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A B S T R A C T   

As a cost-effective, non-invasive and radiation-free medical imaging modality, ultrasonic imaging is widely used 
in clinical diagnosis. However, database bias is commonplace among different medical centers. Deep learning 
based ultrasound image analysis algorithms are usually data driven, rendering high requirements on the uni
formity of image datasets. In this paper, we propose a stability-enhanced cycle-consistent generative adversarial 
network (CycleGAN) method with well detail preservation for the domain transformation to normalize ultra
sound images from various medical centers. To stabilize the training process of CycleGAN model, we adopt 
spectral normalization for 1-Lipschitz continuity to reduce model oscillation. Besides, two time-scale update rule 
and label smoothing strategy are also utilized to maintain the balance between generators and discriminators for 
further stability enhancement. Moreover, our method applies skip connections to preserve ultrasound image 
details and prevent resolution loss during the domain transformation process. Experiments were conducted on 
clinical thyroid and carotid image datasets acquired from several medical centers. Massive results demonstrate 
that our proposed model is easier to reach a steady state when training, outstanding 50% from the basic 
CycleGAN model. Compared with representative algorithms, our proposed method reaches the state-of-the-art 
performance, with a 11.3% decrease in the mean absolute error and a 9.8% increase in the structural similar
ity. Hence, our proposed algorithm has a strong capacity of the domain transformation in ultrasound images to 
reduce the database bias for uniformly distributed datasets. We believe that our method can contribute to the 
development of the ultrasound image analysis and computer aided clinical diagnosis..   

1. Introduction 

Ultrasonic imaging is not only inexpensive and fast, but also nonin
vasive and accurate, becoming one of popular medical imaging methods 
for clinical diagnosis [1–3]. Many studies have been conducted to reveal 
the underlying diagnosis and treatment information from ultrasound 
images [4–7]. With the rapid development of computing power and 
memory resources, many advanced techniques such as deep learning 
have been generally applied in medical ultrasound image analysis, 
involving tissue and lesion detection, segmentation and classification 
[8], which help to improve the efficiency and accuracy of medical 
diagnosis and treatment process greatly. 

Most of researches and algorithms based on deep learning for ul
trasound image analysis are data-driven, which render higher re
quirements on the uniformity of image datasets. However, as shown in 
Fig. 1, variation including gray distribution, contrast and so on is 

commonplace among ultrasound images acquired from different medi
cal centers. Such variation can be great due to different imaging settings. 
It is difficult to remain the performance and robustness of a network 
once deployed at a medical center. Newly introduced protocols or 
scanners bring a degradation in the performance of an optimized or 
tuned algorithm for a specific center, because the impact on image 
feature differences caused by imaging settings may exceed that induced 
by the pathological characteristic itself [9]. Maybe we can resolve the 
problem by retraining the model, but it is burdensome and time- 
consuming. Therefore, algorithms should deal with aforementioned 
image dissimilarities before being applied in the workflow of ultrasound 
image analysis [10]. Besides, different from natural images, extensive 
data especially paired data is difficult to obtain in the medical ultra
sound domain [11]. Many problems, such as the mode collapse and 
overfitting, would be caused by training models with limited and not 
uniformly distributed datasets. Hence, we should perform the domain 
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transformation to reduce discrepancies between ultrasound images from 
various medical centers. This can contribute to data-driven studies and 
reliability enhancement of leaning based algorithms. 

During last decades, domain transformation researches have been 
conducted in some medical imaging domains (e.g., magnetic resource 
images (MRIs) and histopathological images). Conventional approaches 
including global histogram-matching methods [12] and joint histogram 
registration methods [13] are not applicable to unpaired data. Instead, 
some creative learning-based approaches extracting powerful high-level 
features have superior performance to traditional modeling methods 
[14]. Adversarial learning [15] is usually applied for style transfer tasks. 
Among achievements in image-to-image translation, Pix2Pix, adapted 
from the conditional GANs [16], requires paired data [17]. For a 
remission of demand for paired data, cycle-consistent GANs (Cycle
GANs) [18] appeared as a milestone. Thomas et al. [10] applied residual 
learning from input to output to force CycleGAN to learn the residual for 
stain transformation in histopathology. Liu et al. [19] added the pa
thology consistency constraint into CycleGAN model for stain 

transformation. Gao et al. [9] utilized a forward GAN path and multiple 
backward GAN paths to perform many-to-one transformation in MRIs. 
Based on the theory of “loss-correction”, Kong et al. [20] proposed a new 
unsupervised mode called RegGAN, which applies an additional regis
tration network in GAN model. Inspired by the profound ability of deep 
learning and previous work in domain transformation, we explore the 
potential of CycleGANs to perform domain transformation in ultrasound 
images to normalize images from multi-centers. 

Although deep learning has gained a lot of traction in MRIs and 
histopathology, there still exist challenges of the application in the 
domain transformation of unpaired ultrasound images. The first chal
lenge is how to stabilize the training of the CycleGAN model. Except for 
the inherent difficulty of training unsupervised learning model, the low 
quality of ultrasound images and great variation among ultrasound 
images from different medical centers make it harder for generators to 
extract image features and generate images similar to target domain to 
“fool” discriminators. It leads to model oscillation or unbalance between 
generators and discriminators resulting weak stability problem when 

