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Abstract
Simulated breast lesion models, including microcalcification clusters and masses, have been used in
several studies. Realistic lesion models are required for virtual clinical trials to be representative of
clinical performance. Multiple methods exist to generate breast lesion models with various levels of
realism depending on the application. First, lesion models can be obtained using mathematical
methods, such as approximating a lesion with 3D geometric shapes or using algorithmic
techniques such as iterative processes to grow a lesion. On the other hand, lesion models can be
based on patient data. They can be either created starting from characteristics of real lesions or they
can be a replica of clinical lesions by segmenting real cancer cases. Next, various approaches exist to
embed these lesions into breast structures to create tumour cases. The simplest method, typically
used for calcifications, is intensity scaling. Two other common approaches are the hybrid and total
simulation method, in which the lesion model is inserted into a real breast image or a 3D breast
model, respectively. In addition, artificial intelligence-based approaches can directly grow breast
lesions in breast images. This article provides a review of the literature available on the development
of lesion models, simulation methods to insert them into background structures and their
applications, including optimisation studies, performance evaluation of software and education.

1. Introduction

Virtual clinical trials (VCTs), also known as in silico trials, are valuable for medical imaging system design
and performance evaluation. VCTs in medical imaging are based on computer simulations of human
anatomy, image acquisition and image interpretation. They allow to study a specific clinical task in a more
flexible, cheaper and faster way than real clinical trials, and do not involve exposure risk to the patient (Abadi
et al 2020). The ability to synthesise abnormalities enhances the versatility of VCTs and can bring their results
closer to clinical practice. Ultimately, scientific studies should prove that VCTs and real clinical trials lead to
similar results.

For mammographic systems, such as digital mammography (DM) and digital breast tomosynthesis
(DBT), numerous VCTs have been developed to compare the characteristics of imaging systems and
investigate their diagnostic performance. For observer studies to be maximally predictive for specific clinical
performance questions, realistic or nearly realistic breast lesion models may be useful and even required.
Ideally, they cover the notable variations in patient pathology in terms of border characteristics, shape, and
contrast. Finding such realistic renditions of diseased conditions and pathologies to represent the clinical
variety is a challenge.
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Over the years, a number of research groups have employed various approaches to generate
computational breast lesions for their VCTs (tables 1 and 2). Lesion models vary from geometrical shapes to
models based on segmentations of real lesions in breast images. Multiple methods exist to insert such
generated models in either existing or synthetic mammographic images (Marshall and Bosmans 2022).
Depending on the task investigated in the VCT, choices must be made regarding the methods used, given
their realism, complexity and the available resources.

To the best of our knowledge, this is the first review paper to discuss and compare existing approaches to
create breast lesion models in mammographic VCTs. This review first focuses on methods for generating
lesions to study breast imaging applications, together with the evaluation of lesion realism. This is followed
by a description of how these abnormalities are incorporated into background breast structures. By
integrating both microcalcification models and breast mass models, a complete overview is provided for all
common breast lesions.

2. Generation of lesionmodels

Two broad types of abnormalities are detectable on mammograms: calcifications and breast masses.
Associated features with these breast lesions include among others skin and nipple retraction, and
architectural distortion (American College of Radiology 2013).

Calcifications are small deposits of calcium in the breast that are frequently found on mammographic
images. Although many calcifications are benign, they can serve as a marker of an underlying malignant
process. Therefore, their detection is of utmost importance. Different types of calcifications have been
described by Le Gal et al (1984) and are listed in the breast imaging reporting and data system (BI-RADS)
lexicon (American College of Radiology 2013). Whereas benign calcifications tend to be larger, rounder and
smoother, malignant calcifications often have a more irregular or punctate shape (Burnside et al 2007). A
cluster consists of multiple microcalcifications, usually smaller than 1 mm in diameter, located in a small
region. Clusters with linear or pleomorphic microcalcifications are clinically more suspicious for malignancy
(Bent et al 2010). In clinical practice, it is important to distinguish between benign and malignant clusters.
Therefore, imaging modalities should be able to visualise both types accurately.

Masses occupy a larger region within the breast and contain a collection of cancer cells intermingled with
normal breast tissue or necrotic tissue. Masses vary in density, shape (round, oval, irregular) and margin
(circumscribed, obscured, microlobulated, indistinct, spiculated) (American College of Radiology 2013).
The contour is the most discriminating morphological criterion between benign and malignant masses.
Benign masses are often well-defined, circumscribed and roughly spherical, whereas dense, irregularly
shaped tumours with ambiguous edges are usually categorised as malignant (duCret 1997).

Architectural distortions of breast tissue represent the third most common means by which malignancy
can be detected. It must be noted that there are a number of benign causes of architectural distortions,
including radial scars and fat necrosis, but these have not yet been taken up in VCTs (Gaur et al 2013). Their
prevalence on mammography is low compared with calcifications or visible masses. However, inclusion of
such features would ultimately increase the realism of simulated breast cancer cases and may be important
when accounting for false positive generating signals. Skin and nipple retraction also indicate the possibility
of malignancy, even though they are not the ultimate target that radiologists are looking for. To our
knowledge, no systematic attempt has been made to simulate factors causing distortions and we consider
these features outside the scope of this paper.

We focus on the means of generating breast lesions, first discussing microcalcification clusters followed
by breast masses. Both lesions are considered in order of increasing complexity, from the simplest
geometrical models to complex structures based on the properties of real breast lesions.

2.1. Microcalcification clusters
2.1.1. Microcalcification models based on mathematical models
2.1.1.1. Geometric shapes
In its most simple form, a calcification is often modelled as a sphere or ellipsoid, as shown in figure 1(a).
Bliznakova et al (2003, 2006) simulated six microcalcifications ranging from 0.1 to 1.0 mm as ellipsoids of
calcium carbonate (CaCO3) and inserted them into their three-dimensional (3D) uncompressed breast
model. Similarly, Makeev et al (2021) introduced ellipsoids of calcium oxalate (CaOx) and calcium
hydroxyapatite (CaHa) into the central slice of a digital phantom. Sizes could vary between 0.2 and 1 mm,
with voxels at the edges of the ellipsoids removed randomly to create more irregular calcification shapes.
Clusters were constrained to a size of 6 mm with 5–15 individual microcalcifications. Van Camp et al (2022)
altered the edges of initial spheres by adding noise, followed by thresholding the resulting intensities in an
attempt to create realistic, benign microcalcifications. Figure 1(b) shows such microcalcifications inserted in
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Figure 1. Examples of geometric shaped calcifications. (a) Round and ovoid calcifications simulated as spheres and ellipsoids
respectively. Reproduced from (Bliznakova et al 2003). © IOP Publishing Ltd. All rights reserved. (b) A benign cluster consisting
of spheres altered by adding noise. Reproduced with permission from (Van Camp et al 2022). (c) Disk, ellipse and star shaped
calcifications. (Reiser and Nishikawa 2006) John © 2006 American Association of Physicists in Medicine. (d) Binary image of
pleomorphic calcifications based on manually drawn contours. Reprinted from (Kallergi et al 1998), Copyright (1998), with
permission from Elsevier.

a mammographic image. Similarly, Li et al (2018) introduced irregularities by modifying ellipsoidal surface
meshes with stochastic Perlin noise.

