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ABSTRACT

Deep metric learning methods aim to measure similarity of data points (e.g. images) by calculating their
distance in a high dimensional embedding space. These methods are usually trained by optimizing a
ranking loss function, which is designed to bring together samples from the same class while separating
them from samples from all other classes. The most challenging part of these methods is the selection of
samples that contribute to effective network training. In this paper we present Bag of Negatives (BoN),
a fast hard negative mining method, that provides a set, triplet or pair of potentially relevant training
samples. BoN is an efficient method that selects a bag of hard negatives based on a novel online hashing
strategy. We show the superiority of BoN against state-of-the-art hard negative mining methods in terms
of accuracy and training time over three large datasets.

Siamese networks
Online hashing
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1. Introduction

Metric learning, as a part of general machine learning, gained a
lot of attention in the recent years [1-12]. The methods designed
to embed images with similar content close to each other and sep-
arate them from images of other objects usually struggle when
images are taken by different cameras, under different light con-
ditions, from different angles, etc. Some of the recently published
works propose solving metric learning problem by training deep
neural networks that are computationally very expensive and task-
specific [3-6,8,13-15]. Others require direct image-to-image com-
parisons, which results in methods that scale poorly at testing time
[16,17]. Finally, one line of research focuses on simpler domain-
agnostic architectures, that are able to adapt to any ranking prob-
lem [1,2,18,19].

Once the architecture is designed, the question that naturally
arises is: what should be the appropriate loss function for train-
ing? Several works use classification loss [20,21]. These methods
typically train a deep convolutional neural network for solving a
classification problem, while extracting image descriptors by pool-
ing features from the last convolutional layer at testing time. Even
though these approaches are straightforward to implement, they
struggle from serious limitations in terms of the number of classes
that they can handle. For instance, a dataset with more than 10 M
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classes! (such as the FaceNet dataset, as reported in Kemelmacher-
Shlizerman et al. [22]) and with a 128 embedding size, would re-
quire a model with more than 1 billion parameters, which would
be impractical to train without severe overfitting.

Given the previously mentioned limitations of classification
loss, alternative functions, widely known as ranking losses, have
been proposed. The main goal of these losses is bringing the rep-
resentations of samples from the same class close to each other,
while separating the representations of images that belong to dif-
ferent classes. To do so, Siamese architectures with several paral-
lel streams, which are made of the same networks with shared
weights, are used [2,18,19]. These architectures allow simultane-
ous computing of compact representations for several input im-
ages, and combining them with a ranking loss. Even though these
approaches do not depend on the number of classes in the training
set, they are hard to train due to the complexity of finding input
samples that are producing a loss greater than zero [2].

In this paper, we propose an online strategy for mining samples,
that contributes to a more efficient training of Siamese architec-
tures, while providing better validation scores on several datasets.
We tested our method on datasets large enough so that the re-
trieval and re-identification problems cannot be easily solved using
a classification loss. We use a large person re-ID dataset by merg-
ing publicly available datasets (similarly to [21]) and we show the

T In this paper we propose a general method which can be used for retrieval,
re-identification or recognition, and therefore we treat identities or IDs and classes
equally, and refer to them as classes.
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results on the publicly available retrieval datasets Stanford Online
Products [7] and DeepFashion [23].

2. Related work
2.1. Hard negative mining

The problem of finding relevant candidates for ranking losses
(especially for triplet loss) has received a lot of attention in the
recent years for both retrieval [2,7,19,24-26] and tracking [27]. One
research line bypasses this problem by proposing modifications of
softmax loss for easier training [28,29].

A research line focuses on offline sampling approaches. An of-
fline re-weighting of the loss can improve the quality of negative
samples, but at non-negligible cost [24]. Taking advantage of extra
knowledge on sub-categories within the dataset is also advanta-
geous in mining negative samples [25].

Another group of methods, widely known as online hard nega-
tive mining (OLHN), take advantage of the samples representations
available at mini-batch level in order to improve the probability
of retrieving relevant negatives for the triplet loss [2,7,19,26]. Most
of these works create mini-batches of kI images, k random images
per each one of | random classes. The pioneer approach was intro-
duced by Schroff et al. [2], called semi hard loss, where triplets are
created by all anchor-positive pairs in a mini-batch. The negative
sample is chosen so that the loss is in between O and the prede-
fined margin « (see the Eq. (1)).

Lifted Embedding loss is proposed in Oh Song et al. [7], where
the authors sample negative as the one closest to either anchor or
positive for each anchor-positive pair in the mini-batch.

In [19] the authors propose two strategies for sampling inside
of a mini-batch, which are extensions of the Lifted Embedding loss.
Batch all loss is obtained by all possible combinations of triplets
inside of batch. Batch hard loss takes all the images from the mini-
batch as anchors of triplets. The positive is selected as the furthest
sample from the same class as the anchor in the mini-batch, while
the negative is the closest to the anchor from all the samples from
different classes in the mini-batch.

Curriculum sampling is proposed in Wang et al. [26], where the
beginning of training is performed using easy negative instances,
and complexity increases through time. For each anchor they sort
all negatives from the mini-batch according to their distances to
the anchor, and they sample the negative with Gaussian distribu-
tion N'(u,0). u and o are changed through time, so that p goes
from max distance to min distance, and o reduces.

All of these approaches have the same drawback: they focus on
the local distribution of data inside of a mini-batch, while sampling
the candidates for mini-batch randomly. A mini-batch created ran-
domly is a good representation of the global distribution, but it
does not represent the local embedding space. As relevant negative
samples could be found in the local neighborhood of the anchor sam-
ple, the probability of sampling useful triplets rises if the mini-batch
is created from samples that belong to the same local neighborhood.

