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As a cost-effective, non-invasive and radiation-free medical imaging modality, ultrasonic imaging is widely used
in clinical diagnosis. However, database bias is commonplace among different medical centers. Deep learning
based ultrasound image analysis algorithms are usually data driven, rendering high requirements on the uni-
formity of image datasets. In this paper, we propose a stability-enhanced cycle-consistent generative adversarial
network (CycleGAN) method with well detail preservation for the domain transformation to normalize ultra-
sound images from various medical centers. To stabilize the training process of CycleGAN model, we adopt
spectral normalization for 1-Lipschitz continuity to reduce model oscillation. Besides, two time-scale update rule
and label smoothing strategy are also utilized to maintain the balance between generators and discriminators for
further stability enhancement. Moreover, our method applies skip connections to preserve ultrasound image
details and prevent resolution loss during the domain transformation process. Experiments were conducted on
clinical thyroid and carotid image datasets acquired from several medical centers. Massive results demonstrate
that our proposed model is easier to reach a steady state when training, outstanding 50% from the basic
CycleGAN model. Compared with representative algorithms, our proposed method reaches the state-of-the-art
performance, with a 11.3% decrease in the mean absolute error and a 9.8% increase in the structural similar-
ity. Hence, our proposed algorithm has a strong capacity of the domain transformation in ultrasound images to
reduce the database bias for uniformly distributed datasets. We believe that our method can contribute to the
development of the ultrasound image analysis and computer aided clinical diagnosis..

1. Introduction

Ultrasonic imaging is not only inexpensive and fast, but also nonin-
vasive and accurate, becoming one of popular medical imaging methods
for clinical diagnosis [1-3]. Many studies have been conducted to reveal
the underlying diagnosis and treatment information from ultrasound
images [4-7]. With the rapid development of computing power and
memory resources, many advanced techniques such as deep learning
have been generally applied in medical ultrasound image analysis,
involving tissue and lesion detection, segmentation and classification
[8], which help to improve the efficiency and accuracy of medical
diagnosis and treatment process greatly.

Most of researches and algorithms based on deep learning for ul-
trasound image analysis are data-driven, which render higher re-
quirements on the uniformity of image datasets. However, as shown in
Fig. 1, variation including gray distribution, contrast and so on is

commonplace among ultrasound images acquired from different medi-
cal centers. Such variation can be great due to different imaging settings.
It is difficult to remain the performance and robustness of a network
once deployed at a medical center. Newly introduced protocols or
scanners bring a degradation in the performance of an optimized or
tuned algorithm for a specific center, because the impact on image
feature differences caused by imaging settings may exceed that induced
by the pathological characteristic itself [9]. Maybe we can resolve the
problem by retraining the model, but it is burdensome and time-
consuming. Therefore, algorithms should deal with aforementioned
image dissimilarities before being applied in the workflow of ultrasound
image analysis [10]. Besides, different from natural images, extensive
data especially paired data is difficult to obtain in the medical ultra-
sound domain [11]. Many problems, such as the mode collapse and
overfitting, would be caused by training models with limited and not
uniformly distributed datasets. Hence, we should perform the domain
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transformation to reduce discrepancies between ultrasound images from
various medical centers. This can contribute to data-driven studies and
reliability enhancement of leaning based algorithms.

During last decades, domain transformation researches have been
conducted in some medical imaging domains (e.g., magnetic resource
images (MRIs) and histopathological images). Conventional approaches
including global histogram-matching methods [12] and joint histogram
registration methods [13] are not applicable to unpaired data. Instead,
some creative learning-based approaches extracting powerful high-level
features have superior performance to traditional modeling methods
[14]. Adversarial learning [15] is usually applied for style transfer tasks.
Among achievements in image-to-image translation, Pix2Pix, adapted
from the conditional GANs [16], requires paired data [17]. For a
remission of demand for paired data, cycle-consistent GANs (Cycle-
GANSs) [18] appeared as a milestone. Thomas et al. [10] applied residual
learning from input to output to force CycleGAN to learn the residual for
stain transformation in histopathology. Liu et al. [19] added the pa-
thology consistency constraint into CycleGAN model for stain
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transformation. Gao et al. [9] utilized a forward GAN path and multiple
backward GAN paths to perform many-to-one transformation in MRIs.
Based on the theory of “loss-correction”, Kong et al. [20] proposed a new
unsupervised mode called RegGAN, which applies an additional regis-
tration network in GAN model. Inspired by the profound ability of deep
learning and previous work in domain transformation, we explore the
potential of CycleGANSs to perform domain transformation in ultrasound
images to normalize images from multi-centers.

Although deep learning has gained a lot of traction in MRIs and
histopathology, there still exist challenges of the application in the
domain transformation of unpaired ultrasound images. The first chal-
lenge is how to stabilize the training of the CycleGAN model. Except for
the inherent difficulty of training unsupervised learning model, the low
quality of ultrasound images and great variation among ultrasound
images from different medical centers make it harder for generators to
extract image features and generate images similar to target domain to
“fool” discriminators. It leads to model oscillation or unbalance between
generators and discriminators resulting weak stability problem when

(d)

