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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Chris Chantler The virtual image system is a key component of virtual clinical trials (VCTs) which can be utilized to evaluate and
improve medical imaging devices. The main limitation of VCTs in the Chinese female breast is the lack of detailed
structure in the breast model employed in the Chinese specification for testing of quality control in mammog-
raphy. In this paper, based on Chinese female breast parameters, detailed breast phantoms with different
glandularity (fatty, glandular, dense) and compressed breast thicknesses (CBT) (2-7 cm) were generated. Digital
mammography (DM) and digital breast tomosynthesis (DBT) projections for these phantoms were simulated with
clinical system configuration. Compressed breast volumes were reconstructed through DBT projections with
different angles. Power spectrum analysis and fractal dimension measurement were applied for simulated and
clinical images. The results show that the average power law exponents and standard deviation (DM, DBT) for
clinical and simulated images were (3.26 + 0.29, 3.33 £ 0.42) and (3.63 + 0.25, 3.18 +0.36) respectively. The
average fractal dimensions and standard deviation (DM, DBT) for clinical and simulated images were (2.36 +
0.03, 2.41 + 0.05) and (2.10 + 0.01, 2.26 + 0.06) respectively. We constructed two virtual imaging systems for
DM and DBT and obtained the imaging data based on the three-dimensional (3D) detailed breast phantoms.
These results indicate that the texture indexes of simulated images are similar to that of the clinical images, and
validate that these breast phantoms are suitable for imaging in VCTs requiring realistic anatomy with the Chinese
female population. Results also show that the values of power law exponents for clinical and simulated images in
DM and DBT are positively correlated with the value of breast glandularity, but the values of fractal dimensions
keep steady for different glandularity.
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1. Introduction 2015). Therefore, in some cases, DM and DBT are combined to diagnose

pathologies (Wang et al., 2022).

Breast cancer is the most significant threat to women’s health in
China (Cao et al., 2021). The National Cancer Center of China recom-
mends annual breast cancer screening at least for the female population
between the ages of 45 and 70. Digital Mammography (DM) is currently
the predominant medical device utilized for breast cancer screening due
to its efficiency and cost-effectiveness (Helvie et al., 2014). With the
rapid development of technology, Digital Breast Tomosynthesis (DBT),
designed to project at multi-angles, has been introduced in the past 20
years (Wu et al., 2003). The characteristic of being able to obtain
‘pseudo-3D’ information reduces the superposition of fibroglandular
inside the breast and improves the visibility of lesions (Tagliafico et al.,

DM and DBT devices have evolved rapidly in recent years. The
complexity and diversity of such devices pose important challenges for
application evaluation and design optimization. To assess the diagnostic
efficacy versus radiation risks of any new technique, researchers have
established clinical trial methods with human subjects. However, con-
ventional clinical trials that request a large number of healthy in-
dividuals may take several years. Implementation of these clinical trials
appears somewhat impractical and is also limited by various factors such
as ethics, cost, and deficiency of ground truth (Abadi et al., 2020).