Another research line comprises methods that use adversarial
samples for metric learning [30,31]. In [30] the authors propose a
way of training Siamese networks by generating adversarial, po-
tentially hard, negative samples for training with variations of the
triplet loss. The descriptors of all three input images are used for
generating a synthetic, hard negative descriptor. This descriptor, to-
gether with the anchor and positive, forms a triplet of descrip-
tors that is used for calculating the loss. Similarly, in Chen et al.
[31] the authors propose a metric learning strategy that uses a set
of real and a set of synthetic pairs for training.

The fourth research line proposes online strategies for providing
relevant negative samples prior to mini-batch formation [18,32-
34], and our contribution belongs to this research line.
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In [32] authors propose a strategy that builds a tree of identities
to facilitate the sampling of relevant negatives for a given anchor.
The method clearly improves the quality of negative samples but
at the cost of updating the tree at every epoch. Also, the tree con-
struction is based on an identity-to-identity distance matrix, which
thus scales quadratically with the number of identities.

In [18] authors explicitly face the problem of training a Siamese
network with 100k identities. The basic idea is to generate a repre-
sentation for each identity, and apply clustering on all the identi-
ties to generate clusters or subspaces, wherein identities are simi-
lar in each subspace. Authors propose to train a classifier on a sub-
set of identities, then use the classifier to generate image represen-
tations, and finally perform k-means clustering in order to form the
subspaces. Authors do not update the clustering during the train-
ing, thus the subspaces could become sub-optimal in later stages
of the training.

In [33] authors propose a strategy in which anchor samples
are compared to “class signatures” in order to limit the number
of sample to sample comparisons. A stochastic process is added
to avoid the oversampling of overly-difficult or noisy classes. The
class signatures are constantly updated thanks to an additional
classification loss. The method could be seen as a stochastic ex-
tension of [32] where the similarity between classes is computed
at each step, while the class signatures are updated in a more effi-
cient way. Nonetheless, the number of additional distance compu-
tation w.r.t. a pure random sampling is proportional to the number
of classes.

In [34] authors propose a strategy for creating triplets of im-
ages from a subset of approximate nearest neighbors of the an-
chor image. This strategy requires a forward pass on all training
set images at the beginning of each epoch, followed by graph con-
struction, and search inside of the subspace. This strategy increases
the speed w.r.t exhaustive search (“...Given that O(N?) is the best
case complexity for the naive hard mining approach above, we can
conclude that our method is computationally more efficient...”[34]),
while providing relevant triplets. Similarly to [32], the main issue
of this approach is that triplets are formed at the beginning of each
epoch. This strategy for triplet formation can be useful for small
datasets, but does not guarantee high quality of sampled triplets
towards the end of the epoch when trained on datasets with large
number of images.

The main drawbacks of the approaches from [18,32-34] are: (1)
high computational cost and (2) they scale poorly with the number
of classes.

2.2. Online hashing methods for image retrieval

In [35] authors design a hashing method for cross-domain re-
trieval. They split the full image or text representation into two
parts: one that is domain specific, and the second that is shared
for the two domains. The two parts are in the end concatenated,
and used as unique image/text representations.

In [36] authors propose a method that learns binary codes for
subspaces, based on a similarity preserving criterion. This method
uses the binary codes to train binary classifiers which are further
used as hashing functions.

In [37] authors propose an unsupervised way to train a hash-
ing method for image retrieval. They propose a loss function that
penalizes the network if two similar images are put into differ-
ent hash bins, as well as if two dissimilar images are assigned to
the same hash bin. They measure image similarity based on dis-
tances of image descriptors extracted from ImageNet pre-trained
ResNet152 network.

The same loss for assigning images to the hash bins is opti-
mized in Deng et al. [38]. This method has an additional branch
that assigns class labels to the same hashes as the images that be-
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Table 1
Comparison of sampling strategies.
Strategy ne ng ne Additional computation
Random 0 0 m/3 -
Semi-hard 0 (2b% - 2b)l m/3 -
Batch hard 0 (9b2 —2b)l m -
Exhaustive I(N - b) IN? m/3 -
Hierarchical Tree [32] N N2/2 N.A. pre-training
Smart mining [34] N (N/i)? N.A.  extra global loss
100k IDs [18] 0 0 N.A.  classifier, all feature extract, k-means
Stochastic class-based [33] k(K-1) k(% + (K- 1)) N.A.  classifier, class signatures
Spectral Hashing [39] N 0 N.A. PCA
Bag of Negatives 0 0 N.A.  autoencoder

long to that class. As this is a supervised hashing method, a pair
of images is considered to be similar if both of them belong to
the same class, and dissimilar otherwise. Even though this method
performs well on image retrieval task, it is not designed for hard
negative mining; if the number of hashes is slightly greater than
the number of classes in the train set, each class can potentially
be assigned to one hash; using this table, sampling images for a
mini-batch from one hash bin would not provide any negatives,
since all the samples would belong to the same class. If the num-
ber of hashes is smaller than the number of classes, the system
will be unstable.

On the other hand, unsupervised hashing proposed in Deng
et al. [37] is suitable for hard negative mining task. We show re-
sults and discuss its advantages and disadvantages in Sections 3,
6.3.2 and 7.

3. Motivation

The triplet loss (see Eq. (1)) is based on the construction of
triplets i € 7 formed by an anchor sample x{, a positive sample xlp
(belonging to the same class as the anchor) and a negative sample
xi'. The samples are mapped into an embedding by a given function
f(-), that is usually a deep convolutional network, which parame-
ters are learned by means of minimization of the loss L.

L= SIS — FODIB - 56D - FeDIB+a], (1)
ieT

The goal of the triplet loss is to ensure that the anchor-negative
pairs are far from each other by a margin o with respect to the
anchor-positive pair distance. It is well known that the most chal-
lenging part of using the triplet loss to train a metric learning
system is generating triplets that produce a non-zero loss. This is
hard, since the number of all possible triplets in the dataset is pro-
portional to the cube of total number of images N in the dataset,
|7| ~ N3, and the more the system trains, the less probable it is
to find a negative for a given anchor-positive pair that provides a
non-zero loss [2].

