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a b s t r a c t 

Deep metric learning methods aim to measure similarity of data points (e.g. images) by calculating their 

distance in a high dimensional embedding space. These methods are usually trained by optimizing a 

ranking loss function, which is designed to bring together samples from the same class while separating 

them from samples from all other classes. The most challenging part of these methods is the selection of 

samples that contribute to effective network training. In this paper we present Bag of Negatives (BoN), 

a fast hard negative mining method, that provides a set, triplet or pair of potentially relevant training 

samples. BoN is an efficient method that selects a bag of hard negatives based on a novel online hashing 

strategy. We show the superiority of BoN against state-of-the-art hard negative mining methods in terms 

of accuracy and training time over three large datasets. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Metric learning, as a part of general machine learning, gained a 

ot of attention in the recent years [1–12] . The methods designed 

o embed images with similar content close to each other and sep- 

rate them from images of other objects usually struggle when 

mages are taken by different cameras, under different light con- 

itions, from different angles, etc. Some of the recently published 

orks propose solving metric learning problem by training deep 

eural networks that are computationally very expensive and task- 

pecific [3–6,8,13–15] . Others require direct image-to-image com- 

arisons, which results in methods that scale poorly at testing time 

16,17] . Finally, one line of research focuses on simpler domain- 

gnostic architectures, that are able to adapt to any ranking prob- 

em [1,2,18,19] . 

Once the architecture is designed, the question that naturally 

rises is: what should be the appropriate loss function for train- 

ng? Several works use classification loss [20,21] . These methods 

ypically train a deep convolutional neural network for solving a 

lassification problem, while extracting image descriptors by pool- 

ng features from the last convolutional layer at testing time. Even 

hough these approaches are straightforward to implement, they 

truggle from serious limitations in terms of the number of classes 

hat they can handle. For instance, a dataset with more than 10 M 
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lasses 1 (such as the FaceNet dataset, as reported in Kemelmacher- 

hlizerman et al. [22] ) and with a 128 embedding size, would re- 

uire a model with more than 1 billion parameters, which would 

e impractical to train without severe overfitting. 

Given the previously mentioned limitations of classification 

oss, alternative functions, widely known as ranking losses, have 

een proposed. The main goal of these losses is bringing the rep- 

esentations of samples from the same class close to each other, 

hile separating the representations of images that belong to dif- 

erent classes. To do so, Siamese architectures with several paral- 

el streams, which are made of the same networks with shared 

eights, are used [2,18,19] . These architectures allow simultane- 

us computing of compact representations for several input im- 

ges, and combining them with a ranking loss. Even though these 

pproaches do not depend on the number of classes in the training 

et, they are hard to train due to the complexity of finding input 

amples that are producing a loss greater than zero [2] . 

In this paper, we propose an online strategy for mining samples, 

hat contributes to a more efficient training of Siamese architec- 

ures, while providing better validation scores on several datasets. 

e tested our method on datasets large enough so that the re- 

rieval and re-identification problems cannot be easily solved using 

 classification loss. We use a large person re-ID dataset by merg- 

ng publicly available datasets (similarly to [21] ) and we show the 
1 In this paper we propose a general method which can be used for retrieval, 

e-identification or recognition, and therefore we treat identities or IDs and classes 

qually, and refer to them as classes . 
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esults on the publicly available retrieval datasets Stanford Online 

roducts [7] and DeepFashion [23] . 

. Related work 

.1. Hard negative mining 

The problem of finding relevant candidates for ranking losses 

especially for triplet loss) has received a lot of attention in the 

ecent years for both retrieval [2,7,19,24–26] and tracking [27] . One 

esearch line bypasses this problem by proposing modifications of 

oftmax loss for easier training [28,29] . 

A research line focuses on offline sampling approaches. An of- 

ine re-weighting of the loss can improve the quality of negative 

amples, but at non-negligible cost [24] . Taking advantage of extra 

nowledge on sub-categories within the dataset is also advanta- 

eous in mining negative samples [25] . 