Fig. 1. Comparison between ultrasound images obtained from various medical centers. (a), (b) display ultrasound carotid images, and (c), (d) display ultrasound 
thyroid images. Images shown in the first column were scanned by mSonics MU1, and those shown in the second column were scanned by Toshiba Aplio 500. 
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training with unpaired ultrasound images. The stability of training the 
network can be influenced by many factors such as the performance of 
discriminators, the balance between generators and discriminators. An 
unbalance phenomenon that discriminators have been optimized to 
converge while generators not, usually appears when training GAN 
models. The appearance causes overfitting or model collapse, leading to 
the weak stability and low effectiveness of the CycleGAN model. The 
second challenge is that the image detailed information loss and reso
lution loss during domain transformation process. The cycle-consistency 
constraint does well in the style transfer but seems to just achieve the 
low-level style mapping between two domains. It shows insufficient 
constraint on preserving ultrasound image details like tissue structures, 
organ boundary and textures, which are of critical significance for ul
trasound diagnosis and treatment. To overcome aforementioned chal
lenges, some strategies including the spectral normalization, the two 
time-scale update rule and label smoothing strategy and addition of 
skip connections are adopted to optimize the original CycleGAN. We 
propose a stability-enhanced CycleGAN with better detailed information 
preservation for the domain transformation of ultrasound images to 
obtain uniformly distributed datasets. Summarizing, major contribu
tions made by this paper are as follows: 

(1) Based on the analysis of the weak stability of training CycleGAN 
model, we develop the basic CycleGAN by incorporating spectral 
normalization layers in discriminators for 1-Lipschitz continuity to sta
bilize the training process. Besides, training strategies including two 
time-scale update rule and label smoothing strategy are adopted to 
maintain the balance between generators and discriminators. 

(2) Considering the weakness of the cycle-consistency constraint, we 
utilize the addition of skip connections in generators to enhance image 
detailed information preservation and reduce the resolution loss during 

cycle transformation process. 
(3) Massive qualitative and quantitative results of the domain 

transformation on clinical thyroid and carotid ultrasound image datasets 
are provided to demonstrate the state-of-the-art performance of our 
proposed method. 

2. Method 

2.1. Model overview 

Fig. 2 shows the end-to-end framework of our proposed method at a 
component level, which consists of two GANs for two transformations, i. 
e., X → Y and Y → X, respectively. In the training stage, the proposed 
model is trained with a mass of unpaired training data, aiming to obtain 
end-to-end mapping between two domains. In the testing stage, trans
formed ultrasound images are directly generated by the trained model. 
The data preprocessing step, including random cropping, rotation and 
image scaling, is for the data augmentation. The registration pre
processing, including a B-spline-based nonrigid registration and a 
landmark-based nonrigid registration, is adopted to obtain paired 
testing data for evaluating the domain transformation performance. 

2.2. Model description 

2.2.1. Architecture of the proposed model 
The architecture of generators can be viewed in Fig. 3. Every 

generative network is composed of an encoder-decoder architecture 
inspired by the U-net [21], which is a widely used feature extractor, and 
a residual convolution path. The encoder is responsible for extracting 
the principal feature and morphological content from the source 

Fig. 2. Overview of the proposed method (X,Y denote ultrasound images from two domains respectively. X̃ and Ỹ represent transformed images. Ẍ and Ÿ denote 
reconstructed images. 

L. Huang et al.                                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 77 (2022) 103831

4

ultrasound image. It starts by a 7 × 7 convolution. Subsequently, to 
maintain the spatial continuity and reserve more structural details, we 
adopt two 3 × 3 convolutions instead of the pooling operation. Each of 
the convolutional layers is followed by a rectified linear unit (ReLU) 
[22] to increase nonlinear characteristics of the model and avoid the 
slow convergence caused by the disappearance of gradient. Instance 
normalization and reflection padding are also used with every convo
lution. The following module is a residual convolution path, a high- 
performance feature extractor containing nine successive residual 
convolution blocks [23]. It can integrate different-level image features 
efficiently and deepen the depth of the network yet not increase the 
training difficulty. Each residual convolution block contains two 3 × 3 
convolutions with fixed-number filters. For the decoder, we utilize two 

nearest-neighbor up-sampling instead of transposed convolutions to 
reduce the extent of checkerboard artefacts [24], as checkerboard ar
tefacts will bring great errors and deformations in the transformed re
sults or lead to the failure of training model. Finally, the output image is 
obtained through a 7 × 7 convolution and a ‘Tanh’ activation function. 

For discriminators, an architecture inspired by the classic “Patch
GAN” setup [25] is adopted, which is composed of four 4 × 4 down- 
sampling convolutions followed by a leaky rectified linear unit (Lea
kyReLU) [26] to retain the information brought by the negative axis and 
reduce the inactive neurons number. Four convolutions are with 64, 
128, 256 and 512 filters, respectively. Each of them except the first one 
is followed by a spectral normalization layer. The final layer is a 3 × 3 
convolution to reduce the output to a single filter map. Finally, the 
discriminator produces a 30 × 30 discriminative feature map instead of 
a single value to judge whether the generated image is real or not. Based 
on the architecture, the discriminator has a reduced receptive field, 
which restricts the network to smaller parts of input images for more 
attention to high-frequency changes in images [10]. 

2.2.2. Loss function 
We used the L1-loss to minimize the cycle-consistency error. The 

least-square loss [27] is adopted as the adversarial loss to reduce the 
chance of the disappearance of the gradient [28]. In addition, we add an 
identity loss term to ensure the identity mapping in generators. It can 
allivate the style over-tranferring problem that may reduce the quality of 
transformed ultrsound images and lead to the instability of the Cycle
GAN model. The identity loss is computed in the L1 norm: 

L identity(G,F) = Ey∼ pdata(y)
[
‖G(y) − y‖1

]
+ Ex∼ pdata(x)

[
‖F(x) − x‖1

]
(1) 

The overall objective function of our model can be expressed as 
following:  

where G and F are generators for the transformation X → Y and Y → X 
respectively,DX and DY are corresponding discriminators; λ and γ are 
constants. The process of training the proposed model is to obtain the 
optimal solution to the following optimization problem: 

G*,F* = argmin
G, F

max
DX ,DY

L (G,F,DX ,DY) (3)  

2.3. Enhancing the stability of the model 

As an unsupervised learning method, the CycleGAN model is not easy 
to be trained to reach the Nash equilibrium. In order to stabilize the 
training of the CycleGAN model, we adopt other strategies apart from 
the identity loss to obtain an improved model with more steady per
formance. According to the reference [29], the influence brought by loss 
functions on training GANs is not so strong, i.e., no one loss function is 
absolutely superior to others. Therefore, we don’t make much adjust
ment on the loss function and pay more attention on changing the 
composition of networks and training strategies. Optimizations are 
further detailed below. 