Let n be the average number of images per class, m the mini-
batch size, k the number of images of each class in the mini-batch,
and [ number of steps per epoch. For the sake of clarity, we intro-
duce the notation 1, the number of negative samples that produce
a non-zero loss if used in conjunction with the triplet loss and an
anchor-positive pair. The more we train the Siamese network the
smaller i becomes.

We propose a systematic cost analysis given a sampling method
in terms of ne, the extra number of forward passes to be computed
per epoch, and ng, the extra number of distances to be computed
in order to select a set of negatives per-mini-batch over an en-
tire epoch. Additionally, we report the number of triplets per mini-
batch n¢, summarised in Table 1.

The “quality” of the retrieved negatives is also relevant, as
pointed out in Wu et al. [24]: negative samples have to be dis-
tributed such that the anchor-negative distance is almost uniformly
distributed. More on the latter topic will be discussed in the exper-
imental section.

Sampling the negatives randomly from the whole dataset has
complexity O(1) but does not provide relevant negative samples
except at the beginning of the training, since p; = i/(N — n) ~fi/N.
From now on we will omit n from the formula since it is negligible
w.r.t. N.

Semi hard loss [2] employs a negative sampling strategy that
has an increased cost due to the fact that the additional com-
puted distances scale polynomially with the mini-batch size. The
improvement in p; with respect to the random sampling is lin-
early dependent to the number of triplets b. For this reason, au-
thors use huge mini-batches in the order of 1800 samples. p; is
thus increased to 2bii/N, at the cost of large mini-batches and ad-
ditional computation.

Batch hard loss [19] is an improved version of the semi hard
loss where, thanks to a more controlled mini-batch creation and
additional distances computation, the method exhibits p; = mfi/N.
This strategy offers a 50% improvement in p; w.r.t. the semi hard
approach, but still provides a probability that depends on the
mini-batch size. The additional cost in the distances computation
is mitigated by a 3 times factor in the numbers of computed
triplets.

An offline exhaustive search into the dataset provides
ps =min(3fi/m, 1). This is, of course, not viable for large datasets.
Nonetheless, for relatively small datasets and with the proper
sampling strategy over the m(N —m) distances, exhaustive search
provides excellent negatives samples [24].

Hierarchical Tree sampling [32], 100k IDs [18], Smart Min-
ing [34] and Stochastic class-based hard example mining [33] are
methods for sampling candidates prior to mini-batch creation.
Those methods can be combined with online hard mining strate-
gies (such as semi-hard and batch hard) and further increase the
probability of sampling relevant negative samples.

In [32] authors propose sampling identities based on inter-class
distances. The main drawback of this method is the high computa-
tional cost of creation of the inter-class distance matrix. This ma-
trix should be updated once per epoch, and it requires forward
passes of the whole dataset (O(N)), and calculating all-vs-all sam-
ple distances (O(N?)).

The method proposed in Wang et al. [18] for batch generation
is based on hashing. This approach is faster than Hierarchical Tree,
as it does not require any additional distance calculations nor extra
embedding extraction. Its drawback is the complexity of generating
the hash table, as it requires training a classifier on a subset of the
dataset, extracting of features of all images from the train set and
executing k-means clustering.
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Table 2
Time required for training for 100k steps and until convergence.

Method Time for 100k steps [h] ~ Convergence time [h]
batch hard 123 34.4
BoN-batch hard 12.6 10.1
Table 3
mAP validation results at peak performance for every method.
Method #steps  Market Duke
map r1 map r1
Random 600k 28.1 475 225 376
BoN-Random 440k 614 803 513 702
semi hard 350k 593 768 535 713
batch hard 280k 60.8 786 537 706
batch hard - contrastive 120k 489 669 378 565
SPL (reproduced) [37]-batch hard 200k 65.3 81.5 59.3 75.8
HT(reproduced) [32]-batch hard 310k 65.9 82.8 57.5 74.9
100k (reproduced) [18]-batch hard 90k 67.8 833 612 77.7
BoN-batch hard - contrastive 90k 59.4 77.0 51.9 70.6
BoN-batch hard 80k 69.5 852 621 785
SH-batch hard 100k 716 866 629 782
batch hard (2x batch) 70k 62.9 80.3 56.7 74.7

The method called Smart Mining [34] uses samples from ap-
proximate nearest neighborhood to create potentially relevant
triplets. However, in the beginning of each epoch one full forward
pass of the whole dataset is performed. In addition to this, in each
training step (N/i)? distances are computed, where i is the number
of neighborhoods.

Stochastic class-based hard example mining [33] is a method
that uses class signatures when creating triplets. This approach
requires k(K — 1) extra forward passes in each training step and
kN/n distances, where K is the number of classes in mini-batch.

This brief study shows that the efficiency of relevant negative
mining is a crucial issue. Also, increasing the probability of pick-
ing a relevant negative is key to the improved performance from
semi hard to batch hard strategy. Scalability to very large datasets
with a large number of classes is a necessity within the training of
Siamese architectures.

In this paper we propose a novel method for batch creation,
inspired by Spectral Hashing [39]. In contrast to Spectral Hashing,
which requires additional forward passes of all images from the
dataset, our method updates the hash table online, with negligible
computational cost.

4. Contribution

The paper’s main contribution is a computationally inexpen-
sive and mini-batch size independent, online strategy for improved
negative mining in large datasets; which we named Bag of Nega-
tives (BoN). The main advantages of BoN w.r.t. previous methods
are: (1) fewer training steps to converge, (2) a better performance
on validation sets due better sampling of negatives, and (3) a neg-
ligible additional computational cost w.r.t. the Siamese architecture
training.

