediction. The impact of scanner parameters on
breast MRI radiomic features is demonstrated by [5]. Variability in
images has been shown to have an impact on the training of deep
learning as well [9]. Algorithms trained on images from one scan-
ner may not perform well on exams at a different institution that
was acquired using a different scanner [10]. Finally, the inconsis-
tency between images from different scanners may affect the out-
come of computer-aided diagnosis. The ability to translate and nor-
malize between images acquired by different vendors with vary-
ing parameters of scanner would have tremendous positive con-
sequences. It would enable quantitative comparison of image fea-
tures across various institutions. It would also improve generaliza-
tion as deep models trained on one dataset could still perform in-
ference on new datasets generated by different scanners.

In order to address this issue, we frame the problem of nor-
malization between images generated by different MRI scanners
as an application of unpaired image-to-image translation. Most of
the literature in the domain of MRI pre-processing has focused on
normalizing intensities but does not account for noise patterns. To
our knowledge, no one has yet proposed a method for MRI ven-
dor normalization. This process is challenging because it requires
both normalizing the intensity and learn the mapping between the
noise patterns. In this work, we present a vendor normalization
method that attempts to perform intensity normalization as well
as noise distribution mapping between MRIs obtained from dif-
ferent scanners. The significant contributions of this work can be
summarized as follows:

o We present a method for MRI vendor normalization that per-
forms unpaired bidirectional normalization between DCE-MRIs
produced by different scanner models.

We investigate the challenges of the standard CycleGAN ap-
proach for normalization of medical images, primarily the diffi-
culty in maintaining the breast shape and structures within the
breast between the original image and the normalized image.
Then, we propose and evaluate two technical solutions to this
issue, as described below.

e We propose the incorporation of a mutual information loss
with the standard CycleGAN architecture in order to ensure
that the breast shape and tissue structures within the breast
is maintained.

» We propose a modified discriminator capable of preserving
the breast shape as well as the dense tissues and evaluate
the effect of changing the field-of-view on the performance.
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We further present and compare the performance of the pro-
posed vendor normalization methods using both quantitative and
qualitative approaches. We also highlight how the proposed work
can potentially enable the synthesis of larger and richer datasets
that mitigate issues related to class imbalance.

The remainder of the article is organized as follows.
Section 2 describes the related work. Section 3 presents de-
tails about the dataset, and the proposed methods are detailed in
Section 4. Information about training is furnished in Sections 5 and
6 presents the metrics for the evaluation of the proposed method.
Section 7 reports the experimental results and discussions. Finally,
Section 8 concludes with a summary.

2. Related work

Unlike other imaging modalities, MRIs span a wide, non-linear
spectrum of raw intensity values. They lack uniformity and often
exhibit high variance between subjects. Even within a single sub-
ject, intensity variations of 10-40% have been observed [11]. This
heterogeneity makes it difficult to effectively train robust medical
image analysis algorithms on MRIs [12].

In response, various statistical approaches have been proposed
for MRI intensity normalization. These include histogram equaliza-
tion [6,13], intensity scaling based on regions of interest [14] and
landmarks [15]. However, histogram-based methods rely on dis-
crete approximations of intensity distributions, leading to high lev-
els of inexactness [16]. Meanwhile, obtaining a high level of ac-
curacy with landmark-based algorithms requires obtaining mul-
tiple landmarks from various tissue types in the image. Design-
ing algorithms to perform this landmark selection task is difficult
and time-consuming [15]. Another limitation of many MRI nor-
malization methods [17,18] is that they require auxiliary inputs
such as segmentation masks. This adds an intrinsic reliance on the
models that perform these preprocessing tasks. Alternatively, some
techniques [19] attempt to leverage the physics of MR acquisition
in order to develop intensity invariant segmentation algorithms.
However, using this type of approach requires integrating explicit
physics-based embedding into the segmentation algorithm, thus
limiting this system’s ability to generalize to other downstream
tasks.