To solve the problems mentioned above, virtual clinical trials (VCTs)
provide an alternative method to effectively evaluate medical imaging
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devices by simulating the patient, imaging system, and interpreter
(Abadi et al., 2020). It can also be implemented efficiently on a com-
puter and provides investigators with a convenient pattern to make vital
questions clear with accurate control and known ground truth. The re-
searchers have employed VCTs in breast X-ray imaging for several ap-
plications including(a) verification and improvement of DBT
reconstruction methods (Bakic et al., 2010; Zeng et al., 2015), (b) re-
alism evaluation of DM projections and DBT reconstructions (Bliznakova
et al., 2010; Elangovan et al., 2017; Graff, 2016; Lau et al., 2012; Li
et al., 2009; Mahr et al., 2012; Sturgeon et al., 2017), and (c) glandular
dose estimation (Badal et al., 2021; Mettivier et al., 2022b; Sarno et al.,
2017a, 2017b; 2018a, 2018b; 2020, 2021; 2022; Wang et al., 2017). At
the same time, the risks patients take in clinical applications are mini-
mized. Reviews of the recent development for VCTs in breast X-ray
imaging have been published (Barufaldi et al., 2021b; Bliznakova, 2020;
Glick and Ikejimba, 2018; Marshall and Bosmans, 2022; Sarno et al.,
2023). Breast phantom is a significant part of VCTs in breast X-ray im-
aging. It can be generated using two approaches: generation from pa-
tient data or procedural flow. Patient-derived phantoms present the real
shape and glandular distribution of the breast (Caballo et al., 2022;
Elangovan et al., 2017; Erickson et al., 2016; Hsu et al., 2013; Li et al.,
2009), but are limited by the contrast, spatial resolution, and voxel sizes
of the classified images and segmentation methods. (Erickson et al.,
2016; Kwan et al., 2007). To address this limitation, procedural phan-
toms have been developed to simulate the elements of the breast based
on anatomical assumptions (Bakic et al., 2002a, 2002b, 2003; Blizna-
kova et al., 2003, 2010; Bliznakova, 2020; Graff, 2016; Ikejimba et al.,
2017; Lau et al., 2012; Pokrajac et al., 2012; Zyganitidis et al., 2007),
and to generate larger collections of phantoms with finer details and
varying sizes covering a wide spectrum of breast anatomical charac-
teristics. With the development of these phantoms, simulators of the
imaging system were required to mimic the medical devices for gener-
ating image data. Various radiological image algorithms are proposed to
model medical imaging systems. The ray-tracing algorithm was
employed to generate projections in the OpenVCT framework developed
by Barufaldi et al. (2018). And Badal et al. has released Monte Carlo
X-ray imaging simulation software which can be accelerated by
Graphics Processing Unit (GPU) (Badal et al., 2021).

To test the performance of VCTs, the texture realism of images pro-
duced by simulators needs to be evaluated. Once such instruments are
available, various quantitative tasks, including quality control, object
detection, and observer performance, could be performed by VCTs
efficiently. To better understand the texture realism of clinical mam-
mograms, Burgess (Burgess et al., 2001) discovered that breast structure
in a radiographic projection could be characterized by the power spec-
trum despite nonstationary statistics in mammographic backgrounds.
The approach has gained much attention rapidly due to its accuracy and
robustness. Furthermore, several studies have shown that breast texture
in the mammogram performs as a fractal object (Burgess et al., 2001;
Heine and Velthuizen, 2000; Tourassi et al., 2006), and fractal dimen-
sion measurement has been investigated as an essential method for
mammographic texture assessment (Tourassi et al., 2006). Thus far,
power spectrum analysis and fractal dimension measurement have been
extensively explored for investigation, comparison, and characterization
of breast images (Elangovan et al., 2017; Marinov et al., 2021).

The Chinese specification for testing quality control in mammog-
raphy or tomosynthesis is mainly based on the imaging of homogeneous
breast models (National Health Commission, 2020). Due to the absence
of detailed structure, these models cannot be utilized to mimic the
texture characteristics with realistic breast anatomy. Our previous
studies have developed the fully new breast phantom (Qiu et al., 2017)
which contained the detailed structure (e.g. Cooper’s ligament, duct
tree, ampulla, terminal duct lobular unit, glandular, muscle, adipose,
and skin) and have calculated normalized glandular dose coefficients for
DM based on the compressed phantoms (National Health Commission,
2021; Wang et al.,, 2017). The breast phantom exhibits acceptable
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texture features in breast imaging due to a series of characteristics, such
as detailed structures, randomly irregular boundaries of the subcu-
taneous adipose and fibroglandular regions, and the random sampling
distribution of adipose lobules. In this paper, we constructed two im-
aging systems for DM and DBT respectively, and obtained the simulated
images based on the detailed breast phantom. To evaluate the texture
realism of simulated images, power spectrum analysis, and fractal
dimension measurement were employed for quantitative assessment.
These methods were also employed on the clinical datasets to compare
the texture properties. Concerning this investigative step, our final goal
was to develop software that could generate the breast phantom with
good performance in dosimetry and imaging and to investigate the
optimal exposure parameters for individual patients during the breast
screening which could balance the radiation dose and image quality.

