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Abstract
Objective. Synthetic images generated by simulation studies have awell-recognized role in developing
and evaluating imaging systems andmethods.However, for clinically relevant development and
evaluation, the synthetic imagesmust be clinically realistic and, ideally, have the same distribution as
that of clinical images. Thus,mechanisms that can quantitatively evaluate this clinical realism and,
ideally, the similarity in distributions of the real and synthetic images, aremuch needed.Approach.We
investigated two observer-study-based approaches to quantitatively evaluate the clinical realismof
synthetic images. In the first approach, we presented a theoretical formalism for the use of an ideal-
observer study to quantitatively evaluate the similarity in distributions between the real and synthetic
images. This theoretical formalismprovides a direct relationship between the area under the receiver
operating characteristic curve, AUC, for an ideal observer and the distributions of real and synthetic
images. The second approach is based on the use of expert-human-observer studies to quantitatively
evaluate the realism of synthetic images. In this approach, we developed aweb-based software to
conduct two-alternative forced-choice (2-AFC) experiments with expert human observers. The
usability of this softwarewas evaluated by conducting a systemusability scale (SUS) surveywith seven
expert human readers andfive observer-study designers. Further, we demonstrated the application of
this software to evaluate a stochastic and physics-based image-synthesis technique for oncologic
positron emission tomography (PET). In this evaluation, the 2-AFC studywith our software was
performed by six expert human readers, whowere highly experienced in reading PET scans, with years
of expertise ranging from7 to 40 years (median: 12 years, average: 20.4 years).Main results. In the
ideal-observer-study-based approach, we theoretically demonstrated that the AUC for an ideal
observer can be expressed, to an excellent approximation, by the Bhattacharyya distance between the
distributions of the real and synthetic images. This relationship shows that a decrease in the ideal-
observer AUC indicates a decrease in the distance between the two image distributions.Moreover, a
lower bound of ideal-observer AUC= 0.5 implies that the distributions of synthetic and real images
exactlymatch. For the expert-human-observer-study-based approach, our software for performing
the 2-AFC experiments is available at https://apps.mir.wustl.edu/twoafc. Results from the SUS
survey demonstrate that theweb application is very user friendly and accessible. As a secondary
finding, evaluation of a stochastic and physics-based PET image-synthesis technique using our
software showed that expert human readers had limited ability to distinguish the real images from the
synthetic images. Significance.This work addresses the important need formechanisms to
quantitatively evaluate the clinical realism of synthetic images. Themathematical treatment in this
paper shows that quantifying the similarity in the distribution of real and synthetic images is
theoretically possible by using an ideal-observer-study-based approach.Our developed software
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provides a platform for designing and performing 2-AFC experiments with human observers in a
highly accessible, efficient, and securemanner. Additionally, our results on the evaluation of the
stochastic and physics-based image-synthesis techniquemotivate the application of this technique to
develop and evaluate awide array of PET imagingmethods.

1. Introduction

Inmedical imaging, the use of simulation studies to develop and objectively evaluate new and improved imaging
methods has beenwell recognized (Frangi et al 2018, Abadi et al 2020, Jha et al 2021, 2022, Yousefirizi et al 2021).
Simulation studies offer the advantage of evaluating the performance of amethod against known ground truth,
provide the ability to accuratelymodel patient anatomy and physiology aswell as imaging system characteristics,
incorporate population variability, and generatemultiple scan realizations of the same patient to evaluate
reproducibility. Evenmore importantly, this is all done in silico, which is inexpensive and enables optimizing the
method before conducting clinical studies. Given these advantages, simulation studies have been used to
evaluate a wide range of imagingmethods for system instrumentation (Surti et al 2006), image reconstruction
(Song et al 2011), image enhancement (Yu et al 2020), and image segmentation (Liu et al 2022). Further, the
advantages of simulation studies have led to the emergence of virtual clinical trial-based frameworks to evaluate
imagingmethods (Maidment 2014, Badano et al 2018, Abadi et al 2020, Badano 2021, Li et al 2022). Simulation
studies have also shownpromise in developing artificial intelligence (AI)-based algorithms formedical imaging.
More specifically, a key challenge in developing AI-based algorithms is the requirement of large amounts of
training datawith known ground truth. This data can be difficult, expensive, and time-consuming to obtain,
thus creating a barrier to developing learning-based algorithms. Studies have shown that synthetic images
generated from simulations can help alleviate this requirement by providing such training data for purposes
such as pre-training the network (Chartsias et al 2017a, Creswell et al 2018, Gong et al 2018, Guan and
Loew 2019, Leung et al 2020).

For the simulation-based development and evaluation studies to yield clinically relevant inferences, it is
important that images generated by the synthesis techniques are clinically realistic (Song et al 2011, Jha et al
2016, 2021). Ensuring this clinical realism requires that patient anatomy and physiology, population variability,
and imaging-systemphysics are allmodeled accurately. There has beenmuchwork on evaluating the accuracy in
modeling the imaging physics (Gonias et al 2007, Poon et al 2015,Hernandez-Giron et al 2019). However, fewer
studies have focused on developing approaches to ensure that the population variability ismodeled accurately
(Badano et al 2018, Zhou et al 2019a,Houbrechts et al 2021). Note that to ensure clinical realism, it is not
sufficient to just assess whether the real and synthetic imagesmatch for one patient realization. Instead, for
clinically relevant studies, the ideal goal is that the distributions of real and synthetic images shouldmatch. This
provides confidence that the findings of objective evaluation studies with synthetic images, including virtual
clinical trials, are clinically relevant. Further, the clinical realism of synthetic images has been observed to be
necessarywhen using these images for pre-training AI-based algorithms (Leung et al 2020). Thus, there is an
important need formechanisms that can quantitatively evaluate the clinical realism of synthetic images and,
ideally, the similarity in distributions of real and synthetic images. To address this need, we present two
observer-study-based approaches in thismanuscript, one based on the ideal observer and the other based on the
human observer.