Another group of methods, widely known as online hard nega- 

ive mining (OLHN), take advantage of the samples representations 

vailable at mini-batch level in order to improve the probability 

f retrieving relevant negatives for the triplet loss [2,7,19,26] . Most 

f these works create mini-batches of kl images, k random images 

er each one of l random classes. The pioneer approach was intro- 

uced by Schroff et al. [2] , called semi hard loss, where triplets are 

reated by all anchor-positive pairs in a mini-batch. The negative 

ample is chosen so that the loss is in between 0 and the prede-

ned margin α (see the Eq. (1) ). 

Lifted Embedding loss is proposed in Oh Song et al. [7] , where 

he authors sample negative as the one closest to either anchor or 

ositive for each anchor-positive pair in the mini-batch. 

In [19] the authors propose two strategies for sampling inside 

f a mini-batch, which are extensions of the Lifted Embedding loss. 

atch all loss is obtained by all possible combinations of triplets 

nside of batch. Batch hard loss takes all the images from the mini- 

atch as anchors of triplets. The positive is selected as the furthest 

ample from the same class as the anchor in the mini-batch, while 

he negative is the closest to the anchor from all the samples from 

ifferent classes in the mini-batch. 

Curriculum sampling is proposed in Wang et al. [26] , where the 

eginning of training is performed using easy negative instances, 

nd complexity increases through time. For each anchor they sort 

ll negatives from the mini-batch according to their distances to 

he anchor, and they sample the negative with Gaussian distribu- 

ion N (μ, σ ) . μ and σ are changed through time, so that μ goes 

rom max distance to min distance, and σ reduces. 

All of these approaches have the same drawback: they focus on 

he local distribution of data inside of a mini-batch, while sampling 

he candidates for mini-batch randomly. A mini-batch created ran- 

omly is a good representation of the global distribution, but it 

oes not represent the local embedding space. As relevant negative 

amples could be found in the local neighborhood of the anchor sam- 

le, the probability of sampling useful triplets rises if the mini-batch 

s created from samples that belong to the same local neighborhood. 

Another research line comprises methods that use adversarial 

amples for metric learning [30,31] . In [30] the authors propose a 

ay of training Siamese networks by generating adversarial, po- 

entially hard, negative samples for training with variations of the 

riplet loss. The descriptors of all three input images are used for 

enerating a synthetic, hard negative descriptor. This descriptor, to- 

ether with the anchor and positive, forms a triplet of descrip- 

ors that is used for calculating the loss. Similarly, in Chen et al. 

31] the authors propose a metric learning strategy that uses a set 

f real and a set of synthetic pairs for training. 

The fourth research line proposes online strategies for providing 

elevant negative samples prior to mini-batch formation [18,32–

4] , and our contribution belongs to this research line. 
2 
In [32] authors propose a strategy that builds a tree of identities 

o facilitate the sampling of relevant negatives for a given anchor. 

he method clearly improves the quality of negative samples but 

t the cost of updating the tree at every epoch. Also, the tree con- 

truction is based on an identity-to-identity distance matrix, which 

hus scales quadratically with the number of identities. 

In [18] authors explicitly face the problem of training a Siamese 

etwork with 100k identities. The basic idea is to generate a repre- 

entation for each identity, and apply clustering on all the identi- 

ies to generate clusters or subspaces, wherein identities are simi- 

ar in each subspace. Authors propose to train a classifier on a sub- 

et of identities, then use the classifier to generate image represen- 

ations, and finally perform k-means clustering in order to form the 

ubspaces. Authors do not update the clustering during the train- 

ng, thus the subspaces could become sub-optimal in later stages 

f the training. 

In [33] authors propose a strategy in which anchor samples 

re compared to “class signatures” in order to limit the number 

f sample to sample comparisons. A stochastic process is added 

o avoid the oversampling of overly-difficult or noisy classes. The 

lass signatures are constantly updated thanks to an additional 

lassification loss. The method could be seen as a stochastic ex- 

ension of [32] where the similarity between classes is computed 

t each step, while the class signatures are updated in a more effi- 

ient way. Nonetheless, the number of additional distance compu- 

ation w.r.t. a pure random sampling is proportional to the number 

f classes. 