Fig. 3. The generator of the proposed model (k, n and s denote the kernel size, the number of feature maps and stride, respectively).  

L (G,F,DX ,DY) = L LSGAN(G,DY) + L LSGAN(F,DX) + λL cycle(G,F) + γL identity(G,F) (2)   
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2.3.1. Spectral normalization 
Although the least-square loss applied in the discriminator loss 

function helps to alleviate the gradient disappearance problem, it results 
in weaker stability of the discriminative network with a high learning 
rate [30]. Spectral normalization was firstly proposed by Miyato et al. 
[31], and since then this useful tool has been adopted for GAN training 
in many studies. It has been proved that the spectral normalization is a 
better practical choice than other regularization and normalization 
methods [32]. As illustrated in Fig. 4, we add a spectral normalization 
layer after each convolution of the discriminative network to normalize 
parameters of the convolutional layer to meet the 1-Lipschitz continuity. 
According to the stability theorem of GANs, the control capacity of the 
discriminative network can be enhanced when the input and output of 
the network satisfy the 1-Lipschitz continuity [33], which efficiently 
reduces the model oscillation and speeds up the convergence. Hence, to 
a great extent, the spectral normalization stabilizes the gradient and 
maintains the balance between the generator and discriminator so as to 
stabilize the training of the CycleGAN model. The principle of the 
spectral normalization is to estimate the spectral norm of the parameter 
matrix of the convolutional layer. The formulation to compute the 
spectral norm is defined as: 

σ(W) = sup
x∕=0

‖Wx‖2

‖x‖2
= sup

‖x‖2≤1
‖Wx‖2 (4)  

where x is the input, W is the weight matrix of the convolution. By 
enforcing sup

‖x‖2≤1
‖Wx‖2 = 1, the parameter-normalized weight matrix 

can be expressed as: 

WSN =
W

σ(W)
(5)  

2.3.2. Two time-scale update rule 
The two time-scale update rule was firstly proposed by Heusel et al. 

[34] and has been applied to many other GANs such as DCGAN [35] and 
WGAN-GP [36] to solve the unbalance problem between generators and 
discriminators for the stability enhancement of GAN models. In simple 
terms, the training strategy is to choose different learning rates instead 
of the same value for generators and discriminators. In practice, we use 
the Adam optimizer with a lower learning rate for training generators 
and a higher one for discriminators. The strategy is aimed to make 
discriminators produce feedback (i.e. discriminative results) for gener
ators in time and then update generators with a smaller step. Thus, the 
learning process of generators is more scientific so that weights of the 
generative network can be updated more accurately. Generators are 
enforced to generate images with more features close to reference ones. 
Discriminators will be fooled and hard to distinguish between generated 
images and real ones. The adversarial loss can be reduced and the model 
will be trained towards the stability. Therefore, the two time-scale up
date rule enhances the balance between generators and discriminators 
during the adversarial learning process and brings stability enhance
ment of CycleGAN model. 

2.3.3. Label smooth strategy 
Assuming that discriminators rely on few features to judge images 

generated from generators, generators can generate only those features 
in response to discriminators’ detection. The optimization of generative 
networks will become greedy without long-term benefit. In order to 
alleviate such problem, we utilize the label smooth strategy. We set the 
target label value at 0.9 or lower when the prediction probability given 
by discriminators to judge the image whether belonged to the target 
domain reaches 0.9. The operation is adopted to appropriately increase 
the difficulty of training discriminators to maintain the balance between 
generators and discriminators ensuring the stability of the CycleGAN 
model. 

2.4. Enhancing detailed information preservation 

In clinical ultrasound diagnosis, tissue structures, details and speckle 
of ultrasound images play a critical role in extracting image features to 
provide diagnostic information. Consequently, in the domain trans
formation of ultrasound images, the detailed information preservation is 
of significant importance. Although the cycle-consistency constraint 
enforces the transformation back to source domain and contributes to 
better performance in style transfer tasks, it seems to show insufficient 
constraint on reserving details. As the reference [37] indicates that first 
few layers of convolutional neural networks usually contain more 
transferable feature information of input images, two skip connection 
paths are established between layers in the encoder and decoder that 
mirror each other as shown in Fig. 3. The addition of skip connections 
feeds the low-level information from input to output, which provides 
shortcuts for reserving and reconstructing details from source images. 
We hypothesize that these skip connections are also especially important 
in the transformation to reduce the loss of high-resolution information in 
deeper layers of the network. 

3. Experiments 

3.1. Materials and preprocessing 

Experiments were carried on two clinical ultrasound datasets ac
quired using ultrasound imaging devices mSonics MU1 (Ultimedical 
Technology, China) and Toshiba Aplio 500 (Toshiba Medical Systems 
Corporation, Japan), respectively. Transducer central frequencies are 6 
MHz and 7.5 MHz respectively. We collected 120 pieces of carotid and 
thyroid ultrasound images with mSonics MU1 and the same quantity of 
images with Toshiba Aplio 500. Carotid and thyroid images were 
scanned for 47 healthy volunteers by an experienced doctor. To ensure 
the robustness of our method, the training set and testing set are both a 
mixture of carotid and thyroid images. 

