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Lesion-Harvester: Iteratively Mining Unlabeled
Lesions and Hard-Negative Examples at Scale
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Abstract— The acquisition of large-scale medical image
data, necessary for training machine learning algorithms,
is hampered by associated expert-driven annotation costs.
Mining hospital archives can address this problem, but
labels often incomplete or noisy, e.g., 50% of the lesions
in DeepLesion are left unlabeled. Thus, effective label har-
vesting methods are critical. This is the goal of our work,
where we introduce Lesion-Harvester—a powerful system
to harvest missing annotations from lesion datasets at
high precision. Accepting the need for some degree of
expert labor, we use a small fully-labeled image subset to
intelligently mine annotations from the remainder. To do
this, we chain together a highly sensitive lesion proposal
generator (LPG) and a very selective lesion proposal clas-
sifier (LPC). Using a new hard negative suppression loss,
the resulting harvested and hard-negative proposals are
then employed to iteratively finetune our LPG. While our
framework is generic, we optimize our performance by
proposing a new 3D contextual LPG and by using a global-
local multi-view LPC. Experiments on DeepLesion demon-
strate that Lesion-Harvester can discover an additional
9,805 lesions at a precision of 90%. We publicly release the
harvested lesions, along with a new test set of completely
annotated DeepLesion volumes. We also present a pseudo
3D IoU evaluation metric that corresponds much better to
the real 3D IoU than current DeepLesion evaluation metrics.
To quantify the downstream benefits of Lesion-Harvesterwe
show that augmenting the DeepLesion annotations with our
harvested lesions allows state-of-the-art detectors to boost
their average precision by 7 to 10%.

Index Terms— Lesion harvesting, lesion detection, hard
negative mining, pseudo 3D IoU.
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I. INTRODUCTION

PARALLELING developments in computer vision, recent
years have seen the emergence of large-scale medical

image databases [1]–[5]. These are seminal milestones in
medical imaging analysis research that help address the data-
hungry needs of deep learning and other machine learning
technologies. Yet, most of these databases are collected retro-
spectively from hospital picture archiving and communication
systems (PACSs), which house the medical image and text
reports from daily radiological workflows. While harvesting
PACSs will likely be essential toward truly obtaining large-
scale medical imaging data [6], their data are entirely ill-
suited for training machine learning systems [7] as they
are not curated from a machine learning perspective. As a
result, popular large-scale medical imaging datasets suffer
from uncertainties, mislabelings [3], [8], [9] and incomplete
annotations [5], a trend that promises to increase as more
and more PACS data is exploited. Correspondingly, there is
a great need for effective data curation, but, unlike in com-
puter vision, these problems cannot be addressed by crowd-
sourcing approaches [10], [11]. Instead this need calls for
alternative methods tailored to the demanding medical image
domain. This is the focus of our work, where we articulate a
powerful and effective label completion framework for lesion
datasets, applying it to harvest unlabeled lesions from the
recent DeepLesion dataset [5].

DeepLesion [4], [5] is a recent publicly released medical
image database of CT sub-volumes along with localizations
of lesions. These were mined from computed tomography
(CT) scans from the US National Institutes of Health Clinical
Center PACS. The mined lesions were extracted from response
evaluation criteria in solid tumours (RECIST) [12] marks
performed by clinicians to measure tumors in their daily work-
flow. See Fig. 1(a) for an example of a RECIST marked lesion.
In total, DeepLesion contains 32, 735 retrospectively clinically
annotated lesions from 10, 594 CT scans of 4, 427 unique
patients. A variety of lesion types and subtypes have been
included in this database, such as lung nodules, liver tumors,
and enlarged lymph nodes. As such, the DeepLesion dataset is
an important source of data for medical imaging analysis tasks,
including training and characterizing lesion detectors and for
developing radiomics-based biomarkers for tumor assessment
and tracking. However, due to the RECIST guidelines [12]
and workload limits, physicians typically marked only a small
amount of lesions per CT scan as the finding(s) of interest.
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Fig. 1. (a) depicts an example of a RECIST marked CT slice. RECIST
marks may be incomplete by both not including co-exsiting lesions,
e.g., the blue 2D box in (b), or by not covering the 3D extent of lesions in
other slices, e.g., the green and blue 3D boxes in (c). We aim to complete
lesion annotations in both senses of (b) and (c).

Yet, as shown in Fig. 1(b), more often than not CT images
exhibit multiple co-existing lesions per patient. Indeed, based
on a recent empirical study [13], and our own results pre-
sented later, there are about the same quantity of missing
findings compared to reported ones. Moreover, as Fig. 1(c)
illustrates, RECIST marks do not indicate the 3D extent,
leaving tumor regions of the same instance in adjoining slices
unmarked. This severely challenges the development of high-
fidelity disease detection algorithms and artificially limits the
dataset’s usefulness for biomarker development. Nevertheless,
it is highly impractical and infeasible to recruit physicians
to manually revise and add back annotations for the entire
database.

To address this issue, we aim to reliably discover and
harvest unlabeled lesions. Given the expert-driven nature of
annotations, our approach, named Lesion-Harvester, accepts
the need for a small amount of supplementary physician labor.
It integrates three processes: (1) a highly sensitive detection-
based lesion proposal generator (LPG) to generate lesion can-
didates, (2) manual verification of a small amount of the lesion
proposals, and (3) a very selective lesion proposal classifier
(LPC) that uses the verified proposals to automatically harvest
prospective positives and hard negatives from the rest. These
processes are tied together in an iterative fashion to strengthen
the lesion harvesting at each round. Importantly, for (1) and (3)
our framework can accept any state-of-the-art detector and
classifier, allowing it to benefit from future improvements in
these two domains. Even so, in this work, we develop our
own LPG, called contextual-enhanced CenterNet (CECN), that
combines the recent innovations seen in CenterNet [14] and the
multitask universal lesion analysis network (MULAN) [15].
We also propose a hard negative suppression loss (HNSL) to
boost our LPG with harvested hard negative cases. Among
choices of LPCs, we use a global-local classifier with multi-
view input (GLC-MV) to further reduce the false positive rate
of produced lesion proposals. With our framework, we are
able to harvest an additional 9, 805 lesions from DeepLesion,
while keeping the label precision above 90%, at a cost of
only fully annotating 5% of the data. Compared to the original
dataset this is a boost of 11.2% in recall rates. Thus, our lesion
harvesting framework, along with the introduced CECN LPG
and HNSL, represent our main contributions.