Fig. 1. Comparison between ultrasound images obtained from various medical centers. (a), (b) display ultrasound carotid images, and (c), (d) display ultrasound
thyroid images. Images shown in the first column were scanned by mSonics MU1, and those shown in the second column were scanned by Toshiba Aplio 500.
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training with unpaired ultrasound images. The stability of training the
network can be influenced by many factors such as the performance of
discriminators, the balance between generators and discriminators. An
unbalance phenomenon that discriminators have been optimized to
converge while generators not, usually appears when training GAN
models. The appearance causes overfitting or model collapse, leading to
the weak stability and low effectiveness of the CycleGAN model. The
second challenge is that the image detailed information loss and reso-
lution loss during domain transformation process. The cycle-consistency
constraint does well in the style transfer but seems to just achieve the
low-level style mapping between two domains. It shows insufficient
constraint on preserving ultrasound image details like tissue structures,
organ boundary and textures, which are of critical significance for ul-
trasound diagnosis and treatment. To overcome aforementioned chal-
lenges, some strategies including the spectral normalization, the two
time-scale update rule and label smoothing strategy and addition of
skip connections are adopted to optimize the original CycleGAN. We
propose a stability-enhanced CycleGAN with better detailed information
preservation for the domain transformation of ultrasound images to
obtain uniformly distributed datasets. Summarizing, major contribu-
tions made by this paper are as follows:

(1) Based on the analysis of the weak stability of training CycleGAN
model, we develop the basic CycleGAN by incorporating spectral
normalization layers in discriminators for 1-Lipschitz continuity to sta-
bilize the training process. Besides, training strategies including two
time-scale update rule and label smoothing strategy are adopted to
maintain the balance between generators and discriminators.

(2) Considering the weakness of the cycle-consistency constraint, we
utilize the addition of skip connections in generators to enhance image
detailed information preservation and reduce the resolution loss during
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cycle transformation process.

(3) Massive qualitative and quantitative results of the domain
transformation on clinical thyroid and carotid ultrasound image datasets
are provided to demonstrate the state-of-the-art performance of our
proposed method.

2. Method
2.1. Model overview

Fig. 2 shows the end-to-end framework of our proposed method at a
component level, which consists of two GANs for two transformations, i.
e, X - Yand Y — X, respectively. In the training stage, the proposed
model is trained with a mass of unpaired training data, aiming to obtain
end-to-end mapping between two domains. In the testing stage, trans-
formed ultrasound images are directly generated by the trained model.
The data preprocessing step, including random cropping, rotation and
image scaling, is for the data augmentation. The registration pre-
processing, including a B-spline-based nonrigid registration and a
landmark-based nonrigid registration, is adopted to obtain paired
testing data for evaluating the domain transformation performance.

2.2. Model description

2.2.1. Architecture of the proposed model

The architecture of generators can be viewed in Fig. 3. Every
generative network is composed of an encoder-decoder architecture
inspired by the U-net [21], which is a widely used feature extractor, and
a residual convolution path. The encoder is responsible for extracting
the principal feature and morphological content from the source
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Fig. 2. Overview of the proposed method (X,Y denote ultrasound images from two domains respectively. X and Y represent transformed images. X and ¥ denote
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Fig. 3. The generator of the proposed model (k, n and s denote the kernel size, the number of feature maps and stride, respectively).

ultrasound image. It starts by a 7 x 7 convolution. Subsequently, to 2.2.2. Loss function

maintain the spatial continuity and reserve more structural details, we We used the L1l-loss to minimize the cycle-consistency error. The
adopt two 3 x 3 convolutions instead of the pooling operation. Each of least-square loss [27] is adopted as the adversarial loss to reduce the
the convolutional layers is followed by a rectified linear unit (ReLU) chance of the disappearance of the gradient [28]. In addition, we add an
[22] to increase nonlinear characteristics of the model and avoid the identity loss term to ensure the identity mapping in generators. It can
slow convergence caused by the disappearance of gradient. Instance allivate the style over-tranferring problem that may reduce the quality of
normalization and reflection padding are also used with every convo- transformed ultrsound images and lead to the instability of the Cycle-
lution. The following module is a residual convolution path, a high- GAN model. The identity loss is computed in the L1 norm:

performance feature extractor containing nine successive residual .

convolution blocks [23]. It can integrate different-level image features L iani(Gy F) = By 0y [1G0) =31 ] 4 B o [IF ) = 1, ] M
efficiently and deepen the depth of the network yet not increase the The overall objective function of our model can be expressed as
training difficulty. Each residual convolution block contains two 3 x 3 following:

convolutions with fixed-number filters. For the decoder, we utilize two

Z(G,F,Dx,Dy) = Z1s56an(G, Dy) + L 1s6an (F, Dx) + 2L eyete (G, F) + YL ideminy (G, F) 2

nearest-neighbor up-sampling instead of transposed convolutions to

reduce the extent of checkerboard artefacts [24], as checkerboard ar- where G and F are generators for the transformation X — Y and Y — X
tefacts will bring great errors and deformations in the transformed re- respectively,Dy and Dy are corresponding discriminators; 4 and y are
sults or lead to the failure of training model. Finally, the output image is constants. The process of training the proposed model is to obtain the
obtained through a 7 x 7 convolution and a ‘Tanh’ activation function. optimal solution to the following optimization problem:

For discriminators, an architecture inspired by the classic “Patch- . ]
GAN” setup [25] is adopted, which is composed of four 4 x 4 down- G,.F = argr(t}lylpg)}%)ij(G, F, D, Dy) (3)

sampling convolutions followed by a leaky rectified linear unit (Lea-
kyReLU) [26] to retain the information brought by the negative axis and 2.3. Enhancing the stability of the model
reduce the inactive neurons number. Four convolutions are with 64,
128, 256 and 512 filters, respectively. Each of them except the first one
is followed by a spectral normalization layer. The final layerisa 3 x 3
convolution to reduce the output to a single filter map. Finally, the
discriminator produces a 30 x 30 discriminative feature map instead of
a single value to judge whether the generated image is real or not. Based
on the architecture, the discriminator has a reduced receptive field,
which restricts the network to smaller parts of input images for more
attention to high-frequency changes in images [10].

