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A B S T R A C T   

The virtual image system is a key component of virtual clinical trials (VCTs) which can be utilized to evaluate and 
improve medical imaging devices. The main limitation of VCTs in the Chinese female breast is the lack of detailed 
structure in the breast model employed in the Chinese specification for testing of quality control in mammog
raphy. In this paper, based on Chinese female breast parameters, detailed breast phantoms with different 
glandularity (fatty, glandular, dense) and compressed breast thicknesses (CBT) (2–7 cm) were generated. Digital 
mammography (DM) and digital breast tomosynthesis (DBT) projections for these phantoms were simulated with 
clinical system configuration. Compressed breast volumes were reconstructed through DBT projections with 
different angles. Power spectrum analysis and fractal dimension measurement were applied for simulated and 
clinical images. The results show that the average power law exponents and standard deviation (DM, DBT) for 
clinical and simulated images were (3.26 ± 0.29, 3.33 ± 0.42) and (3.63 ± 0.25, 3.18 ±0.36) respectively. The 
average fractal dimensions and standard deviation (DM, DBT) for clinical and simulated images were (2.36 ±
0.03, 2.41 ± 0.05) and (2.10 ± 0.01, 2.26 ± 0.06) respectively. We constructed two virtual imaging systems for 
DM and DBT and obtained the imaging data based on the three-dimensional (3D) detailed breast phantoms. 
These results indicate that the texture indexes of simulated images are similar to that of the clinical images, and 
validate that these breast phantoms are suitable for imaging in VCTs requiring realistic anatomy with the Chinese 
female population. Results also show that the values of power law exponents for clinical and simulated images in 
DM and DBT are positively correlated with the value of breast glandularity, but the values of fractal dimensions 
keep steady for different glandularity.   

1. Introduction 

Breast cancer is the most significant threat to women’s health in 
China (Cao et al., 2021). The National Cancer Center of China recom
mends annual breast cancer screening at least for the female population 
between the ages of 45 and 70. Digital Mammography (DM) is currently 
the predominant medical device utilized for breast cancer screening due 
to its efficiency and cost-effectiveness (Helvie et al., 2014). With the 
rapid development of technology, Digital Breast Tomosynthesis (DBT), 
designed to project at multi-angles, has been introduced in the past 20 
years (Wu et al., 2003). The characteristic of being able to obtain 
‘pseudo-3D’ information reduces the superposition of fibroglandular 
inside the breast and improves the visibility of lesions (Tagliafico et al., 

2015). Therefore, in some cases, DM and DBT are combined to diagnose 
pathologies (Wang et al., 2022). 

DM and DBT devices have evolved rapidly in recent years. The 
complexity and diversity of such devices pose important challenges for 
application evaluation and design optimization. To assess the diagnostic 
efficacy versus radiation risks of any new technique, researchers have 
established clinical trial methods with human subjects. However, con
ventional clinical trials that request a large number of healthy in
dividuals may take several years. Implementation of these clinical trials 
appears somewhat impractical and is also limited by various factors such 
as ethics, cost, and deficiency of ground truth (Abadi et al., 2020). 