However, we also provide additional important contribu-
tions. For one, we completely annotate and publicly release
1 915 of the DeepLesion subvolumes with RECIST marks,
in addition to our harvested lesions. Second, we introduce
and validate a new pseudo 3D (P3D) evaluation metric,
designed for completely annotated data, that serves as a
much better measurement of 3D detection performance than
current practices.1 Since all DeepLesion test data, up to this
point, is incompletely annotated, these contributions allow
for more accurate evaluations of lesion detection systems.
Finally, we report concrete benefits of harvesting unlabeled
lesions. To do this, we train several state-of-the-art detection
systems [14], [16] using data augmented with our harvested
prospective lesions and hard negative examples. We show that
with even the best published method to date [15], the average
precision (AP) can be improved by 10 percent. We also show
that our CECN LPG can also be used as an extremely effec-
tive detector, outperforming the state-of-the-art and providing
additional methodological contributions to the lesion detection
topic.

II. RELATED WORK

A. Detection With Incomplete Ground-Truth

The problem of missing annotations [17], [18] is related to,
but differs from scenarios where the labeled data is indepen-
dent from the unlabeled data. Thus, approaches to address the
latter, such as deep growing learning [19], which uses a small-
sized but fully-annotated training set to initialize the model and
then gradually expand training examples with pseudo labels,
would not fully exploit DeepLesion labels. Instead, labeled
and unlabeled lesions in DeepLesion often co-exist in the same
training images, which changes the nature of the problem.

Ren et al., [17] addressed the partial label problem and
reduced the effect of missing labels by only using true posi-
tives and hard negatives for training detectors, where the latter
were defined as region proposals with at least an overlap of 0.1
with existing ground truth boxes. This setup, which we denote
overlap-based hard sampling (OBHS), should help mitigate
false negatives; however, it inevitably sacrifices a large amount
of informative true negatives that have ≤0.1 overlap with
ground truth boxes. Wu et al., [18] proposed overlap-based soft
sampling (OBSS) to improve object detectors, which weights
contributions of region proposals proportional to their overlap
with the ground truth. These strategies reduce the impact of
true negatives not overlapping with the ground truth. Yet,
true negatives in the background body structures are usually
informative for training a robust lesion detector. By explicitly
attempting to harvest prospective positives, Lesion-Harvester
minimizes false negatives without suppressing informative
background regions.

Focusing specifically on DeepLesion, Wang et al., [20]
first applied missing ground-truth mining (MGTM) to mine
unlabeled lesions on the RECIST-marked CT slices. Com-
plementary with MGTM, they also apply slice-level label
propagation (SLLP) to propagate bounding boxes from the

1We open source our evaluation code, annotations, and results at
https://github.com/JimmyCai91/DeepLesionAnnotation.
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Fig. 2. The flowchart of Lesion-Harvester. The second and last columns depict the initial iteration and follow-up iterations, respectively, where
we use 1©, 2©, 3©, and 4© to indicate the sequence of operations. In step 1©, we train (or finetune) the lesion proposal generator (LPG), and then,
in step 2©, we apply it on CT volumes V to generate 3D proposals. In step 3©, we train/finetune the lesion proposal classifier (LPC), and apply it in
step 4© to automatically separate proposals into positive and negative groups as P+

H,k and P−
H,k, respectively.

RECIST-marked slices to adjacent slices to reconstruct lesions
in 3D. Different from MGTM-SLLP, Lesion-Harvester con-
ducts lesion mining on the whole CT volume. It also alter-
nately mines and then updates the deep learning models,
to iteratively strengthen the harvesting process. Finally, it also
identifies and then integrates hard negative examples using
hard negative suppression loss (HNSL).

B. Label Propagation From Partial Labels

Our work also relates to efforts on knowledge distillation
and self label propagation. Radosavovic et al., [21] proposed
a data distillation method to ensemble predictions and auto-
matically generate new annotations for unlabeled data from
internet-scale data sources. Gao et al., [22] investigated prop-
agating labels from fully-supervised interstitial lung disease
masks to unlabeled slices using convolutional neural networks
(CNNs) and conditional random fields. Cai et al., [23] recov-
ered 3D segmentation masks from 2D RECIST marks in
DeepLesion by integrating a CNN and GrabCut [24]. We also
tackle the large-scale and noisy DeepLesion dataset, but we
process each CT volume as a whole, rather than focus on
post-processing a given region of interest.

C. Lesion Detection

Recently, Yan et al., [4] introduced the DeepLesion dataset,
which is a large-scale clinical database for whole body lesion
detection, with follow-up work focusing on incorporating 3D
context into 2D two-stage region-proposal CNNs [13], [15].
These studies demonstrate the importance of incorporating 3D
context in lesion detection and currently represent the state-
of-the-art performance on DeepLesion. Some recent works
also investigated one-stage detectors [25], [26]. Compared
with two-stage detectors, one-stage detectors are more flexible,
straightforward, and computationally efficient. Recent work

has also focused on false-positive detection. For instance,
Ding et al., [27] used a 3D-CNN for this task, while Dou
et al., [28] used a multi-scale context which ensembles
three 3D-CNNs with small, medium, and large input patches.
Varghese et al., [29] proposed an interesting novelty detector
(ND) for false positive reduction and applied it to brain
tumor detection. More study is required to determine if their
single layer denoising autoencoder has enough capacity to
handle lesions with large appearance variabilities. Finally,
Tang et al., [30] showed that hard negative mining can increase
detection sensitivity on DeepLesion.