Based on the findings of anatomical properties, Näppi et al (2001) also found ellipsoids to be
representative of calcifications. They distinguished three principal calcification shapes visualised in
figure 2(a): ovoid, irregular and elongated structures with the ovoid shape consisting of an ellipsoid of which
the axis ratio could be varied. Creating models with a linear attenuation coefficient ranging between calcium
and fatty tissue ensured a variety of calcification types with different densities. Reiser and Nishikawa (2006)
discussed the creation of three different shapes as well, i.e. ellipse, disk and star shape, but limited them
however to a two-dimensional (2D) model. All three shapes are modelled with a standard axis ratio
(figure 1(c)). Validation experiments were conducted to investigate how readers could distinguish between
the three shapes.

Also using 2D models, Kallergi et al (1998) manually drew microcalcification contours based on the
BI-RADS morphological description (D’Orsi and Kopans 1993). Different groups of calcifications, both
benign and malignant, were created. Unlike the standardised ellipsoids, this method could be applied to
create a larger ensemble of unique calcifications, ranging from round benign structures to fine linear
malignant structures, as shown in figure 1(d).

2.1.1.2. Algorithmic techniques
To generate more complex shapes, algorithmic techniques have been applied.

To create a large set of (irregularly shaped) microcalcifications, Bliznakova et al (2003) and Ruschin et al
(2005) used a random walk algorithm. Starting from a central pixel, each iteration extended the calcification
volume to a randomly selected new location by choosing a neighbouring pixel. A new branch could then be
created with 5% probability. After a predetermined number of iterations or when one branch reached a
predefined border, the random walk iterative process ended. Further, erosion and dilation operations
ensured a continuous yet blurry border. Afterwards, the microcalcifications were scaled down in size such
that the diameters were within 0.1–1.5 mm. Clusters were then created by combining microcalcifications
with user-defined parameters such as the number of calcifications, cluster density and height-to-width ratio.
For each added microcalcification, the location, orientation and normalised pixel value being between 0.1
and 1.0, were chosen randomly.

In contrast to the method for generating ovoid structures, Näppi et al (2001) used a random walk model
to simulate irregular microcalcification shapes. As for Ruschin et al (2005), the algorithm ended when a
border was reached, and a final dilation step ensured that the method created irregular microcalcification
clusters with a powder-like appearance, as shown at the top of figure 2(a) and in figure 2(b). Wireframe
models were used in order to create elongated calcifications. An initial line defining the length of the
calcification was altered using a random midpoint displacement algorithm. This fractal method recursively
splits a polyline at the midpoint of each line and displaces these sections to obtain a new, more complex
polyline. The simulated calcification then resided within a specified radius of the wireframe described by the
final polyline. Similarly, Bliznakova et al (2003) modelled elongated microcalcifications by arranging
cylinders with specified heights and radii.

Some studies modelled clusters in DBT as an ellipsoidal envelope (Ho et al 2010). Here the radii of the
ellipsoids could be varied to create different types of clusters. For a linear shape, one of the radii was large
compared to the others. Microcalcifications were then generated within the envelope by defining an epipolar
curve for each calcification. Such a curve defines the 2D projections of a 3D object in the DBT image. The 3D
model is constructed by finding the intersection points of curves joining the 2D pixels of microcalcifications.
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Figure 2. Examples of calcifications created with algorithmic techniques. (a) Examples of irregular (top), ovoid (middle) and
elongated (bottom) calcifications. Reprinted from (Näppi et al 2001), Copyright (2001), with permission from Elsevier. (b) A
simulated microcalcification cluster based on a random walk model. (Ruschin et al 2007) John © 2007 American Association of
Physicists in Medicine.

Figure 3.Microcalcification clusters obtained from segmentations in mammographic images. (a) 3D model of a cluster
reconstructed and matched from its two views. Reprinted from (Tiedeu et al 2005), Copyright (2005), with permission from
Elsevier. (b) Simulated (left) and real (right) microcalcification cluster. Reprinted from Saunders et al (2006). Copyright (2006),
with permission from Elsevier.

2.1.2. Microcalcification models based on patient data
2.1.2.1. Segmentation in mammographic images
Whereas the methods discussed above create new calcifications from scratch, much research has focused on
the use of real clusters segmented from patient images, to generate a dataset of realistic calcifications.

In order to extract calcifications from images, Yam et al (2001) defined the ratio of the volume of
interesting or non-fat tissue to the estimated volume of a blob in the breast. Given that calcifications have a
high x-ray attenuation coefficient compared to soft tissue, the calcification attenuation is comparable to that
of much thicker tissue. A threshold was applied to the ratio to detect calcifications. The 3D volume of each
calcification was then approximated using an ellipsoid. After performing this step in two views, the
calcifications were matched to reconstruct clusters in 3D.

While Yam et al (2001) used craniocaudal and mediolateral oblique views to reconstruct clusters in 3D,
Daul et al and Tiedeu et al (2005, 2005) extracted cluster models from images obtained with a stereotactic
mammographic unit. Because the cluster was indicated in two views, the 3D position could be found at the
intersection of the 3D trajectories (figure 3(a)). A method proposed by Chan et al (1998) was then adapted,
namely applying filters to enhance the contrast between microcalcifications and background. Possible
calcifications were segmented from the background tissue and then computed features of the possible
calcifications were used to eliminate false positives.

While these models have focused on synthesizing 3D clusters from multiple 2D images, most research
regarding microcalcifications only considers the 2D projection in mammographic images. The disadvantage
of 2D models is that less features of real clusters could be calculated and considered when generating realistic
simulations.