To solve the problems mentioned above, virtual clinical trials (VCTs) 
provide an alternative method to effectively evaluate medical imaging 
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devices by simulating the patient, imaging system, and interpreter 
(Abadi et al., 2020). It can also be implemented efficiently on a com
puter and provides investigators with a convenient pattern to make vital 
questions clear with accurate control and known ground truth. The re
searchers have employed VCTs in breast X-ray imaging for several ap
plications including(a) verification and improvement of DBT 
reconstruction methods (Bakic et al., 2010; Zeng et al., 2015), (b) re
alism evaluation of DM projections and DBT reconstructions (Bliznakova 
et al., 2010; Elangovan et al., 2017; Graff, 2016; Lau et al., 2012; Li 
et al., 2009; Mahr et al., 2012; Sturgeon et al., 2017), and (c) glandular 
dose estimation (Badal et al., 2021; Mettivier et al., 2022b; Sarno et al., 
2017a, 2017b; 2018a, 2018b; 2020, 2021; 2022; Wang et al., 2017). At 
the same time, the risks patients take in clinical applications are mini
mized. Reviews of the recent development for VCTs in breast X-ray 
imaging have been published (Barufaldi et al., 2021b; Bliznakova, 2020; 
Glick and Ikejimba, 2018; Marshall and Bosmans, 2022; Sarno et al., 
2023). Breast phantom is a significant part of VCTs in breast X-ray im
aging. It can be generated using two approaches: generation from pa
tient data or procedural flow. Patient-derived phantoms present the real 
shape and glandular distribution of the breast (Caballo et al., 2022; 
Elangovan et al., 2017; Erickson et al., 2016; Hsu et al., 2013; Li et al., 
2009), but are limited by the contrast, spatial resolution, and voxel sizes 
of the classified images and segmentation methods. (Erickson et al., 
2016; Kwan et al., 2007). To address this limitation, procedural phan
toms have been developed to simulate the elements of the breast based 
on anatomical assumptions (Bakic et al., 2002a, 2002b, 2003; Blizna
kova et al., 2003, 2010; Bliznakova, 2020; Graff, 2016; Ikejimba et al., 
2017; Lau et al., 2012; Pokrajac et al., 2012; Zyganitidis et al., 2007), 
and to generate larger collections of phantoms with finer details and 
varying sizes covering a wide spectrum of breast anatomical charac
teristics. With the development of these phantoms, simulators of the 
imaging system were required to mimic the medical devices for gener
ating image data. Various radiological image algorithms are proposed to 
model medical imaging systems. The ray-tracing algorithm was 
employed to generate projections in the OpenVCT framework developed 
by Barufaldi et al. (2018). And Badal et al. has released Monte Carlo 
X-ray imaging simulation software which can be accelerated by 
Graphics Processing Unit (GPU) (Badal et al., 2021). 

To test the performance of VCTs, the texture realism of images pro
duced by simulators needs to be evaluated. Once such instruments are 
available, various quantitative tasks, including quality control, object 
detection, and observer performance, could be performed by VCTs 
efficiently. To better understand the texture realism of clinical mam
mograms, Burgess (Burgess et al., 2001) discovered that breast structure 
in a radiographic projection could be characterized by the power spec
trum despite nonstationary statistics in mammographic backgrounds. 
The approach has gained much attention rapidly due to its accuracy and 
robustness. Furthermore, several studies have shown that breast texture 
in the mammogram performs as a fractal object (Burgess et al., 2001; 
Heine and Velthuizen, 2000; Tourassi et al., 2006), and fractal dimen
sion measurement has been investigated as an essential method for 
mammographic texture assessment (Tourassi et al., 2006). Thus far, 
power spectrum analysis and fractal dimension measurement have been 
extensively explored for investigation, comparison, and characterization 
of breast images (Elangovan et al., 2017; Marinov et al., 2021). 

The Chinese specification for testing quality control in mammog
raphy or tomosynthesis is mainly based on the imaging of homogeneous 
breast models (National Health Commission, 2020). Due to the absence 
of detailed structure, these models cannot be utilized to mimic the 
texture characteristics with realistic breast anatomy. Our previous 
studies have developed the fully new breast phantom (Qiu et al., 2017) 
which contained the detailed structure (e.g. Cooper’s ligament, duct 
tree, ampulla, terminal duct lobular unit, glandular, muscle, adipose, 
and skin) and have calculated normalized glandular dose coefficients for 
DM based on the compressed phantoms (National Health Commission, 
2021; Wang et al., 2017). The breast phantom exhibits acceptable 

texture features in breast imaging due to a series of characteristics, such 
as detailed structures, randomly irregular boundaries of the subcu
taneous adipose and fibroglandular regions, and the random sampling 
distribution of adipose lobules. In this paper, we constructed two im
aging systems for DM and DBT respectively, and obtained the simulated 
images based on the detailed breast phantom. To evaluate the texture 
realism of simulated images, power spectrum analysis, and fractal 
dimension measurement were employed for quantitative assessment. 
These methods were also employed on the clinical datasets to compare 
the texture properties. Concerning this investigative step, our final goal 
was to develop software that could generate the breast phantom with 
good performance in dosimetry and imaging and to investigate the 
optimal exposure parameters for individual patients during the breast 
screening which could balance the radiation dose and image quality. 