To quantify the distance between distributions of real and synthetic images,metrics such as the Fréchet
inception distance (FID) (Heusel et al 2017) have been proposed. The FIDmeasures the difference between the
statistics extracted from real and synthetic images using a pre-trained Inception network.However, this network
is typically pre-trained on ImageNet, which comprises only natural images. Thus, it is unclear whether the
network can effectively generalize to evaluate the realism of syntheticmedical images. Another set ofmetrics
attempt to evaluate the difference between distributions of real and synthetic images based on the performance
of an image classifier (Shmelkov et al 2018). These approaches, while promising, rely on the choice of the
classifier.More importantly, it is theoretically unclear whether this performance relates to the similarity in
distributions between the real and synthetic images.

More recently, observer-study-based approaches have been considered to evaluate the clinical realism of
synthetic images (Burgess 2011, Chen et al 2016, Elangovan et al 2017,Ma et al 2017, Sturgeon et al 2017). In
these approaches, a two-alternative forced-choice (2-AFC) experiment is typically performed. In this 2-AFC
experiment, an observer is presented pairs of real and synthetic images. For each image pair, the observer is asked
to identify the real image. It is well accepted that the probability of correctly identifying the real image is
equivalent to the area under the receiver operating characteristics curve, AUC, for that observer (Barrett and
Myers 2013). Thus, if an observer correctly identifies the real images for only 50%of the cases, this yields anAUC
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of 0.5. Consequently, this implies that the observer is unable to differentiate the real images from the synthetic
images. However, this does not necessarily indicate that the distribution of synthetic imagesmatches that of real
images. To illustrate this point, we consider a numerical observer. This observer, in the 2-AFC experiment,
calculates a test statistic for each image and identifies the image that yields a higher value of test statistic as real.
However, the test statistic is just a single statistic derived from the entire image. Thus, while anAUCof 0.5may
indicate that the distributions of the test statistic of the real and synthetic imagesmatch, this does not necessarily
indicate that distributions of the real and synthetic images alsomatch. Further, when the AUC value is greater
than 0.5, it is unclear how theAUC value relates to the distance between the distributions of real and synthetic
images. Amathematical analysis for answering these questions ismuch needed.

Thefirst goal of this work is to theoretically demonstrate that an ideal observer provides amechanism to
quantify the similarity in distributions between the real and synthetic images. This ideal observer, also referred to
as the likelihood-ratio test, uses all the statistical information available in the data tomaximize task performance.
Further, this observer is numerical and, thus, paves theway for amathematical analysis. In this context, in 1998,
Barrett et al (1998) published a seminal paper with the goal of bridging the gap between the use of signal-to-noise
ratio and the use of the AUCas afigure ofmerit for signal-detection tasks. In that paper, one of the important
findings was deriving the AUC for an ideal observer explicitly in terms of the distributions of signal-present and
signal-absent images. By following a similarmathematical treatment as in Barrett et al, but in the context of
evaluating the clinical realism of synthetic images, we show that an ideal-observer-study-based approach can be
used to quantitatively assess the similarity in distributions of the real and synthetic images (section 2).
Specifically, we show that the ideal-observer AUC is related, to an excellent approximation, to the Bhattacharyya
distance (Bhattacharyya 1943) between the distributions of the real and synthetic images.

The second goal of this work is to develop an openly-available web-based platform to evaluate the clinical
realism of synthetic images using human-observer studies. In this context, a vastmajority of observer-study-
based approaches to evaluate the clinical realism of synthetic images have relied on the use of human observers
(Burgess 2011, Chen et al 2016, Elangovan et al 2017,Ma et al 2017, Sturgeon et al 2017). Among the different
human observers, physicians havemultiple years of experience readingmedical images and are very familiar
with the intricate details of these images. Thus, these physicians, whomwe refer to as expert human observers,
are best placed to identify evenminute differences between the real and synthetic images. To conduct observer
studies with expert human readers, various software have been developed.However, these software often require
manual installation on local workstationswith compatible operating systems (Håkansson et al 2010, Zhang et al
2016, Genske and Jahnke 2022). The variety in existing operating systems and the fact that usersmust obtain
administrative privileges to install software onworkstations owned by institution limit the accessibility of those
software. Consequently, these factorsmake it challenging and cumbersome to conduct human-observer studies.
Thus, an accessible and easy-to-use tool that can facilitate the conducting of expert-human-observer studies for
evaluating the realism of synthetic images ismuch needed. Our developedweb-based platform (section 3) is in
the direction of addressing this need.

2. Ideal-observer-study-based approach to quantitatively evaluate the similarity in the
distributions of real and synthetic images

2.1. Problem formulation
Consider a set of clinical images that are acquired from a population of patients scanned by amedical-imaging
system.Denote the image of each patient by anM-dimensional vector, f̂

r
, which, we assume, lies within the

Hilbert space of Euclidean vectors, denoted by M . Additionally, consider an image-synthesismethod that
generates images of a simulated population of patients in silico. Each syntheticmedical image, denoted by anM-
dimensional vector, f̂

s
, is also assumed to lie within M .

To evaluate the clinical realism of those synthetic images, we consider a 2-AFC experiment being performed
by a numerical observer. In this experiment, an observer is presentedwith pairs of real and synthetic images, f̂

r

and f̂
s
. The classes of synthetic and real images are referred to as the hypothesesH1 andH2, respectively. Denote

the probability of observing an image f̂ under the hypothesisHj by (ˆ∣ )Hfpr j . Then, f̂
s
is sampled from (ˆ∣ )Hfpr 1

and f̂
r
is sampled from (ˆ∣ )Hfpr 2 . The observer is then required to identify the real image. Tomake this decision,