We stress that our methodology does not require computing
additional samples representation nor their respective distances
to be able to select appropriate negatives (see Table 1). It can
be combined with any loss that requires a negative sample, as
shown in Sections 5.4 and 5.5. Nonetheless, for simplicity, we will
analyse the behaviour of BoN with triplet based losses since they
perform better than contrastive loss (Table 3); analogous results
are achieved with other losses, such as quadruplet loss. We also
want to emphasize that this approach has been devised with large
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datasets and computational efficiency in mind. Finally, the method
has only one relevant meta-parameter, discussed in Section 6.

5. Bag of Negatives

A negative sample whose representation is close to the anchor
sample provides a triplet that is more likely to produce non-zero
loss. The main purpose of BoN is providing these relevant negative
samples using an algorithm that is computationally inexpensive.

BoN is inspired by the Spectral Hashing method [39]. Nonethe-
less, we had to introduce several changes in order to efficiently
adapt it to the negative mining problem during training.

Spectral Hashing is a nearest neighbour search algorithm that
is shown to perform better than Product Quantization while be-
ing simpler to implement and more efficient at learning the hash
function [39]. In terms of performance, it is inferior with respect to
methods that address the embedding compression and the quanti-
zation as a whole problem, e.g. [40,41]. However, we have to con-
sider that the embedding is changing during the training, thus a
simpler but flexible approach is preferred over methods providing
better results at a greater computational cost.

The main approach of the Spectral Hashing method is to (1)
learn a linear projection from the embedding space (of size e) to
a lower dimensional space (of size s « e) by means of a standard
PCA, (2) apply the projection to a sample, (3) perform a 1 bit quan-
tization over every dimension by threshold at 0, and (4) group
the s bits into an integer codeword (line 4 in Algorithm 2). The
codeword represents the entry of a hash table. The underlying as-
sumption is that samples falling into the same bin are neighbours
in the high dimensional embedding. Of course, this assumption is
over-optimistic and the variation from the optimal are mainly due
to the following facts: (1) being s « e we lose some information
about the topology of the high dimensional embedding and (2) the
quantization is harsh and there is no actual control on the quanti-
zation error during the process. Nonetheless, experimental valida-
tion shows that the Spectral Hashing method is indeed performing
well in retrieval tasks [39].

However, the direct application of the Spectral Hashing (or any
other nearest neighbour algorithm) method to the problem of re-
trieving negative samples is not straightforward because the em-
bedding is dynamically changing during the training. One can com-
pute the whole embedding every certain number of steps, plus
computing the PCA, and the hash table, but this naive strategy
does not scale well for large datasets. Consequently, we propose
three main modifications to the Spectral Hashing approach in or-
der to have an online algorithm that mimics its performance (see
Fig. 1 and Algorithm 1):

Algorithm 1 Main algorithm.

1: Input: image_names, image_labels, s, batch_size, n_ids

: hash_table, C, ;1 < hash_init (image_names, image_labels, s)

: net < ImageNet_init

. autoencoder < random_init

: while not converged do
images, labels < create_mini_batch(image_labels, hash_table,

batch_size, n_ids)
descriptors < net (images)

8: hash_vectors < autoencoder(descriptors)

9: hash_table, C, u < hash_table_update(hash_table, C, images,
labels, hash_vectors, (1)

10: backpropagate

11: end while

QU A WN

N

1. The PCA is substituted by a linear auto-encoder paired with L,
reconstruction loss (Algorithm 1 line 8).
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hash table

dy
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+1
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Fig. 1. BoN strategy. Triplets with good quality negatives are formed using the information from the hash table. The resulting embedding is used to learn both the deep
model and a linear projection that, in turn, provides a low-dimensional embedding. Its quantization provides (possibly) new entry positions in the hash table for the input
images. The hash table and the linear autoencoder are updated at each training step with minimal overhead.

2. The quantization threshold is dynamically estimated, per-
dimension, instead of being fixed to 0 (Algorithm 2 line 9).
3. The hash table is dynamically updated (Algorithm 1 line 9).

Algorithm 2 Hash table update.

1: function HAsH_UPDATE(hash_table, C, image_indexes, image_
labels, hash_vectors, |1)

2: for (image_idx, image_label, hash_vector) in (image_indexes,
image_labels, hash_vectors) do

3: old_hash < Climage_idx]

4: hash < Zj‘:l 2Heavyside(hash,vector[j]—,u[j])

5: if hash # old_hash then

6: remove (image_idx, image_label) from hash_table[old_
hash]

7: add (image_idx, image_label) to hash_table[hash]

8: Climage_idx] < hash

9 H<Bu+ 0=

10: end if

11: end forreturn hash_table, C, u
12: end function

5.1. Linear auto-encoder

Since the online PCA estimation is in general computationally
inefficient and potentially numerically unstable [42], we train a
linear autoencoder (AE) paired with L, reconstruction loss, as in
formulas (2), where h(x) is the projected sub-space of dimension-
ality s. The reconstruction loss should not modify the embedding
space, therefore the gradients generated by the L4 loss are back-
propagated only through the fully connected layers of the autoen-
coder.

h(x) = Wi f (%) + by
Fx) =Wah(x) 1+ by (2)
Lar = |If @0 — Fl3

This approach can approximate a PCA computation, but it also al-
lows non-orthogonal representations. The AE continuously models

the projection that provides the codeword to the hash table up-
date procedure. The added cost of learning such AE is negligible
w.r.t. the Siamese network training. The choice of s is related to
two factors: (1) the smaller s, the more difficult to reconstruct (in
the L, sense) the original sized embedding and (2) the bigger s,
the larger the number of bins obtained after the binarization, more
precisely B = 25. A detailed analysis on the behaviour of BoN as a
function of s is presented in the experimental section.