As an unsupervised learning method, the CycleGAN model is not easy
to be trained to reach the Nash equilibrium. In order to stabilize the
training of the CycleGAN model, we adopt other strategies apart from
the identity loss to obtain an improved model with more steady per-
formance. According to the reference [29], the influence brought by loss
functions on training GANSs is not so strong, i.e., no one loss function is
absolutely superior to others. Therefore, we don’t make much adjust-
ment on the loss function and pay more attention on changing the
composition of networks and training strategies. Optimizations are
further detailed below.
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Fig. 4. The discriminator of the proposed model (k, n and s denote the kernel size, the number of feature maps and stride, respectively).

2.3.1. Spectral normalization

Although the least-square loss applied in the discriminator loss
function helps to alleviate the gradient disappearance problem, it results
in weaker stability of the discriminative network with a high learning
rate [30]. Spectral normalization was firstly proposed by Miyato et al.
[31], and since then this useful tool has been adopted for GAN training
in many studies. It has been proved that the spectral normalization is a
better practical choice than other regularization and normalization
methods [32]. As illustrated in Fig. 4, we add a spectral normalization
layer after each convolution of the discriminative network to normalize
parameters of the convolutional layer to meet the 1-Lipschitz continuity.
According to the stability theorem of GANs, the control capacity of the
discriminative network can be enhanced when the input and output of
the network satisfy the 1-Lipschitz continuity [33], which efficiently
reduces the model oscillation and speeds up the convergence. Hence, to
a great extent, the spectral normalization stabilizes the gradient and
maintains the balance between the generator and discriminator so as to
stabilize the training of the CycleGAN model. The principle of the
spectral normalization is to estimate the spectral norm of the parameter
matrix of the convolutional layer. The formulation to compute the
spectral norm is defined as:

5P

o(W) = sup = sup ||Wx]|, @
o Xl el

where x is the input, W is the weight matrix of the convolution. By
enforcing sup |Wx|, = 1, the parameter-normalized weight matrix

[lxll,<1
can be expressed as:
w
Wey = ——
N = 5 w) (5)

2.3.2. Two time-scale update rule

The two time-scale update rule was firstly proposed by Heusel et al.
[34] and has been applied to many other GANs such as DCGAN [35] and
WGAN-GP [36] to solve the unbalance problem between generators and
discriminators for the stability enhancement of GAN models. In simple
terms, the training strategy is to choose different learning rates instead
of the same value for generators and discriminators. In practice, we use
the Adam optimizer with a lower learning rate for training generators
and a higher one for discriminators. The strategy is aimed to make
discriminators produce feedback (i.e. discriminative results) for gener-
ators in time and then update generators with a smaller step. Thus, the
learning process of generators is more scientific so that weights of the
generative network can be updated more accurately. Generators are
enforced to generate images with more features close to reference ones.
Discriminators will be fooled and hard to distinguish between generated
images and real ones. The adversarial loss can be reduced and the model
will be trained towards the stability. Therefore, the two time-scale up-
date rule enhances the balance between generators and discriminators
during the adversarial learning process and brings stability enhance-
ment of CycleGAN model.

2.3.3. Label smooth strategy

Assuming that discriminators rely on few features to judge images
generated from generators, generators can generate only those features
in response to discriminators’ detection. The optimization of generative
networks will become greedy without long-term benefit. In order to
alleviate such problem, we utilize the label smooth strategy. We set the
target label value at 0.9 or lower when the prediction probability given
by discriminators to judge the image whether belonged to the target
domain reaches 0.9. The operation is adopted to appropriately increase
the difficulty of training discriminators to maintain the balance between
generators and discriminators ensuring the stability of the CycleGAN
model.

2.4. Enhancing detailed information preservation

In clinical ultrasound diagnosis, tissue structures, details and speckle
of ultrasound images play a critical role in extracting image features to
provide diagnostic information. Consequently, in the domain trans-
formation of ultrasound images, the detailed information preservation is
of significant importance. Although the cycle-consistency constraint
enforces the transformation back to source domain and contributes to
better performance in style transfer tasks, it seems to show insufficient
constraint on reserving details. As the reference [37] indicates that first
few layers of convolutional neural networks usually contain more
transferable feature information of input images, two skip connection
paths are established between layers in the encoder and decoder that
mirror each other as shown in Fig. 3. The addition of skip connections
feeds the low-level information from input to output, which provides
shortcuts for reserving and reconstructing details from source images.
We hypothesize that these skip connections are also especially important
in the transformation to reduce the loss of high-resolution information in
deeper layers of the network.