In [34] authors propose a strategy for creating triplets of im- 

ges from a subset of approximate nearest neighbors of the an- 

hor image. This strategy requires a forward pass on all training 

et images at the beginning of each epoch, followed by graph con- 

truction, and search inside of the subspace. This strategy increases 

he speed w.r.t exhaustive search ( “. . . Given that O(N 

2 ) is the best 

ase complexity for the naive hard mining approach above, we can 

onclude that our method is computationally more efficient . . . ”[34] ), 

hile providing relevant triplets. Similarly to [32] , the main issue 

f this approach is that triplets are formed at the beginning of each 

poch. This strategy for triplet formation can be useful for small 

atasets, but does not guarantee high quality of sampled triplets 

owards the end of the epoch when trained on datasets with large 

umber of images. 

The main drawbacks of the approaches from [18,32–34] are: (1) 

igh computational cost and (2) they scale poorly with the number 

f classes. 

.2. Online hashing methods for image retrieval 

In [35] authors design a hashing method for cross-domain re- 

rieval. They split the full image or text representation into two 

arts: one that is domain specific, and the second that is shared 

or the two domains. The two parts are in the end concatenated, 

nd used as unique image/text representations. 

In [36] authors propose a method that learns binary codes for 

ubspaces, based on a similarity preserving criterion. This method 

ses the binary codes to train binary classifiers which are further 

sed as hashing functions. 

In [37] authors propose an unsupervised way to train a hash- 

ng method for image retrieval. They propose a loss function that 

enalizes the network if two similar images are put into differ- 

nt hash bins, as well as if two dissimilar images are assigned to 

he same hash bin. They measure image similarity based on dis- 

ances of image descriptors extracted from ImageNet pre-trained 

esNet152 network. 

The same loss for assigning images to the hash bins is opti- 

ized in Deng et al. [38] . This method has an additional branch 

hat assigns class labels to the same hashes as the images that be- 
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Table 1 

Comparison of sampling strategies. 

Strategy n e n d n t Additional computation 

Random 0 0 m/ 3 –

Semi-hard 0 (2 b 2 − 2 b) l m/ 3 –

Batch hard 0 (9 b 2 − 2 b) l m –

Exhaustive l(N − b) lN 2 m/ 3 –

Hierarchical Tree [32] N N 2 / 2 N.A. pre-training 

Smart mining [34] N (N/i ) 2 N.A. extra global loss 

100k IDs [18] 0 0 N.A. classifier, all feature extract, k-means 

Stochastic class-based [33] k (K − 1) k 
(

N 
n 

+ (K − 1) 
)

N.A. classifier, class signatures 

Spectral Hashing [39] N 0 N.A. PCA 

Bag of Negatives 0 0 N.A. autoencoder 
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ong to that class. As this is a supervised hashing method, a pair 

f images is considered to be similar if both of them belong to 

he same class, and dissimilar otherwise. Even though this method 

erforms well on image retrieval task, it is not designed for hard 

egative mining; if the number of hashes is slightly greater than 

he number of classes in the train set, each class can potentially 

e assigned to one hash; using this table, sampling images for a 

ini-batch from one hash bin would not provide any negatives, 

ince all the samples would belong to the same class. If the num- 

er of hashes is smaller than the number of classes, the system 

ill be unstable. 

On the other hand, unsupervised hashing proposed in Deng 

t al. [37] is suitable for hard negative mining task. We show re- 

ults and discuss its advantages and disadvantages in Sections 3, 

.3.2 and 7 . 

. Motivation 

The triplet loss (see Eq. (1) ) is based on the construction of 

riplets i ∈ T formed by an anchor sample x a 
i 
, a positive sample x 

p 
i 

belonging to the same class as the anchor) and a negative sample 

 

n 
i 
. The samples are mapped into an embedding by a given function 

f (·) , that is usually a deep convolutional network, which parame- 

ers are learned by means of minimization of the loss L . 

 = 

1 

n t 

∑ 

i ∈T 

[|| f (x a i ) − f (x p 
i 
) || 2 2 − || f (x a i ) − f (x n i ) || 2 2 + α

]
+ (1) 

he goal of the triplet loss is to ensure that the anchor-negative 

airs are far from each other by a margin α with respect to the 

nchor-positive pair distance. It is well known that the most chal- 

enging part of using the triplet loss to train a metric learning 

ystem is generating triplets that produce a non-zero loss. This is 

ard, since the number of all possible triplets in the dataset is pro- 

ortional to the cube of total number of images N in the dataset, 

T | ∼ N 

3 , and the more the system trains, the less probable it is

o find a negative for a given anchor-positive pair that provides a 

on-zero loss [2] . 