5.2. Dynamic quantization thresholds

Since the lower dimensional space h(x) changes dynamically
during the training and the AE does not guarantee a zero mean
hidden representation, the correct thresholds w for its binarization
have to be estimated as a running mean: u < 8 u +(1-8) h
(x), where B controls how quickly the running average forgets old
samples (Algorithm 2 line 9). In our experiments we noticed that
varying B € [0.950.999] does not influence the results so that it is
not a critical parameter to tune.

5.3. Hash table dynamic update

We maintain an hash table L (hash_table in Algorithm 2) that,
for each entry indexed by an integer j, contains a collection
of images identified by pairs (v,I(v)), where v is an integer
that uniquely represents an image in the dataset (image_idx in
Algorithm 2), and I(v) is an integer that uniquely represents the
class of the given image (image_label in Algorithm 2). Also, we
keep track of the latest hash entry for every image in the dataset,
using integer values, such that C[v] = j (line 8 in Algorithm 2). In
such a way, updating the hash table has a very limited computa-
tional cost. The slowest part of the update procedure is removing
the tuple (v, I(v)) from the bin to which it had been assigned (line
6 in Algorithm 2), and it has a cost of O(N/2%). In term of memory
cost, assuming that both the classes I(v) and the sample v identi-
fiers can be represented with 4 bytes integers, we need only a total
of 4(N + 2N) bytes to store both the hash table L and the hash en-
try C. As an example, even a very large dataset with 10M images
requires only 115 Megabytes for the hash table. The update proce-
dure is described in Algorithm 2.
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5.4. Bag of Negatives with triplet loss

The simplest way of using BoN is to create mini-batches by ran-
domly sampling b anchor-positive image pairs. For each pair, we
sample a negative image randomly among the images that belong
to the same bin as the anchor. In case the anchor belongs to a bin
in which there are no other images from a different class, we sam-
ple the negative image randomly from the whole dataset.

5.5. Bag of Negatives with batch hard loss

As BoN is able to provide relevant images for batch sampling,
it can be easily combined with a loss such as batch hard. It is im-
portant to create batches of size m, which contain k images from [
classes for batch hard (see Algorithm 3). We set k = 2 for all the ex-
periments, as we are focusing on showing the importance of good
negative sampling, and we want to avoid the results being influ-
enced by hard positive sampling. We randomly sample [ classes
that belong to the same bin as the first, random sample (lines
4-9 in Algorithm 3). If the bin has only one element, we sample
the rest of the images needed for the batch randomly (line 10 in
Algorithm 3). In case the number of classes in the bin is greater
than one and lower than [, we append the missing classes from an-
other bin, which is randomly chosen. The process is repeated until
sampling [ classes. Once we have a set of | classes, we choose k
images randomly from the images that belong to that class (lines
16 and 17 in Algorithm 3).

Algorithm 3 Mini batch creation.

1: function CREATE_MINI_BATCH( image_labels, hash_table, batch
size, n_classes)
batch_labels < empty list
while length(batch_labels) < n_classes do
anchor_idx < random((1 to length(image_labels)), size=1)
anchor_hash < Clanchor_idXx]
if anchor_hash > 0 then
classes < classes from hash_table[anchor_hash]
new_classes < random(classes, size = min(length
(classes), n_classes— length(batch_labels))
9: else
10: new_classes < random((1 to max(image_labels)), size=
n_classes—length(batch_labels))
11: end if
12: add new_classes to batch_labels
13: end while
14: batch_idxs < empty list
15: for class in batch_labels do
16: class_idxs < indexes of class in image_labels
17: add random(class_idxs, size=batch_size/n_classes) to
batch_idxs
18: end forreturn batch_idxs, batch_labels
19: end function

X N2 R W

6. Empirical evidence
6.1. Datasets

Person re-identification large dataset. We merged eleven pub-
licly available datasets for person re-identification, CUHKO1 [43],
CUHKO2 [44], 3DPeS [45], VIPeR [46], airport [47], MSMT17 [48],
Market-1501 [49], DukeMTMC [50]. The merged dataset has 10.5k
IDs, and 178k images. We used both training and testing parti-
tions of all the datasets except for Market-1501 and DukeMTMC-
relD and we did not use the images that are labeled as distructors
or junk.
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Fig. 2. Negative distances calculated in the whole dataset (x-axis) vs. negative dis-
tances calculated inside of bins (y-axis) for 100 anchors.

Stanford online products Oh Song et al. [7] is a retrieval dataset
which contains 120k images of 22.6k products. The dataset is split
into two partitions, the training one, which contains 59.5k images
of 11,3k products, and testing, 60.5k images of 11.3k classes.

DeepFashion - in-shop clothes retrieval Liu et al. [23] is a part of
DeepFashion dataset which is designed for instance retrieval. The
dataset is made of 54.6k images of 11.7k clothing items. All the
images are taken under controlled conditions.

6.2. Pre-trained backbone and training parameters

We use Inception-V3 as a backbone for our model. In particular,
we take the convolutional layers and initialize them with weights
from a standard network pre-trained on ImageNet. The final de-
scriptors are further globally max-pooled and ¢, normalized. The
descriptors size is 2,048. The model is trained using ADAM opti-
mizer, with the initial learning rate 10~%, and with learning rate
decay 0.9 each 50k iterations. The images for person re-ID are re-
sized to 192x384 pixels. At test time, we extract representations
and compare them using the dot product.

6.3. Analysis of Bag of Negatives

In this section we answer the following relevant questions: (1)
How does BoN compare to the exhaustive search? (2) How does
BoN behave in terms of non-zero loss triplets? (3) How does BoN
perform changing the subspace dimension s? (4) How much over-
head it adds to the training? and (5) How stable is the hash ta-
ble during training? We provide all the analysis on the person re-
identification dataset, as it is challenging, as well as appropriate for
testing of all the algorithms mentioned in the Section 3.