To expand the training set, augmentation techniques like the random 
cropping, rotation and image scaling, were carried out as data pre
processing. After augmentations, our training set contains 1656 un
paired pieces of images with the size of 400 × 400 from two 
aforementioned medical centers. For the testing set, 78 pairs carotid and 

Fig. 4. The discriminator of the proposed model (k, n and s denote the kernel size, the number of feature maps and stride, respectively).  
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thyroid images with the size of 400 × 400 were sampled, which contains 
26 pairs of carotid ultrasound images and 52 pairs of thyroid ultrasound 
images. In order to evaluate our method properly, the 78 pairs of ul
trasound images were registered to each other using a B-spline-based 
nonrigid registration method [38] and a landmark-based nonrigid 
registration method [39]. Specifically speaking, volunteers held their 
breath for about 10 s when being scanned to reduce the deformation. In 
the scanning process, landmark points were recorded on volunteers’ 
scanning positions for the landmark-based nonrigid registration to 
obtain paired testing data pairs for appropriate evaluation of our 
method. After registration, 78 ultrasound image pairs can be regarded as 
the source domain and reference domain respectively to test and 
compare the domain transformation performance of different models. 
Some samples from the testing set are shown in Fig. 5. It is worth to note 
that the intersection of training set and testing set is empty. 

3.2. Experimental setting 

In this paper, the commonly used unpaired image-to-image 

translation method ‘Cycle-GAN’ is regarded as the baseline method. We 
conducted a series experiments to demonstrate the model evolution 
process and the superiority of our proposed method. 

3.2.1. Ablation study 
We first explored the effectiveness of the optimizations including the 

spectral normalization, two time-scale update rule and label smooth 
strategy to stabilize the training of the proposed model. The stability 
performance comparisons between the training process with/without 
such optimizations were conducted. Besides, through the study of skip 
connections on the image detailed information reservation, we can 
demonstrate why it is employed. 

3.2.2. Comparison methods 
To further confirm the superiority of our proposed method, we 

compared the proposed method with RegGAN [20], Residual CycleGAN 
[10], SRGAN [40]. We reimplemented the RegGAN method in the “C 
(cycle-consistency) + R(registration)” mode. We reimplemented Resid
ual CycleGAN method with the same function of the adversarial loss, 

Fig. 5. Some samples in the testing set. (a), (b) present ultrasound thyroid image pairs of the same location, and (c), (d) display ultrasound carotid image pairs of the 
same location. Images scanned by mSonics MU1 are shown in the first column, and images scanned by Toshiba Aplio 500 are shown in the second column. 
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cycle-consistency loss and extra identity loss as that of our method. As 
there are few previous works conducted in the domain transformation of 
ultrasound images, we also reimplemented the SRGAN to perform the 
transformation. The training process of different methods converged 
after 300 epochs. In different experiments, both the visual observation 
and quantitative comparison results were demonstrated. 

3.3. Evaluation measures 

For the ultrasound image domain transfer task of X→Y, there are 
mainly four types of images, i.e., the source image X, the transformed 
image Ỹ, the reconstructed image Ẍ and the target image Y and vice 
versa. Therefore, six types of images, i.e., X, Y, X̃, Ỹ, Ẍ, and Ÿ can be used 
to evaluate the transformation performance of two directions X→Y and 
Y→X. 

3.3.1. For X ↔ X̃/Y ↔ Ỹ or X ↔ Ẍ/Y ↔ Ÿ 
To comprehensive evaluate the uniformity of transformed ultra

sound images (X̃/Ỹ) and corresponding reference ones, we use several 
indices including the mean absolute error (MAE) to estimate their gray 
distribution, the multi-scale Structural Similarity Index Measure (MS- 
SSIM) to measure their multi-scale structural similarity, the Pearson 
correlation coefficient (Pearson-R) to indicate their correlation and the 
mutual information (MI) to evaluate the mutual dependence. The 
greater similarity signifies more uniformly distributed datasets can be 
obtained with the transformation model and better cycle-consistency of 
the transformation model. Evaluation indicators are detailed below: 

1) MAE. The MAE metric is used to evaluate the average pixel gray 
difference between different images. The lower value indicates the 
smaller difference so that transformed images or reconstructed ones are 
more similar to the corresponding domain. 

2) SSIM/MS-SSIM. The similarity/muli-scale similarity between 
different images can be evaluated by the SSIM/MS-SSIM, which are 
calculated to assess the performance in preserving tissue structures and 
texture information [41]. 

3) Pearson-R. In order to evaluate the relationship of different im
ages, the Pearson-R is used to evaluate the correlation. A higher value 
demonstrates the stronger relationship between them. 

4) PSNR. The PSNR metric is adopted to evaluate the quality of 
transformed images and reconstructed ones [42]. A higher PSNR value 
represents the transformed images and reconstructed ones with the high 
quality, containing more clear details. 

5) MI. The MI metric is adopted to evaluate the mutual dependence 
between the transformed images and reference ones [43], which can be 
calculated by: 

MI(x, y) =
∑

x,y
P(x, y)log

P(x, y)
P(x)P(y) (6)  

where P(x), P(y) and P(x, y) denote the marginal probability distribution 
functions and joint probability function of the transformed image and 
corresponding reference one, respectively [44]. 

The indexes are applicable for the performance assessment of both 
the transformation direction X → Y and Y → X to comprehensively 
evaluate the effectiveness of the proposed transformation model. 

3.3.2. For X ↔ Ỹ/Y ↔ X̃ 
Considering the inherent distance between two different ultrasound 

image domains, the Contrast-Structure Similarity (CSS) [19] is adopted 
to evaluate how much the structural information is preserved from the 
source image. The CSS is a variant of the SSIM and can be defined as 
following: 

CSS(x, y) =
2σxy + c

σ2
x + σ2

y + c (7)  

where σx, σy are the standard derivations, σxy is the covariance. c is a 
stabilizing factor variable to stabilize the division with weak denomi
nator. 