Unlike the above works, our main focus is on harvesting
missing annotations using a small amount of physician labor.
To do so, we articulate the Lesion-Harvester pipeline that
integrates state-of-the-art detection and classification solutions
as LPG and LPC, respectively. We also introduce a one-
stage multi-slice LPG that performs better than prior work.
Like Tang et al., [30], we also demonstrate the importance of
hard negative mining. Finally, with our lesion harvesting task
completed, we then show how the complete labels can be used
to train the same LPG detection frameworks to better localize
lesions on unseen data.

III. METHODS

Fig. 2 overviews our proposed Lesion-Harvester. As moti-
vated above, we aim to harvest missing annotations from
the incomplete DeepLesion dataset [4], [5]. Additionally,
as Fig. 1(c) demonstrates, another important aim is to fully
localize the 3D extent of lesions, which means we aim to also
generate 3D proposals for both RECIST-marked and unlabeled
lesions. In this section, we first overview our method in
Sec. III-A and then detail each component in Sec.s III-B–III-D.
This is followed by Sec. III-E, which outlines our proposed
pseudo 3D (P3D) evaluation metric.
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A. Overview

For the problem setup, we assume we are given a set of
CT volumes, V = {vi }. Within each volume, there is a set of
RECIST-marked lesions which are denoted as

LR
i = {�R

i, j }, (1)

where �R
i, j is the j -th RECIST-marked lesion in vi .

We would like to use 3D bounding boxes to represent each
lesion or lesion proposal. However, because a RECIST mark
is only applied on the key slice, they only define a set of 2D
boxes:

Ri = {r R
i, j }. (2)

Because volumes are incompletely labeled, if we denote all
lesions within volume vi as Li, then LR

i is a subset of Li. Our
goal is to both determine the 3D extent of unlabeled lesions:

LU
i = Li \ LR

i , (3)

and also recover the full 3D extent of any RECIST-marked
lesion, i.e., convert Ri to 3D bounding boxes. To do this,
we first construct a completely annotated set of CT vol-
umes, VM, by augmenting the original RECIST marks for
these volumes with additional manual annotations for LU

M.
We denote the supplementary and complete RECIST marks
as RU

M and RM.
The remainder of volumes we wish to harvest from are

denoted as VH = V \ VM, which are accompanied by their
incomplete set of RECIST marks, RH. By exploiting RM and
RH, we attempt to discover all unlabeled lesions in VH and
the full 3D extent of both marked and unmarked lesions.
Importantly, we constrain the size of VM to be much smaller
than VH, e.g., 5%, to keep labor costs low.

In the initial round, we train a lesion proposal generator
(LPG) using only the RECIST-derived 2D bounding boxes
RM and RH. To ensure flexibility, any state-of-the-art lesion
detector can be used, either an off-the-shelf variant or the cus-
tomized contextual-enhanced CenterNet (CECN) approach we
elaborate in Sec. III-B. After convergence, we then execute the
trained LPG on V, producing a set of 3D lesion proposals, P.
These likely cover a large number of lesions but they may
suffer from high false positive rates. To correct this, we divide
P into PM and PH as proposals generated from VM and VH,
respectively. By comparing PM with RM, we can further divide
it into true and false positives:

PR
M = PM ∩ RM, and P−

M = PM \ RM, (4)

where we use a pseudo-3D metric described in Sec. III-E
to determine whether a 3D proposal and a RECIST-derived
2D bounding box intersect. Similarly, we can create a set
of generated lesion proposals that intersect with the RECIST
marks from VH, which we denote PR

H. We then train a lesion
proposal classifier (LPC) by using PR

H and PR
M for positive

training examples and P−
M for negative examples. Like the

LPG, any well-performing classification method can be used;
however, we show that global-local classifier with multi-view
input (GLC-MV) is particularly useful. The trained LPC is
then used to classify the remaining proposals from PH into

Fig. 3. Lesion proposal generation.

P+
H and P−

H, which are the harvested positive and negative
lesion proposals, respectively.

In subsequent rounds, we harvest positive and negative
3D proposals to finetune the LPG and begin the process anew.
Yet, when fine tuning the proposed CECN we employ a hard
negative suppression loss (HNSL) using P−

H and P−
M as mined

hard negatives. We index algorithm iterations with subscript
k and each iteration will provide harvested lesion proposals.
Accordingly, the complete pool of all harvested lesions is
iteratively updated as

P+
H = P+

H ∪ P+
H,k, (5)

where we abuse notation here and use ∪ as an operator that
will fuse lesion proposals of the same lesion by simply keeping
the one with the highest detection confidence. For PR

H we
only keep proposals intersecting with the RECIST marks.
As for hard negatives, these are reset after each iteration.
Unless needed, we drop the round index k for clarity. Below,
we elaborate further on the individual system components.

B. Lesion Proposal Generation

The lesion proposal generator (LPG) uses a detection frame-
work to generate lesion proposals. Following the state-of-the-
art on DeepLesion [15], our LPG relies on a 2.5D lesion
detection model to process CT images slice by slice; thus,
2D proposals must be aggregated together to produce 3D
proposals. We outline each consideration below.

1) CECNs: The task of our LPG is to produce as high-
quality lesion candidates as possible. While any state-of-the-
art detection system can serve as LPG, there are attributes
which are beneficial. An LPG with high sensitivity will help
recover unlabeled lesions. Meanwhile, if it retains reasonable
specificity, it will make downstream classification of proposals
into true- and false-positives much more feasible. Computa-
tional efficiency is also important, to not only make training
scalable, but also to be efficient in processing large amounts of
CT images. Finally, simplicity and efficiency are also crucial
virtues, as the LPG will be one component in a larger system.