the observer calculates two test statistics, (ˆ )q f
s
and (ˆ )q f

r
, and assigns the image that yields the higher value of the

test statistic toH2. The decision is correct if (ˆ ) (ˆ )q q>f f
r s

. For convenience of notation, let (ˆ) (ˆ∣ )ºq Hf fprj j . The

probability of a correct decision can be calculated as

[ (ˆ ) (ˆ )] ˆ ˆ (ˆ ) (ˆ ) ( (ˆ ) (ˆ )) ( )ò òq q q q> = -
¥ ¥

q qf f f f f f f fPr d d step , 1
r s M s M r s r r s

1 2
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where (·)step denotes theHeaviside unit step function. As shown in Barrett andMyers (2013) in the context of
signal-detection tasks and rephrased in this scenario of using the 2-AFC experiment to evaluate the clinical
realism of synthetic images (appendix A), the right-hand side of the above expression is equivalent to the
expression for theAUC for an observer in terms of integrals over f̂

r
and f̂

s
. Thus, from equation (1), the accuracy

of an observer in identifying the real images in a 2-AFC experiment is equivalent to theAUC for that observer.
We note that the expression for the AUCusing equation (1)depends on the test statistics and, thus, does not

specify a direct relationship between the AUCvalue and the distance between the distributions of the real and
synthetic images. To gain insights into this relationship, we consider the use of an ideal observer, which uses all
the statistical information available in the data to evaluate the realism of synthetic images. This ideal observer
sets an upper bound on the performance of any available observers and provides the best ability to assess whether
any differences exist between the distributions of the real and synthetic images.

An ideal observer is defined as a decision strategy that calculates the likelihood ratio of (ˆ)q f2 and (ˆ)q f1 and
compares the ratio to a threshold. In otherwords, the ideal observer calculates the test statistic,Λ, given by

(ˆ)
(ˆ)

( )L =
q

q

f

f
. 22

1

Our goal is to relate the AUC for this ideal observer to the distance between the distributions of (ˆ)q f1 and (ˆ)q f2 .
Toward this goal, a central component of our derivation is the use of a likelihood-generating function

(Barrett et al 1998).Wefirst provide the background for the likelihood-generating function in section 2.2.We
show that the characteristic functions, which are used to obtain the ideal-observer AUC, can be derived solely
based on the likelihood-generating function. Then, in section 2.3, we show that the ideal-observer AUC can be
expressed, to an excellent approximation, by the likelihood-generating function evaluated at the origin.More
importantly, this value at the origin relates directly to the Bhattacharyya distance between the distributions of the
real and the synthetic images. Thus, by using the likelihood-generating function, we are able to establish a direct
relationship between the ideal-observer AUCand the similarity in distributions of the real and the synthetic
images.

2.2. Background for likelihood-generating function
The likelihood-generating function is central to our derivation as allmoments of bothΛ and its logarithm,
denoted byλ, under hypothesesH1 andH2 can be derived. This functionwas originally introduced by Barrett
et al (1998), andwe follow a similar approach to define the function. Denote the expectation of a random
variable t under hypothesisHj by 〈t〉j.We can show that themoments ofΛ underH2 are related to those under
H1 by

ˆ (ˆ)
(ˆ)
(ˆ)

ˆ (ˆ)
(ˆ)
(ˆ)

( )⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ò òáL ñ = = = áL ñ

¥ ¥

+

+q
q

q
q

q

q
f f

f

f
f f

f

f
d d . 3k M

k

M

k

k
2 2

2

1
1

2

1

1

1
1

Since ( )lL = exp , we can re-write equation (3) as

( ) [( ) ] ( )l lá ñ = á + ñk kexp exp 1 . 42 1

Themoment-generating function for a randomvariable t under hypothesisHj, denoted byMj(β), is defined by

( ) ( ∣ ) ( ) ( ) ( )òb b b= = á ñ
-¥

¥
M t t H t td pr exp exp . 5j j j

Thus, from equation (4), the relationship between themoment-generating functions under the two hypotheses
is given by:

( ) ( ) ( )b b= +M M 1 . 62 1

Additionally, the characteristic function for a random variable t under hypothesisHj, denoted byψj(ξ), is defined
by

( ) ( ∣ ) ( ) ( )òy x p x= -
-¥

¥
t t H td pr exp 2 i . 7j j

From equations (5) and (7), we readily see that themoment-generating functions and characteristic functions
are related to each other by

( ) ( )⎛
⎝

⎞
⎠

b y
b
p

=M
i

2
. 8j j

Then, using equations (6) and (8) yields the relationship between the characteristic functions forλ under
hypothesesH1 (class of synthetic images) andH2 (class of real images):
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( ) ( )⎛
⎝

⎞
⎠

y x y x
p

= +
i

2
. 92 1

This equation is important since it can further be used to derive the relationship between the probability
distributions ofλ under the two hypothesis. Denote the probability distribution ofλ under hypothesisHj by
pj(λ). Applying inverse Fourier transform to equation (9) on both sides yields (appendix B)

( ) ( ) ( ) ( )l l l=p pexp . 102 1

In equation (10), both p1(λ) and p2(λ) can be derived from a single non-negative function f (λ), as follows:

( ) ( ) ( )⎛
⎝

⎞
⎠

l l l= -p f aexp
1

2
, 111

( ) ( ) ( )⎛
⎝

⎞
⎠

l l l=p f bexp
1

2
. 112

Defining this function f (λ) can help us to derive the expressions for themoment-generating functions and
characteristic functions now.Denote the two-sided Laplace transformof f (λ) by  ( )bL , such that

 ( ) ( ) ( ) ( )òb l bl l=
-¥

¥
fd exp . 12L

Then, from equation (6), we obtain

( ) ( )⎛
⎝

⎞
⎠

b b= -M a
1

2
, 13L1

( ) ( )⎛
⎝

⎞
⎠

b b= +M b
1

2
. 13L2

Similarly,ψ1(ξ) andψ2(ξ) in equation (9) can be expressed in terms of the Fourier transformof f (λ), denoted by
( )x :

( ) ( )⎛
⎝

⎞
⎠

y x x
p

= - a
i

4
, 141

( ) ( )⎛
⎝

⎞
⎠

y x x
p

= + b
i

4
. 142

The term pj(λ) denotes a probability and should integrate to unity. Thus, from equations (13) and (14),
 ( )b L

