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Abstract
Background: In silico clinical trials are becoming more sophisticated and allow
for realistic assessment and comparisons of medical image system models.
These fully computational models enable fast and affordable trial designs that
can closely capture trends seen on real clinical trials.
Purpose: To evaluate three breast imaging system models for digital mam-
mography (DM) and digital breast tomosynthesis (DBT) in a fully-in-silico
longitudinal study.
Methods: We developed in silico models for three different breast imaging sys-
tems by modeling relevant characteristics such as detector technology, pixel
size, number of projections, and angular span. We use a computational image
reader to detect masses at different growing stages to compute the relative
system performance. Similarly, we compare calcification cluster detectability
across systems. The Detectability area under the ROC curve (AUC) was cal-
culated for each combination of breast density, device model, lesion size and
type, and search area. We compared the absolute and relative AUC values for
DM and DBT. The trial consisted of 45 000 simulated images corresponding to
750 virtual digital patient models.
Results: We observed proportional AUC values with increasing mass size.
On the other hand, higher breast densities showed lower AUC values. For
masses, we found significant performance differences between device models.
The highest average AUC difference between DBT and DM was 0.109, benefit-
ing DBT.For calcifications,DM showed higher performance than DBT,especially
in highly dense breasts. The highest AUC difference on a model was –0.055,
benefiting DM.
Conclusions: In this fully-in-silico imaging trial, we compared three imaging
systems with different detector technologies on the same cohort of virtual
digital patient models. We found that breast device systems can lead to visi-
bility differences in masses and calcifications. Our longitudinal, multi-device in
silico study was possible because of the versatility and flexibility of in silico
methods.This study shows the advantages of this in silico methodology in lower-
ing the resources needed for device development, optimization, and regulatory
evaluation.
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1 INTRODUCTION

The Food and Drug Administration (FDA) has, at this
writing, approved five different devices for x-ray-based
screening breast imaging from four companies.1, 2

Although using the same fundamentals, they have dif-
ferences in their underlying technology including in such
areas as detector technology, number of projections,
and reconstruction algorithms. However, the influences
of such technological differences on cancer detectabil-
ity are currently unclear. Typically, characterization of
x-ray imaging devices is performed by measuring their
noise power spectrum (NPS) and modulation transfer
function (MTF).3 Although these two metrics can provide
information about the amount of noise on, and general
sharpness of, the produced images, they might not
be relevant for clinical tasks that involve nonlinear 3D
image reconstruction. Understanding how detectability
of clinically relevant lesions (e.g., calcification clus-
ters, masses) for a range of devices helps discern the
impact of the devices’ technological differences on
patients.

An emerging field for testing and comparing medical
devices is in silico imaging trials.4–6 In silico trials are
partially or completely composed of computational sim-
ulations and models of the objects, imaging devices and
processes of interest. They enable faster development
of clinical devices and accelerates the validation of
existing ones.7–9 Badano et al.10 reported a full in silico
imaging trial for breast cancer detection that replicated
the results of a real-world clinical trial.

In this paper, we discuss an expanded in silico trial
pipeline Virtual Imaging Clinical Trial for Regulatory
Evidence (VICTRE)11, 12 to study the performance of
three breast imaging systems models (ISM) for the
detection of growing breast masses and calcification
clusters over time. These models are based on some
of the characteristics for FDA-approved commercial
systems, including the GE Healthcare SenoClaire (ISM
A), the Hologic Inc. Selenia Dimensions (ISM B), and
the Siemens Inspiration (ISM C). Using an anatomy-
informed growing mass simulation model,12–14 and the
detector models presented by Sengupta et al.,3 we
analyzed the performance for detecting mass lesions
at different growing stages and calcification clusters in
three breast imaging systems.