Let n be the average number of images per class, m the mini- 

atch size, k the number of images of each class in the mini-batch, 

nd l number of steps per epoch. For the sake of clarity, we intro- 

uce the notation ˆ n , the number of negative samples that produce 

 non-zero loss if used in conjunction with the triplet loss and an 

nchor-positive pair. The more we train the Siamese network the 

maller ˆ n becomes. 

We propose a systematic cost analysis given a sampling method 

n terms of n e , the extra number of forward passes to be computed 

er epoch, and n d , the extra number of distances to be computed 

n order to select a set of negatives per-mini-batch over an en- 

ire epoch. Additionally, we report the number of triplets per mini- 

atch n t , summarised in Table 1 . 
3 
The “quality” of the retrieved negatives is also relevant, as 

ointed out in Wu et al. [24] : negative samples have to be dis- 

ributed such that the anchor-negative distance is almost uniformly 

istributed. More on the latter topic will be discussed in the exper- 

mental section. 

Sampling the negatives randomly from the whole dataset has 

omplexity O(1) but does not provide relevant negative samples 

xcept at the beginning of the training, since p ˆ n = ˆ n / (N − n ) � ˆ n /N.

rom now on we will omit n from the formula since it is negligible

.r.t. N. 

Semi hard loss [2] employs a negative sampling strategy that 

as an increased cost due to the fact that the additional com- 

uted distances scale polynomially with the mini-batch size. The 

mprovement in p ˆ n with respect to the random sampling is lin- 

arly dependent to the number of triplets b. For this reason, au- 

hors use huge mini-batches in the order of 1800 samples. p ˆ n is 

hus increased to 2 b ̂ n /N, at the cost of large mini-batches and ad- 

itional computation. 

Batch hard loss [19] is an improved version of the semi hard 

oss where, thanks to a more controlled mini-batch creation and 

dditional distances computation, the method exhibits p ˆ n = m ̂  n /N. 

his strategy offers a 50% improvement in p ˆ n w.r.t. the semi hard 

pproach, but still provides a probability that depends on the 

ini-batch size. The additional cost in the distances computation 

s mitigated by a 3 times factor in the numbers of computed 

riplets. 

An offline exhaustive search into the dataset provides 

p ˆ n = min( 3 ̂  n /m, 1 ). This is, of course, not viable for large datasets.

onetheless, for relatively small datasets and with the proper 

ampling strategy over the m (N − m ) distances, exhaustive search 

rovides excellent negatives samples [24] . 

Hierarchical Tree sampling [32] , 100k IDs [18] , Smart Min- 

ng [34] and Stochastic class-based hard example mining [33] are 

ethods for sampling candidates prior to mini-batch creation. 

hose methods can be combined with online hard mining strate- 

ies (such as semi-hard and batch hard ) and further increase the 

robability of sampling relevant negative samples. 

In [32] authors propose sampling identities based on inter-class 

istances. The main drawback of this method is the high computa- 

ional cost of creation of the inter-class distance matrix. This ma- 

rix should be updated once per epoch, and it requires forward 

asses of the whole dataset ( O(N) ), and calculating all-vs-all sam- 

le distances ( O(N 

2 ) ). 

The method proposed in Wang et al. [18] for batch generation 

s based on hashing. This approach is faster than Hierarchical Tree, 

s it does not require any additional distance calculations nor extra 

mbedding extraction. Its drawback is the complexity of generating 

he hash table, as it requires training a classifier on a subset of the 

ataset, extracting of features of all images from the train set and 

xecuting k-means clustering. 
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Table 2 

Time required for training for 100k steps and until convergence. 

Method Time for 100k steps [h] Convergence time [h] 

batch hard 12.3 34.4 

BoN- batch hard 12.6 10.1 

Table 3 

mAP validation results at peak performance for every method. 