2. Materials and methods
2.1. Detailed breast phantoms

Breast phantoms were generated by the simulation chain described
by Wang (Wang et al., 2017) et al. Research showed that the volumetric
breast density (VBD) of Chinese women is mainly concentrated in 17.3%
+8.2% (Wang et al., 2017). Breast phantoms of 25%, 50%, and 75%
glandularity were constructed to represent fatty, glandular, and dense
breasts in this work. The corresponding VBD of these phantoms were
8.2%,16.6%, and 25.4%. The glandularity and VBD are two physical
quantities to indicate the amount of glandular tissue using mass and
volume percentage. They are calculated by the following equations,
respectively.

glandularity =m, /My, x 100%
VBD =V, /V;, x 100% @

Where m, is the mass of glandular tissue, My, is the whole mass of the
fibroglandular region, V, is the volume of glandular tissue, V3, is the
volume of the breast model. Through the deformations for the vertical
slices, detailed breast phantoms with each glandularity were com-
pressed to 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, and 7 cm in the craniocaudal
(CC) view. One breast phantom sample is shown in Fig. 1. Overall, 18
compressed breast phantoms were generated for image acquisition in
DM and DBT.

2.2. Image acquisition simulation

2.2.1. X-ray spectrum

The spectra produced by the target of the X-ray tube in medical
equipment are not monoenergetic. Polyenergetic X-ray spectra acquired
from the spectral model of Boone (Boone et al., 1997) were simulated
during the image acquisition process. The X-ray spectra were simulated
for DM using tungsten (W) targets and silver (Ag) or rhodium (Rh)
filtering materials. While the X-ray spectra were simulated for DBT using
W targets with aluminum (Al) filtering materials. For breast phantoms
with different CBTs, we adopted the suggestions about the choice of
target/filter combination and tube voltage in ref. (Massera and Tomal,
2021).

2.2.2. Tissue composition

Table 1 lists the density and element composition of each breast
tissue which was acquired from ICRU-Report 46, Woodard, and White
(Woodard and White, 1986). Values for Cooper’s ligament tissue were
not specifically provided by ICRU, so the density and element compo-
sition of Cooper’s ligament tissue was substituted by these of muscular
fibrous tissue (Ma et al., 2009).
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Fig. 1. One breast phantom with 25% glandularity (a) a breast phantom without compression (b) a compressed breast phantom (c) the cross-sectional views of the
uncompressed breast phantom from coronal (left), sagittal (right-up), and axial (right-down) directions.

Table 1
Density and Element composition of each breast tissue.

Tissue Density (g/m®) Element composition (%)

H C N [¢] Na P S Cl K
Skin 1.09 10.0 20.4 4.2 64.5 0.2 0.1 0.2 0.3 0.1
Adipose 0.95 11.4 59.8 0.7 27.8 0.1 0.1 0.1 0.1 -
Glandular 1.02 10.6 33.2 3.0 52.7 0.1 0.1 0.2 0.1 -
Cooper’s ligament 1.05 10.2 14.3 3.4 71.0 0.1 0.2 0.3 0.1 0.4

2.2.3. Equivalent mass attenuation coefficients for breast tissues
In terms of polyenergetic spectra, the number of photons that are
attenuated by the compound matter is calculated by:

E=Enx =3 B
I=Iye Y f(E)e > AE

E=Enin

@

Where I, and I are the photon intensity for emission and detection
(passed through the object) respectively, yi,,;, Xmi are the mass attenua-
tion coefficient and mass thickness of the it element respectively, note
that the mass thickness is defined as the mass per unit area, and is ob-
tained by multiplying the thickness t by the density p, i.e., X = pt, nis
the number of elements in the object, f(E) is the distribution function of

the photon spectrum, AE is the energy interval in the discrete photon
spectrum.

In terms of monoenergetic spectra, the mass attenuation coefficient
of the compound . is defined as:

He= Zlumici
i1

Where ¢; is the weight fraction of the i element in the compound.

Substitute equation (3) into equation (2), and get the mass attenu-
ation coefficient of the compound for polyenergetic spectra (Gorshkov,
2017)

3
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We adopted the mass attenuation coefficient values of each element
from the national institute of Standards and technology (NIST) (Hubbell
and Seltzer, 2004) and employed the cubic spline method for interpo-
lation to acquire the mass attenuation coefficient of each energy value.