2. Materials and methods 

2.1. Detailed breast phantoms 

Breast phantoms were generated by the simulation chain described 
by Wang (Wang et al., 2017) et al. Research showed that the volumetric 
breast density (VBD) of Chinese women is mainly concentrated in 17.3% 
±8.2% (Wang et al., 2017). Breast phantoms of 25%, 50%, and 75% 
glandularity were constructed to represent fatty, glandular, and dense 
breasts in this work. The corresponding VBD of these phantoms were 
8.2%,16.6%, and 25.4%. The glandularity and VBD are two physical 
quantities to indicate the amount of glandular tissue using mass and 
volume percentage. They are calculated by the following equations, 
respectively. 

glandularity=mg
/

Mfg × 100%  

VBD=Vg
/

Vbr × 100% (1)  

Where mg is the mass of glandular tissue, Mfg is the whole mass of the 
fibroglandular region, Vg is the volume of glandular tissue, Vbr is the 
volume of the breast model. Through the deformations for the vertical 
slices, detailed breast phantoms with each glandularity were com
pressed to 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, and 7 cm in the craniocaudal 
(CC) view. One breast phantom sample is shown in Fig. 1. Overall, 18 
compressed breast phantoms were generated for image acquisition in 
DM and DBT. 

2.2. Image acquisition simulation 

2.2.1. X-ray spectrum 
The spectra produced by the target of the X-ray tube in medical 

equipment are not monoenergetic. Polyenergetic X-ray spectra acquired 
from the spectral model of Boone (Boone et al., 1997) were simulated 
during the image acquisition process. The X-ray spectra were simulated 
for DM using tungsten (W) targets and silver (Ag) or rhodium (Rh) 
filtering materials. While the X-ray spectra were simulated for DBT using 
W targets with aluminum (Al) filtering materials. For breast phantoms 
with different CBTs, we adopted the suggestions about the choice of 
target/filter combination and tube voltage in ref. (Massera and Tomal, 
2021). 

2.2.2. Tissue composition 
Table 1 lists the density and element composition of each breast 

tissue which was acquired from ICRU-Report 46, Woodard, and White 
(Woodard and White, 1986). Values for Cooper’s ligament tissue were 
not specifically provided by ICRU, so the density and element compo
sition of Cooper’s ligament tissue was substituted by these of muscular 
fibrous tissue (Ma et al., 2009). 
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2.2.3. Equivalent mass attenuation coefficients for breast tissues 
In terms of polyenergetic spectra, the number of photons that are 

attenuated by the compound matter is calculated by: 

I = I0 •
∑E=Emax

E=Emin

f (E)e
−
∑n

i=1
μmi(E)xmi

ΔE (2)  

Where I0 and I are the photon intensity for emission and detection 
(passed through the object) respectively, μmi, xmi are the mass attenua
tion coefficient and mass thickness of the ith element respectively, note 
that the mass thickness is defined as the mass per unit area, and is ob
tained by multiplying the thickness t by the density ρ, i.e., xm = ρt, n is 
the number of elements in the object, f(E) is the distribution function of 

the photon spectrum, ΔE is the energy interval in the discrete photon 
spectrum. 

In terms of monoenergetic spectra, the mass attenuation coefficient 
of the compound μc is defined as: 

μc =
∑n

i=1
μmici (3)  

Where ci is the weight fraction of the ith element in the compound. 
Substitute equation (3) into equation (2), and get the mass attenu

ation coefficient of the compound for polyenergetic spectra (Gorshkov, 
2017) 

Fig. 1. One breast phantom with 25% glandularity (a) a breast phantom without compression (b) a compressed breast phantom (c) the cross-sectional views of the 
uncompressed breast phantom from coronal (left), sagittal (right-up), and axial (right-down) directions. 

Table 1 
Density and Element composition of each breast tissue.  

Tissue Density (g/m3) Element composition (%) 

H C N O Na P S Cl K 

Skin 1.09 10.0 20.4 4.2 64.5 0.2 0.1 0.2 0.3 0.1 
Adipose 0.95 11.4 59.8 0.7 27.8 0.1 0.1 0.1 0.1 – 
Glandular 1.02 10.6 33.2 3.0 52.7 0.1 0.1 0.2 0.1 – 
Cooper’s ligament 1.05 10.2 14.3 3.4 71.0 0.1 0.2 0.3 0.1 0.4  
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μc = lim
xm→0

−
1
xm

∑E=Emax

E=Emin
f (E)e− μc(E)xm ΔE =

∑E=Emax

E=Emin
μc(E)f (E)ΔE= μc(E)

(4) 

We adopted the mass attenuation coefficient values of each element 
from the national institute of Standards and technology (NIST) (Hubbell 
and Seltzer, 2004) and employed the cubic spline method for interpo
lation to acquire the mass attenuation coefficient of each energy value. 