4. Results and discussion 

4.1. Performance improvement brought by the optimizations on stabilizing 
the training process 

Based on the analysis of the weak stability of training CycleGAN 
model, we utilize the addition of the spectral normalization, two time- 
scale update rule and label smooth strategies to stabilize the training 
process of the model. In order to study the stability improvement of 
training, we trained the CycleGAN model with/without optimizations 
with the same training set. 

Fig. 6 shows loss value curves of generators and discriminators 
during the training process. It can be seen from Fig. 6(a) and (b) that the 
loss of generators is hard to converge while the loss of discriminators 
drops rapidly, which reveals the unbalance and weak stability of 
training the basic CycleGAN model. By contrast, Fig. 6(c) and (d) show 
that the loss of generators and discriminators converges to a lower value 
and keeps steady as the training continues when training the stability- 
enhanced CycleGAN, which intuitively demonstrates that it is effective 
to stabilize the training process of the CycleGAN model with the opti
mizations described in Section 2.3. 

To further confirm the performance improvement, more quantitative 
and qualitative results were obtained. Some samples in the domain 
transformation process using the original and stability-enhanced 
CycleGAN model are given in Fig. 7, which reveals that the quality of 
images produced by the basic CycleGAN is much lower than those 
generated by the stability-enhanced CycleGAN. As labeled with the red 
boxes in Fig. 7, the basic CycleGAN may generate images with many 
deformations and artifacts in transformation results. Besides, comparing 
the first row of (c) to (f), it is easy to find that transformed images 
generated by the basic CycleGAN model vary from epoch to epoch, such 
as the greatly different contrast, resolution, detailed textures. Huge 
discrepancies show the unsteady training process of the basic CycleGAN 
model. In contrast to the first row of (c) to (f), transformed images 
produced by the stability-enhanced model (i.e., the second row of (c) to 
(f)) have more clear and accurate textures while those in the first row 
suffer from over-smoothing or the over-contrast problem. Thus, trans
formed ultrasound images produced by the stability-enhanced Cycle
GAN model with the same training iteration are much more similar to 
reference ones. The visual effect demonstrates the great improvement of 
the domain transformation performance brought by optimizations to 
against the weak stability when training the CycleGAN model. 

Expect for visual comparisons, some quantitative evaluation results 
on transforming X to Y are showed in Table 1, where the evaluation of 
“original images” shows the huge distance between two different do
mains. As shown in Table 1, the MAE decreases from 28.43 ± 1.86 to 
14.27 ± 1.88, which demonstrates the capability of the CycleGAN 
model with stronger stability to predict more similar ultrasound images 
with corresponding reference ones. The improvement in the SSIM/MS- 
SSIM, which increase from 0.33 ± 0.08/0.49 ± 0.08 to 0.41 ± 0.07/ 
0.58 ± 0.08, proves the competence of the stability-enhanced model in 
maintaining ultrasound image details. The PSNR increases from 14.38 
± 2.36 to 16.53 ± 1.58, which indicates the ability of the improved 
model to generate images with higher quality. The CSS is increased from 
0.39 ± 0.06 to 0.50 ± 0.05, which means that more information is 
preserved from source images. The MI is improved from 0.58 ± 0.18 to 
0.87 ± 0.11, which proves the higher mutual dependence between the 
transformed images and reference ones and stronger capability of our 
modified model to predict similar images with corresponding target 
domain. Comparing with original images, the distance between trans
formed images and target ones is greatly shortened by the stability- 
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enhanced CycleGAN model, which demonstrates the strong ability of the 
model for the domain transformation in ultrasound images. All of the 
above comparisons on the visual effect and evaluation indices reveal the 
importance and effectiveness of the optimizations on stabilizing the 
training process of the CycleGAN model. 

4.2. Importance of skip connections 

Based on the analysis of the insufficient constraint of the cycle- 
consistency loss to preserve the image detailed information, the 
stability-enhanced CycleGAN model is incorporated with skip connec

Fig. 6. The loss value curves of generators and discriminators during the training process. (a), (b) are loss curves of generators/discriminators when training the 
basic CycleGAN model. (c), (d) are loss curves of generators/discriminators when training the stability-enhanced CycleGAN model. 

Fig. 7. Some testing samples produced by the original and stability-enhanced CycleGAN model with different training iterations. (a), (b) present a pair samples from 
the testing set of source images from different domains. (a), (b) are scanned using mSonics MU1 and Toshiba Aplio 500 respectively. (a) denotes the source image and 
(b) is the corresponding reference one. (c) to (f) present the corresponding transformed images produced by the original CycleGAN and the stability-enhanced 
CycleGAN model with different iterations. The first row of (c) to (f) present transformed images produced by the original CycleGAN and those in the second row 
are generated by the stability-enhanced CycleGAN model. Some red ovals are labeled to highlight the deformation in images. 
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tions. In order to study the importance of the addition of skip connec
tions, examples of visual results and overall evaluation indices were 
obtained as shown in Fig. 8 and Table 2. In Fig. 8, (a) to (f) show the 
transformation process X→Ỹ→Ẍ, and (a), (b), (g), (h), (i), (j) display the 
transformation process Y→X̃→Ÿ. As labeled with red boxes and blue 
ovals in Fig. 8, some parts of sampled images are highlighted and 
magnified to better show the detailed difference in the structural in
formation. Comparing Fig. 8(c) and Fig. 8(d), which are Ỹ produced by 
the stability-enhanced CycleGAN without/with skip connections, 
detailed textures of Fig. 8(c) labeled with red boxes are blurry while 
those of Fig. 8(d) are more clear. Besides, the organ boundary labeled 
with the blue oval in Fig. 8(c) are over-smooth in contrast to that of 
Fig. 8(d). Misty structural details and over-smoothing problem lead to 
the deformation and error in transformation results, which will provide 
inaccurate or mistaken image feature information and even worse rise 
risk of incorrect medical diagnosis. In the same way, comparing Fig. 8(g) 
with Fig. 8(h), it can be demonstrated again that the model with skip 
connections achieve a better structural information preservation effect. 