While 3D LPGs can be powerful, there is no straightforward
approach to apply them on PACS-mined data, like DeepLe-
sion, which only provide 2D RECIST-derived annotations.
The de facto standard in lesion detection for DeepLesion
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are 2D/2.5D approaches [4], [13], [15], [25], [26], [30],
which also avoid the prohibitive computational and memory
demands of 3D LPGs. Thus, our LPG of choice is a CECN,
which combines state-of-the-art one-stage anchor-free 2D pro-
posal generation [14] with 3D context fusion [15]. Others
have articulated the benefits of dense pixel-wise supervision
[16], [30] and one-stage approaches provide a more straight-
forward means to aggregate such signals. Additionally,
the choice of an anchor-free approach avoids the need to
tune anchor-related hyper-parameters. Because lesions have
convex shapes which have centroids located inside lesions,
the center-based loss of CenterNet [14] is a natural choice.
A final advantage to the one-stage anchor-free approach, which
we will show in Sec. III-D, is that it allows for a natural
incorporation of hard negative examples, which significantly
improves performance.

We then follow the same pipeline and hyper-parameter
settings described by Zhou et al., [14]. Namely, we create
ground-truth heat-maps centered at each lesion using Gaussian
kernels Y ∈ [0, 1]W̃×H̃ . The training objective is to then
produce a heatmap, Ŷxy , using a penalty-reduced pixel-wise
logistic regression with focal loss [31]:

ELPG = −1

m

∑
xy

⎧⎪⎨
⎪⎩

(1 − Ŷxy)
α log(Ŷxy) if Yxy = 1

(1 − Yxy)
β(Ŷxy)

α

log(1 − Ŷxy)
otherwise,

(6)

where m is the number of objects in the slice and α = 2
and β = 4 are hyper-parameters of the center loss. At every
output pixel, the width, height, and offset of lesions are also
regressed, but they are only supervised where Yxy = 1. The
lesion proposals are produced by combining center points with
regressed width and height. See Zhou et al., [14] for more
details.

To incorporate 3D context, which Yan et al., [15]
demonstrated can benefit lesion detection, we use a 2.5D
DenseNet-121 backbone [32]. This backbone is associated
with the highest performance for DeepLesion detection to-
date [15] and functions by including consecutive CT slices as
input channels. Based on a balance between performance and
computational efficiency, we follow Yan et al., [15] choose to
include the 4 adjoining slices above and below.

2) 3D Proposal Generation: Regardless of the LPG used,
if it operates slice-wise, like the CECN, then post-processing is
required to generate 3D proposals, P. To do this, we first apply
the LPG to scan over CT volumes generating detection results
on every axial slice. This produces a set of 2D proposals, each
with a detection score. Next, we stack proposals in consecutive
slices using the same Kalman filter-based bounding box tracker
as Yang et al., [33]. More specifically, we first select 2D
proposals whose detection score is greater than a threshold tG .
2D proposals from adjoining slices are then stacked together
if their intersection over union (IoU) is ≥0.8. Finally, in case
the LPG misses lesions in intermediate slices, we extend each
3D box up and down by one slice, and if any two 3D boxes
become connected with ≥0.8 overlap on the connecting slices,
then they will be fused as one 3D proposal. When lesion
harvesting, we choose 0.1 as the value for tG which helps keep

Fig. 4. Lesion proposal classification using global-local classifier with
multi-view input (GLC-MV).

the number of proposals manageable. However, our experience
indicates that results are not sensitive to significant deviations
from our chosen threshold value.

The next step in our process is to separate lesion candidates,
P, into true- and false-positives. Because we have access
to a small subset of fully-annotated volumes, VM, we can
identify the 3D proposals that overlap (see Sec. III-E) with
the RECIST marks to be true-positives and denote them
as PR

M. The remaining false-positive proposals are denoted
P−

M. We can also identify true-positives PR
H that overlap with

existing RECIST marks in VH. Because VH is only partially
labeled, the remainder of proposals must be filtered somehow
into true and false positives.

C. Lesion Proposal Classification

With the manually verified proposals in hand, namely PR
M,

P−
M, and PR

H, the aim is to identify proposals in PH \PR
H. To do

this, we use the verified proposals to train a binary lesion
proposal classifier (LPC). In principle, any classifier can be
used, but we opt for a global-local classifier with multi-view
input (GLC-MV), which combines two main concepts. The
first concept is that 3D context is necessary for differentiating
true positive lesion proposals from false positives [27], [28],
whether for machines or for clinicians. A fully 3D classifier
can satisfy this need, but, as we show in the results, a multi-
view approach that operates on transverse, sagittal, and coronal
planes centered at each proposal can perform better. This
matches prior practices [34] and has the virtue of offering
a much more computational and memory efficient means to
encode 3D context compared to true 3D networks.

The second concept is multi-scale learning. As reported by
Yan et al., [5], a “global” context can aid in lesion charac-
terization. This is based on the intuition that the surrounding
anatomy can help place a prior on how lesions should appear.
We use the same recommendation as Yan et al., and use a
128×128×32 region centered at each lesion to extract global
features. ROI pooling based on the lesion proposal is then used
to extract more local features. The local and global features
are concatenated together before being processed by a fully-
connected layer. The GLC-MV is shown in Fig. 4.

We choose to use a ResNet-18 [35] as our backbone
because of its proven usefulness and availability of pre-
trained weights. The LPC is trained with the manually verified
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proposals using cross-entropy loss. We expect PR
M, P−

M, and
PR

H to be representative of the actual distribution of lesions in
DeepLesion. In particular, although the negative samples P−

M
are only generated from VM, they should also be representative
to the dataset-wide distribution of hard negatives since the
hard negatives are typically healthy body structures, which
are common across patients.