3. Experiments
3.1. Materials and preprocessing

Experiments were carried on two clinical ultrasound datasets ac-
quired using ultrasound imaging devices mSonics MU1 (Ultimedical
Technology, China) and Toshiba Aplio 500 (Toshiba Medical Systems
Corporation, Japan), respectively. Transducer central frequencies are 6
MHz and 7.5 MHz respectively. We collected 120 pieces of carotid and
thyroid ultrasound images with mSonics MU1 and the same quantity of
images with Toshiba Aplio 500. Carotid and thyroid images were
scanned for 47 healthy volunteers by an experienced doctor. To ensure
the robustness of our method, the training set and testing set are both a
mixture of carotid and thyroid images.

To expand the training set, augmentation techniques like the random
cropping, rotation and image scaling, were carried out as data pre-
processing. After augmentations, our training set contains 1656 un-
paired pieces of images with the size of 400 x 400 from two
aforementioned medical centers. For the testing set, 78 pairs carotid and
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thyroid images with the size of 400 x 400 were sampled, which contains
26 pairs of carotid ultrasound images and 52 pairs of thyroid ultrasound
images. In order to evaluate our method properly, the 78 pairs of ul-
trasound images were registered to each other using a B-spline-based
nonrigid registration method [38] and a landmark-based nonrigid
registration method [39]. Specifically speaking, volunteers held their
breath for about 10 s when being scanned to reduce the deformation. In
the scanning process, landmark points were recorded on volunteers’
scanning positions for the landmark-based nonrigid registration to
obtain paired testing data pairs for appropriate evaluation of our
method. After registration, 78 ultrasound image pairs can be regarded as
the source domain and reference domain respectively to test and
compare the domain transformation performance of different models.
Some samples from the testing set are shown in Fig. 5. It is worth to note
that the intersection of training set and testing set is empty.

3.2. Experimental setting

In this paper, the commonly used unpaired image-to-image

(c)
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translation method ‘Cycle-GAN’ is regarded as the baseline method. We
conducted a series experiments to demonstrate the model evolution
process and the superiority of our proposed method.

3.2.1. Ablation study

We first explored the effectiveness of the optimizations including the
spectral normalization, two time-scale update rule and label smooth
strategy to stabilize the training of the proposed model. The stability
performance comparisons between the training process with/without
such optimizations were conducted. Besides, through the study of skip
connections on the image detailed information reservation, we can
demonstrate why it is employed.

3.2.2. Comparison methods

To further confirm the superiority of our proposed method, we
compared the proposed method with RegGAN [20], Residual CycleGAN
[10], SRGAN [40]. We reimplemented the RegGAN method in the “C
(cycle-consistency) + R(registration)” mode. We reimplemented Resid-
ual CycleGAN method with the same function of the adversarial loss,

(d)

Fig. 5. Some samples in the testing set. (a), (b) present ultrasound thyroid image pairs of the same location, and (c), (d) display ultrasound carotid image pairs of the
same location. Images scanned by mSonics MU1 are shown in the first column, and images scanned by Toshiba Aplio 500 are shown in the second column.
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cycle-consistency loss and extra identity loss as that of our method. As
there are few previous works conducted in the domain transformation of
ultrasound images, we also reimplemented the SRGAN to perform the
transformation. The training process of different methods converged
after 300 epochs. In different experiments, both the visual observation
and quantitative comparison results were demonstrated.

3.3. Evaluation measures

For the ultrasound image domain transfer task of X—Y, there are
mainly four types of images, i.e., the source image X, the transformed
image Y, the reconstructed image X and the target image Y and vice

versa. Therefore, six types of images, i.e., X, Y, X, Y, X, and ¥ can be used
to evaluate the transformation performance of two directions X—Y and
Y-X.

331 ForXeX/YoYoXeX/ YoV

To comprehensive evaluate the uniformity of transformed ultra-
sound images ()~(/ 17) and corresponding reference ones, we use several
indices including the mean absolute error (MAE) to estimate their gray
distribution, the multi-scale Structural Similarity Index Measure (MS-
SSIM) to measure their multi-scale structural similarity, the Pearson
correlation coefficient (Pearson-R) to indicate their correlation and the
mutual information (MI) to evaluate the mutual dependence. The
greater similarity signifies more uniformly distributed datasets can be
obtained with the transformation model and better cycle-consistency of
the transformation model. Evaluation indicators are detailed below:

1) MAE. The MAE metric is used to evaluate the average pixel gray
difference between different images. The lower value indicates the
smaller difference so that transformed images or reconstructed ones are
more similar to the corresponding domain.

2) SSIM/MS-SSIM. The similarity/muli-scale similarity between
different images can be evaluated by the SSIM/MS-SSIM, which are
calculated to assess the performance in preserving tissue structures and
texture information [41].

3) Pearson-R. In order to evaluate the relationship of different im-
ages, the Pearson-R is used to evaluate the correlation. A higher value
demonstrates the stronger relationship between them.

4) PSNR. The PSNR metric is adopted to evaluate the quality of
transformed images and reconstructed ones [42]. A higher PSNR value
represents the transformed images and reconstructed ones with the high
quality, containing more clear details.

5) MI. The MI metric is adopted to evaluate the mutual dependence
between the transformed images and reference ones [43], which can be
calculated by:

P(x,y)

PP ©)

MI(x,y) =) P(x,y)log

where P(x), P(y) and P(x,y) denote the marginal probability distribution
functions and joint probability function of the transformed image and
corresponding reference one, respectively [44].

The indexes are applicable for the performance assessment of both
the transformation direction X — Y and Y — X to comprehensively
evaluate the effectiveness of the proposed transformation model.