2.2.4. Image simulation

DM and DBT projections of the breast phantoms were simulated
using the open-source MATLAB toolbox, named LAVI DBT-
Reconstruction toolbox, which can be accelerated by parallel compu-
tation methods. This code was chosen for the successful validation with
the virtual Shepp-Logan phantom in Ref. (Vimieiro et al., 2018).

To simulate the radiological projections, the Hologic Selenia Di-
mensions 3D system (Hologic, MA, USA) geometries were constructed
for both DM and DBT. As displayed in Fig. 2, the X-ray tube rotates
around the rotation center in the imaging geometry of DBT, while the X-
ray tube keeps static at 0° in the imaging geometry of DM. The
geometrical parameters used in the image simulation are presented in
Table 2.

The projection of a breast phantom was drawn using the ray tracing
algorithm. Each pixel value of the projected image was calculated by the
radiological path of the ray within the detector. The radiological path
can be written as

d=3 3> pi.J. K., k)

)

Where i,j, and k are the coordinates of each voxel in the 3D phantom
matrix, p.(i,j, k) is the equivalent mass attenuation coefficient of a
particular voxel and [(i,j, k) is the ray track length contained by that
voxel. The detector model was assumed to be ideal and scatter radiation
was not included in the projections.

According to the conclusion in Ref (Vancamberg et al., 2015)., the
power spectrum of a reconstructed volume was influenced by the
reconstruction algorithm. Therefore, the algorithm adapted to simulated
images should be consistent with that of clinical images. The filtered
back-projection algorithm (FBP) was utilized to solve the inverse
reconstruction problem based on the simulated DBT projections.

2.3. Objective evaluation of image texture

To evaluate the texture realism of simulated images, we selected
clinical images from public medical datasets for comparison. Clinical
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Table 2
Geometry parameters for DM and DBT.
X-ray modality DBT DM
Target material w w
Filter material and thickness 0.7 mm Al 0.05 mm Rh/Ag
Angle range (°) [-15°,15°] -
Number of Projections (#) 15 1
Detector
Detector Element Size (mm) 0.14 0.07
Detector Size (mm) 286.72 x 232.96  286.72 x 232.96
Distance source to the detector (DSD) (mm) 700 700
Distance detector to rotation (DDR) (mm) 0 0
Distance of the Air Gap (DAG) (mm) 25 25

mammograms were chosen from the Mammographic Image Analysis
Society Digital Mammogram Database (MIAS) (Suckling et al., 2015).
The images of this dataset containing obvious lesions were excluded.
The remaining mammograms contained three types of glandularity:
fatty, glandular, and dense, with 66, 130, and 142 images in each
category respectively. For each image contained in the dataset, glan-
dularity classifications had been determined by experienced radiologists
and were included in the readme file. Clinical DBT reconstructed vol-
umes were obtained from the Breast Cancer Screening dataset (BCS)
(Buda et al., 2021). We took the analysis for the mid-plane of each
reconstructed volume for which an experienced radiologist has deter-
mined the glandularity classification. For the fatty, glandular, and dense
categories, 70, 140, and 140 images were selected respectively.
Following the approach of Barufaldi (Barufaldi et al., 2021a), we
employed the OpenBreast toolkit (Pertuz et al., 2019) to locate a region
of uniform thickness excluding pectoralis muscle, background, and a 10
mm boundary. This region was defined by a binary mask. These pro-
cesses were also implemented on the simulated images.

2.3.1. Power spectrum analysis

For the comparison of texture realism between clinical and simulated
images, power spectrum analysis was employed due to its robustness.
The texture properties in clinical breast images could be indicated by the
power law exponent in Equation (6)

PS]D(f):a/fﬂ (6)

Where « is the magnitude of one-dimensional power spectrum (PS1p),
is the power law exponent that can reflect the breast texture complexity,
and f is the spatial frequency. The meaning and calculation procedure of
PS;p are described in detail below. Unprocessed mammograms and the
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Fig. 2. Imaging geometry for the simulation of DBT and DM with the breast phantom.
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mid-plane of reconstructed DBT volumes were analyzed by this method.