In addition, detailed discrepancies labeled with the red boxes between 
Fig. 8(i)/Fig. 8(e) and Fig. 8(j)/Fig. 8(f) indicate the better reconstruc
tion effect of the modified model with skip connections, which reveal the 
higher cycle-consistency brought by the addition of skip connections. 

Apart from the visual effect, objective quantitative calculations were 
also given. As we can see in Table 2, the mean MAE SSIM, MS-SSIM, 
PSNR and MI values achieved by our proposed method are 12.20 ±
1.38, 0.45 ± 0.06, 0.62 ± 0.08, 19.47 ± 1.24, and 1.04 ± 0.14 respec
tively, which are superior to those achieved by the model without skip 
connections. The CSS metric increases from 0.50 ± 0.05 to 0.75 ± 0.03. 
All the results, especially the improvements of the SSIM, MS-SSIM, MI 
and CSS, indicate that the addition of skip connections is of significant 
impact on reserving image details and reducing the information loss 
during the domain transformation task. Moreover, the distance between 
generated images and reference ones is further shortened by the pro
posed method according to the decrease of the mean MAE. 

It is obvious that the performance of our proposed method gains an 
improvement on each metric, which manifests that short paths offered 
by skip connections facilitate the broadcast of the detailed information. 
Hence, the significance of the addition of skip connections can be veri
fied by intuitive results and quantitative assessments mentioned above. 

4.3. Comparison with other methods 

To comprehensively confirm the superiority of our proposed method, 
massive results were obtained to compare our method with the currently 
proposed RegGAN. Details of results are presented as follows. 

Fig. 9 displays intuitive results. Comparing Fig. 9(c) with Fig. 9(b), 
the resolution and contrast of the ultrasound image are improved a little, 
but textures and structural details are fragmented. And the gary distri
bution of Fig. 9(c) is quite different from that of Fig. 9(a). Thus, the 
SRGAN method brings an improvement in the image resolution but 
performs not well in normalizing ultrasound images from different do
mains. From Fig. 9(d), we can find that the transformed image produced 
by the Residual CycleGAN suffers from the over-smoothing problem. By 
comparing Fig. 9(d) with Fig. 9(b), we think that the over-smoothing 
phenomenon is caused by the overmuch information maintained in 

Table 1 
Quantitative evaluation results for stabilizing the training process of the model.  

Model Y ↔ Ỹ X ↔ Ỹ 
MAE SSIM MS- 

SSIM 
PSNR/ 
dB 

MI CSS 

Original images 51.32 
±1.52 

0.22 
±0.05 

0.36 
±0.07 

12.58 
±1.53 

0.37 
±0.18 

0.34 
±0.51 

CycleGAN 28.43 
±1.86 

0.33 
±0.08 

0.49 
±0.08 

14.38 
±2.36 

0.58 
±0.18 

0.39 
±0.06 

CycleGAN + SN +
TTU + LS 
(Stability- 
enhanced 
CycleGAN) 

14.27 
±1.88 

0.41 
±0.07 

0.58 
±0.08 

16.53 
±1.58 

0.87 
±0.11 

0.50 
±0.05 

NOTE:’SN’ means the spectral normalization;’TTU’ means the two time-scale 
update rule; ‘LS’ means the label smooth;’Y’ means images like Fig. 7 (b);’Ỹ’ 
means ‘fake_Y’ (transformed images) like Fig. 7 (c) to (f).  

Fig. 8. Some testing results produced by the stability-enhanced CycleGAN model with/without skip connections. (a), (b) present a pair samples from the testing set of 
source images from different domains. (a), (b) are scanned using mSonics MU1 and Toshiba Aplio 500 respectively. (a) denotes the source image and (b) is the 
corresponding reference one. (c), (d) present transformed images generated by the stability-enhanced CycleGAN model without/with skip connections from (a). (e), 
(f) show corresponding reconstructed images. (g), (h) denote transformed images generated by the stability-enhanced CycleGAN model without/with skip con
nections from (b). (i), (j) display corresponding reconstructed images. Some parts of (b) to (j) are labeled with red boxes and blue ovals to better show detailed 
differences between them. 
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the transformed result, which might be attributed to the forcible residual 
learning applied from input to output of the Residual CycleGAN. In 
comparison, as shown in Fig. 9(f), our proposed method applies residual 
blocks between the encoder and decoder of generators with supple
mentary skip connections, which can integrate feature information 
extracted in different levels appropriately and greatly alleviate the over- 
smoothing problem. In Fig. 9(e), the over-smoothing appearance re
duces to a certain extent but still exists in contrast to Fig. 9(f). As labeled 
with the red ovals in Fig. 9(c)-(e), there are deformations of textures and 
tissue boundary in the transformation results produced by other 
methods, while the structural details of Fig. 9(f) are more distinct and 
accurate. The better detail preservation benefits from the addition of the 

skip connections in the proposed method, while in the RegGAN method, 
misaligned target images are considered as noisy labels and the gener
ator is trained with an additional registration network to fit the mis
aligned noise distribution adaptively, which might lead to fuzzy textures 
or deformations. 

The third row of Fig. 9 illustrates distance maps of different methods 
between the transformed image and corresponding reference one to 
show the transformation effect vividly and visually. The darker the color 
blue, the smaller distance value between the transformed image and the 
reference one it has. Observing the bottom row of Fig. 9, it can be further 
confirmed that transformed images produced by our proposed method 
are closer to the reference ones. As a consequence, the proposed method 
has an obvious superiority of the domain transformation in ultrasound 
images. 

Expert for qualitative contrasts, Tables 3-6 were provided to evaluate 
the transformation path X→Ỹ→Ẍ and Y→X̃→Ÿ, respectively, which can 
reflect the overall domain transformation performance of different 
methods from two opposite domain transfer directions. 