2.2.4. Image simulation 
DM and DBT projections of the breast phantoms were simulated 

using the open-source MATLAB toolbox, named LAVI DBT- 
Reconstruction toolbox, which can be accelerated by parallel compu
tation methods. This code was chosen for the successful validation with 
the virtual Shepp-Logan phantom in Ref. (Vimieiro et al., 2018). 

To simulate the radiological projections, the Hologic Selenia Di
mensions 3D system (Hologic, MA, USA) geometries were constructed 
for both DM and DBT. As displayed in Fig. 2, the X-ray tube rotates 
around the rotation center in the imaging geometry of DBT, while the X- 
ray tube keeps static at 0◦ in the imaging geometry of DM. The 
geometrical parameters used in the image simulation are presented in 
Table 2. 

The projection of a breast phantom was drawn using the ray tracing 
algorithm. Each pixel value of the projected image was calculated by the 
radiological path of the ray within the detector. The radiological path 
can be written as 

d =
∑

i

∑

j

∑

k
μc(i, j, k)l(i, j, k) (5)  

Where i, j, and k are the coordinates of each voxel in the 3D phantom 
matrix, μc(i, j, k) is the equivalent mass attenuation coefficient of a 
particular voxel and l(i, j, k) is the ray track length contained by that 
voxel. The detector model was assumed to be ideal and scatter radiation 
was not included in the projections. 

According to the conclusion in Ref (Vancamberg et al., 2015)., the 
power spectrum of a reconstructed volume was influenced by the 
reconstruction algorithm. Therefore, the algorithm adapted to simulated 
images should be consistent with that of clinical images. The filtered 
back-projection algorithm (FBP) was utilized to solve the inverse 
reconstruction problem based on the simulated DBT projections. 

2.3. Objective evaluation of image texture 

To evaluate the texture realism of simulated images, we selected 
clinical images from public medical datasets for comparison. Clinical 

mammograms were chosen from the Mammographic Image Analysis 
Society Digital Mammogram Database (MIAS) (Suckling et al., 2015). 
The images of this dataset containing obvious lesions were excluded. 
The remaining mammograms contained three types of glandularity: 
fatty, glandular, and dense, with 66, 130, and 142 images in each 
category respectively. For each image contained in the dataset, glan
dularity classifications had been determined by experienced radiologists 
and were included in the readme file. Clinical DBT reconstructed vol
umes were obtained from the Breast Cancer Screening dataset (BCS) 
(Buda et al., 2021). We took the analysis for the mid-plane of each 
reconstructed volume for which an experienced radiologist has deter
mined the glandularity classification. For the fatty, glandular, and dense 
categories, 70, 140, and 140 images were selected respectively. 
Following the approach of Barufaldi (Barufaldi et al., 2021a), we 
employed the OpenBreast toolkit (Pertuz et al., 2019) to locate a region 
of uniform thickness excluding pectoralis muscle, background, and a 10 
mm boundary. This region was defined by a binary mask. These pro
cesses were also implemented on the simulated images. 

2.3.1. Power spectrum analysis 
For the comparison of texture realism between clinical and simulated 

images, power spectrum analysis was employed due to its robustness. 
The texture properties in clinical breast images could be indicated by the 
power law exponent in Equation (6) 

PS1D(f )=α
/

f β (6)  

Where α is the magnitude of one-dimensional power spectrum (PS1D), β 
is the power law exponent that can reflect the breast texture complexity, 
and f is the spatial frequency. The meaning and calculation procedure of 
PS1D are described in detail below. Unprocessed mammograms and the 

Fig. 2. Imaging geometry for the simulation of DBT and DM with the breast phantom.  

Table 2 
Geometry parameters for DM and DBT.  