332 ForXeY/YeX

Considering the inherent distance between two different ultrasound
image domains, the Contrast-Structure Similarity (CSS) [19] is adopted
to evaluate how much the structural information is preserved from the
source image. The CSS is a variant of the SSIM and can be defined as
following:

20, +c

CSS(x,y) = m

)
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where oy, oy are the standard derivations, oy, is the covariance. c is a
stabilizing factor variable to stabilize the division with weak denomi-
nator.

4. Results and discussion

4.1. Performance improvement brought by the optimizations on stabilizing
the training process

Based on the analysis of the weak stability of training CycleGAN
model, we utilize the addition of the spectral normalization, two time-
scale update rule and label smooth strategies to stabilize the training
process of the model. In order to study the stability improvement of
training, we trained the CycleGAN model with/without optimizations
with the same training set.

Fig. 6 shows loss value curves of generators and discriminators
during the training process. It can be seen from Fig. 6(a) and (b) that the
loss of generators is hard to converge while the loss of discriminators
drops rapidly, which reveals the unbalance and weak stability of
training the basic CycleGAN model. By contrast, Fig. 6(c) and (d) show
that the loss of generators and discriminators converges to a lower value
and keeps steady as the training continues when training the stability-
enhanced CycleGAN, which intuitively demonstrates that it is effective
to stabilize the training process of the CycleGAN model with the opti-
mizations described in Section 2.3.

To further confirm the performance improvement, more quantitative
and qualitative results were obtained. Some samples in the domain
transformation process using the original and stability-enhanced
CycleGAN model are given in Fig. 7, which reveals that the quality of
images produced by the basic CycleGAN is much lower than those
generated by the stability-enhanced CycleGAN. As labeled with the red
boxes in Fig. 7, the basic CycleGAN may generate images with many
deformations and artifacts in transformation results. Besides, comparing
the first row of (c) to (f), it is easy to find that transformed images
generated by the basic CycleGAN model vary from epoch to epoch, such
as the greatly different contrast, resolution, detailed textures. Huge
discrepancies show the unsteady training process of the basic CycleGAN
model. In contrast to the first row of (c) to (f), transformed images
produced by the stability-enhanced model (i.e., the second row of (c) to
(f)) have more clear and accurate textures while those in the first row
suffer from over-smoothing or the over-contrast problem. Thus, trans-
formed ultrasound images produced by the stability-enhanced Cycle-
GAN model with the same training iteration are much more similar to
reference ones. The visual effect demonstrates the great improvement of
the domain transformation performance brought by optimizations to
against the weak stability when training the CycleGAN model.

Expect for visual comparisons, some quantitative evaluation results
on transforming X to Y are showed in Table 1, where the evaluation of
“original images” shows the huge distance between two different do-
mains. As shown in Table 1, the MAE decreases from 28.43 + 1.86 to
14.27 + 1.88, which demonstrates the capability of the CycleGAN
model with stronger stability to predict more similar ultrasound images
with corresponding reference ones. The improvement in the SSIM/MS-
SSIM, which increase from 0.33 £ 0.08/0.49 4 0.08 to 0.41 £ 0.07/
0.58 + 0.08, proves the competence of the stability-enhanced model in
maintaining ultrasound image details. The PSNR increases from 14.38
+ 2.36 to 16.53 + 1.58, which indicates the ability of the improved
model to generate images with higher quality. The CSS is increased from
0.39 £ 0.06 to 0.50 4+ 0.05, which means that more information is
preserved from source images. The MI is improved from 0.58 + 0.18 to
0.87 + 0.11, which proves the higher mutual dependence between the
transformed images and reference ones and stronger capability of our
modified model to predict similar images with corresponding target
domain. Comparing with original images, the distance between trans-
formed images and target ones is greatly shortened by the stability-
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Fig. 6. The loss value curves of generators and discriminators during the training process. (a), (b) are loss curves of generators/discriminators when training the
basic CycleGAN model. (c), (d) are loss curves of generators/discriminators when training the stability-enhanced CycleGAN model.
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Fig. 7. Some testing samples produced by the original and stability-enhanced CycleGAN model with different training iterations. (a), (b) present a pair samples from
the testing set of source images from different domains. (a), (b) are scanned using mSonics MU1 and Toshiba Aplio 500 respectively. (a) denotes the source image and
(b) is the corresponding reference one. (c) to (f) present the corresponding transformed images produced by the original CycleGAN and the stability-enhanced
CycleGAN model with different iterations. The first row of (c) to (f) present transformed images produced by the original CycleGAN and those in the second row
are generated by the stability-enhanced CycleGAN model. Some red ovals are labeled to highlight the deformation in images.

enhanced CycleGAN model, which demonstrates the strong ability of the
model for the domain transformation in ultrasound images. All of the
above comparisons on the visual effect and evaluation indices reveal the
importance and effectiveness of the optimizations on stabilizing the
training process of the CycleGAN model.

