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Abstract— In magnetic resonance imaging (MRI), differ-
ent imaging settings lead to various intensity distributions
for a specific imaging object, which brings huge diversity
to data-driven medical applications. To standardize the
intensity distribution of magnetic resonance (MR) images
from multiple centers and multiple machines using one
model, a cycle generative adversarial network (CycleGAN)-
based framework is proposed. It utilizes a unified forward
generative adversarial network (GAN) path and multiple
independent backward GAN paths to transform images in
different groups into a single reference one. To preserve
image details and prevent resolution loss, two jump con-
nections are applied in the CycleGAN generators. A weak-
pair strategy is designed to fully utilize the prior knowledge
of the organ structure and promote the performance of
the GANs. The experiments were conducted on a T2-FLAIR
image database with 8192 slices from 489 patients. The
database was obtained from four hospitals and five MRI
scanners and was divided into nine groups with differ-
ent imaging parameters. Compared with the representative
algorithms, the peak signal-to-noise ratio, the histogram
correlation, and the structural similarity were increased by
3.7%, 5.1%, and 0.1% on average, respectively; the gradient
magnitude similarity deviation, the mean square error, and
the average disparity were reduced by 19.0%, 15.7%, and
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9.9% on average, respectively. Experiments also showed
the robustness of the proposed model with a different
training set configuration and effectiveness of the proposed
framework over the original CycleGAN. Therefore, the MR
images with different imaging settings could be efficiently
standardized by the proposed method, which would benefit
various data-driven applications.

Index Terms— Cycle generative adversarial network,
intensity standardization, magnetic resonance imaging,
many-to-one, weak-pair strategy.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is currently one
of the most important medical imaging methods. With

the rapid development of techniques such as big data, deep
learning and Radiomics [1]–[3], many studies have been
conducted to reveal the underlying diagnosis and treatment
information from MR images, such as noninvasive disease
diagnosis [4], [5], differential diagnosis [6], [7], treatment
prescription selection [8], [9], prognosis prediction [10], [11]
and therapeutic efficacy evaluation [12]. The ongoing data-
driven studies tend to use magnetic resonance (MR) images
obtained from multi-center, multi-device with multi-parameter
to establish models with reasonable robustness and universal-
ity, which place higher demands on the quality, especially the
uniformity of image dataset.

However, image settings such as the applied magnetic field,
the sequence of radio frequency pulses, the image reconstruc-
tion algorithm and so on have strong impacts on the MR
signal intensity. The intensity distribution of images obtained
from different scanners or under different protocols, therefore,
tends to be different. As a result, for image data driven studies
that rely heavily on various image features, the effectiveness
would be eventually degenerated because the image feature
differences caused by imaging parameters may exceed feature
differences caused by the pathological characteristic itself.
Therefore, to ensure the uniformity of the dataset, in prac-
tice, some of the studies use MR images acquired using a
fixed protocol from one scanner, which will decrease the
effectiveness of the radiomics model when the test sets are
acquired using different conditions. Hence, the generalization
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performance of the model is reduced considerably. Therefore,
it is highly necessary to standardize different MR images from
multiple centers in the preprocessing step so that all images
can be aggregated to form a large and consistent dataset for
the following computer aided diagnostic processes.

For the sake of eliminating the intensity difference among
different MR image groups, researchers have proposed many
methods. These methods can be divided into two major cat-
egories: the global histogram-matching method and the joint
histogram registration method.

The global histogram-matching methods utilize different
intensity characteristics as histogram landmark points to estab-
lish the transforming function with the form of piecewise lin-
ear functions. Nyul et al. [13] proposed transforming functions
that use the minimum and maximum overall percentiles of
histograms and several percentile markers of a “foreground”
histogram. Collewet et al. [14] introduced three sets of land-
marks, including the maximum intensity of images, the mean
intensity of images, and the ±3σ of the normal distribution
of the image intensity. Madabhushi and Udupa [15] brought
forward the intensity landmarks that were not affected by the
diseased or abnormal tissues by finding the largest fuzzily
connected homogenous region. Sun et al. [16] employed the
average intensity μ, the maximum decile and the minimum
decile of the intensity as landmarks and stretched the his-
tograms of the target images according to the landmarks. De
Nunzio et al. [17] separately standardized the intensities of
different brain tissues by using different linear functions and
formed a full histogram transformation by joining the different
transformations together with spline smoothness. However,
these methods are based upon a hypothesis that the MR image
intensity relationship of tissues is constant between the target
image group and the reference one, but this generally could
not be fully satisfied.