X-ray modality DBT DM 

Target material W W 
Filter material and thickness 0.7 mm Al 0.05 mm Rh/Ag 
Angle range (◦) [-15◦,15◦] – 
Number of Projections (#) 15 1 
Detector 
Detector Element Size (mm) 0.14 0.07 
Detector Size (mm) 286.72 × 232.96 286.72 × 232.96 
Distance source to the detector (DSD) (mm) 700 700 
Distance detector to rotation (DDR) (mm) 0 0 
Distance of the Air Gap (DAG) (mm) 25 25  
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mid-plane of reconstructed DBT volumes were analyzed by this method. 
The steps of the power spectrum analysis procedure are explained 

with an example image in Fig. 3. The first step is the determination of the 
region of interest (ROI) with a suitable position and size. A size of 512 ×
512 pixels (35.84 mm on each side) of the ROI was cropped from the 
example image (Barufaldi et al., 2021a). To ensure that valid pixel 
values can be extracted, the center of the ROI was located by deter
mining the mass-center of the binary mask for the example image. The 
second step is pre-processing of the ROI. The ROI was normalized by the 
average pixel value and then was processed by a radial Hanning window 
for reducing the frequency leakage during the fast Fourier transform. 
The third step is the calculation of the power law exponent. we obtained 
the two-dimensional (2D) power spectrum of the ROI after the fast 
Fourier transform. By averaging along the radial direction of the 2D 
power spectrum, PS1D was obtained. To limit the effect of detector noise 
and spatial information which is not associated with breast texture, the 
range of 0.2–1.0 mm− 1 for spatial frequency was selected (Barufaldi 
et al., 2021b; Elangovan et al., 2017). For simulated images, we also 
select the same spatial frequency range for the calculation of β values. 
Finally, the plot of log10(PS1D) versus log10(f) during this range was 
performed by the linear fitting method. The absolute slope value ob
tained from the fitted line is the power law exponent β. To determine the 
β value that represents the breast image more accurately, we moved the 
ROI along the four directions (up, down, right, and left) with the 
maximum movement (does not exceed mask area) and took the average 
value. The relative differences Δβ between the simulated and clinical 
images can be calculated by: 

Δβ =(βsimulated − βclinical)
/

βclinical × 100% (7)  

2.3.2. Fractal dimension measurement 
Fractal dimension (FD) is a generic term that is related to the texture 

complexity of objects and was calculated by the published methods 
(Bliznakova et al., 2010; Elangovan et al., 2017). For an image surface, 
we can measure it by covering it with a cube of side length ε. As the side 
length ε of the cube increases, the covered cube blocks also change. The 
exposed surface area, A(ε), of the covered cube blocks and FD of the 
image surface are related by the following formula (8) 

A(ε)= λε2− FD (8)  

where λ is a scaling constant. The area A(ε) was calculated by the 
following equation (9). 

A(ε)=
∑

x,y
ε2 +

∑

x,y
ε|I(x, y) − I(x+ 1, y)| +

∑

x,y
ε|I(x, y) − I(x, y+ 1)| (9)  

Where I(x, y) is the amounts of cubes with a side length 2i, for i = 0, 1,2,
…7, in the specific position (x,y). Finally, the plot of log10(A(ε)) versus 
log10(ε) was performed by the linear fitting method. The FD can be 

determined by the slope value which is obtained from the fitted line. In 
order to determine the FD value that represents the breast image more 
accurately, we adapted the same method with power spectrum analysis 
to move the ROI and take the average value. The relative differences ΔFD 
between the simulated and clinical images can be calculated by: 

ΔFD =(FDsimulated − FDclinical) /FDclinical × 100% (10)  

2.4. Implementation 

All analyses were performed using MATLAB scripts (MATLAB 
R2021b; MathWorks). Moreover, to accelerate the FBP reconstruction 
process, the code was parallelized on a Linux node with 132 GB RAM 
and 28 slave processors of the high-performance computing platform at 
Tsinghua University. Reconstructed phantoms with each CBT and 
glandularity were generated using parallel computing code. 

3. Results 

3.1. Imaging simulation 

Based on the geometrical parameters in Table 2, the 3D imaging 
system geometries were replicated for both DM and DBT. Fig. 4 shows 
the 3D imaging geometry using the LAVI toolbox. Fig. 5 shows the DM 
projection and the DBT reconstructed mid-plane image of the breast 
phantom with 50% of glandularity and 4 cm CBT, respectively. These 
pictures were performed with a simple contrast stretch to turn into 
brighter. 

3.2. Power spectrum analysis 

The power law exponent β was calculated for each clinical and 
simulated ROI. Fig. 6 presents a comparison of the calculated metrics 
between simulated and clinical images for both DM and DBT. The linear 
trends of the power law exponent were compared in Fig. 6a–d (the 
second column). 