2 MATERIALS AND METHODS

2.1 Trial population

We generated 750 different breast models on four
breast densities (extremely dense, heterogenously
dense, scattered density, and fatty) in which we inserted
either a growing mass at one of five sizes or a calcifica-

tion cluster. The total number of digital mammography
(DM) and digital breast tomosynthesis (DBT) simula-
tions were 750 × (4 masses + 1 cluster) × (3 devices) ×
(4 breast densities) = 45 000 (Figure 1). All cases were
simulated on the FDA Center for Devices and Radio-
logical Health’s High Performance Computing (HPC)
Cluster using parallel executions of each ISM.

2.2 Breast model

The in silico model of the breast was generated using
Graff ’s open-source model.15 This anthropomorphic
model can generate stochastic knowledge-based breast
models with a complex array of internal tissues including
adipose tissue, glandular compartments, veins, arteries,
Cooper’s ligaments,and others.The model also includes
a list of candidate lesion locations determined by the
position of the terminal duct lobular units,which we used
later when inserting lesions.

Breast density was modeled after the four cate-
gories studied in the original VICTRE trial.10 These
categories correspond to four dense-to-glandular tissue,
ratios where size is inversely proportional to breast den-
sity. Densities are constant and any internal tissue is
static during the lesion-growing process. Further opti-
mizations of the breast model could include a breast
density reduction over time16 and tissue displacement
coupled with the lesion-growing algorithm.

To simulate the compression paddle on a breast
imaging device, the model is converted into a finite
element model by transforming the voxelized volume
to a tetrahedral mesh. The corresponding tetrahedral
model is placed between two rigid plates that simulate
the tissue compression using the open-source software
FEBio.17 Finally, the compressed tetrahedral model is
converted back to a voxelized volume.

2.3 Lesion model

The lesion growth model was developed by Sengupta
et al.12–14 and simulates the internal growth of a breast
mass tumor. Growth of these mass models is driven by
the interstitial tumor pressure, concentration of metabo-
lites, and stiffness of the local tissues. The growing
location of the tumor is randomly selected from the
list of candidate locations based on the model gen-
eration. Cell pressure and growth is calculated based
on surrounding material composition, nutrients, and cell
phenotypes. Active cells with enough energy to divide
proliferate and grow the tumor in a chosen direction
around them. Selected growing directions are based on
the pressure from neighboring cells. The probability of
growth is inversely proportional to the stiffness of the
surrounding tissue (i.e., the tumor will grow less towards
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1962 LAGO and BADANO

F IGURE 1 Flowchart of the virtual patient population and study analysis.

F IGURE 2 Central slice for a growing lesion model at eight consecutive timepoints.

more rigid materials such as glandular tissue or liga-
ments). Initial location of the tumor growth therefore
defines its final shape and size, resulting in each mass
having a unique morphology. Data on tumor size were
extracted at different growing points and ranged from
an average radius of ∼1 mm for the smallest lesion size
to ∼3.5 mm for the largest lesion size (see Figure 2 for
an example of a growing mass). The growing rate was
identical in all cases.

Additionally, we designed random calcification clus-
ters from 8 to 20 calcifications and sizes of 0.05 to
0.15 mm in a maximum volume of 5 mm per side.18

These clusters differ on each realization and were ran-
domized based on parameters controlling size, number
of calcifications, and cluster maximum volume span.
Clusters are generated as a single instance and are
not studied over time, therefore, only one time point
was reported.

2.4 Imaging system model

We simulated the geometry of three different breast
ISM using Monte Carlo simulations with MCGPU.19, 20

Table 1 shows the variability added to these ISMs in
terms of detector pixel size, number of DBT projec-
tions, and detector model used as in Sengupta et al.3

These ISMs were used to produce one planar DM
image and a volumetric DBT image of each of the
exact same breast models for a direct comparison. The
simulated ISMs do not fully represent the commercial
devices since some parameters were not part of this
study. For instance, the pixel pitch of the ISM B for the
DBT is binned on a 2×2 square and the reconstruction
software are proprietary algorithms. All other parame-
ters for the ISMs not mentioned here were taken from
the original VICTRE trial10, 21, 22 (See Supplementary
Material).
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LAGO and BADANO 1963

TABLE 1 Device characteristics modeled in MCGPU as input
parameters for the simulation of different devices.