Additionally, some of the methods discussed above [6,14,15] at-
tempt to perform intensity transformation between two fixed
imaging settings. That is, they make the assumption that the in-
tensity relationship of the tissues is constant between the target
group and the reference group, which is not always true [20]. If
the intensity standardization needs to be done for images com-
ing from multiple centers, multiple transforming models need to
be established. Resultantly, these methods do not have the ability
to process new images that are not from an MR image group that
has already been included in their training data. This severely lim-
its its usability. Work [21] presents a model based method for har-
monization between patients scanned with differences in imaging
parameters.

Recently, GANs have been used in a variety of applications to
the domain of medical imaging. An excellent review of GANS’ re-
cent applications to the medical domain was presented by [22-
24]. Most of the previous work [25-28] has focused on using GANs
for multimodal translation that in turn, improved diagnosis across
several modalities (e.g., ultrasound, PET, CT, and MRI). Addition-
ally, GANs have successfully generated synthetic images [29-34] to
augment training datasets for algorithms that perform downstream
tasks—diagnosis, prognosis, segmentation, and registration. Lately,
GANs have also been used for normalizing MRIs across different
scanners. Work by [20] proposed standardization method for brain
MRIs using GANs with a weak paired data strategy with focus on
intensity normalization only. Another work [30] applies CycleGAN
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Table 1
Distribution of patients & typical scanner parameters across different manufacturer.
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Vendor/Manufacturer Scanner model Acquisition matrix Echo time Repetition time # Subjects
Signa HDx 340x340 2.3 ms 5 ms 43
GE Healthcare
Signa HDxt 340x340 2.4 ms 5.5 ms 33
g 384360 2.4 ms 55 ms 1
Siemens MAGNETOM Avanto 448 %448 1.4 ms 4.1 ms 30
320x320 1.4 ms 4.1 ms 17
Table 2 4. Methods

Details about training, test and validation dataset.

GE Healthcare (GE)  Siemens (SE)

Train Set 5045 2776
Test Set 1563 843
Validation Set 173 93

to brain MRI normalization. However, CycleGAN has an intrinsic
ambiguity with respect to geometric transformations [35]. More
specifically, since the anatomical structure of the images in a set
of patient data is highly variable, CycleGAN is unlikely to utilize
anatomical features in order to determine the realness of an im-
age. However, algorithms for multi-modal translation and synthe-
sis of medical images should ensure shape consistency, as these
anatomical structures are crucial information for computer-based
cancer detection algorithms.

One of the research work by [35] has tried to solve the problem
by adding an extra penalty based on a segmentation mask gener-
ated from the CycleGAN output. However, this requires a ground-
truth annotation of the dense tissue regions in the breast, which
is not available in a typical use case for breast MRI normaliza-
tion. Meanwhile, [36] introduce deformable convolutional layers
and novel cycle-consistency losses. Other papers [25-28] utilize
CycleGAN for translation between various modalities (e.g., ultra-
sound PET, CT and MRI) and reports many of the same issues dis-
cussed above. In this article, we present a fully unpaired algorithm
for image normalization using CycleGAN. We propose and evaluate
two technical solutions in order to effectively preserve the breast
shape and tissue structures within the breast MRIL

3. Dataset and pre-processing

In this study, we utilize Duke-Breast-Cancer-MRI data! obtained
from GE Healthcare (GE) and Siemens (SE) scanners (1.5 T) in the
axial plane. Our dataset consists of 124 subjects: 77 imaged with a
GE Healthcare scanner, and the remaining 47 with a Siemens scan-
ner. Details about the distribution of patients & scanner parame-
ters across different manufacturer is presented in Table 1. Each MR
volume contains more than 160 2D axial image slices. The top 1%
of pixel values in the entire dataset are truncated at 255, and the
remaining intensities are linearly scaled to the 0-255 pixel range.
The dataset are randomly divided into train, validation, and test set
respectively at the patient level. We only use slices from the mid-
dle 50% of each patient volume throughout our experiment. Details
regarding the number of slices used for training, testing, and vali-
dation are given in Table 2.

T All images used in this study are publicly available at https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageld=70226903

In this section, we present various frameworks to perform nor-
malization between MRI images acquired by GE Healthcare (GE)
and Siemens (SE) scanners.