The other method category is the joint histogram registration
method. Jager et al. [18] first retrieved the joint probabil-
ity density functions (PDFs) from multimodality histograms.
Jager and Hornegger [19] then estimated the intensity mapping
with a registration between the target and reference PDFs.
Dzyubachyk et al. [20] applied the original joint histogram
registration method to the whole-body MRI scan. Superior
intensity standardization was obtained by comprehensively
using the transforming relationships among different parts.
Robitaille et al. [21] combined the global histogram match-
ing method with the joint histogram registration method by
using the characteristic points in the joint histograms as the
landmarks for global matching. Our group proposed a method
based on the nonrigid intensity transformation, which was
applied to the weighted subregion intensity distribution instead
of point intensity vector distribution, to enhance the stability
and reduce the impact of registration error [22], [23]. In this
group of methods, multimodality MR images are registered to
a standard space and the pixel intensities obtained from each
modality are used to form features in the intensity domain,
which constitute a multidimensional point cloud used for the
intensity mapping. However, this kind of method requires high
multimodality MR image registration quality and hence the
estimation accuracy is strongly influenced by the MR image
registration.

These two groups of methods mentioned above focus on the
intensity transformation between two fixed imaging settings.
If the intensity standardization needs to be done for images
coming from multiple centers, multiple transforming models
need to be established. Meanwhile, these methods require
features extracted from paired target-reference MR images
obtained from the same person in a short interval, which not
only seriously limits the number of training data but also
makes it almost impossible to conduct standardization models
for multicenter studies. Furthermore, these methods are not
able to process new images that are not from any MR image
group in the training data, which also limit their usability.

Therefore, in the paper, we propose a universal MR image
standardization method in order to standardize all target MR
images with the same modality. This method is based on
the cycle generative adversarial network (CycleGAN) [24].
An extended framework is applied with a unified forward gen-
erator/discriminator pair and multiple independent backward
generator/discriminator pairs for building the transformation
model using multiple groups of images. Each generator, in
particular, has two jump connection paths established between
the downsampling path and upsampling one in order to provide
more high-resolution details to the contracting layers. The
weak-pair strategy is applied, which makes the images sent
to the discriminator mainly contain differences in intensity
distribution while other features such as structure and position
that are not to be adjusted are as similar as possible. That
ensures the discriminator’s concentration.

Meanwhile, in order to prove the effectiveness of the pro-
posed algorithm in clinical data mining, we try to standardize
MR images acquired from different MR scanners and attempt
to differentiate high grade glioma (HGG) from lower grade
glioma (LGG). The diagnostic accuracy by using MR images
before and after intensity standardization is compared.

The paper is organized as follows. Section II expatiates
on the proposed method including network architecture, loss
function and training process in detail. The dataset as well
as preprocessing steps containing weak-pair input strategy
and data augmentation are shown in section III. Section IV
describes the experiments consists of the impact of network
structure optimization, data input strategy and training dataset
on the model performance, the comparison with other methods
as well as the effect of the proposed method as an image
preprocessing step on radiomics-based differential diagnosis.
Section IV also demonstrates the results. Section V raises the
discussion. The conclusion is made in section VI.

II. METHODS

A. Formulation

Assume that the training set contains N groups of
T2-FLAIR image slices with Mn images in each, where
n ∈ {1, 2, · · · , N}. Since the images in one group share
the same imaging parameters, they could be regarded as
images in one domain Xn . Therefore, the images can be
represented as

{
xn,m

}Mn N

m = 1 n = 1
, where xn,m ∈ Xn . The

distribution of the data is xn ∼ pdata (xn). Taking the Nth

group as a reference, the goal is to figure out the universal
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transformation G f orward : X1 ∼ X N → X N ensuring
that every G f orward

(
xn,m

)
belongs to X N while keeping its

own image feature. To validate whether the image-specific
feature is preserved during the transformation, N reverse
transformations Gbackward n : X N → Xn are established.
Then, we apply N + 1 adversarial discriminators D f orward

and Dbackward n . D f orward is used to distinguish between
reference images {xN } and forward-transformed target ones{
G f orward (xn)

}
, while Dbackward n is used to identify the

original target images {xn} and backward-transformed ref-
erence ones {Gbackward n (xN )}. Thus, the objective of the
transformation problem includes the adversarial losses and
the cycle consistency losses, which will be described in
section C, D and E.