The steps of the power spectrum analysis procedure are explained
with an example image in Fig. 3. The first step is the determination of the
region of interest (ROI) with a suitable position and size. A size of 512 x
512 pixels (35.84 mm on each side) of the ROI was cropped from the
example image (Barufaldi et al., 2021a). To ensure that valid pixel
values can be extracted, the center of the ROI was located by deter-
mining the mass-center of the binary mask for the example image. The
second step is pre-processing of the ROI. The ROI was normalized by the
average pixel value and then was processed by a radial Hanning window
for reducing the frequency leakage during the fast Fourier transform.
The third step is the calculation of the power law exponent. we obtained
the two-dimensional (2D) power spectrum of the ROI after the fast
Fourier transform. By averaging along the radial direction of the 2D
power spectrum, PS;p was obtained. To limit the effect of detector noise
and spatial information which is not associated with breast texture, the
range of 0.2-1.0 mm ™' for spatial frequency was selected (Barufaldi
et al.,, 2021b; Elangovan et al., 2017). For simulated images, we also
select the same spatial frequency range for the calculation of $ values.
Finally, the plot of log;,(PSip) versus log;o(f) during this range was
performed by the linear fitting method. The absolute slope value ob-
tained from the fitted line is the power law exponent . To determine the
p value that represents the breast image more accurately, we moved the
ROI along the four directions (up, down, right, and left) with the
maximum movement (does not exceed mask area) and took the average
value. The relative differences A; between the simulated and clinical
images can be calculated by:

Ay = Bimutarea = Petinicat) | Betinicar X 100% )
2.3.2. Fractal dimension measurement

Fractal dimension (FD) is a generic term that is related to the texture
complexity of objects and was calculated by the published methods
(Bliznakova et al., 2010; Elangovan et al., 2017). For an image surface,
we can measure it by covering it with a cube of side length ¢. As the side
length ¢ of the cube increases, the covered cube blocks also change. The
exposed surface area, A(e), of the covered cube blocks and FD of the

image surface are related by the following formula (8)

Ale) = 1P (8)
where 1 is a scaling constant. The area A(e) was calculated by the
following equation (9).

Al) =)+ ell(x,y) —1(x+1,y)|+ Y ell(x,y) = I(x,y+1)] ©)

Xy

Where I(x,y) is the amounts of cubes with a side length 2!, fori = 0,1,2,
...7, in the specific position (x,y). Finally, the plot of log;,(A(¢)) versus
log;o(¢) was performed by the linear fitting method. The FD can be
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determined by the slope value which is obtained from the fitted line. In
order to determine the FD value that represents the breast image more
accurately, we adapted the same method with power spectrum analysis
to move the ROI and take the average value. The relative differences Agp
between the simulated and clinical images can be calculated by:

Al"l) = (FDsimulated - FDz‘Iinical) /FDclinicaI x 100% (10)

2.4. Implementation

All analyses were performed using MATLAB scripts (MATLAB
R2021b; MathWorks). Moreover, to accelerate the FBP reconstruction
process, the code was parallelized on a Linux node with 132 GB RAM
and 28 slave processors of the high-performance computing platform at
Tsinghua University. Reconstructed phantoms with each CBT and
glandularity were generated using parallel computing code.

3. Results
3.1. Imaging simulation

Based on the geometrical parameters in Table 2, the 3D imaging
system geometries were replicated for both DM and DBT. Fig. 4 shows
the 3D imaging geometry using the LAVI toolbox. Fig. 5 shows the DM
projection and the DBT reconstructed mid-plane image of the breast
phantom with 50% of glandularity and 4 cm CBT, respectively. These
pictures were performed with a simple contrast stretch to turn into
brighter.

3.2. Power spectrum analysis

The power law exponent f was calculated for each clinical and
simulated ROL. Fig. 6 presents a comparison of the calculated metrics
between simulated and clinical images for both DM and DBT. The linear
trends of the power law exponent were compared in Fig. 6a-d (the
second column).

The MIAS and BCS dataset was divided into three categories based on
glandularity ranks. Table 3 lists the power law exponents for clinical and
simulated images at different glandularity; errors are denoted as 1
standard deviation (SD) of the average value.