1

2
and ( )x 

p
i

4
should equal to unity. To enforce these constraints, the likelihood-generating

functionG(β) and another functionT(ξ) are defined such that

 ( ) ( ) ( )⎡
⎣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦

b b b b= + - G aexp
1

2

1

2
, 15L

( ) ( ) ( )⎡
⎣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦

x x
p

x
p

x= + - T bexp
i

4

i

4
. 15

Wecan then expressM1(β) andψ1(ξ) as

( ) ( ) ( ) ( )⎡
⎣

⎤
⎦

b b b b= - -M G aexp 1
1

2
, 161

( ) ( ) ( ) ( )⎡
⎣

⎤
⎦

y x x x
p

x
p

= - -T bexp
i

2

i

4
. 161

Additionally, from equation (8),T(ξ) can be expressed in terms ofG(β):

( ) ( ) ( )x p p x= - -T G4 2 i . 172

Thus, we see that the characteristic functions can be expressed using only the likelihood-generating function.

2.3.Deriving the relationship between the ideal-observer AUC and the similarity in distributions of the real
and the synthetic images
Having obtained the characteristic functions using the likelihood-generating function, we can nowderive the
expression for the ideal-observer AUC. For this purpose, we note from equation (1) that by expressing the step
function in terms of its Fourier transform, we can calculate the AUCas

ˆ ˆ (ˆ ) (ˆ ) { [ (ˆ ) (ˆ )]} ( )ò ò òp
x
x

p x q q= + -
-¥

¥

¥ ¥
q q af f f f f fAUC

1

2

1

2 i

d
d d exp 2 i 18M s M r s r r s

1 2P
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{ }
{ }

ˆ (ˆ ) [ (ˆ )]

ˆ (ˆ ) [ (ˆ )] ( )
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p
x
x
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f f f
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1

2

P

whereP denotes theCauchy principal value for evaluating the improper integral. Note that in equation (18b),
the expressionwithin each curly bracket is the same as calculating the expectation of the term ( ) (ˆ)p xq f2 i .
Using the fact that this expectation can be calculated from the probability density on either f̂ or (ˆ)q f , we can
furtherwrite equation (18b) in terms of the characteristic functions (equation (7)) as

*( ) ( ) ( )òp
x
x

y x y x= +
-¥

¥
AUC

1

2

1

2 i

d
. 191 2P

By replacing the expression forψ2(ξ) from equation (9) and using theHermiticity property of the Fourier
transform,we obtain

( ) ( )⎛
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⎠òp

x
x
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aAUC
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where, in the second step, we have used the expression forψ1(ξ) from equation (16b) and then the relationship
betweenT(ξ) andG(β) from equation (17). To simplify this further, we can approximateG(β) via theMaclaurin
series expansion:

( ) ( )
!

( )( )åb
b

=
=

¥

G G
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0 . 21
n

n
n

0

Substituting this in equation (20b) and assuming that the contribution of higher order (n> 1) terms is negligible
yields
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Bymeans of tabular integral, equation (22c) yields
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⎣

⎤
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1

2

1

2
erf

1

2
2 0 . 23

Next, using equations (15a), (12), and (11a), we obtain

( ) ( ) ( )= -G a0 4 log 0 24L

( ) ( )⎛
⎝

⎞
⎠ò l l l= -

-¥

¥
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1
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( (ˆ) (ˆ)) ( )= D q q ef f4 , , 24B 1 2

where, in equation (24e), the term ( (ˆ) (ˆ))D q qf f,B 1 2 is thewell-knownBhattacharyya distance (Bhattachar-

yya 1943) thatmeasures the similarity between the distributions (ˆ)q f1 and (ˆ)q f2 . The term ˆ (ˆ) (ˆ)ò¥ q qf f fdM
1 2 in

equation (24d) is the Bhattacharyya coefficient. Then, from equations (23) and (24e), we obtain that for an ideal
observer, the AUC can be approximated excellently in terms of the Bhattacharyya distance between (ˆ)q f1 and

(ˆ)q f2 :

[ ( (ˆ) (ˆ)) ] ( )» + D q qf fAUC
1

2

1

2
erf 2 , . 25B 1 2
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Note that equation (25) is obtainedwithoutmaking any assumption of the probability law of either the images f̂
or the likelihood ratioΛ.

From equation (25), it is easy to show that the value of the ideal-observer AUCdecreases as the

Bhattacharyya distance between (ˆ)q f1 and (ˆ)q f2 decreases, and vice versa. Further, a lower bound of AUC= 0.5

is obtainedwhen the Bhattacharyya distance is at theminimumvalue of 0, i.e. (ˆ)q f1 exactlymatches (ˆ)q f2 . Thus,
an ideal-observer-study-based approach provides amechanism to quantitatively evaluate the similarity in
distributions of the real and the synthetic images.

2.4. Illustrating the relationship between the ideal-observer AUCand the Bhattacharyya distance for a two-
pixel image setup
To illustrate the relationship in equation (25), consider that f̂ denotes images consisting of only two pixels. For

the sake of simplicity, assume that (ˆ)q f1 and (ˆ)q f2 are described by 2DGaussian distributions that have the same

covariancematrix but differentmeans, i.e. (ˆ) ( )m~ Sq f ,1 1 and (ˆ) ( )m~ Sq f ,2 2 .We readily see that the

Bhattacharyya distance between (ˆ)q f1 and (ˆ)q f2 decreases as the difference betweenμ1 andμ2 decreases. Using

equation (25), we can obtain the AUC at different values of ( (ˆ) (ˆ))D q qf f,B 1 2 . As shown in figure 1, the value of

AUCdecreases and achieves the lower bound of 0.5 as the overlap between (ˆ)q f1 and (ˆ)q f2 increases, i.e.

( (ˆ) (ˆ))D q qf f,B 1 2 approaches 0.