As shown in Tables 3 and 5, the “original image” term is calculated as 
a reference to show the difference between ultrasound images in two 
different domains. For X→Ỹ, comparing with the RegGAN, our proposed 
method achieves a decrease from 13.76 ± 1.49 to 12.20 ± 1.38 for the 
mean MAE value and an increase from 17.31 ± 2.04 to 19.47 ± 1.24 for 
the mean PSNR value. The mean SSIM, MS-SSIM, Pearson-R, MI and CSS 
values achieved by our proposed method are 0.53 ± 0.04 to 0.45 ± 0.06, 
0.62 ± 0.08, 0.78 ± 0.09, 1.04 ± 0.14 and 0.75 ± 0.03, which are su
perior to those achieved by other methods. For Y→X̃, the results ob
tained by the proposed method also surpass those gained by other 
algorithms in all of the above metrics. 

The lower MAE and the higher PSNR, Pearson-R, and MI values 
obtained by our proposed method demonstrate the superior capacity of 
generating images similar to the target domain, which helps to reduce 

Table 2 
Quantitative evaluation results for addition of skip connections.  

Model Y ↔ Ỹ X ↔ Ỹ 

MAE SSIM MS- 
SSIM 

PSNR/ 
dB 

MI CSS 

Original images 51.32 
±1.52 

0.22 
±0.05 

0.36 
±0.07 

12.58 
±1.53 

0.37 
±0.18 

0.34 
±0.51 

CycleGAN 28.43 
±1.86 

0.33 
±0.08 

0.49 
±0.08 

14.38 
±2.36 

0.58 
±0.18 

0.39 
±0.06 

CycleGAN + SN +
TTU + LS 
(Stability- 
enhanced 
CycleGAN) 

14.27 
±1.88 

0.41 
±0.07 

0.58 
±0.08 

16.53 
±1.58 

0.87 
±0.11 

0.50 
±0.05 

CycleGAN + SN +
TTU + LS + SC 
(Proposed 
method) 

12.20 
±1.38 

0.45 
±0.06 

0.62 
±0.08 

19.47 
±1.24 

1.04 
±0.14 

0.75 
±0.03 

NOTE:’SC’ denotes skip the connection;’X’denotes images like Fig. 8(a);’Y’ 
denotes images like Fig. 8(b);’Ỹ’ denotes transformed images like Fig. 8(c), (d).  

Fig. 9. Comparison between different domain transformation methods. (a) presents the reference one from the target domain scanned using Toshiba Aplio 500. (b) 
denotes the input from the source domain scanned using mSonics MU1. (c) to (f) display transformed images produced by SRGAN, Residual CycleGAN, RegGAN and 
the proposed method, respectively. (h) to (k) display corresponding distance maps of different methods between the transformed image and the reference one. (g) 
shows the distance map between (a) and (b) as a contrast. Red ovals are labeled to highlight the detailed difference. 
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differences between different domains so as to obtain the uniformly 
distributed database. The higher values of the SSIM, MS-SSIM, and CSS 
mean the more detailed information maintained by generated images 
after the domain transformation, which proves the worth and impor
tance of skip connections again. As for the Residual CycleGAN method 
and SRGAN, they don’t achieve desired results. Transformed ultrasound 
images generated by the two methods are very different from reference 
ones, which indicate that the Residual CycGAN and SRGAN methods are 
not applicable for the domain transformation in ultrasound image 
domain though they do well in the stain transformation and super- 
resolution reconstruction respectively. 

For Ỹ→Ẍ, the MAE obtained by our proposed methods reduces by 
7.9% and the SSIM, MS-SSIM, PSNR, Pearson-R and MI increase by 
26.9%, 15.5%, 17.7%, 5.3% and 2.3% compared to the RegGAN. For 
X̃→Ÿ, our method also reaches the best achievements in all the metrics. 
The decrease of the MAE and increases of the SSIM, MS-SSIM, PSNR, 
Pearson-R and MI metrics indicate that the proposed method achieves 
the better reconstruction performance during the end-to-end trans
formation process. In a certain sense, the less loss of content and detailed 

information and better reconstruction effect during the cycle process 
also signify the excellent domain transformation performance of our 
method. 

To sum up, the visual observation comparison shown in Fig. 9 reveals 
the better transformation results produced by the proposed method. 
Furthermore, the proposed method gains the superior achievement on 
each evaluation metric compared to other domain transformation 
methods whether from the transformation performance perspective or 
the reconstruction performance perspective. All the above comparisons 
demonstrate the superior capacity of our proposed method to perform 
the domain transformation in ultrasound images, which greatly reduces 
discrepancies between different domains and normalize images from 
different medical centers. Hence, our method is an efficient way as an 
image preprocessing step to obtain the uniformly distributed database 
for data-driven researches. 

5. Conclusion and future work 

In this paper, a stability-enhanced CycleGAN method with well 
image detailed information preservation performance is proposed for 

Table 3 
Quantitative evaluation results for the domain transformation X→Ỹ using different methods.  

Model Y ↔ Ỹ X ↔ Ỹ 

MAE SSIM MS-SSIM PSNR/dB Pearson-R MI CSS 

Original images 51.32 
±1.52 

0.22 
±0.05 

0.26 
±0.07 

8.58 
±1.53 

0.64 
±0.13 

0.37 
±0.18 

0.34 
±0.51 

SRGAN 21.36 
±1.35 

0.34 
±0.09 

0.47 
±0.08 

12.42 
±1.45 

0.70 
±0.11 

0.60 
±0.12 

0.57 
±0.10 

Residual CycleGAN 18.72 
±1.66 

0.40 
±0.07 

0.52 
±0.09 

15.16 
±1.62 

0.71 
±0.12 

0.91 
±0.17 

0.62 
±0.09 

RegGAN 13.76 
±1.49 

0.41 
±0.08 

0.59 
±0.07 

17.31 
±2.04 

0.72 
±0.13 

0.96 
±0.19 

0.53 
±0.04 

Our method 12.20 
±1.38 

0.45 
±0.06 

0.62 
±0.08 

19.47 
±1.24 

0.78 
± 0.09 

1.04 
±0.14 

0.75 
±0.03  

Table 4 
Quantitative evaluation results for the reconstruction Ỹ→Ẍ using different 
methods.  