Such a method is discussed in Lado et al (1997), where a wavelet transform was used to segment
microcalcifications from real DM images. Regions of interest (ROIs) containing a microcalcification cluster
were used to create reconstructed images. After a wavelet transform, high-frequency components were
enhanced by decomposition up to the third level, which removed the low-frequency background structures.
A final histogram threshold was chosen to obtain a high sensitivity for seed points of microcalcifications
while limiting the number of false positives. A region growing method with a grey level threshold was then
applied to detect the complete microcalcification using spatially connected pixels. Features such as mean
contrast, average grey level, size and number of microcalcifications per cluster were then extracted from the
real, segmented microcalcifications. When simulating new clusters in images, these features were used to
constrain the properties of the clusters. In an observer study, the area under the receiver operating
characteristic (ROC) curve (AUC) of 0.54± 0.03 denoted the realism of the simulated microcalcifications.
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Figure 4.Models of segmented microcalcifications. (a) Calcification with two central parts and four concentric rings. (Carton
et al 2003) John Wiley & Sons. [© 2003 American Association of Physicists in Medicine]. (b) 3D model of a microcalcification
cluster obtained from an imaged biopsied specimen. (Shaheen et al 2011) John Wiley & Sons. [© 2011 American Association of
Physicists in Medicine].

To obtain realistic microcalcification clusters, Suryanarayanan et al (2005) applied filtering to suppress
microcalcifications in mammographic images with a single cluster. The lesions were segmented by
subtracting the filtered image from the original image to remove undesirable background structures. Based
on the location and intensity of the resulting extracted microcalcification cluster, plausible locations for new
microcalcifications were chosen by selecting pixel intensities within a certain range. Pixels with amplitudes
and shapes in the same range as real calcifications were inserted in mammographic images and grouped to
create new microcalcifications resulting in a hybrid cluster of real and simulated microcalcifications.

Saunders et al (2006) segmented microcalcifications from ROIs by thresholding after converting the pixel
values to optical density. Additional manual inspection ensured that all calcifications were included, and the
properties of these microcalcifications were later used to simulate new clusters. It was assumed that
microcalcifications in a cluster resided either within an ellipse for the clustered pleomorphic case or were
distributed along lines and branches for the fine linear branching case. A single microcalcification was then
modelled from a line, with thickening and erosion to ensure realistic edges. In an observer study, no
significant difference was noted in realism scores for the appearance of simulated and real
microcalcifications, examples of which are shown in figure 3(b).

Vivona et al (2014) first applied edge detection to extract ROIs from an image. High pass filtering was
then used to suppress the background, and a spatial filter designed to detect microcalcifications was applied.
A physician then identified which of the proposed ROIs actually contained a cluster and stored the real
clusters in a database. When clusters were simulated in a new breast, they consisted of microcalcifications
taken from the database of real microcalcification clusters where relative angles and distances between
microcalcifications were maintained. These simulated clusters were used to test a Fuzzy C-means clustering
algorithm.

2.1.2.2. From images of biopsied clusters
To obtain models of real microcalcifications, Carton et al (2003) imaged biopsied clusters with a storage
phosphor plate system in DMmagnification view to obtain a high resolution image. After linearization of the
raw (‘for processing’) images, the pixel value intensities corresponded linearly to the x-ray exposure. The
lowest x-ray transmission denoted the thickest part of the microcalcification that was then defined as the
‘core’. Concentric ring-like shapes, composed of pixel values with similar grey values, were then constructed
around this central core and further characterised from the extracted features of calcifications. As shown in
figure 4(a), the visualised microcalcification has up to four concentric rings. New microcalcifications could
then be simulated by adjusting the ideal calcification templates to the mean energy of the x-ray beam and the
resolution of the detector. In a two-alternative forced choice study, there was no perceived difference between
simulated and real lesions. Similarly, Zanca et al (2008, 2009) obtained DM images of biopsied cluster
specimens superposed on polymethyl methacrylate. Individual microcalcifications were then digitally
extracted. Normalizing the pixel values to the average pixel value of the background produced a template of
the cluster. These templates were adjusted to simulate the desired acquisition conditions on a mammography
system as in Carton et al (2003) or to specific set values. These simulated clusters could not be distinguished
from real clusters, which was proven in an observer study by radiologists. In the same manner, Warren et al
(2012) imaged biopsied clusters and created templates too. The microcalcifications within each cluster were
rearranged to increase the number of available clusters. Simulations in DM images by Zanca et al (2008) and
Warren et al (2012) are shown in figure 5.

In the work of Shaheen et al (2011), biopsied clusters were again the data source, but were now imaged
with a cone-beam micro-CT scanner. Microcalcifications were segmented from 3D images using Sobel edge
detection, morphological operations and median filters. Rotation was used to increase the initial set of
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Figure 5. Examples of microcalcification clusters. (a) Simulated clusters (indicated by the arrow) together with their magnified
view (third column) and their corresponding Le Gal type on the left. (Zanca et al 2008) John Wiley & Sons. [© 2008 American
Association of Physicists in Medicine]. (b) Clusters inserted in breast images with different glandularities (fatty on top, glandular
at the bottom). (Warren et al 2012) John Wiley & Sons. [© 2012 American Association of Physicists in Medicine].

clusters if 2D projections were found to be sufficiently different, resulting in a database of 54 3D
microcalcification cluster models, one of which is shown in figure 4(b). From such 3D models, 2D projected
templates could be created for use in image simulations. The study of Hadjipanteli et al (2017) created new
simulated clusters starting from a single microcalcification extracted from the database of Shaheen et al
(2011). This microcalcification was resized and recombined five times to create a cluster which was then
rotated. The same database formed the basis of the study by Van Camp et al (2022) where microcalcifications
were recombined to create new malignant clusters. A large set of clusters could be created by applying
random choices on the rotation and location of microcalcifications while still considering the properties of
real clusters. In a validation study to distinguish real from simulated clusters, an average AUC of 0.53 was
obtained.

2.1.3. Growth within mammographic images
In order to simulate the growth of microcalcification clusters, Plourde et al (2016) started from a
mammographic background with normalised pixel intensities. The growth process was based on tumour
pressure, which defined the force per unit area used to control lesion growth. Different growth rules were
applied for benign and malignant calcifications formed from hydroxyapatite and calcium oxide respectively.
Growth was tempered by the resistance of the background tissue and 3D factors represented by a separate
model parameter. Starting from seed points, a calcification thus grew when the difference between the
tumour pressure of the surrounding pixels and the tissue value at the given position was larger than a
constraining factor.

2.2. Breast masses
2.2.1. Mass models based on mathematical models
2.2.1.1. Geometric shapes
Circumscribed masses, where the contour is clearly defined at the larger part of their surface, and which are
usually associated with benign breast findings, can be approximated with geometric shapes (American
College of Radiology 2013).

In their simplest form, mass lesions can be represented by solid spheres and oblate spheroids with the
contrast of the masses controlled by varying the thickness of the ellipsoids (Bakic et al 2018a). Some of these
lesions are shown in figure 6(a).
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Figure 6. Examples of geometric shaped mass lesions. (a) Solid ellipsoids (oblate spheroids) used for simulating breast masses.
Reproduced with permission from (Bakic et al 2018a). (b) 3D Gaussian blob to approximate a diffuse-edged mass. (c) Models of
one spherical lesion and two non-spheroidal circumscribed lesions consisting of (non-)concentric shells composed of different
simulated materials. Reproduced with permission from (Bakic et al 2018b).