The MIAS and BCS dataset was divided into three categories based on 
glandularity ranks. Table 3 lists the power law exponents for clinical and 
simulated images at different glandularity; errors are denoted as 1 
standard deviation (SD) of the average value. 

For each image, the correlation coefficient for the fitted line between 
the log10PS1D(f) and the log10f was calculated. In the case of simulated 
images, the average correlation coefficients and standard deviation are 
r = 0.98 ± 0.01 and r = 0.98 ± 0.01 for DM and DBT, respectively, 
while for ROIs extracted from clinical images taken from MIAS and BCS, 
the coefficients and standard deviation are r = 0.99 ± 0.01 and r =

0.99 ± 0.01, respectively. The correlation coefficients for all fitted lines 
are higher than 0.95. A good linear relationship between the 
log10PS1D(f) versus log10f during the specific range is observed. The 

Fig. 3. The steps to obtain the pow law exponent β during the analysis procedure.  
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relative differences Δβ between the simulated and clinical images for 
DM and DBT are 11.35% and − 4.50%, respectively. 

3.3. Fractal dimension measurement 

The fractal dimensions were calculated for each simulated and real 
image. The linear trends for fractal dimensions which were calculated by 
simulated and clinical images were compared in Fig. 6a–d (the third 

column). Table 4 lists the fractal dimension, showing a similar result 
between the simulated and clinical images. 

For each image, the correlation coefficient for the fitted line between 
the log10 A(ε) and the log10(ε) was calculated. In the case of simulated 
images, the average correlation coefficients and standard deviation are 
r = 0.96 ± 0.02 and r = 0.97 ± 0.01 for DM and DBT, respectively, 
while for ROIs extracted from clinical images taken from MIAS and BCS, 
the coefficients and standard deviation correspond to r = 0.95 ± 0.01 
and r = 0.99 ± 0.01, respectively. The correlation coefficients for all 
fitted lines are higher than 0.90. A good linear relationship between the 
log10 A(ε) and the log10(ε) is observed. The relative differences ΔFD be
tween the simulated and clinical images for DM and DBT are − 10.88% 
and − 6.06%, respectively. 

4. Discussion 

Several recent studies have shown that VCTs are essential for the 
evaluation and improvement of medical devices (Abadi et al., 2020; 
Barufaldi et al., 2021a; Elangovan et al., 2017). These studies have 
demonstrated that VCTs can provide detailed and accurate information 
about the performance of medical devices, which can be used to identify 
areas for improvement and optimize device design. The initial aim of 
this study was to construct virtual image systems for both DM and DBT 
and evaluate image texture realism. Based on the detailed breast 
phantoms, we obtained the projections for mammography and the 
reconstructed breast volumes for DBT, and evaluate the texture realism 
of these simulated images. According to the results displayed in Tables 3 
and 4, the simulated images have a close resemblance to the clinical 
images in terms of texture indexes. Our results were consistent with 
some of the previous literature. Barufaldi et al. achieved a lower 
discrepancy between simulated and clinical DM images, from 14.15% to 
11.25%, by applying Perlin noise to the breast phantom (Barufaldi et al., 
2021b). The β values of simulated DM images in Bochud et al.’s research 
and clinical DM images in Cockmartin et al.’s research were (3.4,4.0)
and 3.57 respectively (Bochud et al., 1999; Cockmartin et al., 2013). 
However, some other literature results differed from ours, such as Graff 
et al.’s model that produced β values of (2.72,2.95) (Graff, 2016). 

But there are still discrepancies in the results between the clinical 
and simulated images. The mean β of simulated mammograms is a little 
higher than that of clinical images acquired from MIAS, while the mean 

Fig. 4. 3D imaging geometry based on Hologic imaging parameters. The red 
dot is the X-ray source. The dark blue cube is a 3D voxel matrix of the breast 
phantom. the dashed rectangle in the x-y plane represents the detector plane, 
where the yellow part is the projection area. 