4.2. Importance of skip connections

Based on the analysis of the insufficient constraint of the cycle-
consistency loss to preserve the image detailed information, the
stability-enhanced CycleGAN model is incorporated with skip connec-
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Table 1
Quantitative evaluation results for stabilizing the training process of the model.
Model YoV XoY
MAE SSIM MS- PSNR/ MI CSs
SSIM dB
Original images 51.32 0.22 0.36 12.58 0.37 0.34
+1.52 +0.05 +0.07 +1.53 +0.18 +0.51
CycleGAN 28.43 0.33 0.49 14.38 0.58 0.39
+1.86 +0.08 +0.08 +2.36 +0.18 +0.06
CycleGAN + SN + 14.27 0.41 0.58 16.53 0.87 0.50
TTU + LS +1.88 +0.07  +0.08 +1.58 +0.11 +0.05
(Stability-
enhanced
CycleGAN)

NOTE:"SN’ means the spectral normalization;’TTU’ means the two time-scale

update rule; ‘LS’ means the label smooth;’Y’ means images like Fig. 7 (b);‘f"
means ‘fake_Y’ (transformed images) like Fig. 7 (c) to (f).

tions. In order to study the importance of the addition of skip connec-
tions, examples of visual results and overall evaluation indices were
obtained as shown in Fig. 8 and Table 2. In Fig. 8, (a) to (f) show the
transformation process X—Y—X, and (a), (b), (g), (h), (i), (j) display the
transformation process Y—»X—Y. As labeled with red boxes and blue
ovals in Fig. 8, some parts of sampled images are highlighted and
magnified to better show the detailed difference in the structural in-
formation. Comparing Fig. 8(c) and Fig. 8(d), which are ¥ produced by
the stability-enhanced CycleGAN without/with skip connections,
detailed textures of Fig. 8(c) labeled with red boxes are blurry while
those of Fig. 8(d) are more clear. Besides, the organ boundary labeled
with the blue oval in Fig. 8(c) are over-smooth in contrast to that of
Fig. 8(d). Misty structural details and over-smoothing problem lead to
the deformation and error in transformation results, which will provide
inaccurate or mistaken image feature information and even worse rise
risk of incorrect medical diagnosis. In the same way, comparing Fig. 8(g)
with Fig. 8(h), it can be demonstrated again that the model with skip
connections achieve a better structural information preservation effect.

(g
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In addition, detailed discrepancies labeled with the red boxes between
Fig. 8(i)/Fig. 8(e) and Fig. 8(j)/Fig. 8(f) indicate the better reconstruc-
tion effect of the modified model with skip connections, which reveal the
higher cycle-consistency brought by the addition of skip connections.

Apart from the visual effect, objective quantitative calculations were
also given. As we can see in Table 2, the mean MAE SSIM, MS-SSIM,
PSNR and MI values achieved by our proposed method are 12.20 +
1.38, 0.45 + 0.06, 0.62 + 0.08, 19.47 + 1.24, and 1.04 + 0.14 respec-
tively, which are superior to those achieved by the model without skip
connections. The CSS metric increases from 0.50 + 0.05 to 0.75 + 0.03.
All the results, especially the improvements of the SSIM, MS-SSIM, MI
and CSS, indicate that the addition of skip connections is of significant
impact on reserving image details and reducing the information loss
during the domain transformation task. Moreover, the distance between
generated images and reference ones is further shortened by the pro-
posed method according to the decrease of the mean MAE.

It is obvious that the performance of our proposed method gains an
improvement on each metric, which manifests that short paths offered
by skip connections facilitate the broadcast of the detailed information.
Hence, the significance of the addition of skip connections can be veri-
fied by intuitive results and quantitative assessments mentioned above.

4.3. Comparison with other methods

To comprehensively confirm the superiority of our proposed method,
massive results were obtained to compare our method with the currently
proposed RegGAN. Details of results are presented as follows.

Fig. 9 displays intuitive results. Comparing Fig. 9(c) with Fig. 9(b),
the resolution and contrast of the ultrasound image are improved a little,
but textures and structural details are fragmented. And the gary distri-
bution of Fig. 9(c) is quite different from that of Fig. 9(a). Thus, the
SRGAN method brings an improvement in the image resolution but
performs not well in normalizing ultrasound images from different do-
mains. From Fig. 9(d), we can find that the transformed image produced
by the Residual CycleGAN suffers from the over-smoothing problem. By
comparing Fig. 9(d) with Fig. 9(b), we think that the over-smoothing
phenomenon is caused by the overmuch information maintained in

(i) W)

Fig. 8. Some testing results produced by the stability-enhanced CycleGAN model with/without skip connections. (a), (b) present a pair samples from the testing set of
source images from different domains. (a), (b) are scanned using mSonics MU1 and Toshiba Aplio 500 respectively. (a) denotes the source image and (b) is the
corresponding reference one. (c), (d) present transformed images generated by the stability-enhanced CycleGAN model without/with skip connections from (a). (e),
(f) show corresponding reconstructed images. (g), (h) denote transformed images generated by the stability-enhanced CycleGAN model without/with skip con-
nections from (b). (i), (j) display corresponding reconstructed images. Some parts of (b) to (j) are labeled with red boxes and blue ovals to better show detailed

differences between them.
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Table 2
Quantitative evaluation results for addition of skip connections.
Model YoV XY
MAE SSIM MS- PSNR/ MI CSs
SSIM dB

Original images 51.32 0.22 0.36 12.58 0.37 0.34

+1.52 +0.05 +0.07 +1.53 +0.18 +0.51

CycleGAN 28.43 0.33 0.49 14.38 0.58 0.39

+1.86 +0.08 +0.08 +2.36 +0.18 +0.06

CycleGAN + SN + 14.27 0.41 0.58 16.53 0.87 0.50
TTU + LS +1.88 +0.07 +0.08 +1.58 +0.11 +0.05
(Stability-
enhanced
CycleGAN)