3. Aweb-based expert-human-observer-study-based approach to quantitatively evaluate
the clinical realismof synthetic images

As introduced in section 1, human-observer studies have beenwidely used to evaluate the clinical realism of
synthetic images. Among the different human observers, expert human readers, such as physicianswho are
highly experienced in readingmedical images, can identifyminute differences between the real and synthetic
images. A 2-AFC experiment provides amechanism to quantify the performance of the expert human observers
on this task. If an expert human observer correctly identifies the real images for only around 50%of the cases in
the 2-AFC experiment, then, asmentioned in section 2.1with the proof provided in appendix A, this would
indicate anAUCof∼0.5 on the task of detecting the real image. This would imply that the expert human
observer was unable to distinguish between the real and synthetic images, thus, suggesting that the synthetic
images are clinically realistic as evaluated by that observer.

While several tools have been developed for conducting human-observer studies (Håkansson et al 2010,
Zhang et al 2016), users often need tomanually install the tools on local workstationswith compatible operating
systems and/or have programming knowledge. These requirements can reduce the accessibility of the tools and
consequently, serve as a hurdle in designing and conducting the observer studies. To address these issues, we
develop an openly available software for conducting the 2-AFC experiments by expert human observers to
quantitatively evaluate the clinical realism of synthetic images. This software is designed to be accessible, secure,
and havemechanisms for both designing new 2-AFC experiments by investigators and performing the
experiments by expert human observers. To achieve these goals, we design this software to beweb-based and
with a dual-user ‘Investigator-Reader’ interface. The ‘Investigator interface’ allows an investigator to design a
2-AFC experiment and upload the real and the synthetic images. The ‘Reader interface’ allows the expert human
observers recruited by this investigator to perform the 2-AFC experiment. The programming environment for

Figure 1. Illustrating the relationship in equation (25) between the ideal-observer AUC and similarity in distributions of (ˆ)q f1 and

(ˆ)q f2 for a two-pixel image setup. (a)The computed AUCvalues as a function of the Bhattacharyya coefficient between (ˆ)q f1 and (ˆ)q f2
(equation (24d)). (b1-4)The computed AUCvalues for four representative cases.We note in (b4) that for perfect overlap between

(ˆ)q f1 and (ˆ)q f2 , the ideal-observer AUC achieves the lower bound of 0.5.
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building the software is detailed in appendix C. In the following, we focus on describing themain functionalities
of this software and the procedures for the investigator and reader to design and perform the 2-AFC experiment.

3.1.Developed software
3.1.1. Investigator interface
The layout for the investigator interface is shown infigure 2. As a first step, the investigator is required to provide
a project title and a corresponding four-digit passcode, which the investigator should then sharewith the
readers. This ensures that only readers authorized by this investigator can access the images, thus ensuring the
security of the images. To improve the accessibility for readers, the investigator is asked to provide instructions
for the readers to perform the 2-AFC experiment on the uploaded images. These instructions will be displayed
on the screen once a reader begins the experiment. Our software allows the investigator to upload an arbitrary
number of image pairs. The investigator is also provided an option to shuffle the order of image pairs. Finally, the
investigator is asked to provide an email address, towhich the results of the observer study from each reader
would be sent. Note that if an investigator receives results with a percent accuracymuch lower than 50%, this is
likely an indication that the observer is not trained and, thus, the results should be treatedwith caution.

3.1.2. Reader interface
The reader is required to provide the project title and the corresponding passcode to access the images uploaded
by a specific investigator. If these entries are provided correctly, the readerwill be directed to thewebpage, as
shown infigure 3, to perform the 2-AFC experiment. In this experiment, a synthetic image sampled from (ˆ)q f1

and a real image sampled from (ˆ)q f2 are presented side-by-side (section 2.1). For each image pair, the reader is
asked to identify the image that they perceive as real.Whilemaking the decision, the reader can adjust the
contrast and invert the intensities of the images. The goal of providing these functionalities is to increase the
clinical relevance and rigor of the observer study. The reader is also asked to provide a confidence level for the
decision. The interpretations of the confidence levels are provided to the reader (figure 3). These interpretations
are similar to those used in previous studies to conduct human-observer studies (Chen et al 2016,Ma et al 2017).
The confidence levels could be a useful tool for improving the design of the synthesis technique after the
observer-study evaluation. For example, if an expert reader correctly distinguishes the real image from the
synthetic imagewith high confidence level, this could indicate that the synthetic image is highly unrealistic.
Investigators could then incorporate such feedbackwhile improving the design of their synthetic-image-
generation approaches. Additionally, the reader is providedwith an option to leave additional comments.

3.2. Evaluating usability of the developed software
To evaluate the usability of our software, we conduct a systemusability scale (SUS) survey (Brooke 1996). This
survey is widely used to test the usability of newly developed software andwebsites. The SUS evaluates a software
on threemain aspects, namely, effectiveness, efficiency, and satisfaction. These aspects assess whether users

Figure 2.The investigator interface.
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achieve their goals successfully, the effort and/or resource spent to achieve the goals, andwhether the user
experience is satisfactory, respectively.

The SUS surveywas designed by adapting fromBrooke (1996) and consisted of a 10-item questionnaire
about the softwarewith five response options for respondents: strongly disagree, disagree, neutral, agree, and
strongly agree (table 1). For the odd-numbered items, a score of 0was assigned to ‘strongly disagree’ and a score
of 4was assigned to ‘strongly agree’. For the even-numbered items, a score of 4was assigned to ‘strongly disagree’
and a score of 0was assigned to ‘strongly agree’. The scoreswere then added, and the summed score was
multiplied by 2.5 such that the eventual score fell between 0 and 100.

Wefirst conducted the surveywithfive board-certified nuclearmedicine physicians with years of expertise
ranging from7 to 40 years (median: 12 years, average: 20.4 years), one nuclearmedicine physicist, and one
nuclearmedicine resident. These users are considered as the expert human observers whowould use our
software to evaluate the clinical realism of synthetic images. Additionally, we conducted the surveywithfive
users whowere asked to evaluate the software as investigators designing an observer study. Conducting the
surveywith all these users provides evidence for the utility of the software in practical settings.