With the LPC trained, we then apply it to the proposals
needing harvesting: PH \ PR

H. Since the LPG and LPC are
independently trained, we make an assumption, for simplicity,
that their pseudo-probability outputs are independent as well.
Thus, the final score of a 3D proposal can be calculated as

s{p|g,c} = sg · sc, (7)

where s{p|g,c} is called the lesion score and sg and sc are
the LPG detection score and LPC classification probability,
respectively. We obtain the former by taking the max detection
score across all 2D boxes in the proposal. Based on s{p|g,c},
we generate prospective positive proposals, P+

H, by choosing
a threshold for s{p|g,c} that corresponds to a precision above
95% on the completely annotated set VM. From the remainder,
we select proposals whose detection score satisfy sg ≥ 0.5 as
the hard negative examples. Then from each volume we choose
up to five negative examples with the top detection scores to
construct P−

H.

D. Iterative Updating
After a round of harvesting, we repeat the process by

fine-tuning the LPG, but with important differences. First,
we now have prospective positive proposals corresponding to
unlabeled lesions, i.e., P+

H, to feed into training. In addition,
for all proposals, even those corresponding to RECIST-marked
lesions, we now have 3D proposals. To keep computational
demands reasonable, only the 2D slices with the highest
detection score within each proposal are used as additional
samples to augment the original RECIST slices.

Secondly, to incorporate harvested hard negative proposals,
we use the same procedure in Sec. III-B, but replace the center-
loss in Eq. 6 with our proposed hard negative suppression
loss (HNSL). To do this, we create separate heat maps for
positive (RECIST-marked or prospective positive) and hard-
negative lesions. We denote these heat maps as Y p

xy and Y n
xy ,

respectively. We then create a master ground truth heat map,
Yxy , by overwriting Y p

xy with Y n
xy :

Yxy =
{

−Y n
xy if Y n

xy > 0

Y p
xy otherwise.

(8)

The result is a ground truth map that can now range from
[−1, 1]. When used in the loss of (6), the effect is that
positive predictions in hard negative regions are penalized
much heavier than standard negative regions (16 times heavier
when β = 4). This simple modification works surprisingly
well for further reducing false positive rates. We visually
depict example ground truth heatmaps in Fig. 5.

E. Pseudo-3D Evaluation

Apart from the lesion completion framework, introduced
above, another important aspect to discuss is evaluation.

Fig. 5. Ground-truth heatmaps for positives and hard-negative examples
are shown in the left and right, respectively. We define both RECIST-
marked lesions and mined lesions to be positive examples.

Current DeepLesion works [4], [13], [15], [25],
[26], [30] operate and evaluate only based on the 2D
RECIST marks on selected 2D slices that happen to contain
said marks. This is problematic, as RECIST-based evaluation
will not reflect actual performance: it will miscount true
positives on unmarked lesions or on adjoining slices as false
positives. Moreover, automated methods should process the
whole image volume, meaning precision should be correlated
to false positives per volume rather than per selected slice.
In this way, automated methods can be more effective
on holistically describing and recording tumor existence,
complimentary to human efforts to better achieve precision
medicine.

Because we aim to harvest 3D bounding boxes that cover
all lesions, we must evaluate, by definition, on completely
annotated test data. Yet, it is not realistic to assume data will
be fully annotated with 3D bounding boxes. Instead, a more
realistic prospect is that test data will be completely annotated
with 2D RECIST marks, especially by clinicians who are
more accustomed to this. Thus, assuming this is the test data
available, we propose a pseudo 3D (P3D) IoU metric. For each
RECIST mark, we can generate 2D bounding boxes based off
of their extent, as in [4]. This we denote (x1, x2, y1, y2, z, z),
where z is the slice containing the mark. Given a 3D bounding
box proposal,

(
x ′

1, x ′
2, y ′

1, y ′
2, z′

1, z′
2

)
, our P3D IoU metric will

be counted as a true positive if and only if z′
1 ≤ z ≤ z′

2
and IoU

[
(x1, x2, y1, y2) ,

(
x ′

1, x ′
2, y ′

1, y ′
2

)] ≥ 0.5. Otherwise,
it is considered a false positive. Because we publicly release
complete RECIST marks of 1915 volumes, the P3D IoU
metric can also be used to benchmark DeepLesion detection
performance, replacing the one currently used. As we show
in the results, the P3D IoU metric is a much more accurate
performance measure.

IV. EXPERIMENTS

A. Dataset

To harvest lesions from the DeepLesion dataset,
we randomly selected 844 volumes from the original
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Fig. 6. Dataset Splits: we follow DeepLesion’s official data split and
further define VH, Vtest

H , VM, and Vtest
D for the needs of lesion harvesting.

14 075 training CTs.2 These are then annotated by a board-
certified radiologist. Of these, we select 744 as VM (5.3%) and
leave another 100 as an evaluation set for lesion harvesting.
This latter subset, denoted Vtest

H , is treated identically at VH,
meaning the algorithm only sees the original DeepLesion
RECIST marks. After convergence, we can measure the
precision and recall of the harvested lesions. In addition,
we later measure detection performance on systems trained on
our harvested lesions by also fully annotating, with RECIST
marks, 1, 071 of the testing CT volumes. These volumes,
denoted Vtest

D , are never seen in our harvesting framework.
To clarify the dataset split in our experiments, we show it
hierarchically in Fig. 6.