CycleGAN + SN + 12.20 0.45 0.62 19.47 1.04 0.75
TTU + LS + SC +1.38 +0.06 +0.08 +1.24 +0.14 +0.03
(Proposed
method)

NOTE:’SC’ denotes skip the connection;’X’denotes images like Fig. 8(a);’Y’
denotes images like Fig. 8(b);'Y” denotes transformed images like Fig. 8(c), (d).

the transformed result, which might be attributed to the forcible residual
learning applied from input to output of the Residual CycleGAN. In
comparison, as shown in Fig. 9(f), our proposed method applies residual
blocks between the encoder and decoder of generators with supple-
mentary skip connections, which can integrate feature information
extracted in different levels appropriately and greatly alleviate the over-
smoothing problem. In Fig. 9(e), the over-smoothing appearance re-
duces to a certain extent but still exists in contrast to Fig. 9(f). As labeled
with the red ovals in Fig. 9(c)-(e), there are deformations of textures and
tissue boundary in the transformation results produced by other
methods, while the structural details of Fig. 9(f) are more distinct and
accurate. The better detail preservation benefits from the addition of the

(2) (h) )
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skip connections in the proposed method, while in the RegGAN method,
misaligned target images are considered as noisy labels and the gener-
ator is trained with an additional registration network to fit the mis-
aligned noise distribution adaptively, which might lead to fuzzy textures
or deformations.

The third row of Fig. 9 illustrates distance maps of different methods
between the transformed image and corresponding reference one to
show the transformation effect vividly and visually. The darker the color
blue, the smaller distance value between the transformed image and the
reference one it has. Observing the bottom row of Fig. 9, it can be further
confirmed that transformed images produced by our proposed method
are closer to the reference ones. As a consequence, the proposed method
has an obvious superiority of the domain transformation in ultrasound
images.

Expert for qualitative contrasts, Tables 3-6 were provided to evaluate
the transformation path X—Y—X and Y—X—Y¥, respectively, which can
reflect the overall domain transformation performance of different
methods from two opposite domain transfer directions.

As shown in Tables 3 and 5, the “original image” term is calculated as
a reference to show the difference between ultrasound images in two

different domains. For X—Y, comparing with the RegGAN, our proposed
method achieves a decrease from 13.76 + 1.49 to 12.20 + 1.38 for the
mean MAE value and an increase from 17.31 + 2.04 to 19.47 + 1.24 for
the mean PSNR value. The mean SSIM, MS-SSIM, Pearson-R, MI and CSS
values achieved by our proposed method are 0.53 + 0.04 to 0.45 £ 0.06,
0.62 + 0.08, 0.78 4+ 0.09, 1.04 & 0.14 and 0.75 =+ 0.03, which are su-

perior to those achieved by other methods. For Y—X, the results ob-
tained by the proposed method also surpass those gained by other
algorithms in all of the above metrics.

The lower MAE and the higher PSNR, Pearson-R, and MI values
obtained by our proposed method demonstrate the superior capacity of
generating images similar to the target domain, which helps to reduce

max

(e)

0

0 (k)

Fig. 9. Comparison between different domain transformation methods. (a) presents the reference one from the target domain scanned using Toshiba Aplio 500. (b)
denotes the input from the source domain scanned using mSonics MU1. (c) to (f) display transformed images produced by SRGAN, Residual CycleGAN, RegGAN and
the proposed method, respectively. (h) to (k) display corresponding distance maps of different methods between the transformed image and the reference one. (g)
shows the distance map between (a) and (b) as a contrast. Red ovals are labeled to highlight the detailed difference.
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Table 3
Quantitative evaluation results for the domain transformation X—Y using different methods.
Model YoV XY
MAE SSIM MS-SSIM PSNR/dB Pearson-R MI CSsS
Original images 51.32 0.22 0.26 8.58 0.64 0.37 0.34
+1.52 +0.05 £0.07 +1.53 £0.13 +£0.18 £0.51
SRGAN 21.36 0.34 0.47 12.42 0.70 0.60 0.57
+1.35 +0.09 +0.08 +1.45 +0.11 +0.12 +0.10
Residual CycleGAN 18.72 0.40 0.52 15.16 0.71 0.91 0.62
+1.66 +0.07 +0.09 +1.62 +0.12 +0.17 +0.09
RegGAN 13.76 0.41 0.59 17.31 0.72 0.96 0.53
+1.49 +0.08 £0.07 +2.04 £0.13 +£0.19 £0.04
Our method 12.20 0.45 0.62 19.47 0.78 1.04 0.75
+1.38 +0.06 +0.08 +1.24 + 0.09 +0.14 +0.03
bl information and better reconstruction effect during the cycle process
Table 4 . also signify the excellent domain transformation performance of our
Quantitative evaluation results for the reconstruction Y—X using different method
methods. . . . R
ethods To sum up, the visual observation comparison shown in Fig. 9 reveals
Model XoX the better transformation results produced by the proposed method.
MAE SSIM MS- PSNR/ Pearson-  MI Furthermore, the proposed method gains the superior achievement on
SSIM dB R each evaluation metric compared to other domain transformation
SRGAN methods whether from the transformation performance perspective or
Residual 752+ 079+ 090+ 2018+  0.96+ 117 + the reconstruction performance perspective. All the above comparisons
CycleGAN  1.41 0.11 0.04 0.69 0.01 0.16 demonstrate the superior capacity of our proposed method to perform
RegGAN 466+ 077+ 084% 2373+ 094+ 133 & the domain transformation in ultrasound images, which greatly reduces
0-89 0.03 0.02 034 0.02 017 discrepancies between different domains and normalize images from
Our method ~ 4.32 0.85 0.97 27.94 0.99 + 1.36 Iscrep . . - 8
£1.02 +004 +0.01 +0.89 0.01 +0.17 different medical centers. Hence, our method is an efficient way as an