Figure 7. Examples of irregularly shaped masses created with mathematical models. (a) A mass with a stochastic stellate pattern
composed of a dense centre and a gradually fading boundary. Reprinted from (Chen et al 2011), Copyright (2011), with
permission from Elsevier. (b) An iterative process to generate irregular shapes. Reproduced with permission from (Sánchez De La
Rosa 2019). (c) Projections of 3D masses created with a random walk algorithm. Reproduced from (Rashidnasab et al 2013b).
© IOP Publishing Ltd. All rights reserved. (d) 2D projections of DLA masses. Reproduced from (Rashidnasab et al 2013b). © IOP
Publishing Ltd. All rights reserved. (e) Process of generating a simulated mass model starting from a stochastic Gaussian random
sphere model to simulate a central tumour and a fractal branching algorithm to model spicules. Reproduced from (De Sisternes
et al 2015). CC BY 3.0.

To model a diffuse-edged mass, a number of studies have used a 3D Gaussian blob (figure 6(b)) as an
approximation (Mainprize et al 2016, Lago et al 2018). To ensure that the lesion blends into the surrounding
healthy tissue, Bakic et al (2018b) and Lago et al (2018) built up lesions from multiple shells with different
attenuation properties. Figure 6(c) shows how concentric shells were used to model spherical breast lesions,
while non-spheroidal circumscribed lesions with a more clinically plausible appearance were generated using
a set of non-concentric ellipsoids.

Instead of starting with a geometric shape, Timberg et al (2010) started by defining the shape of the
lesion in the central 2D plane. Planes above and below were simulated by decreasing the dimensions of the
central plane as if the object was an ellipsoid.

2.2.1.2. Irregularly shaped masses
A greater variety of mathematical methods has been used to create irregularly shaped lesions, which are
consistent with a greater likelihood of malignancy (American College of Radiology 2013).

The work of Chen et al (2011) implemented a simple stochastic growth model. The percentage of
glandular tissue within each ellipsoidal shell was reduced towards the edge of the lesion. This resulted in a
lesion with a dense centre and gradually fading boundaries (figure 7(a)).

In a study by Gong et al (2006), breast lesion simulation began with a sphere as the basic shape. Spicules
were then grown in a randomly chosen direction using a stochastic growth method to improve the realism of
the lesion appearance.

Figure 7(b) depicts an analogous method developed by Sánchez De La Rosa (2019) to generate 3D lesions
for contrast-enhanced mammography. As basic shape, a spherical or ellipsoidal structure was first created.
The surface was further deformed by uniformly distributing seed points on the surface, which formed the
centres of new spheres or ellipsoids. This procedure was repeated several times to generate more complex
lobulated masses. If a spiculated margin was desired, multiple spicules were grown from the surface using a
random walk algorithm. In this model, each spicule is a concatenation of overlapping spherical objects.

As was the case for microcalcifications, the nearest neighbour random walk algorithm can also be used to
produce irregular boundaries commonly seen on malignant masses. Similarly, each new random walk was
initiated from the central voxel of a 3D binary matrix. At each step of the random walk, an adjacent voxel was
randomly selected and assigned as part of the mass. The two key parameters used in this approach are the
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Figure 8. Examples of lesion models based on characteristics of real lesions. (a) Spiculated mass created by adding synthetic
spicules extracted from patient images to a DLA mass. Reproduced with permission from (Elangovan et al 2016b). (b) Example of
a benign (left) and malignant (right) simulated mass with their characteristics tuned to real lesions. Reprinted from Saunders et al
(2006). Copyright (2006), with permission from Elsevier. (c) Synthetic malignant mass as a result of a mass appearance model
and mass background appearance model. Reproduced with permission from (Berks and Barbosa da Silva et al 2010).

number of steps in each random walk, which controls the size of the simulated mass, and the number of
iterations in the random walk used to build the mass, which controls the texture/density. Morphological
image processing, such as averaging, dilation and erosion, was used to smooth the simulated mass (Hintsala
et al 2009, Rashidnasab et al 2013b, Bliznakova et al 2019) resulting in masses as shown in figure 7(c).

An alternative approach to simulate mass lesions is the use of diffusion limited aggregation (DLA), a type
of fractal growth. Randomly moving particles are launched from concentric spheres around the mass centre
and aggregate on the central core as they reach adjacent voxels lining the centre. Using this method,
asymmetric breast lesions with a porous volumetric appearance, such as those in figure 7(d), can be
simulated. User-defined growth prescriptions that control the size, texture and density of the masses, allow a
wide variation in the appearance of the simulated masses (Rashidnasab et al 2013a, 2013b, Hadjipanteli et al
2019). These masses are currently used in the OPTIMAM platform (Elangovan et al 2018).

The appearance of DLA lesions has been validated for realism by means of observer studies in DM
(Rashidnasab et al 2013b) and DBT modalities (Rashidnasab et al 2013a). The insertion of these masses in
DM images resulted in higher realism scores than insertion into DBT images. The DLA masses were also
compared to masses developed using random walk methods. Observers had greater difficulty distinguishing
between real or simulated DLA masses compared to random walk generated masses, and gave higher realism
scores to DLA masses (AUC of 0.55 for DLA masses, AUC of 0.60 for random walk masses) (Rashidnasab
et al 2013b).

The work of De Sisternes et al (2015) described an algorithm to create detailed 3D non-spiculated and
spiculated breast masses controlled by user-defined parameters. This allows a large family of masses having
particular characteristics. Low and high frequency modifications were introduced to a central lesion
produced with a Gaussian random sphere technique. Spiculated masses could be generated if desired, with
spiculation structures added to the central mass using an iterative branching algorithm. Figure 7(e)
illustrates this algorithm. Mass realism was evaluated when inserted into clinical DM images, with an AUC of
0.544 for non-spiculated tumours and 0.588 for spiculated masses. This mass generation algorithm was used
in the VICTRE trial (Badano et al 2018) and applied by Shaheen et al (2014).

2.2.2. Mass models based on patient data
Rather than relying on mathematical functions, one can also start mass generation from patient data. This
approach guarantees a high degree of realism of the created models, i.e. conformity to real anatomical
structures.

2.2.2.1. Statistical models based on characteristics of real lesions
One approach is to parameterise breast lesions from patient data. The features extracted from real masses are
then used to generate digital models.