B. P3D IoU Evaluation Metric

Before validating our lesion harvesting framework, we first
validate our proposed P3D metric. To do this, we used 3D
bounding boxes to annotate a small set of 272 CT test volumes,
randomly selected from Vtest

D . From these, we can calculate a
“gold-standard” 3D IoU metric, and analyze the concordance
of different proxies. Accordingly, we trained state-of-the art
detection methods (the same 12 outlined in Table IV’s later
experiments) on the DeepLesion dataset and measured their
performance using 3D IoU, incomplete RECIST [4], and the
proposed P3D IoU metrics. We use a 3D IoU threshold of
0.3, instead of 0.5 commonly used in 2D applications, to help
compensate for the severity of 3D IoU. As shown in Fig. 7a
and Fig. 7b, we measured free-response ROC curve (FROC)
curves and compare detection recalls of these methods at
operating points varying from false positive (FP) rates of
0.125 to 16 per volume. As can be seen, our P3D metric has
much higher concordance with the true 3D IoU than does the
incomplete 2D RECIST metric. Moreover, the latter exhibits a
relationship that is much noisier and non-monotonic, making

2https://nihcc.app.box.com/v/DeepLesion

Fig. 7. Comparing the concordance of the incomplete 2D RECIST and
our P3D metric compared to the gold-standard 3D IoU metric. For each
metric, lesion detection recalls at operation points from FP = 0.125 to
FP = 16 are collected from the FROC curves of 12 lesion detection
methods. Pearson coefficients are shown below each chart.

TABLE I
LESION HARVESTING PERFORMANCE EVALUATED ON VTEST

H .
DETECTION RECALLS (R) AT PRECISIONS (P) FROM

80% TO 95% ARE REPORTED AFTER SIX

HARVESTING ROUNDS

it likely any ranking of methods does not correspond to their
true ranking. Thus, for the remainder of this work we report
lesion harvesting and lesion detection performance using only
the P3D metric. Moreover, we advocate using the P3D metric,
and the fully RECIST-annotated test sets we publicly release,
to evaluate DeepLesion detection systems going forward.

We also evaluated whether the Kalman filtering method in
Sec. III-B can produce accurate 3D lesion proposals from
2D detections. Regardless of the detection framework used,
median 3D IoUs are 0.4, which is a high overlap for 3D
detection. All of the first quartiles are above 0.2 3D IoU,
indicating that the most of the reconstructed 3D boxes are of
high quality. Violin plots can be found in our supplementary
material.

C. Main Result: Lesion Harvesting

We validate our lesion harvesting by running it for
6 iterations. As can be seen in Table I, the set of original
RECIST-marked lesions, RH, only has a recall of 36.7% for
the lesions in Vtest

H , with an assumed precision of 100%.
After one iteration, the initial lesion proposals generated by
the CECN-based LPG, denoted as PH,1, can boost the recall
to 40.7%, while keeping the precision at 90%. However,
after filtering with our GLC-MV-based LPC, which selects
P+

H,1 from PH,1, the recall is boosted to 44.0%, representing
8% increase in recall over RH. This demonstrates the power
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Fig. 8. (a) PR curve evaluating our iterative lesion harvesting procedure. The original RECIST marks only have a recall of 36.7�, which is shown as
the red dot. PH,1 is the set of lesion proposals from LPG, which are then filtered by the LPC to generate P+

H,1. P+
H,2 and P+

H,3 are harvested lesions
from the second and third iterations, respectively. MGTM-SLLP [20] is a baseline method for mining missing lesions. (b) PR curves of different LPCs
in the first iteration, where GLC, GLC-3D, and GLC-MV denote classifiers using the transverse-plane, the multi-view sagittal-transverse-frontal plane,
and 3D sub-volume inputs, respectively.

TABLE II
EVALUATIONS OF LPG TRAINED WITH DIFFERENT LABEL SETS INCLUDING THE ORIGINAL RECIST MARKS, R, RECOVERED 3D

RECIST-MARKED LESIONS PR
H AND PR

M , MINED LESIONS
⋃k−1

i=1 P+
H,I , AND MINED HARD NEGATIVES P−

H AND P−
M .

THE RECALL NUMBERS ARE EXTRACTED FROM FROC CURVES AT OPERATION POINTS FROM FP = 0.125
TO FP = 8 PER VOLUME. HIGHER RECALL DEMONSTRATES BETTER DETECTION PERFORMANCE

and usefulness of our LPG and LPC duo. After 3 rounds
of our system, the performance increases further, topping
out at 47.9% recall at 90% precision. This corresponds to
harvesting 9 805 more lesions from the VH CT volumes.
As Table I also indicates, running Lesion-Harvester for more
rounds after 3 does not notably contribute to performance
improvements. Fig. 8a, depicts PR curves for the first three
rounds and it can be seen that PR curve has begun to top
out after the third round. Finally, we also compare against
the MGTM-SLLP lesion mining algorithm [20]. As can be
seen, while MGTM-SLLP can also improve recall, the Lesion-
Harvester outperforms it by 9.3% in recall at 90% precision.

Importantly all 2D lesion bounding boxes are now also
converted to 3D. It should be stressed that these results are
obtained by annotating 744 volumes, which represents only
5.3% of the original training split of DeepLesion. In terms of
the distribution of harvested lesions, they match the original
DeepLesion distribution which is weighted toward lung, liver,
kidney lesions as well as enlarged lymph nodes. In our
supplementary material, we illustrate the similarity of the
distributions between the original DeepLesion lesions and
the harvested ones in details. Fig. 10 provides some visual
examples of the harvested lesions. As can be seen, lesions

missing from the original RECIST marks can be harvested.
These examples, coupled with the quantitative boosts in recall
(seen in Fig. 8a), demonstrate the utility and power of our
lesion harvesting approach.

In our implementation, we trained the LPG and LPC using
3 NVIDIA RTX6000 GPUs, which took a few hours to
converge for each round. However, producing the lesion pro-
posals after each round is time consuming (∼12 hours) since
it requires the LPG to scan every CT slice in DeepLesion.
In total, the Lesion-Harvester takes 3 days to converge on
DeepLesion.