NOTE:’ X’ represents reconstructed images like Fig. 8 (e), (f).

differences between different domains so as to obtain the uniformly
distributed database. The higher values of the SSIM, MS-SSIM, and CSS
mean the more detailed information maintained by generated images
after the domain transformation, which proves the worth and impor-
tance of skip connections again. As for the Residual CycleGAN method
and SRGAN, they don’t achieve desired results. Transformed ultrasound
images generated by the two methods are very different from reference
ones, which indicate that the Residual CycGAN and SRGAN methods are

image preprocessing step to obtain the uniformly distributed database
for data-driven researches.

5. Conclusion and future work

In this paper, a stability-enhanced CycleGAN method with well
image detailed information preservation performance is proposed for

Table 6

Quantitative evaluation results for the reconstruction X—¥ using different
methods.

not applicable for the domain transformation in ultrasound image Model Yor
domain though they do well in the stain transformation and super- MAE SSIM MS- PSNR/ Pearson-  MI
resolution reconstruction respectively. SsIM dB R
For Y—X, the MAE obtained by our proposed methods reduces by SRGAN — — — — — —
7.9% and the SSIM, MS-SSIM, PSNR, Pearson-R and MI increase by Reé‘d‘;a(l}AN 2'23 * g‘gg + 8.(9); + fﬁg‘is + gg;i (1)?2 +
ycle . . . . X X
0, 0, 0, 0, 0,
%6.9“/0, 15.5%, 17.7%, 5.3% and 2.3% compared to the RegGAN. For RegGAN 654+ 081+ 087+ 23514+ 0004 116 4
X-Y, our method also reaches the best achievements in all the metrics. 1.16 0.09 0.12 2.76 0.08 0.19
The decrease of the MAE and increases of the SSIM, MS-SSIM, PSNR, Our method ~ 3.35 0.90 0.95 31.02 0.99 + 1.38
Pearson-R and MI metrics indicate that the proposed method achieves +093 +£001 001 +143 0.0 +0.15
the better reconstruction performance during the end-to-end trans- NOTE:’Y’ means reconstructed images like Fig. 8(i), (j).
formation process. In a certain sense, the less loss of content and detailed
Table 5
Quantitative evaluation results for the domain transformation ¥—X using different methods.
Model XoX YoX
MAE SSIM MS-SSIM PSNR/dB Pearson-R MI CSs
Original images 51.32 0.22 0.26 8.58 0.64 0.37 0.34
+1.52 +0.05 +0.07 +1.53 +0.13 +0.18 +0.51
SRGAN — — — — — — —
Residual CycleGAN 23.41 0.30 0.35 12.94 0.70 1.00 0.65
+1.62 +0.06 +0.18 +1.52 +0.14 +0.17 +0.07
RegGAN 15.69 0.39 0.42 16.25 0.81 1.05 0.51
+1.36 +0.04 +0.08 +1.60 +0.08 +0.14 +0.04
Our method 13.65 0.42 0.56 17.16 0.93 1.10 0.74
+1.45 +0.05 +0.07 +1.10 +0.03 +0.18 +0.05

11
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the domain transformation, aiming to normalize ultrasound images from
different medical centers. Based on the analysis of weakness of the basic
CycleGAN, the spectral normalization, two time-scale update rule and
label smooth strategy are adopted to stabilize the training of the
CycleGAN model. Besides, considering the inadequate constraint of the
cycle-consistency to reserve the detailed information, skip connections
are added to generators to refine transformation results of the proposed
method. Massive experimental results demonstrate the effectiveness of
optimizations mentioned above and the feasibility of the proposed
method to normalize images from different domains. Using the prom-
ising method, it is easier to reduce the database bias so as to obtain the
uniformly distributed database. The algorithm can further promote the
potential establishment of large ultrasound image datasets. As a faithful
data processing method, it might have a contribution to the develop-
ment of medical big data, which enhances the reliability and univer-
sality of computer aided diagnosis.

In the future work, more ultrasound image datasets may be obtained
from more different medical centers, so that “many-to-one” trans-
formation mode can be explored to enhance the adaptability and effi-
ciency of our proposed method. Extended applications on segmentation
or classification tasks will also be conducted to further demonstrate the

Appendix

Implementation details
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value of our study.
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All ultrasound images were resized to 256 x 256. Loss weights (4, y) of the loss function #¢yc.gan Were tuned and chosen as (10, 1). The Adam
optimizer with the momentum term $; = 0.9 was adopted for generators and discriminators. The learning rate linearly decay every 50 iterations with
the decay factor as 0.5. Data preprocessing steps were implemented using MATLAB software. The following network training process was imple-
mented in the TensorFlow library and trained end-to-end from scratch using a Nvidia Geforce RTX 2080 TI GPU to increase the training speed. The
model is trained alternating between generators and discriminators, so that the data generated by generators is getting similar to the corresponding
target one. When training the model with the training set, the training data was chosen randomly from the source domain and target domain in every

training epoch.
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