B. Network Architecture

The modules of the network are illustrated in Fig. 1.
To obtain a unified universal transformation that can transform
any T2-FLAIR image slice into the reference image domain,
a universal forward generative network G f orward and a uni-
versal forward discriminative network D f orward are utilized.
Since the training images are from N different domains,
to ensure the information of the original target image is
preserved after the forward transformation, the images have to
be recovered to N different domains in the process of the cycle
consistency loss calculation. Therefore, N backward gener-
ative networks Gbackward n and N backward discriminative
networks Dbackward n are applied to evaluate the information
loss during the transformation. The training processes of
generators and discriminators are alternated, so that the data
generated by the generator is getting closer to the corre-
sponding reference one. Every generative network consists of
a convolutional down-sampling path, a residual convolution
path and a convolutional upsampling path, as illustrated in
Fig. 2. The convolutional down-sampling path contains a 7×7
convolution with stride = 1 and two 3 × 3 down-sampling
convolutions with stride = 2, each followed by a rectified
linear unit (ReLU) [25] as an activation function in order
to increase the nonlinear characteristics of the model and
solve the problem of slow convergence of neural network
learning caused by the disappearance of the gradient. The
filter number is 64, 128 and 256, respectively. The reflection
padding is also applied. The residual convolution path con-
tains nine successive residual blocks [26]. Each contains two
3 × 3 convolutional layers, and the filter number is fixed to
256. The convolutional upsampling path contains two 3 × 3
upsampling transposed convolutions with stride = 2 and a
7 × 7 transposed convolution with stride = 1, each followed
by a rectified linear unit (ReLU). In particular, the image-to-
image transformation should focus on the image’s intensity
adjustment so that the information loss caused by resolution
changes should be avoided. For this purpose, two jump-
connection paths are established [27]. The first one feeds the
output of the ReLU layer after the 7×7 convolution to the input
of the 7 × 7 transposed convolution. The other one feeds the
output of the ReLU layer after the first 3×3 convolution to the
input of the output’s 3 × 3 transposed convolution. Therefore,

Fig. 1. The modules of the proposed networks.

the dimensions of the feature-map inputs for the transposed
convolution layer are 256, 256 and 128, respectively. The
discriminative networks use the classical PatchGAN [28] with
70 × 70 receptive field that consists of three successive 4 × 4
down-sampling convolutions with stride = 2 followed by a
leaky rectified linear unit (LeakyReLU) [29] as the activation
function and two convolutions with stride = 1 followed by
a LeckyReLU. The LeckyReLU is an optimization of ReLU
which reduces the number of inactive neurons and retains
the information of the negative axis. The filter number is 64,
128, 256, 512 and 1 respectively. Therefore, a single layer
30 ×30 discriminative feature map is produced, which is then
synthesized to obtain the final discriminative result.
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Fig. 2. The structure of the applied generative networks.

C. Adversarial Loss

The adversarial losses are used to make the generated
images {G (xn)} approximate the distribution defined by the
reference images and belong to the domain Y . The loss
manifests as the classification capability of the discrimina-
tor D. Using the adversarial loss in least squares generative
adversarial networks (LSGAN) [30], the loss function is
expressed as

LLSGAN (G, D, Xn , Y )

= Ey∼pdata(y)

[
(DY (y) − 1)2

]

+ Exn∼pdata(xn)

[
DY (G (xn))

2
]
. (1)

For GANs [31], the generator G aims to generate
the images G (x) that seems to be from domain Y , and
the discriminator D aims to distinguish between the
generated images and the real ones. Therefore, G tries
to minimize the loss function, and D tries to maximize
it. The optimization objective of the forward adversarial
loss is min

G f orward
max

D f orward
LLSGAN(G f orward , D f orward ,

Xn, X N ), and that of the backward adversarial
loss is min

Gbackward n
max

Dbackward n
LLSGAN(Gbackward n,

Dbackward n, X N , Xn).