Model X ↔ Ẍ 

MAE SSIM MS- 
SSIM 

PSNR/ 
dB 

Pearson- 
R 

MI 

SRGAN —— —— —— —— —— —— 
Residual 

CycleGAN 
7.52 ±
1.41 

0.79 ±
0.11 

0.90 ±
0.04 

20.18 ±
0.69 

0.96 ±
0.01 

1.17 ±
0.16 

RegGAN 4.66 ±
0.89 

0.77 ±
0.03 

0.84 ±
0.02 

23.73 ±
0.54 

0.94 ±
0.02 

1.33 ±
0.17 

Our method 4.32  
± 1.02 

0.85  
± 0.04 

0.97  
± 0.01 

27.94  
± 0.89 

0.99 ± 
0.01 

1.36  
± 0.17 

NOTE:’Ẍ’ represents reconstructed images like Fig. 8 (e), (f).  

Table 5 
Quantitative evaluation results for the domain transformation Y→X̃ using different methods.  

Model X ↔ X̃ Y ↔ X̃ 

MAE SSIM MS-SSIM PSNR/dB Pearson-R MI CSS 

Original images 51.32 
±1.52 

0.22 
±0.05 

0.26 
±0.07 

8.58 
±1.53 

0.64 
±0.13 

0.37 
±0.18 

0.34 
±0.51 

SRGAN —— —— —— —— —— —— —— 
Residual CycleGAN 23.41 

±1.62 
0.30 
±0.06 

0.35 
±0.18 

12.94 
±1.52 

0.70 
±0.14 

1.00 
±0.17 

0.65 
±0.07 

RegGAN 15.69 
±1.36 

0.39 
±0.04 

0.42 
±0.08 

16.25 
±1.60 

0.81 
±0.08 

1.05 
±0.14 

0.51 
±0.04 

Our method 13.65 
±1.45 

0.42 
±0.05 

0.56 
±0.07 

17.16 
±1.10 

0.93 
± 0.03 

1.10 
±0.18 

0.74 
±0.05  

Table 6 
Quantitative evaluation results for the reconstruction X̃→Ÿ using different 
methods.  

Model Y ↔ Ÿ 

MAE SSIM MS- 
SSIM 

PSNR/ 
dB 

Pearson- 
R 

MI 

SRGAN —— —— —— —— —— —— 
Residual 

CycleGAN 
5.81 ±
0.99 

0.85 ±
0.05 

0.91 ±
0.05 

26.18 ±
1.94 

0.97 ±
0.02 

1.34 ±
0.16 

RegGAN 6.54 ±
1.16 

0.81 ±
0.09 

0.87 ±
0.12 

23.51 ±
2.76 

0.90 ±
0.08 

1.16 ±
0.19 

Our method 3.35  
± 0.93 

0.90  
± 0.01 

0.95  
± 0.01 

31.02  
± 1.43 

0.99 ± 
0.01 

1.38  
± 0.15 

NOTE:’Ÿ’ means reconstructed images like Fig. 8(i), (j).  
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the domain transformation, aiming to normalize ultrasound images from 
different medical centers. Based on the analysis of weakness of the basic 
CycleGAN, the spectral normalization, two time-scale update rule and 
label smooth strategy are adopted to stabilize the training of the 
CycleGAN model. Besides, considering the inadequate constraint of the 
cycle-consistency to reserve the detailed information, skip connections 
are added to generators to refine transformation results of the proposed 
method. Massive experimental results demonstrate the effectiveness of 
optimizations mentioned above and the feasibility of the proposed 
method to normalize images from different domains. Using the prom
ising method, it is easier to reduce the database bias so as to obtain the 
uniformly distributed database. The algorithm can further promote the 
potential establishment of large ultrasound image datasets. As a faithful 
data processing method, it might have a contribution to the develop
ment of medical big data, which enhances the reliability and univer
sality of computer aided diagnosis. 

In the future work, more ultrasound image datasets may be obtained 
from more different medical centers, so that “many-to-one” trans
formation mode can be explored to enhance the adaptability and effi
ciency of our proposed method. Extended applications on segmentation 
or classification tasks will also be conducted to further demonstrate the 

value of our study. 

CRediT authorship contribution statement 

Lihong Huang: Conceptualization, Methodology, Software, Writing 
– original draft. Zixia Zhou: Data curation, Visualization. Yi Guo: 
Investigation, Writing – review & editing. Yuanyuan Wang: Concep
tualization, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was supported by the National Natural Science Foundation 
of China (Grant 61871135 and 81830058), the Science and Technology 
Commission of Shanghai Municipality (Grant 20DZ1100104).  

Appendix 

Implementation details 

All ultrasound images were resized to 256× 256. Loss weights (λ, γ) of the loss function L CycleGAN were tuned and chosen as (10, 1). The Adam 
optimizer with the momentum term β1 = 0.9 was adopted for generators and discriminators. The learning rate linearly decay every 50 iterations with 
the decay factor as 0.5. Data preprocessing steps were implemented using MATLAB software. The following network training process was imple
mented in the TensorFlow library and trained end-to-end from scratch using a Nvidia Geforce RTX 2080 TI GPU to increase the training speed. The 
model is trained alternating between generators and discriminators, so that the data generated by generators is getting similar to the corresponding 
target one. When training the model with the training set, the training data was chosen randomly from the source domain and target domain in every 
training epoch. 
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