D. Ablation Study: LPG

Table II presents the performance of the CECN-based LPG
when trained with different combinations of harvested lesions.
Please note, these results only measure the LPG performance,
and do not include the effect of the LPC filtering. First,
as expected, when including the additional labeled proposals,
RU

M, the performance does not improve much over simply
using the original RECIST marks. This reflects the relatively
small size of RU

M compared to the entire dataset. However,
larger impacts can be seen when including the hard negatives,
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Fig. 9. Lesion-Harvester using different LPGs, including CenterNet [14],
Faster R-CNN [17], and our proposed CECN. Mean value of recalls
at precision = [80�,85�, 90�,95�] is measured with each ablation
study.

P−
M,i, from the fully-labeled subset. When including hard

negatives from our volumes needing harvesting, i.e., P−
H,i,

performance boosts are even greater at the high precision oper-
ation points where FPs ≤ 1. This validates our HNSL approach
of using hard-negative cases. Meanwhile, the addition of extra
positive samples, P+

H,i and PR
H, contribute much to the recall

when FPs ≥ 2 per volume, as the trained LPG becomes much
more sensitive. In summary, these results indicate that the
harvested lesions and hard negatives can significantly boost
how many lesions can be recovered from the DeepLesion
dataset.

Because of the simple one-stage anchor-free architecture,
our proposed CECN processes CT slices at the speed of
26.6 frames per second (FPS). It runs two times faster than
Faster R-CNN [17]. It largely speeds up the lesion mining
pipeline and will satisfy clinical needs better.

In addition to measuring the impact of the different types of
harvested lesions, we also ran the Lesion-Harvester pipeline
with different LPGs by replacing CECN with CenterNet [14]
and Faster R-CNN [17]. We compare different LPGs in Fig. 9
and demonstrate that our proposed pipeline generalizes well
across choices of LPG. We monitor the mean recall on the
validation set and stop algorithm updates after this value
has converged. We plot the mean recalls of the first four
iterations in Fig. 9. Compared with the baseline 36.7% recall
provided by RECIST marks, Lesion-Harvesters using Faster
R-CNN [17], CenterNet [14], and our proposed CECN have
achieved 9.9%, 10.6%, and 11.5% improvements, respectively.
In spite of the used LPG, our proposed pipeline can roughly
recover 10% of unlabeled lesions. We also note that more
powerful LPGs could result in faster convergence rates as well
as better recovery rates.

E. Ablation Study: LPC

We validate our choice of LPC by first comparing the
performance of different global-local classifiers evaluated on
at the first iteration of our method. We compare our multi-
view GLC-MV with two alternatives: a 2D variant that

TABLE III
MEAN RECALLS (%) FROM RECALL AT 80% PRECISION (R@80P) TO

RECALL AT 95% PRECISION (R@95P) OF DIFFERENT LESION

PROPOSAL CLASSIFIERS

only accepts the axial view as input and a 3D version of
ResNet-18 [36]. We measure results when using the raw LPG
detection score (sg), LPC classification probability (sc), and
the final lesion score (s{p|g,c}) of Eq. 7. As can be seen in
Fig. 8b, not all LPCs outperform the raw detection scores (sg).
However, they all benefit from the re-scoring of Eq. 7 using
detection scores. Out of all options, the multi-view approach
works the best. In addition to its high performance, it also has
the virtue of being much simpler and faster than a full 3D
approach.

In addition, we also validate the global-local feature. To do
this, we compare against ResNet classifiers, both multi-view
and 3D, that forego the global-local feature concatenation.
We also test against a recent multi-scale approach called multi-
level contextual 3-D (MLC3D) [28], which is designed for
lesion FP filtering. We also implemented the 3D classifier pre-
sented in [27]; however, it did not converge with DeepLesion
as it uses a much shallower network than ResNet18. For all,
we evaluated using different input sizes centered at the lesion:
(24×24×4), (48×48×8), (64×64×16), and (128×128×32).
Here we only report results using the best scale for each, but
our supplementary material contains more complete results.
As can be seen in Table III, MLC3D [28] does not deliver
any improvement over standard ResNet-3D. In contrast the
global-local variants outperform their standard counterparts
demonstrating the effectiveness of our multi-scale approach
design. Again, the GLC-MV delivers the best classification
performance.

F. Main Result: Detectors Trained on Harvested Lesions

While the above demonstrated that we can successfully
harvest missing lesions with high precision, it remains to be
demonstrated how beneficial this is. To this end, we train state-
of-the-art detection systems with and without our harvested
lesions and also compare against some alternative approaches
to manage missing labels.

1) Using Harvested Lesions and Hard Negative Examples:
After our method converged, we fused mined lesions and hard
negatives, i.e., P+

H = ⋃3
i=1 P+

H,i and P− = P−
H,3 ∪ P−

M,3,
respectively. We tested CenterNet [14], Faster R-CNN [16],
and our CECN (used now as a detector instead of an LPG),
trained both on the original DeepLesion RECIST marks and on
the data augmented with our harvested lesions. Since MULAN
requires tags, which are not available for harvested lesions,
we only test it using the publicly-released model. As well,
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Fig. 10. Examples of 3D detection results and mined positive lesions from the harvesting set VH. We use green and blue boxes to show RECIST-
marked and mined lesions, respectively. Each 3D detection consists of multiple axial slices and we show 5 typical slices: the starting slice, the RECIST
slice, the ending slice, and two intermediate slices. We show RECIST marks as crosses with red and blue lines. We also show one failure case at
the bottom row indicated by the red arrow and a lesion still remains unlabeled at the 3rd row indicated by the yellow arrow.

we also test the impact of our hard negatives (L−), with our
proposed HNSL on CenterNet and CECN. We do not test the
HNSL with Faster R-CNN, since it is not compatible with two-
stage anchor-based systems. Instead, we follow Tang et al.,’s
(ULDor) [30], which is a hard-negative approach designed
for Faster R-CNN that defines an additional non-lesion class
containing all hard negative examples. We test all detector
variants on the unseen fully labeled Vtest