For each image, the correlation coefficient for the fitted line between
the log;,PSip(f) and the log;,f was calculated. In the case of simulated
images, the average correlation coefficients and standard deviation are
r=0.98+0.01 and r=0.98 £0.01 for DM and DBT, respectively,
while for ROIs extracted from clinical images taken from MIAS and BCS,
the coefficients and standard deviation are r=0.99+0.01 and r =
0.99 + 0.01, respectively. The correlation coefficients for all fitted lines
are higher than 0.95. A good linear relationship between the
log,oPSip(f) versus log,of during the specific range is observed. The

i determine the position

! and size of ROI

obtain binary mask of
fibro-glandular region

calculate center-of-
mass of binary mask

1
1
I
1
I
1
i
1
I
1
1
1
1
1
1
1
i
1
1
1
I
1
1
1
1
1
i

1 .
1 pre-processing

| of the ROI
]

_ extract ROI

normalize the ROI

apply a radial
Hanning window

—

|

calculate the pow

law exponent fast Fourier

transform

the 2-D power
spectrum

the 1-D power
spectrum

pow law exponent 8

Fig. 3. The steps to obtain the pow law exponent $ during the analysis procedure.
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Fig. 4. 3D imaging geometry based on Hologic imaging parameters. The red
dot is the X-ray source. The dark blue cube is a 3D voxel matrix of the breast
phantom. the dashed rectangle in the x-y plane represents the detector plane,
where the yellow part is the projection area.

relative differences Ay between the simulated and clinical images for
DM and DBT are 11.35% and —4.50%, respectively.

3.3. Fractal dimension measurement
The fractal dimensions were calculated for each simulated and real

image. The linear trends for fractal dimensions which were calculated by
simulated and clinical images were compared in Fig. 6a-d (the third
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column). Table 4 lists the fractal dimension, showing a similar result
between the simulated and clinical images.

For each image, the correlation coefficient for the fitted line between
the log;, A(¢) and the log,( (&) was calculated. In the case of simulated
images, the average correlation coefficients and standard deviation are
r=0.96+0.02 and r=0.97 £0.01 for DM and DBT, respectively,
while for ROIs extracted from clinical images taken from MIAS and BCS,
the coefficients and standard deviation correspond to r = 0.95 + 0.01
and r = 0.99 £ 0.01, respectively. The correlation coefficients for all
fitted lines are higher than 0.90. A good linear relationship between the
log;o A(€) and the log,,(¢) is observed. The relative differences Agp be-
tween the simulated and clinical images for DM and DBT are —10.88%
and —6.06%, respectively.

4. Discussion

Several recent studies have shown that VCTs are essential for the
evaluation and improvement of medical devices (Abadi et al., 2020;
Barufaldi et al., 2021a; Elangovan et al., 2017). These studies have
demonstrated that VCTs can provide detailed and accurate information
about the performance of medical devices, which can be used to identify
areas for improvement and optimize device design. The initial aim of
this study was to construct virtual image systems for both DM and DBT
and evaluate image texture realism. Based on the detailed breast
phantoms, we obtained the projections for mammography and the
reconstructed breast volumes for DBT, and evaluate the texture realism
of these simulated images. According to the results displayed in Tables 3
and 4, the simulated images have a close resemblance to the clinical
images in terms of texture indexes. Our results were consistent with
some of the previous literature. Barufaldi et al. achieved a lower
discrepancy between simulated and clinical DM images, from 14.15% to
11.25%, by applying Perlin noise to the breast phantom (Barufaldi et al.,
2021b). The p values of simulated DM images in Bochud et al.’s research
and clinical DM images in Cockmartin et al.’s research were (3.4,4.0)
and 3.57 respectively (Bochud et al., 1999; Cockmartin et al., 2013).
However, some other literature results differed from ours, such as Graff
et al.’s model that produced g values of (2.72,2.95) (Graff, 2016).

But there are still discrepancies in the results between the clinical
and simulated images. The mean f of simulated mammograms is a little
higher than that of clinical images acquired from MIAS, while the mean

Fig. 5. The DM projection and the DBT reconstructed mid-plane image of the breast phantom with 50% of glandularity and 4 cm CBT.
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Fig. 6. ROIs for clinical and simulated images, and their corresponding calculated metrics for power spectrum analysis and fractal dimension measurement.