Elangovan et al (2016b) extended the DLA model to simulate spiculated lesions by using features, in
terms of spicule length, width, curvature and distribution, extracted from patient DBT images containing
spiculated lesions. These features were used as a guide to simulate realistic spicules which were then attached
to the surface of a DLA mass resulting in models as shown in figure 8(a). In a validation study, a radiologist
rated 60% of the simulated lesions in DM and 50% of the simulated lesions in DBT as realistic.

For the feature extraction, Saunders et al (2006) considered two types of typically benign masses (oval
circumscribed and oval obscured masses) and two types of typically malignant masses (irregular ill-defined
and irregular spiculated masses). For each mass type, three physical characteristics were measured from
breast masses in mammographic images: (1) lesion shape using a Laplacian of Gaussian edge detection
method, (2) mass contrast using an edge gradient profile, and (3) edge properties using a border deviation
profile. Next, a simulation procedure was developed to generate masses that matched the measured data from
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Figure 9. Examples of lesion models created by segmenting patient images. (a) Slices of a 3D simulated lesion based on a
histopathological section of an invasive ductal carcinoma. (Das et al 2009) John Wiley & Sons. [© 2009 American Association of
Physicists in Medicine]. (b) 3D voxelised model of a lesion extracted from breast MRI. (Shaheen et al 2014) John Wiley & Sons.
[© 2014 American Association of Physicists in Medicine]. (c) Breast lesion models created from segmentation of patient CT
images (left) and tomosynthesis (right). Reprinted from (Bliznakova et al 2019), Copyright (2019), with permission from Elsevier.
Reprinted from (Dukov et al 2019), Copyright (2019), with permission from Elsevier.

real lesions. Figure 8(b) shows simulated lesions which observers generally rated to have a similarly realistic
appearance to real lesions in DM, with an AUC of 0.68 for benign masses and 0.65 for malignant masses.

To describe the appearance of a set of real malignant masses, Berks et al (2008, 2010) constructed two
statistical models. The mass appearance model encapsulated the variation in shape, size and texture of the
lesion, while the mass background appearance model accounted for how the surrounding structures would
be altered by the presence of a mass. The latter was done by modelling the distortion, but also included any
spicules associated with the mass. A combined model of appearance was used to synthesise malignant masses
by randomly sampling from the model distribution which resulted in a mass as shown in figure 8(c). These
masses were evaluated in a DM image dataset using an ROC study, with an AUC of 0.70.

2.2.2.2. Segmentation from breast images
Another approach is to use clinical images from 3D breast imaging modalities, such as DBT, breast computed
tomography (CT) and breast magnetic resonance imaging (MRI), to extract full 3D breast lesion shapes
instead of extracting only common lesion features.

Using the appearance of malignant masses in CT specimen reconstructions and histopathological
sections as an example, Das et al (2009) manually defined spiculated 2D objects (figure 9(a)). In order to
obtain a 3D mass model with spiculated borders, these 2D objects were connected to create a non-uniform
rational B-spline surface.

In the study by Shaheen et al (2014), benign and malignant masses were manually segmented from breast
MRI images to generate non-spiculated 3D mass models, as shown in figure 9(b). Spicules were not captured
in the segmentation procedure because of the low spatial resolution of MRI data. An iterative branching
algorithm was used to add spicules of various lengths and diameters to the central mass. In an observer study,
radiologists scored the realism of the simulated masses, with an AUC of 0.58 in DM and 0.67 in DBT.

A semi-automatic segmentation algorithm using region growing to segment breast lesions from patient
DBT images, as well as from breast cadavers and whole-body CT scans, has been described by Bliznakova
et al (2019) and Dukov et al (2019). The spatial resolution of the obtained 3D segmented models in
figure 9(c) is intrinsic to the imaging modality.

2.2.3. Tumour growth model
A difficulty, especially for mass lesions, is the insertion or integration of the tumour model within normal
breast background structures. An approach to overcome or limit these difficulties is described by Sengupta
et al (2021). Breast tumour growth was modelled by considering the local anatomy which exerts pressure and
thus influences the shape of the lesion. Two types of non-spiculated lesion models were developed, one using
random growth (disc-like lesions) and an alternative using in-situ growth.

Tomic et al (2021) modelled tumour growth in computer breast phantoms to simulate multiple screening
rounds with varying time intervals. The initial tumours were approximated by spheres and grown
exponentially based upon clinical tumour volume doubling time values.

3. Lesion insertion and image simulation

Once models of microcalcification clusters and breast masses have been created, the next step is inclusion in a
projection image or phantom model as part of the VCT workflow. Depending on the lesion type and
occurrence, specific research questions can be addressed by the VCT. Breast lesion models can be introduced
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into parenchymal background structures in multiple ways. In the simplest method, mainly used for
calcifications, the simulated lesion is combined with a mammographic image and its intensity is scaled to
create realistic contrast levels relative to the background. A number of studies consider detailed system
modelling where many parameters are considered. There are two general approaches (Marshall and Bosmans
2022). The first is a hybrid simulation method, in which a lesion template is produced using x-ray projection
ray tracing and inserted into a real breast image. The alternative is termed ‘total simulation’, where the lesion
is inserted into a 3D breast model, and a simulated image of this breast model with lesion is generated using
the VCT imaging pipeline. In addition, an artificial intelligence-based approach can be considered where
breast lesions are grown directly in the breast image based on characteristics the model learned from real
breast cancer image data. This method does not consist of the two-step approach, where first a separate
lesion model is created followed by insertion in a breast image or breast phantom, so no virtual imaging step
is required.

3.1. Intensity scaling
Instead of performing a complex simulation, many methods perform simple mathematical computations to
combine the simulated lesion and the background tissue. The intensity values of the surrounding tissue or of
other real lesions are then considered to scale the intensity of the simulated lesions to obtain a realistic
contrast.

In a study by Suryanarayanan et al (2005), simulated microcalcifications were added to the vicinity of real
microcalcifications used for the models. The pixel intensity was measured and found to be within the range
of pixel intensities of real microcalcifications. Vivona et al (2014) considered the average intensity of a cluster
relative to the intensity of the parenchyma as well.

Cluster insertion in the work of Lado et al (1997) started with manually positioning the cluster centre in
the breast image. The positions of the microcalcifications were then determined based on their locations in
the cluster relative to the centre. The pixel intensity of each microcalcification was determined by the average
grey level value of the fifth concentric ring in the tissue surrounding the border of the microcalcification. The
grey levels of each concentric ring of the microcalcification were then scaled based on this value. Finally, low
pass filtering resulted in a uniform distribution between the simulated lesion model and the surrounding
tissue.