4.1. CycleGAN

We utilize the CycleGAN [37]—a bidirectional image-to-image
translation method—for the normalization between the GE and SE
MRIs. It consists of two generators (Gq,G,) and two discrimina-
tors (Dq,D,). Each generator has a corresponding discriminator,
and they are trained in an adversarial setting in which the two
networks compete against each other to fool their counterparts.
Fig. 2 illustrates the CycleGAN network configuration where, I; and
I are training samples from Py, (GE) and Py, (SE), respectively.
Generator G; normalizes from GE — SE while G, normalizes from
SE — GE.

The discriminator network D; discriminates between the im-
ages generated by the generator Gq(l;) and the target image I,
while generator G; tries to improve the quality of the transformed
image so that it can fool the discriminator. Similarly, D, discrim-
inates between images generated by G,(l;) and the target image
I;, while G, tries to transform [, effectively enough to fool D,. The
above task is formulated as a min-max optimization problem.

4.1.1. Network architectures

The architecture for the generators is adapted from [38]. The
generator consists of an encoder, transformer, and decoder. The
encoder uses convolutional down-sampling to shrink the size of
the input representation and increase the number of channels. It
is followed by a transformation block which retains the size of
representation using residual convolution blocks. Finally, a decoder
block is used which upsamples the size of representation using de-
convolution.

The discriminator network uses a classical PatchGAN [39]. It
is a fully convolutional neural network that processes overlapping
patches of the input image instead of the entire input image. The
output of the discriminator is a matrix of binary classifications of
whether each patch is real or fake. A standard PatchGAN has a field
of view (FOV), or patch size, of 70 x 70. Our experiments with dis-
criminator architectures with varying FOV are detailed in Section 7.

4.1.2. Losses

The objective function contains two loss terms: adversarial loss
(Lagy) and cyclic loss (Leyc). The adversarial loss [40] ensures that
the generated images belong to the data distribution of the target
domain. The adversarial loss is formulated as below:

Logy(G1, D1, 11, b)) = EIZNPM[“(SE)[(DI () - 1)2]
+EL, Py (GE) [(D1 (G (I )))2] (1)
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Fig. 2. CycleGAN network configuration for breast MRI normalization with two generators G;: normalizes Pyq,(GE) — Pyuq (SE) and G, normalizes Pyyeq (SE) — Pygeq (GE), and
associated adversarial discriminators Dy, D,. I; and I, are the unpaired training samples from Py, (GE) and Py4, (SE), respectively.

Logy(G2, D2, b, ) = EIINPda[a(cE)[(Dz(h) - 1)2]
+Ep~p,,, (SE) [(Dz (G, (12)))2] (2)

The generator tries to minimize the above adversarial loss, and
the discriminator tries to maximize it. However, the adversarial
loss alone is not sufficient enough to produce good target images.
The adversarial loss will enforce the transformed output to be of
the appropriate domain, but will not enforce the input and output
to be recognizably the same. Thus an additional cycle-consistency
loss is added to the overall objective. The cycle-consistency loss
ensures that the translated image looks like the input image by en-
forcing G; and G, to be inverses of each other i.e. (G, (G1(I1)) ~
and (G (Gz (kL)) ~ k.

Leye(G1, G2) = B wpyo iy [ 1G2(G1 (1)) = 1 ]|4] (3)

Leye (G2, G1) = Epyep,, se) [1G1(G2(B)) — B ]l4] (4)

The overall objective is given as below where Ay is the weight-
ing factor for cycle-consistency loss.

L(Gy, G2, D1, D) = Lygy(G1, D1, It ) + Lagy (G2, D2, I, Iy)
+)\'Q/c * (Lcyc(cl’ Gy) + LcyC(GZ’ G1)) (5)

4.2. CycleGAN with mutual information

The standard CycleGAN architecture detailed above, when used
for normalization between GE and SE breast MRIs, may produce re-
sults that are unable to preserve the breast shape and tissue char-
acteristics. In order to preserve the breast shape and tissue char-
acteristics, we propose to utilize mutual information maximization
between the real images and the generated images, as shown in
Fig. 3. Our rationale is that while the intensity and texture of the
image may change, high mutual information will indicate that the
shape of the breast and the structure of dense tissue remained the
same, which is desired in our application.