3.3. Evaluating the clinical realismof a positron emission tomography (PET) image-synthesis technique
using the developed software
Todemonstrate the application of our software to quantitatively evaluate the clinical realism of image-synthesis
techniques, we used the software to evaluate a recently developed technique for oncologic PET. This technique is
a stochastic and physics-basedmethod that generates 2D18 F-fluorodeoxyglucose (FDG)-PET images of patients
with lung cancer (Liu et al 2021a). By following the simulation procedure detailed in Liu et al (2021a), we

Figure 3.The reader interface.

Table 1.The systemusability scale (SUS) survey.

Index Statement

1 I think that I would like to use this software frequently.

2 I found the software unnecessarily complex.

3 I thought the softwarewas easy to use.

4 I think that I would need the support of a technical person to be able to use this software.

5 I found the various functionalities of this software werewell integrated.

6 I thought therewas toomuch inconsistency in this software.

7 I would imagine thatmost people would learn to use this software very quickly.

8 I found the software very cumbersome to use.

9 I felt very confident using the software.

10 I needed to learn a lot of things before I could get goingwith this software.
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generated 50 synthetic PET images for our 2-AFC study. The source code for this technique is openly available at
https://github.com/ziping-liu/A-stochastic-and-physics-based-method-to-generate-oncological-PET-
images.git. Our evaluation studywas retrospective, involved clinical images, andwas IRB-approved andHIPAA-
compliant with informed consent beingwaived.

The 2-AFC study using our developed softwarewas conducted by six expert readers, including five board-
certified PETphysicians (BAS, FD, JCM,TJF, andMI) and one PET physicist (RL). The readers were highly
experienced in reading PET scans, with years of expertise ranging from7 to 40 years (median: 16 years, average:
20.3 years). During the study, each of the 50 synthetic images was pairedwith an existing clinical PET image to be
displayed to the readers simultaneously with our software (section 3.1.2;figure 3). The readers were then asked
to identify the real image, provide a confidence level for the decision, and optionally leave a comment.We then
computed the percentage of times that each reader correctly identified the real PET image.

4. Results

4.1. Evaluating usability of the developed software for conducting 2-AFC experimentswith expert human
observers
In this section, we report the outcome of the SUS survey conducted to evaluate the usability of the developedweb
application (section 3.2). Figure 4 presents the distribution of responses from (A) seven expert human readers
and (B)five observer-study designers to each item in the questionnaire described in table 1. Figure 5 shows the
total score computed for each user based on the rule defined in section 3.2. For the group of expert human
readers, amean score of 84with standard deviation of 8was observed. Similarly, amean score of 87with
standard deviation of 5was obtained for the group of investigators. Based on Lewis and Sauro (2018), these
results indicate that our software is very highly usable.

Figure 4.Distribution of responses to each item in the questionnaire from (A) seven expert human readers and (B)five observer-study
designers participating in the systemusability scale (SUS) survey.
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4.2. Evaluating the clinical realismof a PET image-synthesis technique using the developed software
Table 2 shows the percent accuracy andmedian confidence level for each expert human observer participating in
the 2-AFC study to evaluate the clinical realism of the stochastic and physics-based image-synthesis technique
using our developed software, as described in section 3.3.We observe that all the readers identified the real PET
image correctly only∼50%of the time. Additionally, for half of the readers, themedian value of confidence
levels was�3.

Figure 6 shows the number of correct (upper row) and incorrect (lower row) decisionsmade by the (a)five
PETphysicians, (b) the PETphysicist, and (c) all the readers, respectively, at each confidence level.When
combining all the readers, only 164/300 (55%)decisions weremade correctly. Among these correct decisions,
only 71 (43%)weremadewith confidence levels�4. Additionally, 34/136 (25%) incorrect decisions weremade
with high confidence levels�4.

5.Discussion

To ensure that simulation-based development and evaluation ofmedical imagingmethods are clinically
relevant, images generated by the synthesis techniquemust be clinically realistic and, ideally, have the same
distribution as that of real images. Thefirst contribution of this work is to theoretically demonstrate that an
ideal-observer-study-based approach provides amechanism to quantitatively evaluate the similarity in
distributions between the real and synthetic images. Further, we show that theAUC for an ideal observer can be
expressed, to an excellent approximation, by the Bhattacharyya distance between the distributions of real and
synthetic images. Thus, when the ideal-observer AUCdecreases, this indicates that the distance between the two
distributions decreases.Moreover, a lower bound of AUC= 0.5 indicates that the distribution of the synthetic
images exactlymatches that of the real images. Thus, by quantifying the similarity in distributions between the
real and synthetic images, this ideal-observer-study-based approach provides a theoretical foundation for
quantitative evaluation of the clinical realism of synthetic images.

The second contribution of thismanuscript is to develop aweb-based platform for facilitating the use of
human-observer-study-based approaches to quantitatively evaluate the clinical realism of synthetic images. Our

Figure 5.Total score for each user participating in the systemusability scale (SUS) survey. (NM: nuclearmedicine).

Table 2.Percent accuracy andmedian confidence level for each expert
reader participating in the 2-AFC study.

Reader Percent accuracy Median confidence level

PET physician 1 44% 2

PETphysician 2 58% 4

PETphysician 3 50% 2

PETphysician 4 58% 3

PETphysician 5 44% 4

PETphysicist 58% 4
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software is openly available, does not require installation on a local workstation, is platform-independent,
eliminates the need for on-site study, and allows simultaneous access bymultiple users. The goal of
incorporating all these features is to strengthen the usability of this software. Additionally, our software provides
features that allow varying the contrast and intensity of images. This leads to an user interface that is similar to
those present in clinical tools, thus further strengthening the rigor and clinical relevance of the 2-AFC
experiments. Our results from the SUS survey shown in section 4.1 demonstrate that the software is highly user-
friendly and accessible. Further, our software providesmultiple features to alignwith theGeneral Data
ProtectionRegulation policies. Specifically, the software providesmechanisms to secure stored data, allow users
to delete uploaded data, and prevent data fromunauthorized access. All these features are important for
evaluation studies that include patient data.