(a) a clinical mammogram taken from MIAS; (b) the mammography projection for the breast phantom with 25% glandularity and 2 cm CBT; (c) the mid-plane of
clinical breast tomosynthesis reconstructed volume taken from BCS; (d) the mid-plane of breast tomosynthesis reconstructed volume for the breast phantom with
25% glandularity and 4 cm CBT.
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Table 3
Results of power law exponents f of clinical and simulated images with different
glandularity.

Glandularity = DM DBT
MIAS f+ SD  Breast phantom BCS f+SD Breast phantom
p+5SD p£SD
Fatty 3.05+0.30 3.51+0.27 315+0.36 3.04+0.39
Glandular 3.28+£0.26 3.62+0.26 3.39+0.35 3.224+0.36
Dense 3.424+0.23 3.77 £0.22 3.50 +£0.40 3.294+0.35
All 3.26+0.29 3.63+0.25 3.33+042 3.18+0.36
Table 4
Fractal dimensions of real and simulated images.
Glandularity DM DBT
MIAS FD+ Breast phantom  BCS FD + Breast phantom
SD FD + SD SD FD + SD
Fatty 2.394+0.03 2.10+0.01 2.43+0.05 2.27 £0.07
Glandular 2.36 +0.03 2.10+0.01 2.42+0.04 2.27 +0.06
Dense 2.33+0.03 2.11+0.01 2.38+0.06 2.25+0.05
All 2.36+£0.03 2.10+0.01 2.41+0.05 2.26 +0.06

FD of simulated images is a little lower than that of clinical images.
There are several possible explanations for these results. Firstly, scat-
tered radiation and detector characteristics in clinical medical devices
have a positive effect on the high-frequency signal (Badal et al., 2021).
But the ray tracing algorithm employed in the imaging process ignores
these noises. The decrease in the high-frequency signal will cause f to
rise slightly. Another reason is the absence of the high-frequency signal
texture structure within breast phantoms. The microstructure within the
breast, including adipose globules and Cooper’s ligament, is represented
by smooth ellipsoid surfaces. An experienced radiologist pointed out
that the obvious Cooper’s ligament in the simulated images will reduce
the texture realism. Except for these reasons, the simulated images of
DM were unprocessed, but the clinical images dataset were all “for
presentation”. This difference may make discrepancies in the calculation
metric results.

What stands out in Table 3 is the increase of power law parameter
with glandularity for clinical and simulated images. The result is
consistent with Ref (Mainprize et al., 2012). These relationships can be
explained by the texture complexity of fibroglandular. As glandularity
increases, fibroglandular tissue appears to congregate and flatten out,
leading to a decrease in high-frequency signal and an increase in $ value.
Interestingly, power law parameter # of simulated mammograms with
lower CBTs and glandularity is close to the mean value of clinical
dataset. In terms of the fractal dimensions of images, our research in-
dicates that the values of FD keep steady in breast phantoms with
different CBTs and glandularity, and are lower than those of clinical
images.

Admittedly, several limitations in this study need to be acknowl-
edged. Firstly, the simulation of X-rays interaction was not involved in
the ray tracing algorithm. In a follow-up study, Monte Carlo codes will
be utilized to simulate the X-ray scattering and detector noise in the
imaging geometry. The influence on the texture realism between simu-
lated and clinical images may also come from various types of patient
motions, including breathing, heartbeat, or compressed tissue relaxa-
tion. The negative effect of motions might be more pronounced in DBT
acquisitions than in mammography due to the longer acquisition time
and possible artifacts from reconstruction algorithms (Badal et al.,
2021). In addition, only 1 commercial system was simulated in this
study, and image processing algorithms and resolution may also affect
the texture of simulated images. Secondly, further improvements can
also be made to refine micro-structure in breast phantoms, including
Cooper’s ligament, adipose ellipsoid in the fibroglandular region, blood
vessel network, and the boundary between the fibroglandular region
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and the adipose region. Currently, Cooper’s ligament is approximated
using an ellipsoidal shell with a long main axis. However, Cooper’s
ligaments are made up of sheets of connective tissue that perform far
more complex structures (Erickson et al., 2016). The vascular system
grows randomly within the breast like a tree and is similar to the ductal
system. The main limitation at present is that the growth of the vascular
system conflicts with the ductal system, resulting in its inability to grow
intact. In addition, the adipose ellipsoid in the fibroglandular region,
and the boundary between the fibroglandular region and adipose region
are irregular but smooth. To mimic the real structure of adipose, we
need to add appropriate high-frequency noise to its surface. Additional
investigations will still be conducted to enhance the texture realism of
the detailed breast phantoms and the simulated images. Several studies
have attempted to produce images comparable to clinical images, but
they probably are not successful in the visualization test for clinical
realism (Glick and Ikejimba, 2018). Plenty of ongoing efforts by VCTs
researchers into breast phantom generation are still focusing on the
improvement of texture realism (Barufaldi et al., 2021a). However,
there remains a critical issue to be addressed a uniform standard for
breast texture realism lacks. More investigations are needed to better
understand this question.