In practice, estimation of mutual information in images is chal-
lenging as we only have access to samples rather than the underly-
ing distributions [41,42]. Additionally, previous sample-based esti-
mators are brittle and do not scale well to higher dimensions [43].
Recently, Mutual Information Neural Estimation (MINE) [44] was
introduced to approximate the mutual information using observed
samples even when the true distribution is unknown. Their ap-
proach also scales to higher dimensions. Hence, we adopt their

Lmul(llA’Gl(Il))

» MINE F

Fig. 3. An illustration of the proposed mutual information loss.

method to estimate and maximize mutual information and uti-
lize mutual information as a loss along with adversarial and cycle-
consistency loss.

The mutual information is equivalent to the Kullback-Leibler
(KL) divergence between the joint distribution, P(X,Z), and the
product of the marginal distributions P(X) and P(Z), as expressed
below

I(X,Z) = Dy (Pgz||1Px ® Py) (6)

where Dy; is defined as,
oP
Dx.(P||Q) := EP[IOgaQ] (7

It uses the Donsker-Varadhan (DV) representation [45] of KL di-
vergence, which leads to the following definition of approximate
mutual information:

I¢ (Xv Z) = Sup9e¢ []E]P}V’V[Te] - lOg(Eﬂ)’x@D}z[eTH ])] (8)

The approximate mutual information Iy (X,Z) is obtained by
maximizing the lower bound of the objective function shown in
eq. 8. The maximization is achieved by using a neural network
(Ty) with parameters 6. The neural network (Ty) is optimized us-
ing gradient descent to characterise a family of functions which
ultimately maximizes the lower bound of the above objective.
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Fig. 4. Proposed discriminator architecture.

To enforce and preserve breast shape and tissue characteristics,
we propose to include mutual information as a loss in the overall
objective as specified below.

L(Gy, Gy, D1, D2) = Lygy(G1, Dy, I, ) + Lagy(Ga, Do, b, Iy)
+}\cyc * (Lcyc(Gl s Gz) + Lcyc(GL Gy ))
—Amut * (Lmue (I, G1 (1) + Linue (12, G2 (1))
9

where Amy is the weight factor for mutual information loss.
4.3. CycleGAN with modified discriminator

We also modify our discriminator to test the effects of varying
fields of view (FOV)—the size of the input pixel window that con-
tributes to a single pixel in the output map. As suggested in [39],
we focus on smaller FOV to encourage the transformation learned
by the generator to maintain sharp, high-frequency detail which is
required in order to adequately preserve both the overall structure
of the breast and the structure of the dense tissue regions inside
the breast. Preliminary results were presented in [46]. Our experi-
ments demonstrate that a (34 x 34) FOV discriminator architecture
(shown in Fig. 4) is better at preserving morphological features
of the breast tissue in comparison to the original (70 x 70) FOV.
Quantitative analysis is presented in Table 3. Further details about
the various discriminator architectures corresponding to different
FOV are presented in appendix Appendix A.

4.4. CycleGAN with modified discriminator + mutual information

We also test the proposed Mutual Information loss in conjunc-
tion with the discriminator modification highlighted above.

5. Training

We optimize the network using mean squared error (MSE) in-
stead of cross-entropy, as suggested in [47]. As a result, training
becomes more stable, and higher quality images are produced. Ad-
ditionally, to prevent the model from oscillation, the discriminator
is fed a history of the 50 most recently generated images rather
than solely the most recently generated image. Adam optimizer
with the parameters Ir = 0.002, 8; = 0.5, and B, = 0.999 is used
to train the network weights.

With the addition of mutual information loss, the proposed
framework has additional parameters to optimize. During experi-
ments, we found that normalization quality is susceptible to these
parameters. We optimized CycleGAN for different values of Agyc
(please refer Table A.5). The model with an optimal Ay (Std. Cy-
cleGAN) was used as a baseline for comparison. We then experi-
mented for optimal Ay (please refer Table A.6) and compared it
with baseline model. The value of A¢c and Amye used in the exper-
iments are 5.0 and 0.5 respectively.
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6. Evaluation metrics

Quantitative evaluation of the normalized images is difficult in
the case of unpaired images [37] as there is no standard/universal
metric for assessing accuracy [48]. Hence, evaluating the quality of
synthesized images is an open and challenging problem for which
metrics vary depending on the specific needs of the application.
Most previously published work relies either on the visual exam-
ination of the transformed images by human subjects or some
application-specific metrics. Visual evaluation of the transformed
image is still the most common and intuitive method for deter-
mining the quality of the transformed images.