6.3.1. BoN vs. exhaustive search

In the motivation section we explained that an exhaustive
search in the embedding provides always a non-zero loss negative
sample, if existing. Nonetheless, its cost is prohibitive when dealing
with large datasets. Fig. 2 shows the distance between 100 anchor
samples and a set of negative samples at 200k steps of training for
BoN-random with s = 18. The abscissa shows the average distance
(red) and the minimal distance (blue) when applying an exhaustive
search over the whole training partition of the large person re-ID
dataset. For the very same anchor sample, the ordinate shows the
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Fig. 3. Percentage of non-zero loss triplets per mini-batch as a function of mAP on
the training set.

distance where the search is limited to the samples belonging in
the same hash bin as the anchor.

An ideal hashing method would exhibit blue dots on the diago-
nal of the plot, meaning that every hardest negative sample (clos-
est to the anchor) lies in the corresponding anchor bin. As it can be
seen, the blue dots are not deviating excessively from the diagonal,
which means that BoN is able to retrieve negatives of good qual-
ity. Again, for the purpose of training a Siamese architecture with
triplet loss, using always the hardest negative can be disruptive
and particularly dangerous due to mislabeled samples [24]. This is
particularly true and the authors of [33] introduce stochasticity in
order to avoid this problem.

The analysis of the red dots is also of interest: as expected, on
average, sampling from the reference bin provides samples that are
closer to the anchor sample w.r.t. random sampling from the whole
dataset.

It is worth mentioning that the distance between the mini-
mal and average distances in the full embedding space is 0.7. This
means that the data distribution is sparse and that the random
sampling can lead to choosing negative samples which are far from
being hard. On the other hand, the distribution of the distances
inside of a bin has smaller standard deviation, as the distance be-
tween the minimal and average distances is 0.2. This allows us to
use random sampling inside of the bins, without decreasing the
quality of the chosen samples.

6.3.2. Non-zero loss triplets analysis

Fig. 3 shows the percentage of non-zero loss triplets (measured
at train time) as a function of the training mean Average Preci-
sion (mAP) for the random sampling, BoN-Random, the semi hard
loss, the batch hard loss and BoN-batch hard, Spectral Hashing-
batch hard, 100k IDs-batch hard and SPL-batch hard loss on the per-
son re-ID dataset. For all methods the margin is set to o = 0.3,
the mini-batch size is m = 48, and the leftmost point on the plot
for every method is obtained at 10k steps of training. As expected,
the percentage of non-zero triplets for the random sampling (blue
line) starts at only 20% and decreases as the mAP increases; at
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mAP = 77.4 the non-zero triplets are less than 5% and the train-
ing is virtually unable to learn anything else.

BoN-random (red line) significantly increases the number of
non-zero loss triplets w.r.t. the pure random sampling, without
modifying the loss nor the way the anchor-positive pairs are
formed. The improvement is solely due to the improved sampling
of negatives.

BoN-random exhibits a behaviour similar to semi hard (green
line) and batch hard (orange line) while providing, in general, more
non-zero losses triplets. However, the nature of the improvement
provided by our method and batch hard is very different: BoN
searches for negatives in a local region of the embedding space
while the batch hard forms the triplets seeking for the non-zero
triplets in an explicit way within a mini-batch but sampling from
the whole embedding.

These two complementary strategies can be easily combined as
seen in Section 5.5. The combination inherits the benefits of both
approaches: at 10k steps batch hard and BoN-batch hard have a
similar mAP ~ 83% but BoN-batch hard (black line) has about 2
times more non-zero loss triplets, and it has more non-zero loss
triplets systematically until the end of the training. As it will be
seen in the comparison, this behaviour not only speeds-up the
training, but also provides better triplets, which leads to significant
improvement of the performance on validation sets.

We measure the limitations of BoN by comparing it to the “gold
standard”, Spectral Hashing. The combination of Spectral Hashing
and batch hard requires the following steps: (1) feature extraction
on the whole training set, (2) reduction of the feature size by PCA
to the size s (s =18) and (3) hash table construction; we repeat
this procedure every 5k steps. Given this hash table, batches are
created the same way as explained in Section 5.5. BoN-batch hard
shows very similar behavior to the Spectral Hashing - batch hard
(magenta line): they both train quickly, obtaining almost the same
mAP after 10k steps, with high percentage of non-zero loss triplets.
During the whole training Spectral Hashing - batch hard is provid-
ing more non-zero loss triplets. This is expected, as the hash table
is updated at the same moment for all the samples. However, this
configuration does not scale for datasets with large number of im-
ages.

We analyze the behavior of batch creation proposed in Wang
et al. [18], using 10 clusters as suggested by the authors. We use
these clusters for creating the hash table and we do not update
it during the training. In addition to longer training time, this
method lacks flexibility in updating the hash table. In other words,
samples that are considered relevant negatives to an identity are
set at the beginning of the training and are static w.r.t. the train-
ing process. Moreover, a possible sub-optimal clustering is going
to be seriously detrimental to the training. In the beginning of the
training, this method obtained lower mAP on the train set (gray
line) while having more non-zero loss triplets than batch hard. The
number of relevant triplets in the end of the training decreases,
and both accuracy and the percentage of the non-zero loss triplets
are inferior to BoN-batch hard.