Our developed software can be used to evaluate a large class of image-synthesis techniques, including
physics-basedmethods (Duchateau et al 2017,Ma et al 2017, Leung et al 2020,Hamdi et al 2021), generative
adversarial network-basedmethods (Costa et al 2017,Nie et al 2017,Wang et al 2021), and other AI-based
methods (Chartsias et al 2017b, Xiang et al 2018, Bahrami et al 2020,Dutta et al 2022). Further, while the key
purpose of our software is evaluating the realism of synthetic images, the software can also be used to conduct
2-AFC experiments for performing image-quality assessment. For this secondary purpose, tools have been
developed previously (Vuong et al 2018, Genske and Jahnke 2022). Similar to those tools, our software can be
used to evaluate newly developed image-reconstruction and image-processingmethods on signal-detection
tasks.

Another application of the proposed realism-evaluation strategies is in assessing the realism of synthetic
images that are generated for virtual clinical trials. For this application, it is important to account for the clinical
task of interest and not just assess whether the images look realistic to a human observer (Badano 2017). In that
context, our ideal-observer-study-based approach provides amechanism to quantify the difference in
distributions of real and synthetic images. Further, performance on clinical tasks of interest typically depends on
the distribution of the image. Future researchmay reveal that having ameasure of the difference between the
distributions of real and synthetic images can help to objectively compare the performance on the clinical task
with those images. In that case, our theoretical formalism could provide amechanism to account for the clinical
task of interest when evaluating the realism of synthetic images.

As a secondary finding of this work, our evaluation of a stochastic and physics-based image-synthesis
technique (section 3.3) using the expert-human-observer-based studywith the developed software indicates that
the expert readers had limited ability to distinguish the real images from the synthetic images. As shown in
table 2, all the expert readers, even including themost experienced PETphysicianwith 40 years of reading PET

Figure 6.Number of correct (upper row) and incorrect (lower row)decisionsmade by the (a)five PET physicians, (b) one physicist,
and (c) all the readers, at each confidence level.
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scans, correctly identified the real images only in∼50%of the cases. Additionally, we observe from figure 6 that
among the 164 (out of 300) correct decisions, only 43%weremadewith high confidence levels, suggesting that
the readers were not confident evenwhen they correctly identified the real image.Moreover, the readers were
falsely confident for 25%of incorrect decisions. These resultsmotivate the use of the image-synthesis technique
to generate images for the development and evaluation of awide range of PET imagingmethods. In fact, this
techniquewas used to objectively evaluate a recently developed PET segmentationmethod (Liu et al 2021b).

There are some limitations in this work. First, our ideal-observer-study-based approach to evaluate the
clinical realism of synthetic images was presented in theory and not yet applied to a clinical scenario. As shown in
section 2, developing the ideal observer requires knowledge of the probability distributions of the real and
synthetic images. However, in clinical studies, these distributions are high-dimensional and do not have a
known analytical form. To address these issues, AI-basedmethods are showing promise in approximating the
ideal-observer test statistics for signal-detection tasks (Kupinski et al 2001, Zhou et al 2019b). Our theoretical
formalismmotivates extending thesemethods for the task of clinical realism evaluation. Second, our theoretical
formalismwas presented specifically for an ideal observer and thus, we reiterate that it should not be used to
directly interpret results obtainedwith expert human observers. However, in that context, we do point out that
several studies (He et al 2004, Li et al 2016)have shown correlations between the performance of human
observers and channelizedHotelling observers (CHOs). TheCHOs utilize templates that are derived from the
first- and second-order statistics of the channel vectors extracted from the images. Thus, in special cases where
the channel vectors are sufficient statistics for describing the distributions of real and synthetic images, our ideal-
observer analysismay be used to quantify the similarity in distributions of real and synthetic images. Examining
this connection is an important future research direction. A third limitation is that ourweb application is
currently designed to evaluate the realism of synthetic images on a per-slice basis and not the entire 3D volume.
Additionally, in the designed application, the slices are displayed only in a single orientation. Expanding theweb
application to display images in 3D and inmultiple orientations is an important area of future development.
Finally, our web application is currently developed for conducting 2-AFC experiments. Considering that
different variants of the 2-AFC experiment have been used in the human-observer studies (Zhang et al 2016,
Ikejimba et al 2019), expanding our software to allow conducting those experiments is another important area of
future development.

6. Conclusion

In this work, we investigated two observer-study-based approaches to quantitatively evaluate the clinical realism
of synthetic images.We theoretically demonstrated that an ideal-observer-study-based approach provides a
mechanism to quantify the similarity in distributions of real and synthetic images. Further, we showed that the
ideal-observer AUC can be expressed, to an excellent approximation, by the Bhattacharyya distance between the
distributions of real and synthetic images. Additionally, we developed a software that provides aweb-based
platform to facilitate the conducting of expert-human-observer studies for quantitative evaluation of the realism
of synthetic images. This software is available at https://apps.mir.wustl.edu/twoafc. The software provides
multiple functionalities towards increasing the rigor and clinical relevance of 2-AFC experiments. Our results
from the SUS survey demonstrate that this software enables designing and performing 2-AFC experiments with
expert human observers in a highly accessible and user-friendlymanner. Finally, as a secondary finding of this
work, evaluation of a stochastic and physics-based PET image-synthesis technique showed that the expert
human observers were generally unable to distinguish the real images from the synthetic images. Thisfinding
motivates the application of this technique to the development and evaluation of PET imagingmethods.
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AppendixA

In this appendix, we prove that when an observer performs a 2-AFC experiment, the expression for the
probability of a correct decision (equation (1)) is equal to theAUC for that observer. Our proof is similar to that
provided in Barrett et al (1998) but for a different context. In that paper, the derivationwas presented in the
context of performing a 2-AFC study to evaluate the observer performance for a signal-detection task.Here, we
paraphrase the derivation for the application of evaluating the clinical realism of synthetic images.