D. Cycle Consistency Loss

If the output of the generator G is fixed to a particu-
lar image in the domain Y , the adversarial loss will not
make sense since DY (G (xn)) = DY (yi ) where yi ∈ Y .
Thus, the cycle consistency loss is applied. The princi-
ple of the cycle consistency loss is straightforward. Once
the image-specific feature is preserved, the standardized
image could be transformed into the original image using
a backward generator Gbackward : Y → X . Specifically,
that is to say Gbackward n

(
G f orward

(
xn,m

)) ≈ xn,m and
G f orward

(
Gbackward n

(
xN,m

)) ≈ xN,m . By applying the L1

norm, the loss function is expressed as

Lcycle
(
G f orward , Gbackward n

)
= Exn∼pdata(xn)

[∥∥Gbackward n
(
G f orward (xn)

) − xn
∥∥

1

]
+ ExN ∼pdata(xN )

[∥∥G f orward (Gbackward n (xN )) − xN
∥∥

1

]
.

(2)

E. Entire Loss Function

The entire loss function for the group n is defined as

L (
G f orward , Gbackward n, D f orward , Dbackward n

)
= LL SG AN

(
G f orward , D f orward , Xn, X N

)
+LL SG AN (Gbackward n, Dbackward n, X N , Xn)

+Lcycle
(
G f orward , Gbackward n

)
. (3)

The optimization objective is to obtain the optimal
G f orward and the N optimal Gbackward n as defined as

G f orward
∗, Gbackward n

∗

= arg min
G f orward ,Gbackward n

max
D f orward ,Dbackward n

L (
G f orward , Gbackward n, D f orward , Dbackward n

)
. (4)

F. Training Process Overview

The training process of the whole framework could be
described as follows:

a) Randomly select an image xn,m without replacement in
the WHOLE target dataset X .

b) Randomly select one out of 150 MR images, xN,m̃ , in the
reference dataset xN closest to xn,m using the weak-pair
data input strategy introduced in III.B.

c) Generate G f orward
(
xn,m

)
, Gbackward n

(
G f orward(

xn,m
))

, Gbackward n
(
xN,m̃

)
and G f orward(

Gbackward n
(
xN,m̃

))
using the unified forward

generator G f orward and the nth backward generator
Gbackward n .

d) Compute L (
G f orward , Gbackward n, D f orward , Dback

ward n) and the gradient of G f orward and Gbackward n

using (3).
e) Adjust the parameters of G f orward and Gbackward n

with the gradients computed in step (d).
f) Compute LLSGAN

(
G f orward , D f orward , Xn, X N

)
and

the gradient of D f orward using (1).
g) Adjust the parameters of D f orward with the gradients

computed in step (f).
h) Compute LLSGAN (Gbackward n, Dbackward n, X N , Xn)

and the gradient of Dbackward n using (1).
i) Adjust the parameters of D f orward with the gradients

computed in (h).
j) Return to step (a) until the training process finishes.

After the training process, the G f orward is extracted as
a standardizer to transform any images into the reference
domain.
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TABLE I
THE DETAILS OF PATIENT IMAGING ACQUISITION PROTOCOLS FOR THE 9 GROUPS OF DIFFERENT IMAGING PARAMETERS FROM 5 MRI

SCANNERS LOCATED AT THE 4 HOSPITALS

TABLE II
THE DETAILS OF VOLUNTEER IMAGING ACQUISITION PROTOCOLS

III. DATA AND PREPROCESSING

A. MR Image Dataset in the Study

This study was approved by the ethics committees of the
four participating hospitals in China and informed consent was
obtained from every patient and volunteer.

There were 489 patients who participated in our study.
A total of 8192 T2 FLAIR brain MR images were acquired
from five MRI scanners located at the four hospitals. The
training data was divided into nine groups according to dif-
ferent imaging parameters. The details of the patient imaging
acquisition protocols are shown in Table I.

To independently test the proposed method, a test dataset
was acquired from ten healthy volunteers from the Depart-
ment of Radiology at Huashan Hospital at Fudan University.

To meet the data requirements for all algorithms used for
comparison, T2, T2-FLAIR and T1-FLAIR brain MR images
were successively obtained with a Siemens Magnetom Verio
3.0T MRI scanner and a GE Discovery MR750 3.0T MRI
scanner. Therefore, 60 total image sets were obtained from
these ten volunteers. The details of volunteer imaging acqui-
sition protocols are shown in Table II.