Even though Semantic-Preserving Loss (SPL) [37] has not been
designed as a hashing method for hard negative mining, we con-
sider it relevant to our work, and thus we adapted it to this pur-
pose. We use SPL loss (Eq. (3)) as a replacement of reconstruction
loss in BoN. In this case, the encoder is a fully connected layer with
tanh activation function, that maps image descriptors d; into cor-
responding hash entries h(x;). Following the rationale proposed in
Deng et al. [37], the similarity matrix S is a non-linear function of
the dot product between images’ descriptors within a mini-batch
(4): a pair of similar images (with dot product above a certain
threshold, set to 0.6) are mapped to 1, otherwise they are mapped
to —1. The minimization of Eq. (3) should encourage the mapping
of similar images to the same hash entry, thus providing useful
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BoN-BH shows superior results: it trains faster with more non-
zero loss triplets (see Table 3). We believe that the advantage of
BoN over SPL resides in the fact that the BoN AE loss does not
depend on the relationship between mini-batch samples, thus pro-
vide a more stable hash table. Also, the quality of SPL mapping
depends on the quality of the mini-batch sampling, which in turn
depends on the hash table itself; such dependence can introduce
a non-negligible instability in the training. Finally, in this context,
SPL can be improved by adding an extra dedicated network that
provides the mapping between the input image and the hash en-
try, instead of using the descriptor as an approximation of the in-
put image; such a strategy could importantly increase the compu-
tational cost of the approach, and it is currently out of the scope
of the paper.

d; - d; > threshold
otherwise

(4)

6.3.3. BoN-random behaviour varying s

Being s the only relevant meta-parameter of BoN, we find ex-
tremely important to discuss its influence on BoN performance. It
is interesting to note that BoN-Random degenerates to pure ran-
dom sampling for s = 0. Fig. 4 shows the mAP results on the Mar-
ket and Duke validation datasets for different values of s at 200k
steps. As it can be seen, the performance increases with s and
it reaches a maximum at s = 18; nonetheless, with s =22, BoN
reaches its breaking point and the average number of samples per
bins (for non empty bins) is very low, such that BoN-Random starts
to perform negative sampling in the whole dataset too frequently.

6.3.4. Training time

Table 2 presents the time needed for training a model for 100k
steps, and total time needed for convergence for batch hard and
BoN - batch hard methods, as BoN provides the best results when
combined with batch hard. Both experiments are conducted un-
der the same conditions; we trained the models on a TITAN X
GPU with non-augmented images of size 384x192 pixels, using in-
ception_v3 as backbone architecture, initialized with the weights
obtained from ImageNet pretraining. The relative overhead that
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Table 4

validation results at peak performance for every method and
dataset. * stands for the best number found in literature that uses
additional attention ensembles. % means that the method uses bi-
linear pooling.

Method Stanford inShop

rl r10 r1 r10
lifted structured [7] 615 800 - -
DAML [30] 684 835 - -
hierarchical tree [32] 74.8 88.3 80.9 94.3
sampling matters [24] 727 862 - -
ABE-8%'2 [52]* 763 864 873  96.7

Stochastic class-based [33]* 77.6 89.1 919 98.0

BoN-batch hard 80.2 914 914 979

BoN introduces is 3%. However, the model trained with BoN needs
fewer steps to train, which means that total train time is reduced
3.4 times. In other words, BoN saves 24.26 h when trained with
batch hard loss, while significantly improving the performance of
batch-hard, as it will be shown in Section 7.

We additionally measured the time needed for one full for-
ward pass of all the images in the train partition of the person
re-identification dataset, which is independent on the sampling
strategy, or loss function. The time to extract all the features is
11.5 min, which is equal to 1527 training steps of BoN-BH or 1572
steps of batch hard. All methods that require the computation of
features in each epoch ([18,32-34] and Spectral Hashing) introduce
an overhead of at least 42% at train time. BoN has equal or better
performance than [18,32-34] (see Table 4) while adding one order
of magnitude less overhead.

6.3.5. Bin stability analysis

The majority of recently published strategies for hard triplet
mining take a snapshot of the full embedding in each epoch and
create batches of hard triplets based on that information. In con-
trast, we create mini-batches based on an online hash table that
stores all the training images in bins. In every training step, we
move all samples from the mini-batch from old to new hash
bins, which are approximated by the latent representations of the
autoencoder that is trained to reconstruct the embedding. Even
though this strategy introduces minimal computational overhead,
it uses a noisy embedding approximation for triplet mining. In this
section we analyse the tendency of images moving from one bin
to another, as well as the Hamming distance between the former
and current hashes (see Fig. 5).

In each training step we assign all 2/ images (2 images from
each of | classes) from the mini-batch to new bins. In the begin-
ning of the training we sample one image per identity randomly
from the list of images that have not been sampled as the first im-
ages, and the second image randomly. The images are initially not
assigned to any bin, so all of them are added to the hash table as
new (orange bar in Fig. 5). As the training continues, the number
of newly inserted images is reducing, as both images per ID could
have been sampled earlier in the training. While the hash table is
not fully populated, the associated hash entry is unstable, and the
images are moving from one bin to another frequently. Once the
embedding becomes more stable, the percentage of images stay-
ing in the same bin increases significantly (green bar). However,
around 90% of images still keep moving.

Fig. 5 shows Hamming distance between the old and new hash
entries for all images processed in a mini-batch. It can be noticed
that, after 25,000 steps, the bins become stable, and only 8% of
images move to a bin that is on Hamming distance greater than 4.
We set s =16, which means that more than 75% of bits are kept
the same. 92% of images are moving inside of the neighborhood of
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entry.

bins on Hamming distance smaller than 5 means that most of the
images are moved to another bin with similar content.

The fact that images are moving from one bin to another is
expected, and there are a couple of reasons for that. First, the
decision boundary that separates bins is updated during training,
which means that the samples that are close to the boundary
can easily move from one bin to another. Second, the embedding
changes through time, as does its compressed approximation, so
an image that was assigned to one bin can move and be closer to
some other samples in a different step of training. As mentioned
above, the fact that images move in neighboring bins is not a prob-
lem; it is actually beneficial to avoid sampling negative samples
that are either noisy or overly-difficult.

7. Results and comparison

In this section we perform a controlled comparison of our
proposal with some of the most commonly used ranking losses:
triplet, semi hard and batch hard, contrastive-batch hard and the
three methods for triplet selection: hierarchical tree [32], 100k IDs
[18] and SPL [37]. We avoid extra variables (e.g. augmentation,
other architectures, etc.) that could mask the empirical results for
other reasons not related to negative sampling and triplets con-
struction. For such reasons, we use the same mini-batch size for
all the methods, the same pre-trained back-bone, the same margin
o and the same embedding size (see Section 6.2 for the details).
Harwood et al. [34] and Suh et al. [33] are not included in this
comparison, since they require an extra loss which can corrupt the
analysis; a performance comparison with these approaches is pro-
vided in Table 4.