Proof.Consider an observer performing the task of identifying an image as synthetic (H1) or real (H2). For a
given image, the observer calculates a test statistic, denoted by a random variable t, and then compares the value
of t to a threshold, denoted by x. If t x , the observer will identify the image as real, i.e. assign the image toH2.
Otherwise, the image is considered synthetic and assigned toH1.

The performance of this observer can be fully specified by two quantities. Thefirst quantity, referred to as the
true-positive fraction (TPF), measures the fraction of times that the observer identifies the image as real when
the image is indeed real. The second quantity, referred to as false-positive fraction (FPF), measures the fraction
of times that the observer identifies the image as real when the image is in fact synthetic. Denote the probability
of an event by (·)Pr and the probability distribution of a randomvariable by (·)pr . Given the threshold x, the TPF
and FPF can be calculated as follows:

( ) ( ∣ ) ( ∣ ) ( )ò= =
¥

x t x H t t H aTPF Pr d pr , A.1
x

2 2

( ) ( ∣ ) ( ∣ ) ( )ò= =
¥

x t x H t t H bFPF Pr d pr . A.1
x

1 1

Then, the expression for the AUC can be obtained in terms of the TPF and FPF as

( ) ( ) ( )ò= x x aAUC dFPF TPF A.2
0

1

( ) ( ) ( )ò= -
-¥

¥
x

x
x x bd

d

d
FPF TPF , A.2

where, in the second step, we have changed the variable of integration from ( )xFPF to x. For convenience of
notation, we define ( ) ( ∣ )ºp t t Hprj j . Using equation (A.1b) and Leibniz’s rule, we have

( ) ( ) ( )= -
x

x p x
d

d
FPF . A.31

Then, we can re-write equation (A.2b) as

( ) ( ) ( )ò ò=
-¥

¥ ¥
x p x t p t aAUC d d A.4

x
1 2

( ) ( ) ( ) ( )ò ò= -
-¥

¥

-¥

¥
x t p x p t t x bd d step . A.41 2

Since the test statistic is calculated based on the image f̂ , we consider t as a function of f̂ such that (ˆ)q=t f .

Thus, we can furtherwrite theAUC in equation (A.4) in terms of integrals over f̂ . For this purpose, wefirst
express the term pj(t) as

( ) ˆ ( ∣ˆ) (ˆ∣ ) ( )ò=
¥

p t t H af f fd pr pr A.5j
M

j

ˆ (ˆ∣ ) [ (ˆ)] ( )ò d q= -
¥

H t bf f fd pr , A.5M
j

where, in the second step, the function (ˆ)q=t f is represented as a probabilisticmapping. For convenience of
notation, we define (ˆ) (ˆ∣ )ºq Hf fprj j . Then, from equations (A.4b) and (A.5), we obtain

ˆ (ˆ) [ (ˆ)] ˆ (ˆ ) [ (ˆ )] ( ) ( )ò ò ò òd q d q= - ¢ ¢ - ¢ -
-¥

¥

-¥

¥

¥ ¥
x t q x q t t x af f f f f fAUC d d d d step A.6M M

1 2

ˆ (ˆ) ˆ (ˆ ) [ (ˆ)] [ (ˆ )] ( ) ( )ò ò ò òd q d q= ¢ ¢ - - ¢ -
¥ ¥ -¥

¥

-¥

¥
q q x x t t t x bf f f f f fd d d d step A.6M M

1 2

ˆ ˆ (ˆ) (ˆ ) ( (ˆ ) (ˆ)) ( )ò ò q q= ¢ ¢ ¢ -
¥ ¥

q q cf f f f f fd d step , A.6M M
1 2

where in the second step, we have interchanged the order of integration and, in the third step, we have used the
sifting property of the delta function to perform the integrals over x and t.We then immediately see that
equation (A.6c) has the same form as in equation (1). ,
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Appendix B

In this appendix, we provide the derivation for obtaining the relationship between the probability distribution of
the log-likelihood ratioλ under the two hypothesis (equation (10)).

Wefirst apply inverse Fourier transform to equation (9) on both sides:

( ) ( ) ( )⎛
⎝

⎞
⎠òl x y x

p
p xl= +

-¥

¥
p d

i

2
exp 2 i . B.12 1

By letting x= +
p

z i

2
, we have

( ) ( ) ( ) ( ) ( )òl l y p l=
-¥+

¥+

p

p
p z z zexp d exp 2 i . B.22 1

i
2

i
2

As proven in Barrett et al (1998), the contour in equation (B.2) can be shifted as long as 〈Λ〉2 isfinite, thus,
yielding

( ) ( ) ( ) ( ) ( )òl l y p l=
-¥

¥
p z z z aexp d exp 2 i B.32 1

( ) ( ) ( )l l= p bexp . B.31

AppendixC

In this appendix, we describe the programming environment of the developedweb application.
Theweb applicationwas developed onMicrosoftʼs .NET 6 software framework and leveraged the Razor

Pagesweb developmentmodel. The Razor Pagesmodel incorporates themodel-view-viewmodel design pattern
to facilitate separation of the user-interface layer from the backend domain layer. Themodel-view-viewmodel
pattern is an object-oriented-programming paradigm characterized by the use of an intermediary viewmodel
object that serves to expose data withinmodel objects for presentation to the user within the view. The
application is primarily written in theC# programming language for server-side operations, and adopts the
object-oriented-programming approach. The application also consists of a client-side layer written in JavaScript
to deliver responsive and dynamic user-interface functionalities to the user. The client-side layer integrates data
retrieved from the server with the user-interface to create functionality that is not dependent on additional
HTTP requests to render. TheModule Pattern is used to scope client-side code to defined areas within the
application and encapsulate application logic. Application data is persistedwithin a SQL Server relational
database instancewhich communicates with the application throughMicrosoftʼs Entity Framework object-
relational-mapping tool. AMicrosoft Azure B2C tenant instancewas employed to handle user access and
authentication into the application. TheB2C tenant also handles third-party authentication for the application.
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