Reiser and Nishikawa (2006) created mammographic background images from a computer-generated
white noise or patient data. The lesion models were 2D and therefore x-ray projection was not performed.
The lesion template intensity was scaled to the background with a multiplication factor that resulted in a
human reader detection performance of 75%–90% of the cases.

Instead of automatically computing the pixel intensity, Ruschin et al (2005) allowed the user to adjust the
contrast of the lesion themselves. Radiologists provided feedback regarding which contrast values were
acceptable. This was done for a template of the lesion model of normalised intensity values ranging from 0 to
1, where 1 represented the maximal intensity added to the mammographic image.

Saunders et al (2006) used this intensity scaling approach to add both microcalcifications and masses to a
normal background captured with screen-film images. The contrast of the lesions was estimated by
examining the contrast of comparable lesions imaged with identical system parameters and embedded in
similarly sized breasts.

3.2. Hybrid simulation framework
Intensity scaling only mimics the contrast based on existing structures. To account for the influence of
imaging system properties on virtually imaged lesions, researchers have developed hybrid simulation
methods. This allows for a more realistic insertion of a lesion model into an existing projection image of a
(pathology-free) patient breast. Several hybrid simulation frameworks have been described (Carton et al
2003, Shaheen et al 2011, Elangovan et al 2014, Vancoillie et al 2020) to form hybrid projection images, all
using a broadly similar approach (figure 10).

In the first step, a 2D template of the lesion model is generated by calculating the primary x-ray
transmission through the 3D lesion for every projection using a ray tracing technique. This accounts for the
background composition at the insertion location. The influence of x-ray system factors that influence image
sharpness, such as the x-ray focus size and blurring due to the x-ray detector, is then incorporated. To do this,
primary templates are multiplied by the system modulation transfer function, which is assumed to
characterise these blurring factors. Additionally, the template contrast is modified using a scatter-to-primary
ratio relevant to the breast thickness/composition and the energy. Finally, the modified breast lesion template
is combined with the background image. Furthermore, a change in signal at the insertion site will affect the
background noise wherefore corrections can be applied (Elangovan et al 2014).
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Figure 10. Outline of the general workflow of a hybrid simulation tool.

Carton et al (2003) and Zanca et al (2008) used these methods to modify initial templates for a range of
system parameters. In other work, the hybrid tool developed by Shaheen et al (2010) for simulating 3D
lesions was validated in depth by Vancoillie et al (2020) and applied in a number of studies (Shaheen et al
2011, Salvagnini et al 2016, Van Camp et al 2022). Similarly, Ho et al (2010) used the algorithm given by
Tromans and Brandy (2010) to model image formation by considering the size and location of the
microcalcifications. The study of Näppi et al (2001) worked with both real mammographic images and
generated backgrounds. The simulation framework created high spatial resolution images using a recursive
2D midpoint displacement algorithm. When simulating the lesion in these background images, the
penetration of the x-rays through the 3D calcification was first modelled. Attenuation was then added based
on the attenuation derived from the background with a control on the contrast.

3.3. Total simulation framework
A number of groups have developed total simulation frameworks (Bliznakova et al 2012, Milioni De
Carvalho 2014, Elangovan et al 2016a, Barufaldi et al 2018, Badal et al 2021), in which lesion models are
inserted into computationally generated breast phantoms. Breast model simulation is not covered in this
paper; therefore we refer to Bliznakova (2020). To simulate cancer cases with a realistic appearance, breast
phantoms should be sufficiently detailed next to realistic lesion models.

The most common approach when embedding simulated lesions in a breast model is to replace the
background tissue voxels with the corresponding material of the particular pathology. Voxel replacement
works efficiently for calcification insertion because its attenuation is markedly higher than that of healthy
breast tissue. However, for mass lesions, the replacement method cannot guarantee that their x-ray
attenuation properties will be adequately simulated, and can consequently bias detection studies (Barufaldi
et al 2022). Barufaldi et al (2022) proposed a second approach called voxel addition, which considers the
underlying tissue by allowing lesion voxels in the phantom to be composed of an admixture of lesion and
breast tissue. Instead of assigning the same attenuation coefficients to all voxels of the mass lesion, Bliznakova
et al (2019) introduced smooth integration by changing the properties of the lesion in proportion to the
distance from the lesion centre.

After integration of the lesions within the breast model, image acquisition can be simulated using
different methods, such as Monte Carlo x-ray transport code or ray tracing, to obtain mammographic
images (figure 11). There is also the possibility to perform ray tracing of the lesion and breast phantom
separately so that high resolution lesions could be inserted (Elangovan et al 2014).

3.4. Use of artificial intelligence
The previously discussed approaches separately develop a lesion model and a breast phantom, followed by
insertion of the lesion into this breast phantom or a breast image. Instead, techniques exist that grow or
generate lesions directly in breast images to create a cancer case.

Currently, there is an enormous focus on deep learning techniques in medical imaging research (Yi et al
2019, Jairam and Ha 2022, Xun et al 2022). These methods have also been used to generate synthetic data.
Generative adversarial networks (GANs) are particularly suited for data augmentation to aid deep learning
networks in lesion detection and classification.

Figure 12 illustrates the basic working principles of a GAN. GANs usually start from noise fed to the
generator, which produces output ROIs containing synthetic lesions (Goodfellow et al 2014). A discriminator
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Figure 11. Outline of the general workflow of a total simulation framework (Images from: github.com/DIDSR/VICTRE).

Figure 12. The training and inference steps of a GAN model to generate patches with breast lesions. During training, the
generator learns to create realistic patches that can fool the discriminator. For inference, fake patches are then created by the
generator. Reproduced with permission from (Szafranowska et al 2022).

is then trained concurrently to distinguish between the ROIs with real lesions and the generated ROIs. By
adversarial training of both in parallel, the generator will eventually generate realistic ROIs that cannot be
distinguished from real tissue by the discriminator. Generation of lesions from an initial noise field is one of
the many data augmentation methods that may lead to improvements in breast cancer detection models
(Alyafi et al 2019b, Guan and Loew 2019, Szafranowska et al 2022).

Other work in this area have focused on the translation of normal tissue patches to patches containing a
lesion or, alternatively, to remove or make lesions more subtle in an image. Wu et al (2018) and Lee et al
(2019) applied conditional GANs in which a classification outcome or BI-RADS description desired for the
output image was fed to the generator, in addition to the input image. Wu et al (2020) used a contextual
network in which a lesion was generated from a normal breast tissue patch. The generated lesion was
subsequently added to the original image. The model was trained to either generate masses or calcifications,
or to remove lesions. When defining the location of the lesion, Swieciki et al (2021) removed a square region
from the tissue patch. The aim of the generator was to reconstruct this removed region by in-painting a
lesion. Shen et al (2021) extended this by first defining a segmentation contour and then training the GAN
such that a lesion was generated in the ROI that matched the contour. Some models can synthesise complete
mammographic images. Korkinof et al (2018) developed a network in which the resolution was progressively
increased. In the first stages, a global breast shape was developed, after which other structures, such as
calcifications, appeared in the later stages.