Overall, we constructed two virtual imaging systems for DM and
DBT, and validated that the breast phantom reflecting Chinese female
anatomical characteristics performed well in both dosimetry and im-
aging. The breast phantoms used in this study employed a novel con-
struction method. It contains most of the detailed structures present in
the breast. Meanwhile, the irregular boundary between the skin region
and the fibroglandular region, as well as the uneven distribution of
adipose within the fibroglandular region, resulted in the inclusion of
major breast textures in the imaging results. We have demonstrated the
potential of this approach to provide valuable insights into device per-
formance. Further research is still needed to address some of the limi-
tations identified in our study, but our results lay a solid foundation for
future work in this field.

An important implication of our work is to assess the radiation risks
versus diagnosis benefits of breast cancer screening. In the field of breast
X-ray imaging, the practical significance of this work will be better
understood through a series of feasibility studies. Recently, the utiliza-
tion of additive manufacturing and 3D printing techniques has emerged
as a novel method for constructing phantoms in the field of medical
physics, as well as for conducting research in x-ray breast imaging
(Bliznakova, 2020). A number of researchers have conducted assess-
ments on specimens composed of various materials, measuring attenu-
ation coefficients within photon energy ranges typically employed in 2D
and 3D x-ray mammography (Mettivier et al., 2022a; Santos et al., 2019;
Savi et al., 2021). Based on the virtual breast phantoms, physically
detailed breast phantoms can also be fabricated to replace homogeneous
or heterogeneous breast models employed in experiments for quality
control. In the field of breast dosimetry, the heterogeneous distribution
of glandular in the detailed breast phantom allows for more individu-
alized dose estimation for the patients. How to balance the radiation
dose and image quality will be a vital direction of subsequent research in
medical imaging.

5. Conclusion

The breast imaging system is an essential part of VCTs. To the best of
our knowledge, this work was undertaken to construct the breast
phantom and the imaging system of both DM and DBT for the Chinese
female population for the first time. A series of projections and recon-
structed volumes were obtained from the detailed breast phantoms with
different glandularity and CBTs for specific target/filter combinations
and X-ray tube voltage. To evaluate the texture realism of simulated
images, power spectrum analysis, and fractal dimension technique were
employed for the analysis of the DM projections and DBT reconstructed
mid-planes, and we obtained the values of power law exponents and
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fractal dimensions for the simulated images. Compared to the clinical
image datasets, the average power law exponent (clinical, simulated) for
DM and DBT images were (3.26 + 0.29, 3.63 £ 0.25) and (3.33 + 0.42,
3.18 +0.36) respectively. The average fractal dimension (clinical,
simulated) for DM and DBT images were (2.36 + 0.03, 2.10 &+ 0.01) and
(2.41 + 0.05, 2.26 + 0.06) respectively. For simulated and clinical im-
ages in DM and DBT, the values of power law exponents are positively
correlated with the value of breast glandularity, but the values of fractal
dimensions keep steady for different glandularity. These results indicate
that the texture indexes of simulated images are similar to the clinical
images. This work brings an important contribution to the image gen-
eration of VCTs with the detailed breast phantom. However, it still has
certain limitations in terms of breast structure. In addition, another
aspect to explore in the future is the design of more realistic glandular
distributions and more complex surface texture of the microstructures.
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