In this work, the evaluation of our algorithms is done in two
ways. First, we perform a combination of quantitative and qual-
itative analyses to determine the robustness of the normaliza-
tion. For the quantitative analysis, we manually annotate a breast
mask for 20 images both before normalization and after nor-
malization for GE to Siemens as well as Siemens to GE, re-
spectively. We then compute the Dice coefficient between these
annotations. A higher Dice coefficient suggests that the normal-
ization successfully preserved breast shape, while a lower value
indicates distortion in breast shape. To evaluate the preservation
of dense tissue, we perform qualitative analysis through visual
observation.

Secondly, we evaluate the intensity normalization by manually
annotating the dense tissue (10 cases) and subsequently comput-
ing the mean intensity value before and after normalization. The
expectation is that while the mean intensities of dense tissue dif-
fer significantly between GE and Siemens before the normalization,
they should be similar after the normalization.

7. Results and discussion

The result of the proposed MRI normalization using CycleGAN is
presented in Fig. 5. Qualitatively, it can be observed that the stan-
dard CycleGAN model is unable to preserve the shape of the breast
and dense tissue. Our proposed modified discriminator framework
performed the best out of all explored algorithms.

A surprising result visible in Fig. 5 is that the introduction of
mutual information loss is unable to preserve the shape of the
breast. After further analysis, we determine that the noise pat-
tern in the GE images is the primary cause of this failure. Specif-
ically, the mutual information neural estimator (MINE) network
tries to maximize the mutual information by matching the shape
of the breast to the noisy “halo” around the breast, and in do-
ing so, actually increases the size of the breast. Similarly, for the
Siemens to GE normalization, it maximizes the mutual informa-
tion by decreasing the shape of the breast. This is illustrated
in Fig. 6.

We propose a modified CycleGAN framework that involves al-
tering the discriminator architecture in order to put more stress on
features pertaining to breast tissue. We experiment with various
FOV in the discriminator architecture and present the effects that
these changes have on performance in Fig. 7. It can be observed
that the 70 x 70 FOV frequently modifies the dense tissues of the
breast. It also modifies the shape of the breast, which is apparent
from the lower Dice coefficients (Table 3). A 1 x 1 FOV, i.e. Pixel-
GAN, has no effect on spatial statistics and is thus unable to learn
the mapping between the noise distributions of the two domains.
Additionally, the normalized images look extremely pixelated and
exhibit a checkerboard pattern. The performance of a 45 x 45 FOV
is comparatively better than the 70 x 70 FOV in terms of preserv-
ing both the breast shape as well as the dense tissue structures.
However, visual inspection leads us to conclude that the 34 x 34
FOV discriminator preserves the dense tissue better and produces



G. Modanwal, A. Vellal and M.A. Mazurowski Computer Methods and Programs in Biomedicine 208 (2021) 106225

Std. CycleGAN Std. CycleGAN Proposed Proposed Discrim
+ MINE Discrim + MINE

Fig. 5. Representative results of the proposed image normalization (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare.
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Input Proposed Discrim + Difference
MINE

@)

(b)

Fig. 6. Effect of mutual information loss (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare. Difference between the input and normalized image is shown using a
composite image, where magenta shows negative value and green shows the positive value.

Input 1x1

34x34 45x45 70x70

@

(b)

Fig. 7. Experiment with the field of view (FOV) in the discriminator architecture (a) GE Healthcare to Siemens (b) Siemens to GE Healthcare. Red ellipse shows the change

in breast shape and dense tissue structure as compared to input.

sharper images compared to the 45 x 45 FOV. The Dice coefficients
confirm that the 34 x 34 FOV is able to preserve the shape of the
breast as well. This improved performance, along with its lower
number of parameters, lead us to select the 34 x 34 FOV discrimi-
nator architecture.

Table 3
Dice coefficients between breast mask before and after
normalization obtained on validation data.