There are several ways in which these synthetic images of breast abnormalities are evaluated: by
comparing the spiculation and the circularity of real and simulated masses (Lee et al 2019), in terms of
improvement of the performance of a classification or detection network (Samala et al 2016, Alyafi et al
2019a, Guan and Loew 2019), by using relevant quantitative and qualitative image analysis metrics (Oyelade
et al 2022), or by performing a reader study with real and synthetic image pairs (Korkinof et al 2021).
Although GANs perform synthesis rather than simulation (Frangi et al 2018), mammographic images
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generated by deep learning models may prove an important source for VCTs in the future. Their ability to
readily generate large sets of data with complex characteristics and realistic insertion into the background
tissue can be an advantage. On the other hand, mostly no ground truth is known for GAN-generated lesions,
and it provides limited control to the user regarding the physical properties of the lesion or the acquisition
system. The fact that GAN models often require a large dataset themselves for training can also be considered
a drawback. In medical imaging, such datasets are often limited due to e.g. privacy concerns or the lack of
available annotations. With limited data available, a GANmodel might fail to converge or, on the other hand,
might overfit the training data. This would lead to the creation of lesions that all have a similar appearance
which do not cover the versatility of all lesions occurring in mammographic images. Especially when one
wants to create rare types of lesions or lesions that are hard to detect, the amount of input data may be too
scarce for successful simulation.

3.5. Simulation parameters
3.5.1. Material composition of lesions
A number of studies have examined the materials used to simulate microcalcifications, all expressing
microcalcification attenuation properties as equivalent aluminium thickness (Carton et al 2004, Zanca et al
2010, Warren et al 2013). This relationship was later used by Van Camp et al (2022). Warren et al (2013) also
compared the attenuation of CaOx and CaHa and found that microcalcifications could be modelled in VCTs
using the attenuation coefficient of solid CaOx, weighted by a factor of 0.84. Other studies have differentiated
between calcifications of type I (CaOx) and type II (CaHa) (Daul et al 2005, Plourde et al 2016,
Ghammraoui and Glick 2017, Makeev et al 2021). Shaheen et al (2011) and Salvagnini et al (2016) used
CaOx, whereas Bliznakova et al (2006) used CaCO3 as a material to simulate calcifications.

For mass lesions, attenuation coefficients can be assumed to be identical to those of glandular tissue
(Chen et al 2010). In addition, a multiplication factor of 1.02 (Badano et al 2018) or 1.04 (Bakic et al 2018a)
can be applied to the glandular tissue attenuation coefficient to slightly increase lesion attenuation.

In many studies, lesions are considered to consist of uniform material. Shaheen et al (2011) mentioned
the limitation of choosing a single material to model microcalcification clusters whereas in reality, this might
be a mix of materials and as well differ between calcifications. Apart from this, the deviation in density can be
modelled by concentric rings (Lado et al 1997, Carton et al 2003, Lago et al 2018, Bakic et al 2018b) or by
creating adjusted templates in the simulation process. Sánchez De La Rosa (2019) simulated heterogeneous
enhancement patterns inside mass lesions for the investigation of contrast-enhanced mammography.

3.5.2. Insertion location
The insertion location depends strongly on the application. Clearly, lesion location influences observer
detection rates in detection studies, depending on the contrast of the local breast structures. When working
with image patches, lesions are often inserted at random locations (Warren et al 2013, Vivona et al 2014,
Lago et al 2018) with some additional restrictions regarding the distance to the skin and the height in the
compressed breast (Mackenzie et al 2022). A number of studies have simulated many lesions across a grid in
an image to generate an ensemble of detection rates for a given breast background (Bakic et al 2018a, Makeev
et al 2021, Barufaldi et al 2022).

In studies showing complete breasts to the observers, the insertion site is often selected manually, as prior
knowledge increases the realism of the insertion location. Rashidnasab et al (2013b) used the geographical
distribution of real screen-detected breast cancers to aid in the selection of locations. Shaheen et al (2014)
limited the insertion positions to within 80% of the central portion of the breast away from the skin edge.
Lapuebla-Ferri et al (2017) found the position of the real mass present in the contralateral breast and
embedded the simulated lesion in a similar location in the current breast. Suryanarayanan et al (2005)
selected a location in the vicinity of an existing calcification cluster with intensities in the same range. In
addition, radiologist feedback can be used to decide on realistic insertion sites (Rashidnasab et al 2013b,
Mackenzie et al 2022). In order to automate region selection in clinical mammograms, Berks et al (2010)
constructed a probabilistic model of mass locations from a training set of mammograms that contained
annotated masses.

When breast phantoms are generated using the VICTRE in silico imaging pipeline, a list of candidate
insertion locations is provided. Each location is located close to a terminal duct lobular unit, as this is a
common site for cancer formation (Badano et al 2018).

3.5.3. Deformation
Very few studies have been reported in the literature on the deformation of breast lesions. For example,
breast compression may change the shape of mass lesions. It is well known that malignant breast lesions are
generally stiffer than normal breast tissue (Chen et al 2019). In most of the simulation pipelines, the breast
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phantoms are compressed prior to the insertion of the breast lesion. Deformation is not a concern for
microcalcifications because of their small size and high density.

3.5.4. Resolution
Voxelised breast phantoms and mass models have a particular resolution. High-detailed phantoms are
necessary for high-resolution imaging applications such as mammography and tomosynthesis. For
mathematical models, the chosen resolution is mostly a balance between the required details and simulation
efficiency. For models based on segmented imaging data, the presence of small details is determined by the
characteristics of the imaging modalities from which the lesions are segmented (e.g. noise, resolution, and
contrast) and the segmentation algorithms.

Next, the details of the simulated breast models can be limited by the image simulation pipeline. Some
frameworks allow inserting high-resolution models in a breast phantom or in breast images with a lower
resolution (Elangovan et al 2014, Vancoillie et al 2020), while in other frameworks the lesion models are
forced to have the same resolution as the background breast structure (Barufaldi et al 2018, Badal et al 2021).
For microcalcifications, a limited resolution may imply that they are modelled as just a single cubic voxel. For
the mass models, it is mainly the spicules that suffer from low resolution. On the other hand, the partial
volume effect should be considered. When both lesion and background material occur in the same voxel,
errors may arise in simulating the correct size of small structures. Therefore, appropriate voxel computations
such as addition or multiplication rather than voxel replacement allow the smooth blending or integration of
the lesion in the surrounding tissue.