Fig. 5. The DM projection and the DBT reconstructed mid-plane image of the breast phantom with 50% of glandularity and 4 cm CBT.  
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Fig. 6. ROIs for clinical and simulated images, and their corresponding calculated metrics for power spectrum analysis and fractal dimension measurement. 
(a) a clinical mammogram taken from MIAS; (b) the mammography projection for the breast phantom with 25% glandularity and 2 cm CBT; (c) the mid-plane of 
clinical breast tomosynthesis reconstructed volume taken from BCS; (d) the mid-plane of breast tomosynthesis reconstructed volume for the breast phantom with 
25% glandularity and 4 cm CBT. 
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FD of simulated images is a little lower than that of clinical images. 
There are several possible explanations for these results. Firstly, scat
tered radiation and detector characteristics in clinical medical devices 
have a positive effect on the high-frequency signal (Badal et al., 2021). 
But the ray tracing algorithm employed in the imaging process ignores 
these noises. The decrease in the high-frequency signal will cause β to 
rise slightly. Another reason is the absence of the high-frequency signal 
texture structure within breast phantoms. The microstructure within the 
breast, including adipose globules and Cooper’s ligament, is represented 
by smooth ellipsoid surfaces. An experienced radiologist pointed out 
that the obvious Cooper’s ligament in the simulated images will reduce 
the texture realism. Except for these reasons, the simulated images of 
DM were unprocessed, but the clinical images dataset were all “for 
presentation”. This difference may make discrepancies in the calculation 
metric results. 

What stands out in Table 3 is the increase of power law parameter β 
with glandularity for clinical and simulated images. The result is 
consistent with Ref (Mainprize et al., 2012). These relationships can be 
explained by the texture complexity of fibroglandular. As glandularity 
increases, fibroglandular tissue appears to congregate and flatten out, 
leading to a decrease in high-frequency signal and an increase in β value. 
Interestingly, power law parameter β of simulated mammograms with 
lower CBTs and glandularity is close to the mean value of clinical 
dataset. In terms of the fractal dimensions of images, our research in
dicates that the values of FD keep steady in breast phantoms with 
different CBTs and glandularity, and are lower than those of clinical 
images. 

Admittedly, several limitations in this study need to be acknowl
edged. Firstly, the simulation of X-rays interaction was not involved in 
the ray tracing algorithm. In a follow-up study, Monte Carlo codes will 
be utilized to simulate the X-ray scattering and detector noise in the 
imaging geometry. The influence on the texture realism between simu
lated and clinical images may also come from various types of patient 
motions, including breathing, heartbeat, or compressed tissue relaxa
tion. The negative effect of motions might be more pronounced in DBT 
acquisitions than in mammography due to the longer acquisition time 
and possible artifacts from reconstruction algorithms (Badal et al., 
2021). In addition, only 1 commercial system was simulated in this 
study, and image processing algorithms and resolution may also affect 
the texture of simulated images. Secondly, further improvements can 
also be made to refine micro-structure in breast phantoms, including 
Cooper’s ligament, adipose ellipsoid in the fibroglandular region, blood 
vessel network, and the boundary between the fibroglandular region 

and the adipose region. Currently, Cooper’s ligament is approximated 
using an ellipsoidal shell with a long main axis. However, Cooper’s 
ligaments are made up of sheets of connective tissue that perform far 
more complex structures (Erickson et al., 2016). The vascular system 
grows randomly within the breast like a tree and is similar to the ductal 
system. The main limitation at present is that the growth of the vascular 
system conflicts with the ductal system, resulting in its inability to grow 
intact. In addition, the adipose ellipsoid in the fibroglandular region, 
and the boundary between the fibroglandular region and adipose region 
are irregular but smooth. To mimic the real structure of adipose, we 
need to add appropriate high-frequency noise to its surface. Additional 
investigations will still be conducted to enhance the texture realism of 
the detailed breast phantoms and the simulated images. Several studies 
have attempted to produce images comparable to clinical images, but 
they probably are not successful in the visualization test for clinical 
realism (Glick and Ikejimba, 2018). Plenty of ongoing efforts by VCTs 
researchers into breast phantom generation are still focusing on the 
improvement of texture realism (Barufaldi et al., 2021a). However, 
there remains a critical issue to be addressed a uniform standard for 
breast texture realism lacks. More investigations are needed to better 
understand this question. 

Overall, we constructed two virtual imaging systems for DM and 
DBT, and validated that the breast phantom reflecting Chinese female 
anatomical characteristics performed well in both dosimetry and im
aging. The breast phantoms used in this study employed a novel con
struction method. It contains most of the detailed structures present in 
the breast. Meanwhile, the irregular boundary between the skin region 
and the fibroglandular region, as well as the uneven distribution of 
adipose within the fibroglandular region, resulted in the inclusion of 
major breast textures in the imaging results. We have demonstrated the 
potential of this approach to provide valuable insights into device per
formance. Further research is still needed to address some of the limi
tations identified in our study, but our results lay a solid foundation for 
future work in this field. 