B. The Weak-Pair Data Input Strategy

Fig. 3 shows a sample of an MRI scan with six different
brain layers. Since the morphological structures of MR images
significantly differ from one MRI layer to another, when all
target images and reference ones are completely randomly
paired like Fig. 4, the main difference between two image
groups will be the morphological structure instead of the
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Fig. 3. An example demonstrating one set of 6 different brain layers
from a single MRI scan.

Fig. 4. All the target and reference images completely randomly paired.

intensity distribution, which may make the generative model
mainly focus on morphological changes, which is undesirable.
Therefore, we introduce a weak-pair approach to increase
the structural similarity between two randomly paired MR
images. First, in order to obtain the position of the MR image,
a registration with a certain brain atlas is applied. According
to [32], we apply the SPM12 tool to combine the registration
and tissue classification into a single circular generative model
to get a robust registration result, which is expressed as the
axial-sagittal-coronal coordinate values of every pixel in the
MR image. Furthermore, the layer position is estimated by
averaging the axial coordinate value in the 1/3 center area of
the corresponding image layer. Finally, in every epoch, one out
of 150 MR images, xN,m̃ , in the reference dataset xN closest
to xn,m is randomly selected to be paired for each xn,m . The
procedure of the proposed strategy is shown in Fig. 5.

C. Data Augmentation

Since the MR images used for training are all axial brain
scans, in order to contain the entire brain, there will be a
black background around the MR images. This part of the
black border will cause the transformation model to be less
sensitive to edge pixels. To improve the model stability and
prevent overfitting, data augmentation is applied before each
epoch. For every xn,m , a random number randn,m is obtained
according to a Gaussian distribution with μ = 256 and σ =
64. Then, the target image size is calculated as

si zen,m = round
(
256 + absolute

(
256 − randn,m

))
, (5)

where absolute(·) denotes the operation to calculate the
absolute value and round(·) obtains the integer value around
the variable. xn,m and its corresponding image xN,m̃ are both
scaled to si zen,m × si zen,m with bilinear interpolation. Two
images are later synchronously randomly cropped to 256×256.
Finally, such images are synchronously randomly flipped, and
the image pair is generated.

Fig. 5. The procedure of the proposed weak-pair data input strategy.

IV. EXPERIMENTS AND RESULTS

In this section, we first evaluate the effectiveness of the
proposed method. Then, the comparison with different meth-
ods is performed. The peak signal-to-noise ratio (PSNR), the
histogram correlation, the structural similarity index (SSIM),
the gradient magnitude similarity deviation (GMSD) [33],
the mean square error (MSE) and the average disparity are the
applied quantitative criteria for the performance evaluation of
the methods. The PSNR is defined as

PSN R = 10 log10

(
M AX I ntensit y

2

M SE

)
, (6)

where M AX I ntensit y is the maximum value of the intensity
in the MR images, and M SE is the mean squared error. The
histogram correlation is defined as

Histogram Correlation

= 1 −
√

1 −
∑ √

Cntstandard · Cntre f√∑
Cntstandard × ∑

Cntre f
, (7)

where the Cntstandard is a vector containing the count of every
bin in the histogram of the standardized image, and Cntre f is
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TABLE III
THE EXPERIMENTAL RESULTS FOR THE STUDY OF THE FRAMEWORK OPTIMIZATION IN THE PROPOSED METHOD

a vector containing the count of every bin in the histogram of
the reference image. The SSIM is defined as

SSI M (x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) , (8)

where x and y are the reference and standardized image,
correspondingly. μx and μy are the mean value of x and y.
σx and σy are the standard deviation of x and y. C1 = 10−4

and C2 = 9 × 10−4. The GMSD is defined as

GM SD = σ

(
2mr (i) md (i) + c

m2
r (i) + m2

d (i) + c

)
, (9)

where mr (i) =
√

(r ∗ hx)
2 (i) + (

r ∗ hy
)2

(i) and md (i) =√
(d ∗ hx)

2 (i) + (
d ∗ hy

)2
(i) are the gradient magnitude of

reference image r and standardized image d at location i . σ

represents standard deviation pooling and ∗ denotes convolu-
tion, c is a positive constant for keeping numerical stability.
The MSE is defined as

M SE =
∑

(Si − Ri )
2

Count (Ri )
, (10)

where Si means the pixel value of a point in the standardized
image, Ri is the pixel value of the corresponding point in
the reference image, and Count (Ri ) denotes the amount of
points. The average disparity is defined as

Average Dispari ty = 100 mean

(∣∣Istandard − Ire f
∣∣

Ire f

)
,

(11)

where Istandard is the standardized image, and Ire f is the
reference image. The average disparity is the mean value of the
pixel’s relative error. Larger values of the PSNR, the histogram
correlation and the SSIM as well as smaller values of the
GMSD, the MSE and the average disparity denote the better
performance.