GE to SE SE to GE

FOV Mean Std Mean Std

1x1 - - - -

34x34 09762 0.0091 09794 0.0070
45x45 0.9236 0.0164 0.9310 0.0177
70x70 09138 0.0577 0.9021 0.0443

Quantitative results are presented in Table 4. It can be observed
that during GE to Siemens normalization, the Dice coefficient of
the breast masks is the highest for the CycleGAN framework ob-
tained by modifying the discriminator architecture. It is also ap-
parent from Table 4 that applying the mutual information loss to

Table 4
Quantitative results: Dice coefficients between breast mask before and af-
ter normalization on test data.

GE to SE SE to GE
Models Mean Std Mean Std
Std. CycleGAN 0.8913  0.0941 0.9089  0.0471
Std. CycleGAN + MINE 0.8976  0.0510 0.8949  0.0391
Proposed Discrim 0.9801 0.0061 0.9813  0.0049

Proposed Discrim + MINE ~ 0.9082 0.0714 0.8912 0.0706
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After normalization
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Fig. 8. Mean intensity value distribution of dense tissues (DT) in (a) original GE and original Siemens (b) original GE and normalized Siemens (c) and original Siemens and

normalized GE.

the proposed discriminator causes a reduction in the Dice coeffi-
cient value (0.9801 — 0.9082) due to a decrease in the shape of
the breast. However, the standard CycleGAN model and its variant
with mutual information both have comparable Dice coefficients.
This can be explained by both methods’ inability to preserve the
breast shape. Similar observations can be made for the normal-
ization between Siemens to GE. This confirms that the modified
architecture with the field of view of 34 x 34 results in superior
performance.

In summary, from a qualitative point of view, the standard Cy-
cleGAN along with mutual information leads to the worst result
(See Fig. 5) This is also reflected in the quantitative results, where
it achieves almost the minimum dice coefficient score. On the
other hand, the proposed modified CycleGAN framework obtained
by altering the discriminator architecture is able to consistently
preserve the dense tissue as well as the breast shape. These ob-
servations also align with the quantitative results on test data pre-
sented in Table 4.

To evaluate the intensity transformation, we manually annotate
the dense tissue in 10 cases and then measure the mean inten-
sity of these annotated regions both before normalization and af-
ter normalization. The result is presented in Fig. 8 where Fig. 8(a)
illustrates the mean intensity distribution of the dense tissue in
GE and Siemens before the normalization. It can be observed from
Fig. 8(b) that the mean intensity distribution of the original GE
is comparable to the normalized Siemens. A similar observation
can also be made from Fig. 8(c) for the original Siemens and nor-
malized GE. This demonstrates that the proposed method is able
to successfully adjust the intensity of the image as it pertains
to dense tissue. It should also be noted that along with inten-
sity adjustment, the proposed method learns to map the noise
“halo” around the breast, which is a crucial aspect of vendor nor-
malization. The proposed vendor normalization method will thus
potentially increase the robustness of downstream models that do
not have access to adequate training data from multiple vendors by
synthesizing larger and richer datasets, which will mitigate issues
related to class imbalance.

8. Conclusions

In this article, we have shown that a fully convolutional neu-
ral network can be successfully trained to learn a bidirectional
mapping and perform normalization between DCE-MRI images
generated from different scanners (GE Healthcare & Siemens). In

contrast to previous works, our proposed method not only per-
forms intensity normalization but also learns the noise distribution
pattern.

Our evaluation shows that when the standard CycleGAN is ap-
plied to this task, it matches the desired intensity of images but
struggles with the shape of the breast and dense tissue. This is
caused by the limited constraint on the images generated by the
GANs and in turn, liberty that it takes to freely generate breast
images. In response to this, we propose two solutions. The first
one is to incorporate mutual information into the loss function.
Our rationale is that this modification will ensure that the struc-
ture of the breast is maintained between the input and the out-
put of the generator. This first solution fails to solve the problem
due to a very specific characteristic of the data, which is the noise
“halo” around the breast. Incorporating mutual information into a
CycleGAN is not a trivial task and we believe that the method of
doing so proposed in this paper will be helpful for other similar
tasks in medical imaging and beyond. The second solution to the
problem of maintaining the structure of the breast that we pro-
pose in this paper is a modification to the discriminator. This solu-
tion proves to be highly successful for this task as verified by our
experiments.