ISM A ISM B ISM C

Pixel pitch (μm) 100 70 85

Detector technology CsI a-Se a-Se

Detector thickness 0.025 mm Rh 0.02 mm Rh 0.02 mm Rh

# DBT projections 9 15 25

DBT angle range ±12.5◦ ±7.5◦ ±25◦

Reconstruction FBP FBP FBP

Note: Detector technologies are simulated following Sengupta et al.3

Abbreviations:CsI,cesium Iodine;a-Se.amorphous selenium;DBT,digital breast
tomosynthesis; FPB, filtered back projection; ISM, imaging systems model; Rh,
rhodium.

2.5 Image interpretation model

Typically, channelized Hotelling observers (CHOs) have
been used to assess the detectability of lesions on
breast images.23, 24 A reader model (or model observer)
integrates a template based on the average signal (i.e.,
breast lesion) and the average background statistics
(i.e., breast parenchyma). To calculate the average
lesion,we took the average gray level for all lesions cen-
tered in the same pixel, this is necessary since lesions
grow differently on each case thus making it impossible
to do a signal-known template. Average background
statistics are calculated in a similar way, averaging
multiple realizations of the background without a sig-
nal and using the covariates. We chose a CHO using
Laguerre–Gauss channels with parameters adjusted to
the size of the signal25 (see Supplementary Material).

The reader model template was generated by opti-
mally combining the five channels into a single linear
template.

v = Ttg (1)

Kv = cov(v) (2)

where T is the channels matrix and g is the set of
training trials. Finally, we calculated the channel covari-
ance matrix Kv and, along with the average signal s, we
integrate the CHO template:

wCHO = TKv
−1Tts (3)

In previous works, image readers consider the loca-
tion of the signal perfectly known and only test one
location.26 However, this is not realistic since radiolo-
gists are usually not aware of the potential locations,
of the lesions and need to search in large areas of the
image.27 Therefore, in addition to the location-known-
exactly (LKE) paradigm, the reader models in our study
performed a small search around each signal’s potential
location.28 Typically, larger search areas increase the
likelihood of evaluating false positive locations26 com-

plicating the detection task. On the other hand, while
a mass can be localized by its centroid, a calcification
cluster does not have one unique center and the search
area depends on the distribution of the several single
calcifications. Thus, we studied the performance of our
reader models on different search area sizes for both
masses and calcification clusters. The largest search
area was defined as a square region of interest (ROI)
of 59 × 59 px for the DM and 59 × 59 × 7 vx for the
DBT whereas the smallest was one single pixel or voxel.
For search areas, the template w was convolved with
the search area’ and the maximum response on each
search area was taken as the response for that trial.

Note that, since calcification clusters are different
on each realization, no true template includes all the
calcifications. We decided to use a single-calcification
template to search for all calcifications present in the
search area. An LKE strategy is not optimal in this case
for two main reasons: (1) the clusters are not centered
on a single pixel, and (2) the clusters are randomized
with different number and size of calcifications on each
instance. We opted to have a minimum search area
for these clusters so we avoid reducing it so much
so that they are never seen as could happen for LKE
(1 pixel only).Therefore,calcification clusters are always
considered only for a search task.

3 RESULTS

Figure 3 shows the same mass and calcification cluster
as seen by the three different ISMs on both DM and DBT
(central slice) modalities. Signal sizes appear different
because we extracted the same ROI of 159 × 159 px on
devices with different pixel size. Due to ISM B having a
smaller pixel size, signals appear larger. Also, since DBT
technology has multiple slices and ISMs have diverse
number of slices, slice thickness, and angle ranges;
calcification clusters are harder to see on a single slice.