4. Applications

Tumour models are often used in detectability studies, where the image interpretation is performed by
human observers using them-alternative forced choice paradigm (Burgess 1995, 1999) or by computational
readers. The detectability of a lesion in the breast using x-ray imaging can be affected by many factors,
including image acquisition methods, radiation dose, image processing, reconstruction algorithms, physical
properties of the breast, and the lesion itself. To optimise x-ray breast imaging systems, simulated lesions can
be used to investigate the effects of different imaging conditions on cancer detection.

Previous investigations included the effect of compressed breast thickness on lesion detectability in DM
(Salvagnini et al 2016); the effect of tomographic scan angular range and number of projections on
microcalcification and mass detection (Sechopoulos and Ghetti 2009, Hadjipanteli et al 2017, 2019); the
radiation dose dependence of mass and microcalcification detection (Ruschin et al 2007, Hadjipanteli et al
2017); the impact of different detectors, dose levels, and different image processing algorithms on
microcalcification detection (Zanca et al 2009, Warren et al 2012); the effect of quantum noise on lesion
detectability (Reiser and Nishikawa 2010); the detection accuracy for breast masses and microcalcification
clusters with a variable dose acquisition technique (Das et al 2009); and the masking effect of simulated
masses by densities on detectability (Mainprize et al 2016).

Simulated lesions can also be used to compare imaging modalities, with a comparison of lesion
detectability in DM versus DBT being a frequently studied research question (Timberg et al 2010, Shaheen
et al 2011, Hadjipanteli et al 2017, Badano et al 2018, Elangovan et al 2018, Bakic et al 2018a). The benefits of
dual-energy systems have been studied (Bliznakova et al 2003) as well as the use of breast CT imaging in
comparison with DM and DBT (Gong et al 2006). The detection thresholds using spherical targets in such
studies may not apply to more complex masses, such as irregular target shapes (Elangovan et al 2018).
Consequently, these results have reduced relevance compared to clinical diagnostic tasks.

Outside detection tasks, simulated lesions can be used to investigate diagnostic tasks performed by
radiologists under specific imaging conditions. Reiser and Nishikawa (2006) investigated the human
performance in discriminating between differently shaped simulated microcalcifications. Lesion models can
also be used in observer trials of visual search models, for example, in terms of signal detectability of
simulated microcalcifications and masses in single 2D and 3D images (Lago et al 2018, 2018).

Another application for synthetically generated images with simulated lesions is to evaluate the
performance of algorithms and software, such as morphological enhancement algorithms applied to
microcalcifications (Jagannath et al 2012), clustering models for microcalcifications (Vivona et al 2014), or
computer-aided detection systems (Makeev et al 2021). Deep learning models can be evaluated or trained
(Guan and Loew 2019, Szafranowska et al 2022), just as radiologists can learn from synthetic images (Näppi
et al 2001).

Depending on the research question, a suitable breast lesion model is chosen. Currently, the largest
application of lesion models in VCTs concerns detectability studies to quantify system performance under
different imaging conditions. Most of the lesion models used in detection studies are based on mathematical
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methods. Fewer VCT applications have been found that use simulated lesions to investigate diagnostic
performance, as this may require more realistic lesion models. Mass models based on patient data have not
yet found their way to the applications. The increasing acceptance of VCTs in medical imaging by
researchers, as well as by industry and government, has advanced the use of VCTs in regulatory approval
(Barufaldi et al 2021). In addition, these studies can be instrumental in prototyping clinical trials.

5. Summary

In this review, a wide range of methods for generating and simulating breast lesion models is discussed. Most
of these methods for both microcalcification clusters and masses are based on either mathematical models or
on patient data. The former has the advantage that a more automated method to generate lesions is available,
whereas the latter approach generates lesions with a high level of realism at the expense of flexibility.
Although simple models are useful for detectability studies, introducing a higher level of complexity in lesion
models opens up a broader range of applications.

These lesions are embedded in patient images or virtual breast phantoms. Intensity scaling can be applied
to adjust the contrast of lesion models embedded in breast structure. On the other hand, hybrid and total
simulation frameworks encompass more parameters in order to simulate the imaging systems used for
mammographic acquisition. In addition to simulating the lesion attenuation, they also consider correct
insertion into the surrounding tissue using, for example, voxel replacement or addition. Recently, deep
learning-based methods have approached the simulation of breast lesions from a different angle by directly
growing the lesion in existing breast tissue with the use of GANs. Unlike the conventional generation of
lesion models, they face the difficulty of specifying features and types, and of explicitly incorporating system
imaging characteristics.

With the wide range of generation and simulation methods, the applications covered also vary. While
detectability studies and diagnostic performance studies can be performed, for example, to compare imaging
modalities, synthetic data can also be used to evaluate and train software and algorithms.

Despite the evolution towards more detailed and complex lesion models and the development of different
simulation platforms to incorporate these lesions into background structures, there are still many challenges
for the future. A major challenge for VCT design is the selection of appropriate lesion characteristics so that
the results obtained match or predict performance in clinical practice. Notwithstanding the progress made
regarding the realism of breast lesion models, further steps must be taken. As the realism of simulated lesions
increases, so does the relevance and predictive power of virtual studies with respect to different patient
populations. This will also allow models and applications to be more readily applied in clinical practice.
Badano (2017) stated that realism may not be considered the first approximation for assessing in silico
imaging methods. VCTs must be assessed based on their purpose. The ability to distinguish between real and
simulated images may not be relevant for the value of VCTs in evaluating imaging system innovations.

Challenges in the simulation process include determining realistic insertion locations in the breast with
respect to lesion characteristics. For example, linear calcifications are only located in the ducts. Depending
on the lesion type and insertion position, the absence of associated features, such as skin retraction and
architectural distortions, limits the realism and may influence the decision of the radiologist in a validation
study. Another challenge, particularly when using the hybrid simulation approach, is to ensure that the lesion
blends correctly with the background structures. The realism of the lesion models cannot be studied in
isolation, as the resulting images are the product of the entire simulation framework. This emphasises the
importance of thorough validation of the simulation pipeline and introduces a challenge on the objective
validation of lesion models.

In future work, a challenge to be faced is the ability to create an extensive dataset that includes the full
variety of lesions occurring in the patient population, including both benign and malignant lesions, small
subtle lesions but also extensive tumours, all different subtypes including both common and rare types, etc.
If VCT results are to be predictive of real clinical studies or trials, all of these aspects and related simulation
steps must be incorporated. The key concern is the accuracy of the simulated images in terms of figures of
merit that are meaningful for the intended task.
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