Table 3 shows the results of the comparison on the person re-
identification dataset. As it can be noticed, BoN-random clearly
outperforms pure random sampling in fewer steps and provides
validation mAPs comparable to semi hard and batch hard. Even
though BoN improves results of batch hard sampling when com-
bined with the contrastive loss, it performs significantly worse
than the original batch hard (combined with triplet loss), so we
performed all the experiments using the batch hard - triplet loss
setting. Spectral Hashing - batch hard outperforms BoN-batch hard,
which is expected, considering that BoN is an online approxima-
tion of Spectral Hashing. The numbers show that the margin be-
tween BoN and Spectral Hashing is only 1.5% on average on the

two evaluation datasets. However, Spectral Hashing can be used
only if the train set is reasonably small; thus its application on big-
ger datasets would be unfeasible.

One can argue that the performance of BoN can be easily
reached by just increasing the mini batch size of the batch hard
method. The experiment batch hard (2x batch) in Table 3 shows
a training in which the mini-batch size has been doubled. As ex-
pected, in this case, the method trains faster and has better per-
formance, but still does not outperform BoN-batch hard. This ex-
periment shows that BoN is a key component to the accelerated
training and improved validation results of BoN-batch hard.

We implemented two methods for batch selection known in
the literature, Hierarchical Tree (HT) [32] and 100k IDs [18], and
combined them with batch hard. We followed the procedure de-
scribed in Ge [32] and computed the distance matrix between all
the IDs every 5k steps. We formed a batch by randomly select-
ing one ID, and taking the remaining [ — 1 as its closest neighbors.
We trained a classifier on the whole train set for 10k steps and
used this model to create the hash table with 10 bins. Additionally,
we adapted one state-of-the-art hashing method [37] on image re-
trieval task for hard negative mining (see Section 6.3.2 for details).
The results of all three methods confirm our hypothesis that batch
sampling is important for improving and speeding up the training.
However, none of them outperforms BoN neither in speed nor ac-
curacy.

Even though BoN is specially designed to improve training of
Siamese networks on large datasets, we tested the influence of BoN
on two small datasets, CUB-200 [51] and Market-1501 [49]. BoN
improves mAP on Market-1501 from 58.4 to 60.0, and from 36.1
to 37.9 on CUB-200. The improvement in these cases is smaller
than in the experiments conducted on bigger datasets for two rea-
sons: (1) Batch hard is usually enough, since the probability that
hard samples exist in the mini-batch is higher than in case of large
datasets; (2) Choosing optimal s becomes challenging: small s does
not contain enough information for reconstruction, while bigger s
leads to degenerate solution.

Table 4 shows the comparison of BoN-batch hard with state-of-
the-art approaches on Stanford Online Products and DeepFashion
In Shop datasets. We trained BoN-batch hard using the same train-
ing parameters as explained in Section 6.2, with a few changes:
inception_vl was used as backbone architecture (as in Oh Song
et al. [7], Ge [32], Suh et al. [33], Kim et al. [52]) with an extra
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fully connected layer with frozen weights after the max pooling
that reduces the embedding size to 256. We used images of size
336 x 336 pixels (as in Suh et al. [33]) with data augmentation
techniques such as random horizontal flipping, blurring, zooming
in and out and cutout. As the images in these datasets are more
heterogeneous, the state-of-the-art methods usually do not use
task specific architectures.

We show that BoN-batch hard provides better or comparable re-
sults than both [52], which uses attention ensembles, and stochas-
tic class-based [33], which in addition to having higher complex-
ity enhances its performance by using second order pooling [53],
which introduces even more computational cost with respect to
the baseline model. Additionally, BoN-batch hard performs better
than DAML [30], which uses synthetic negative samples for train-
ing.

Our method achieves state-of-the-art results on Stanford Online
Products dataset, while being comparable to the previously pub-
lished methods evaluated on inShop dataset. The nature of Stan-
ford Online Products dataset is more aligned with the problem that
we are trying to solve: it has more training images than inShop
(60k vs. 25.8k) as well as more classes (11.3k vs. 4k). We used the
same s = 10 in both cases, so the hash table of the Stanford Online
Products was more densely populated. Better performance would
probably be obtained by training a model on inShop dataset with
the smaller embedding size and smaller s.

8. Conclusion and future works

In this paper we introduced Bag of Negatives (BoN), a novel
method for hard negative mining that accelerates and improves
training of Siamese networks and scales well on datasets with
large number of identities.

The main strengths of BoN are being computationally efficient
and complementary to the popular batch hard approach. In fact,
BoN provides a set of relevant negative samples, while batch hard
provides the explicit hard negative selection process and the in-
creased number of triplets per mini-batch; their combination pro-
vides improved validation results thanks to a better sampling of
negative candidates. We also shown that BoN computational cost is
negligible with respect to gradients computations during stochastic
gradient descent based learning. It is also way more efficient than
similar negative mining algorithms in the literature and it speeds-
up the Spectral Hashing approach significantly. Summarising, BoN
is better and faster than previous hard negative mining methods.

The main disadvantage of BoN is the requirement of a user pro-
vided s parameter. This parameter can be tuned by means of cross-
validation or other standard meta-parameter tuning techniques.
Nonetheless, we consider that an automatic strategy for tuning
s would be very beneficial for the practical use of BoN on large
datasets. For such a reason, future work will address possible so-
lutions on automatic estimation of the s meta-parameter; since s
must be a positive integer, one possible line of research is the si-
multaneous use of several values of s combined with an automated
strategy of meta-parameter selection.
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