The framework optimizations including the network struc-
ture and data input strategy in the proposed method are
first explored. To evaluate the effectiveness of such optimiza-
tions, the performance comparisons between the frameworks
with/without such optimizations are conducted. The training
set is the patient image slices from nine groups and tests are
applied with the volunteer dataset. The five quantitative criteria
mentioned above are then gained.

Since the data and its represented data distribution are
important for the image standardization, we further evaluate
the impact of the dataset for the proposed method. For the

nine groups of patient images used for the model training,
each time we select five groups and use them as the training
set in this series of experiments. This process is repeated four
times. Test A contained all kinds of training images. Test B, C
and D did not contain images with lower, middle and higher
average intensity respectively. The corresponding experimental
results for the proposed methods with the tests applied using
the volunteer dataset are obtained.

Meanwhile, we compare the proposed method with two
major types of intensity standardization methods including the
histogram-matching method proposed by Sun et al. and the
joint histogram registration method previously proposed by
our group. In Sun’s method, the high-intensity region (HIR)
and low-intensity region (LIR) are the values at the maximum
and minimum deciles, respectively. In the joint histogram
registration method, the number of reference points on one
modality is set to 31, and the number of layers in the
b-spline registration is set to seven. Both visual observation
and quantitative comparison result are demonstrated.

In order to demonstrate the significance of the proposed
method as a preprocessing step for multi-center data in the
data mining process, we apply a set of reference MR images
to train a differential diagnosis model and apply a set of target
MR images and their standardized images to test it.

The model is used to distinguish gliomas’ WHO grade
(HGG: WHO IV; LGG: WHO II and III) [34], which is a
classical clinical problem in glioma diagnosis. MRI images
of 66 cases with glioma (34 HGG and 32 LGG) were from
reference MR images and considered as the training set, and
28 (17 HGG and 11 LGG) were from target MR images and
regarded as the test set. A total of 555 radiomics-based features
are firstly extracted using a self-adaptive feature extraction
method from the glioma region of the training cases. Then,
the key feature selection and support vector machine (SVM)
parameters optimization are proceeded simultaneously using
the minimum redundancy maximum relevance (mRMR) based
genetic algorithm (GA). The SVM model is finally obtained
according to the predefined parameters and key features. After
that, the MR images in the test set and their standardized
images are used to test the SVM differential diagnosis model,
respectively. Comparison of classification accuracy is shown.

A. The Performance Improvement Brought
by Optimization in the Framework

These comparisons are shown in Table III. The performance
by using the original Resnet-based structure without the jump
connections as the generator in the proposed method is first
revealed. Most performance indicators are improved with the
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TABLE IV
THE EXPERIMENTAL RESULTS FOR THE STUDY OF THE TRAINING DATA USED IN THE PROPOSED METHOD

proposed method. The PSNR, the histogram correlation and
the SSIM are increased by 0.6 dB, 0.0832 and 0.0003 respec-
tively, the GMSD and the MSE are reduced by 0.0024 and
170 respectively, and the change in the average disparity is
not significant.

The performance by not applying the weak-pair strategy in
the proposed method is then demonstrated. All performance
indicators are improved with the application of the weak-pair
strategy. The PSNR, the histogram correlation and the SSIM
are increased by 0.74 dB, 0.0948 and 0.0003, respectively, and
the GMSD, the MSE and the average disparity are reduced by
0.0013, 249 and 0.21, respectively.

Meanwhile, from Table III, it is also noted that the proposed
intensity standardization method demonstrates a significantly
improved performance based on all quantitative criteria com-
pared with the original image data.

B. The Impact of Datasets on Model Performance
The results for the study of the training data used in the

proposed method are shown in Table IV. It can be seen that
the performance is decreased due to the significant reduction
of the training data. After further examination, we found that
if the diversity of the training images could be guaranteed,
the degradation would not be significant. The proposed method
can well represent the distribution, even with the limited
training data. This may demonstrate the superiority of the
proposed method.