We computed the corresponding dose received by the
glandular tissue on each of the ISMs. Figure 4 shows
a histogram of each of the four densities on the three
different ISMs. Comparisons show high agreement on
the dose levels each of the models received, indicating
that the imaging was performed at a similar level of
radiation dose. These dose distributions follow trends
reported in previous research.10, 20

Figure 5 compares reader model performance for
each mass size on LKE and increasing search areas.
The area under the ROC curve (AUC) values follow
an increasing trend proportional to the lesion radius.
In terms of density, results also show a proportional
increase in AUC with lower density cases.

Figure 6 shows the relative difference between DBT
and DM for each mass size, search area, as well as for
calcification clusters. For masses, in most cases, DBT
outperformed DM modality as seen in previous studies.
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1964 LAGO and BADANO
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F IGURE 3 Sample ROIs (159 × 159 px) for the three ISMs for a mass at 2.5 mm radius and a calcification cluster with 16 calcifications.
DBT is the central slice of the signal center. Note that pixel size is different on each ISM; therefore signals appear with different sizes for the
same ROI. Images are contrast enhanced for visualization purposes. DBT, digital breast tomosynthesis; ISMs, imaging systems models; ROI,
region of interest.

F IGURE 4 Dose distribution for each breast density on each device model for DM modality. Similar doses were used for DBT across the
number of projections. DBT, digital breast tomosynthesis; DM, digital mammography.

In cases with larger search areas, DM shows better
AUC than DBT (especially for higher-density breasts),
which may result from the lower performance of model
observers on larger search areas.

Table 2 shows the weighted averages for all densities
together considering the following proportions: dense
(10%), heterogenously dense (40%), scattered density
(40%), and fatty (10%). Results for all mass sizes are
taken from the LKE data; for calcifications results are
taken from the largest search area data. ΔAUC is also
calculated as the difference AUCDBT − AUCDM.

4 DISCUSSION

For masses, we see a monotonic increase in AUC val-
ues proportional to the lesion radius (Figure 5). ISM A
outperformed the other two ISMs on DM for larger lesion
sizes. ISM B seems to be less sensitive to mass size and
lower AUC. This model also shows a reversal in AUC
trend in larger masses and some breast densities. This
could be a sign of an underperforming reader model
on larger masses (e.g., channel choice is not optimal),

TABLE 2 Weighted AUC averages for each mass size (LKE) and
calcifications (largest search area) for each ISM on DM and DBT.

Lesion size (mm) AUCDM AUCDBT 𝚫AUC

ISM A 0.86 0.716 0.806 0.090

1.63 0.813 0.847 0.034

2.43 0.806 0.857 0.051

3.51 0.838 0.868 0.030

CALC 0.580 0.525 −0.055

ISM B 0.86 0.712 0.782 0.069

1.63 0.765 0.852 0.087

2.43 0.770 0.871 0.101

3.51 0.727 0.864 0.137

CALC 0.579 0.546 −0.033

ISM C 0.86 0.714 0.823 0.109

1.63 0.777 0.873 0.096

2.43 0.797 0.896 0.099

3.51 0.823 0.907 0.084

CALC 0.593 0.550 −0.043

Abbreviations: AUC, area under the ROC curve; DBT, digital breast tomosyn-
thesis; DM, digital mammography; ISM, imaging systems model; LKE, location-
known-exactly.
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LAGO and BADANO 1965

F IGURE 5 AUC results for the different mass sizes for DM and DBT for each of the search areas on three different ISMs. AUC, area under
the ROC curve; DBT, digital breast tomosynthesis; DM, digital mammography; ISMs, imaging systems models.

or background features being closer to some specific
mass sizes.

As breast density decreases, all ISMs showed higher
AUCs, indicating that, when masses are located on
dense breasts, they are most affected by tissue occlu-
sion. Finally, in almost all cases, and especially on lower
densities, masses were more visible on DBT than DM.
This finding agrees with previous in silico10 and clinical
trial results.