An important implication of our work is to assess the radiation risks 
versus diagnosis benefits of breast cancer screening. In the field of breast 
X-ray imaging, the practical significance of this work will be better 
understood through a series of feasibility studies. Recently, the utiliza
tion of additive manufacturing and 3D printing techniques has emerged 
as a novel method for constructing phantoms in the field of medical 
physics, as well as for conducting research in x-ray breast imaging 
(Bliznakova, 2020). A number of researchers have conducted assess
ments on specimens composed of various materials, measuring attenu
ation coefficients within photon energy ranges typically employed in 2D 
and 3D x-ray mammography (Mettivier et al., 2022a; Santos et al., 2019; 
Savi et al., 2021). Based on the virtual breast phantoms, physically 
detailed breast phantoms can also be fabricated to replace homogeneous 
or heterogeneous breast models employed in experiments for quality 
control. In the field of breast dosimetry, the heterogeneous distribution 
of glandular in the detailed breast phantom allows for more individu
alized dose estimation for the patients. How to balance the radiation 
dose and image quality will be a vital direction of subsequent research in 
medical imaging. 

5. Conclusion 

The breast imaging system is an essential part of VCTs. To the best of 
our knowledge, this work was undertaken to construct the breast 
phantom and the imaging system of both DM and DBT for the Chinese 
female population for the first time. A series of projections and recon
structed volumes were obtained from the detailed breast phantoms with 
different glandularity and CBTs for specific target/filter combinations 
and X-ray tube voltage. To evaluate the texture realism of simulated 
images, power spectrum analysis, and fractal dimension technique were 
employed for the analysis of the DM projections and DBT reconstructed 
mid-planes, and we obtained the values of power law exponents and 

Table 3 
Results of power law exponents β of clinical and simulated images with different 
glandularity.  

Glandularity DM DBT 

MIAS β± SD Breast phantom 
β ± SD 

BCS β ± SD Breast phantom 
β ± SD 

Fatty 3.05 ± 0.30 3.51 ± 0.27 3.15 ± 0.36 3.04 ± 0.39 
Glandular 3.28 ± 0.26 3.62 ± 0.26 3.39 ± 0.35 3.22 ± 0.36 
Dense 3.42 ± 0.23 3.77 ± 0.22 3.50 ± 0.40 3.29 ± 0.35 
All 3.26 ± 0.29 3.63 ± 0.25 3.33 ± 0.42 3.18 ± 0.36  

Table 4 
Fractal dimensions of real and simulated images.  

Glandularity DM DBT 

MIAS FD±
SD 

Breast phantom 
FD ± SD 

BCS FD ±

SD 
Breast phantom 
FD ± SD 

Fatty 2.39 ± 0.03 2.10 ± 0.01 2.43 ± 0.05 2.27 ± 0.07 
Glandular 2.36 ± 0.03 2.10 ± 0.01 2.42 ± 0.04 2.27 ± 0.06 
Dense 2.33 ± 0.03 2.11 ± 0.01 2.38 ± 0.06 2.25 ± 0.05 
All 2.36 ± 0.03 2.10 ± 0.01 2.41 ± 0.05 2.26 ± 0.06  
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fractal dimensions for the simulated images. Compared to the clinical 
image datasets, the average power law exponent (clinical, simulated) for 
DM and DBT images were (3.26 ± 0.29, 3.63 ± 0.25) and (3.33 ± 0.42, 
3.18 ±0.36) respectively. The average fractal dimension (clinical, 
simulated) for DM and DBT images were (2.36 ± 0.03, 2.10 ± 0.01) and 
(2.41 ± 0.05, 2.26 ± 0.06) respectively. For simulated and clinical im
ages in DM and DBT, the values of power law exponents are positively 
correlated with the value of breast glandularity, but the values of fractal 
dimensions keep steady for different glandularity. These results indicate 
that the texture indexes of simulated images are similar to the clinical 
images. This work brings an important contribution to the image gen
eration of VCTs with the detailed breast phantom. However, it still has 
certain limitations in terms of breast structure. In addition, another 
aspect to explore in the future is the design of more realistic glandular 
distributions and more complex surface texture of the microstructures. 
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