C. Comparison With Other Methods

Fig. 6 demonstrates a typical set of the target, the reference
and the standardized results of different methods. The target
images and reference ones differ severely in intensity, which
makes it hard for the computer-aided diagnosis system to
perform properly before intensity standardization. Using visual
observation, a slight intensity corruption is found in the stan-
dardization result with Sun’s method. Meanwhile, the average
intensity is slightly higher. Specifically, the blue region in
Fig. 6 (d3) shows a contrast enhancement between the gray
matter and the white matter, which may be attributed to
the intensity correspondence deviation caused by the absence
of the intensity relationship consistency. The standardization
results with the joint histogram registration method are visu-
ally good in the brain regions, as with the proposed method.
However, for the skull, muscle and skin areas, only the
proposed method visually achieves a relatively good result.
Table V provides the quantitative results of the comparison

Fig. 6. The test on three continuous example slice aligned in MNI
space from a volunteer. (a1)-(a3) MR images from GE scanner used
as the original target, (b1)-(b3) MR images from Siemens scanner used
as the original reference, (c1)-(c3) standardized results (transformation
from the target to the reference) using the proposed method, (d1)-(d3)
standardized results using the histogram matching method, (e1)-(e3)
standardized results using the joint histogram registration method. The
blue region in (d3) shows a contrast enhancement. (e1)-(e3) have slightly
worse result in skull, muscle and skin areas.

for the different methods. It can be clearly seen that the
proposed method achieves the state-of-the-art results, and the
improvement is significant.

For the operation time of the standardization process,
the histogram matching method is preferably fast since it
takes 0.5867 second for an image slice. The joint histogram
registration method consumes 2.1651 seconds for a slice
mainly due to the complicated computation of the b-spline
interpolation. For the proposed method, because convolutions
are parallel and very suitable for implementation with graphic
processing units (GPUs), the time cost is only 0.2868 second
per slice, which is acceptable as a preprocessing step in the
MR image analysis workflow.

D. The Radiomics-Based Differential Diagnosis
Performance Improvement Brought by the
Proposed Method

The accuracy of differential diagnosis between HGG
and LGG with original images from target dataset is
71.4%, and that on the standardized images increases to
82.1%. Therefore, we believe that the proposed method can

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on October 08,2025 at 22:17:42 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: UNIVERSAL INTENSITY STANDARDIZATION METHOD BASED ON A MANY-TO-ONE WEAK-PAIRED CYCLEGAN 2067

Fig. 7. The typical results for the 9 image groups in which the
left is the target images and the right is the standardized results.
(a) Huashan Hospital, Siemens Magnetom Verio scanner with
TR=8000 ms, TE=102 ms, TI=2370 ms. (b) Shandong Provincial Hospi-
tal, Siemens Magnetom Skyra scanner with TR=9000 ms, TE=128 ms,
TI=2500 ms. (c) Sun Yat-sen University Cancer Center, Siemens Mag-
netom Trio Tim scanner with TR=8500 ms, TE=90 ms, TI=2439.2 ms.
(d) Sun Yat-sen University Cancer Center, Siemens Magnetom Trio Tim
scanner with TR=8500 ms, TE=91 ms, TI=2439.2 ms. (e) Huadong Hos-
pital, Siemens Magnetom Verio scanner with TR=9000 ms, TE=83 ms,
TI=2500 ms. (f) Huashan Hospital, GE Discovery MR750 scanner
with TR=8800 ms, TE=152.3 ms, TI=2100 ms. (g) Huashan Hospital,
Siemens Magnetom Verio scanner with TR=9000 ms, TE=102 ms,
TI=2500 ms. (h) Huashan Hospital, GE Discovery MR750 scanner
with TR=8525 ms, TE=141.9 ms, TI=2100 ms. (i) Huashan Hospital,
Siemens Magnetom Verio scanner with TR=8500 ms, TE=102 ms,
TI=2438.8 ms.

effectively improve the accuracy of differential diagnosis
methods based on modern techniques such as big data, deep
learning and Radiomics under multi-center, multi-machine
and multi-parameter conditions.