On the other hand, calcification clusters seem to be
more detectable in dense breasts than in fatty breasts
on DM images, possibly due to the size differences
that cause more overlapping tissues to confound the
reader models for this type of signal. In all but fatty den-
sities, DM outperformed DBT, with varying degrees of
significance. ISMs differences benefit DM versus DBT,
with some cases showing higher significance,especially
ISM C on dense and heterogenously dense and ISM

B on scattered density. We will continue to investigate
this result.

In terms of search areas, larger search areas have
lower overall AUC values on both DM and DBT for all
models and lesion sizes. Search areas serve in two
different ways: (1) the fact that the reader model is not
only looking at a single location, which introduces more
variability and increases the difficulty of the task,and (2)
although we did not use large search areas, radiologists
always start locating suspicious ROIs and later char-
acterizing them as malignant or benign. Adding a small
search on these regions accounts for exploring the sur-
roundings and not only a single pixel (voxel) location for
the determination of absence or presence of the signal.

Computing the detectability of calcification clus-
ters with traditional model observers presents some
challenges. First, since we randomized their size, num-
ber, and position, each realization had a different
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Lesion Size

0.86 mm

1.63 mm

2.43 mm

3.51 mm

Search

LKE

3x9x9

5x21x21

7x59x59

LKE

3x9x9

5x21x21

7x59x59

LKE

3x9x9

5x21x21

7x59x59

LKE

3x9x9

5x21x21

7x59x59

LKE

3x9x9

5x21x21

7x59x59

0.2 0.1 0.0 0.1 0.2 0.3

better DM | better DBT 

DENSE

0.2 0.1 0.0 0.1 0.2 0.3

better DM | better DBT 

HETERO

0.2 0.1 0.0 0.1 0.2 0.3

better DM | better DBT 

SCATTERED

0.2 0.1 0.0 0.1 0.2 0.3

better DM | better DBT 

FATTY

N/A N/A N/AN/A
CALC.

CLUSTERS

F IGURE 6 Relative AUC reader model performance for the detection of masses at different sizes and calcification clusters on three
different ISMs between DM and DBT modalities. Error bars are 95% confidence intervals. AUC, area under the ROC curve; CALC, calcifications;
DBT, digital breast tomosynthesis; DM, digital mammography; ISMs, imaging systems models; LKE, location-known-Exactly.

 24734209, 2025, 3, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17571 by U

niversity O
f N

evada R
eno, W

iley O
nline L

ibrary on [12/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LAGO and BADANO 1967

organization and difficulty. Although this randomiza-
tion increased the realism of images we generated, it
decreased the efficiency of our reader models. Com-
paring the different ISMs on calcifications, we see that
benefits from DM is more apparent on denser breasts
and with ISMs B and C. Comparing smaller search
areas for calcifications is almost irrelevant since a clus-
ter spans more than the search area, which means
some calcifications are outside it and therefore are never
seen by the reader model. Density seems to affect the
relative AUC, with denser breasts benefiting from DM
and fattier breasts benefiting from DBT. We note that
the CHO models do not consider the pixel size for
each model, and that might cause small performance
variability. However, the model training is performed
especially for each ISM,hence including pixel size in this
process.

5 CONCLUSIONS

We present the results of the first fully detailed longitudi-
nal in silico study comparing the detectability of realistic
growing masses and random calcification clusters using
three different breast imaging system models.

The study presented here highlights the benefits of
in silico clinical trials. A study this size, in real life, would
have prohibitive costs both in time and money, in addition
to the ethical concerns around monitoring a cohort of
patients with known growing tumors for months or years.

The results from this experiment reflect trends seen
in real clinical study results and provide encouragement
for using in silico clinical trials as part of medical image
development and regulatory evaluation.
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