Method #steps Market Duke 

map r1 map r1 

Random 600k 28.1 47.5 22.5 37.6 

BoN-Random 440k 61.4 80.3 51.3 70.2 

semi hard 350k 59.3 76.8 53.5 71.3 

batch hard 280k 60.8 78.6 53.7 70.6 

batch hard - contrastive 120k 48.9 66.9 37.8 56.5 

SPL (reproduced) [37] - batch hard 200k 65.3 81.5 59.3 75.8 

HT(reproduced) [32] - batch hard 310k 65.9 82.8 57.5 74.9 

100k (reproduced) [18] - batch hard 90k 67.8 83.3 61.2 77.7 

BoN- batch hard - contrastive 90k 59.4 77.0 51.9 70.6 

BoN- batch hard 80k 69.5 85.2 62.1 78.5 

SH- batch hard 100k 71.6 86.6 62.9 78.2 

batch hard (2x batch) 70k 62.9 80.3 56.7 74.7 
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The method called Smart Mining [34] uses samples from ap- 

roximate nearest neighborhood to create potentially relevant 

riplets. However, in the beginning of each epoch one full forward 

ass of the whole dataset is performed. In addition to this, in each 

raining step (N/i ) 2 distances are computed, where i is the number 

f neighborhoods. 

Stochastic class-based hard example mining [33] is a method 

hat uses class signatures when creating triplets. This approach 

equires k (K − 1) extra forward passes in each training step and 

kN/n distances, where K is the number of classes in mini-batch. 

This brief study shows that the efficiency of relevant negative 

ining is a crucial issue. Also, increasing the probability of pick- 

ng a relevant negative is key to the improved performance from 

emi hard to batch hard strategy. Scalability to very large datasets 

ith a large number of classes is a necessity within the training of 

iamese architectures. 

In this paper we propose a novel method for batch creation, 

nspired by Spectral Hashing [39] . In contrast to Spectral Hashing, 

hich requires additional forward passes of all images from the 

ataset, our method updates the hash table online, with negligible 

omputational cost. 

. Contribution 

The paper’s main contribution is a computationally inexpen- 

ive and mini-batch size independent, online strategy for improved 

egative mining in large datasets; which we named Bag of Nega- 

ives (BoN). The main advantages of BoN w.r.t. previous methods 

re: (1) fewer training steps to converge, (2) a better performance 

n validation sets due better sampling of negatives, and (3) a neg- 

igible additional computational cost w.r.t. the Siamese architecture 

raining. 

We stress that our methodology does not require computing 

dditional samples representation nor their respective distances 

o be able to select appropriate negatives (see Table 1 ). It can 

e combined with any loss that requires a negative sample, as 

hown in Sections 5.4 and 5.5 . Nonetheless, for simplicity, we will 

nalyse the behaviour of BoN with triplet based losses since they 

erform better than contrastive loss ( Table 3 ); analogous results 

re achieved with other losses, such as quadruplet loss. We also 

ant to emphasize that this approach has been devised with large 
4 
atasets and computational efficiency in mind. Finally, the method 

as only one relevant meta-parameter, discussed in Section 6 . 

. Bag of Negatives 

A negative sample whose representation is close to the anchor 

ample provides a triplet that is more likely to produce non-zero 

oss. The main purpose of BoN is providing these relevant negative 

amples using an algorithm that is computationally inexpensive. 

BoN is inspired by the Spectral Hashing method [39] . Nonethe- 

ess, we had to introduce several changes in order to efficiently 

dapt it to the negative mining problem during training. 

Spectral Hashing is a nearest neighbour search algorithm that 

s shown to perform better than Product Quantization while be- 

ng simpler to implement and more efficient at learning the hash 

unction [39] . In terms of performance, it is inferior with respect to 

ethods that address the embedding compression and the quanti- 

ation as a whole problem, e.g. [40,41] . However, we have to con- 

ider that the embedding is changing during the training, thus a 

impler but flexible approach is preferred over methods providing 

etter results at a greater computational cost. 