V. DISCUSSION

The purpose of this study is to establish a univer-
sal model for the intensity standardization of MR images.

The proposed method has many advantages compared with
the previous methods.

First, when the MR images used to train the proposed
framework are obtained from enough wide variety of sources
thus the coverage is high throughout the MR image domain,
thanks to the high-dimensional feature representation from
the applied deep networks for the MR images instead of
the low-dimensional feature representation of the conventional
methods, the proposed method is able to extract features
resulting from differences in tissue and structure over a
relatively wide MR image domain, rather than differences
between different machines or different parameters. Therefore,
the proposed method may produce a universal transformation
model for such a MR image domain. As a result, the method
could be directly used for completely unknown testing images,
which makes this model the first universal method that does
not require the statistical information of the particular image
domain to which the testing images belong. This allows the
standardization of any MR image over a wide range that
is not limited to the images defined by the training image
domains. It is no doubt that, as shown in Table IV, when
the MR images in the training set are from limited sources,
the performance would be diminished because the model could
not acquire characteristics of the entire MR image domain.
However, the performance decrease is not so obvious and the
results are still acceptable.

Second, it can be seen from Table III that the proposed
method with the weak-pair strategy achieves better results
compared with the one using the random pair strategy. It is
because the application of the weak-pair data input strategy
can make the discriminator concentrate on the intensity devi-
ation rather than other differences, which results in more
effective convergence. Meanwhile, since the model employs
weak-paired MR images rather than precisely paired ones,
the training sets of different machines or parameters can be
acquired from different patients instead of using more than
one machine to scan the same patients within short intervals.
Moreover, the proposed method does not even require accurate
registration results between target data and reference data,
which is needed for the previous methods. Therefore, it is
easy to form a training set with a large amount of data
from multiple sources, which allows us to obtain a robust
standardization model with strong generalization capability.
Such an advantage makes it possible to standardize the multi-
center or even cross-regional MR images in order to establish
a large dataset that facilitates the development of various MR
image-based clinical analysis and computer-aided diagnostic
systems.

As for the network structure, Table III also shows that
the proposed method which applies two jump connections
between corresponding layers of the downsampling path and
upsampling one achieves better results compared with the
one using the direct Resnet structure. Such improvements
are mainly attributed to the preservation of high-resolution
features in the input images by directly combine them with up-
sampled convolution result before the last trans-convolutional
layer. The effectiveness of the proposed two jump connections
is thus demonstrated.
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TABLE V
THE COMPARISON RESULTS OF THE DIFFERENT METHODS

Fig. 8. The histograms of the standardized images and the reference images of the 9 image groups for which the top is the reference results and
the bottom is the standardized results. The groups of the figure correspond to the groups of Fig. 7.

To explore more details of the experimental results, Fig. 7
shows the typical results of the proposed method that was
directly performed on the training data of nine image groups.
It can be seen that the transformation largely retains the orig-
inal image information. Meanwhile, the intensity levels of the
standardized images are consistent across the different image
groups. Fig. 8 shows the histograms of the standardized images
and the reference ones. It can be seen that the histograms of
the standardized results for different groups of MR images are
close to the histograms of the reference ones.

Meanwhile, the experimental results also illustrate the value
of the proposed method in medical big data mining. With
standardization of MR images from different MR scanners,
the image difference caused by different MR scanners which
may exceed the image difference caused by the pathological
features to be discriminated is reduced or even eliminated.
In this case, a large amount of standardized data from mul-
tiple sources can be used for training various computer-aided
diagnosis models based on MR images. Therefore, with the
proposed standardization method as an image preprocessing
step, the result models can focus on the difference caused by
the pathological features and can also be used in a wider range.

VI. CONCLUSION

In this paper, a universal MR image standardization method
is proposed. It utilizes an optimized cycle generative adver-
sarial network to standardize images from different image
groups. Two jump connections are proposed in each generative
network to prevent the transformation model from losing
its image resolution. Meanwhile, a weak-pair approach is
proposed to increase the structural similarity between two ran-
domly paired MR images and focus the transformation on the
intensity transformation rather than the structural modification.
The experimental results demonstrate the state-of-the-art per-
formance of the proposed method. This promising method may

vigorously promote the potential establishment of large MR
image datasets, which might contribute to the development of
medical big data processing and further improve the reliability
and generalization capabilities of computer aided diagnosis.
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