Our study has some limitations. One limitation of this work
is that it provides the capability of translation using 2D images
only. While some effort in network design and parameter op-
timization is certainly needed, the proposed methods naturally
lend themselves to 3D MR volumes. Another limitation is that
our dataset consists of only two vendors and a relatively limited
number of patients. While we still believe that the dataset used
in this study represents the real-life problem faced in analyses
of breast MRIs, further studies are needed to show that the pro-
posed method generalizes beyond the data presented here. Finally,
while we were able to demonstrate that our method results in no
or minimal changes to the dense tissue structure, additional val-
idation of the applicability for specific applications should be a
topic of future studies. For example, while for some clinical ap-
plications, no changes in the breast tissue structure are acceptable,
radiomics or deep learning applications are likely to be robust to
some changes of this type. Data generated using our method could
additionally be used to augment training data and improve deep
learning model generalization. A deep learning model trained with
augmented data from the various scanner will enable model gen-
eralization to real-world datasets with moderately different char-
acteristics.



G. Modanwal, A. Vellal and M.A. Mazurowski

In summary, we propose a framework for normalization of
breast MRIs based on CycleGAN. We also propose a few technical
innovations that overcome various challenges that we experienced
while applying CycleGAN framework to our task of breast MRI nor-
malization. While the framework has only been tested using breast
MRIs, it naturally lends itself to other medical imaging tasks where
no paired data is available.
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Appendix A. Architectures for discriminator

Discriminator architectures with various field of view is pre-
sented in this section. Each model uses a convolution after the last
layer to produce a 1-D output of size m x m. Instance Norm layer
was not applied to first layer in each of the architecture. The slope
for LeakyReLU was 0.2.

Table A1
Discriminator architecture (70 x 70).
Input Output Filter Stride

Layer Channel Channel Size (k) (S) Activation
Convolution 1 64 4x4 2 Leaky ReLU
Convolution 64 128 4 x4 2 Leaky ReLU
Convolution 128 256 4x4 2 Leaky ReLU
Convolution 256 512 4x4 1 Leaky ReLU
Convolution 512 1 4 x4 1 -

Table A.2
Discriminator architecture (45 x 45).
Input Output Filter Stride
Layer Channel Channel Size (k) (S) Activation
Convolution 1 64 5x5 2 Leaky ReLU
Convolution 64 128 5x5 2 Leaky ReLU
Convolution 128 256 5x5 1 Leaky ReLU
Convolution 256 1 5x5 1 -
Table A.3
Discriminator architecture (34 x 34).
Input Output Filter Stride
Layer Channel Channel Size (k)  (S) Activation
Convolution 1 64 4 x4 2 Leaky ReLU
Convolution 64 128 4 x4 2 Leaky ReLU
Convolution 128 256 4x4 1 Leaky ReLU
Convolution 256 1 4 x4 1 -

Table A.4
Discriminator architecture (PixelGAN).
Input Output Filter Stride
Layer Channel Channel Size (k) (S) Activation
Convolution 1 64 1x1 1 Leaky ReLU
Convolution 64 128 1x1 1 Leaky ReLU
Convolution 128 1 1x1 1 -
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Table A.5
Hyperparameter (Aqc): Dice coefficients between breast mask
before and after normalization obtained on validation data.

GE to SE SE to GE
Mean Std Mean Std
Age = 10 0.85660  0.04784  0.87012  0.03411
Aeye = 7.5 0.85760  0.07617  0.88693  0.03765
Age =5.0 091381 0.05770  0.90209  0.04426
Agye = 2.5 0.90243  0.08136  0.90577  0.03307
Table A.6

Hyperparameter (Amy): Dice coefficients between breast mask
before and after normalization obtained on validation data.

GE to SE SE to GE
Mean Std Mean Std
Jme = 0.01  0.87322  0.05853  0.90161  0.03569
Ame =010 091552  0.03438  0.89473  0.03570
Jme =025 091112  0.04433  0.89564  0.05675
Amue = 050 091801  0.04055  0.92319  0.03903
Jomue = 1.0 0.88428  0.04350  0.91006  0.03929
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