D data.
As Table IV demonstrates, using the harvested lesions to

train detectors can provide significant boosts in recall and
precision for all methods. For instance, the extra mined lesions
P+

H boosts Faster R-CNN’s detection performance by 4.3% in
average precision. When incorporating hard negatives using
the HNSL, CenterNet and CECN both benefited even more,
with additional boosts of 5 − 8% AP. In total, the harvested
prospective positive and hard negative lesions are responsible

for a boost of 7.2% and 8.9% in AP, for CenterNet and CECN,
respectively, representing a dramatic boost in performance.
Despite the great differences in architecture, incorporating
harvested hard negatives as an extra non-lesion class [30]
also significantly boosts Faster R-CNN performance, further
demonstrating the broad impact of the Lesion-Harvester pro-
posals. Finally, we also note that our CECN outperforms the
state-of-the-art lesion detection model, MULAN [15], even
when no mined lesions are used. The addition of mined
lesions, which is not directly applicable with MULAN, further
boosts the performance gap to 10.1%. This further validates
our LPG design choices and represents an additional contri-
bution of this work, in addition to our main focus of lesion
harvesting.

2) Alternative Missing Label Approaches: We also evaluated
other strategies for managing missing labels. These include
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TABLE IV
EVALUATION OF DETECTORS TRAINED WITH AND WITHOUT MINED LESIONS ON VTEST

D

overlap-based hard sampling (OBHS) [17] and overlap-based
soft sampling (OBSS) [18], both of which are designed only
for two-stage anchor-based detection networks, meaning they
are incompatible with our one-stage CECN. Thus, we use
Faster R-CNN as baseline and compared OBHS and OBSS to
training using our harvested prospective positive lesions, P+

H.
OBHS only uses proposals with small overlap to a true
positive as negative examples for the second stage classi-
fier. As Table IV demonstrates, the baseline Faster R-CNN
performed with 34.2% AP, whereas using OBHS reduced
the AP to 17.3%, demonstrating that simply ignoring the
predominant background negatives causes large performance
degradation. Thus, we also re-trained Faster R-CNN with a
modified OBHS (M-OBHS), which preserves all background
samples but raises weights of overlapping proposals to be
twice as much as positive and standard background cases.
This variant achieved 38.3% AP. As a different strategy,
OBSS reduces the contributions of proposals which have small
overlaps with the ground truth boxes but keeps all background
cases. This strategy increased the AP to 36.3%. Finally, our
method that trains Faster R-CNN with harvested prospective
positive lesions achieved the best performance at 38.5% AP,
with markedly higher recalls at lower tolerated FPs. This
demonstrates that completing the label set with harvested
lesions P+

H can provide greater boosts in performance than
these alternative strategies.

Moving on to a more general approach, we also com-
pare against the MGTM-SLLP [20] lesion mining algorithm.
As shown in Table IV, MGTM-SLLP boosts the AP of
CenterNet from 41.0% to 41.3%, while training with P+

H
results in a much larger boost to 42.8%. Similarly, training
with P+

H garners higher boosts in AP when using our CECN
detector. Unlike MGTM-SLLP, Lesion-Harvester explores the
whole CT volume, iteratively improving performance after
each round, and integrates hard negatives within the training of
LPG. We surmise these differences explain the increased per-
formance even when comparisons are limited to only using the
harvested positive proposals of P+

H. Finally, as we demonstrate,

when using our harvested hard-negative proposals performance
can be increased even further.

V. CONCLUSION

We present an effective framework to harvest lesions from
incompletely labeled datasets. Leveraging a very small subset
of fully-labeled data, we chain together an LPG and LPC to
iteratively discover and harvest unlabeled lesions. We test our
system on the DeepLesion dataset and show that after only
annotating 5% of the volumes we can successfully harvest
9, 805 additional lesions, which corresponds to 47.9% recall
at 90% precision, which is a boost of 11.2% in recall over
the original RECIST marks. Since, our proposed method is an
open framework, it can accept any state-of-the-art LPG and
LPC, allowing it to benefit from future improvements in these
two domains.

Our work’s impact has several facets. For one, in terms of
DeepLesion specifically, the lesions we harvest and publicly
release enhance the utility of an already invaluable dataset.
As we demonstrated, training off-the-shelf detectors on our
harvested lesions allows them to outperform the current best
performance on the DeepLesion dataset by margins as high
as 10% AP, which is a significant boost in performance. Fur-
thermore, we expect our harvested lesions will prove useful to
many applications beyond detection, e.g., radionomics studies.
More broadly, our results indicate that the lesion harvesting
framework is a powerful means to complete PACS-derived
datasets, which we anticipate will be an increasingly important
topic. Thus, this approach may help further expand the scale
of data for the medical imaging analysis field.

Important contributions also include our proposed CECN
LPG, which outperforms the current state-of-the-art MULAN
detector and helps push forward the lesion detection topic.
In addition, the introduced P3D IoU metric acts as a much
better evaluation metric for detection performance than cur-
rent practices. As such, the adoption of the P3D metric
as a standard for DeepLesion evaluation should better rank
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methods going forward. Future work should include inves-
tigating different LPG paradigms, e.g., full 3D approaches,
executing user studies, e.g., to assess and compare with
clinician performance, and exploring active learning to more
efficiently choose which volumes to label. In addition, it is
also crucial to measure the impact of differing labor budgets
on harvesting performance. Finally, we estimate that possibly
40% of the lesions still remain unlabeled in DeepLesion. It is
possible to calibrate our proposed LPG to detect lesions with
above 90% recall, however, the challenge is to separate true
lesions from thousands of false positives. Therefore, one other
promising avenue is to model the relationship between lesions
proposals for false positive reduction, which may lead to non-
parametric matching and graph-based connections between
instances within the dataset. We hope the public annotations
and benchmarks we release will spur further solutions to this
important problem.
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