The main approach of the Spectral Hashing method is to (1) 

earn a linear projection from the embedding space (of size e ) to 

 lower dimensional space (of size s � e ) by means of a standard 

CA, (2) apply the projection to a sample, (3) perform a 1 bit quan- 

ization over every dimension by threshold at 0, and (4) group 

he s bits into an integer codeword (line 4 in Algorithm 2 ). The

odeword represents the entry of a hash table. The underlying as- 

umption is that samples falling into the same bin are neighbours 

n the high dimensional embedding. Of course, this assumption is 

ver-optimistic and the variation from the optimal are mainly due 

o the following facts: (1) being s � e we lose some information 

bout the topology of the high dimensional embedding and (2) the 

uantization is harsh and there is no actual control on the quanti- 

ation error during the process. Nonetheless, experimental valida- 

ion shows that the Spectral Hashing method is indeed performing 

ell in retrieval tasks [39] . 

However, the direct application of the Spectral Hashing (or any 

ther nearest neighbour algorithm) method to the problem of re- 

rieving negative samples is not straightforward because the em- 

edding is dynamically changing during the training. One can com- 

ute the whole embedding every certain number of steps, plus 

omputing the PCA, and the hash table, but this naïve strategy 

oes not scale well for large datasets. Consequently, we propose 

hree main modifications to the Spectral Hashing approach in or- 

er to have an online algorithm that mimics its performance (see 

ig. 1 and Algorithm 1 ): 

lgorithm 1 Main algorithm. 

1: Input: image _ names , image _ l abel s , s , batch _ size , n _ ids 

2: hash _ table, C, μ ← hash _ init(image _ names, image _ l abel s, s ) 

3: net ← ImageNet_init 

4: autoencoder ← random_init 

5: while not converged do 

6: images, l abel s ← create _ mini _ batch (image _ l abel s, hash _ tabl e, 

batch _ size, n _ ids ) 

7: descr iptor s ← net(images ) 

8: hash _ v ectors ← autoencod er(d escr iptor s ) 

9: hash _ table, C, μ ← hash _ table _ update (hash _ table, C, images, 

l abel s, hash _ v ectors, μ) 

0: backpropagate 

11: end while 

1. The PCA is substituted by a linear auto-encoder paired with L 2 
reconstruction loss ( Algorithm 1 line 8). 
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Fig. 1. BoN strategy. Triplets with good quality negatives are formed using the information from the hash table. The resulting embedding is used to learn both the deep 

model and a linear projection that, in turn, provides a low-dimensional embedding. Its quantization provides (possibly) new entry positions in the hash table for the input 

images. The hash table and the linear autoencoder are updated at each training step with minimal overhead. 
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2. The quantization threshold is dynamically estimated, per- 

dimension, instead of being fixed to 0 ( Algorithm 2 line 9). 

3. The hash table is dynamically updated ( Algorithm 1 line 9). 

lgorithm 2 Hash table update. 

1: function hash_update ( hash _ table , C, image _ indexes , image _ 

l abel s , hash _ v ectors , μ) 

2: for (image _ idx, image _ l abel , hash _ v ector) in ( image _ indexes, 

image _ l abel s, hash _ v ectors ) do 

3: old _ hash ← C[ image _ idx ] 

4: hash ← 

∑ s 
j=1 2 

Heavyside (hash _ v ector[ j ] −μ[ j ]) 

5: if hash � = old _ hash then 

6: remove (image _ idx, image _ l abel ) from hash _ tabl e [ ol d _

hash ] 

7: add (image _ idx, image _ l abel ) to hash _ table [ hash ] 

8: C[ image _ idx ] ← hash 

9: μ ← βμ + (1 − β) μ
0: end if 

11: end forreturn hash _ table , C, μ
2: end function 

.1. Linear auto-encoder 

Since the online PCA estimation is in general computationally 

nefficient and potentially numerically unstable [42] , we train a 

inear autoencoder (AE) paired with L 2 reconstruction loss, as in 

ormulas (2) , where h ( x ) is the projected sub-space of dimension- 

lity s . The reconstruction loss should not modify the embedding 

pace, therefore the gradients generated by the L AE loss are back- 

ropagated only through the fully connected layers of the autoen- 

oder. 

 ( x ) = W 1 f ( x ) + b 1 

ˆ f ( x ) = W 2 h ( x ) + b 2 

 AE = || f ( x ) − ˆ f ( x ) || 2 2 

(2) 

his approach can approximate a PCA computation, but it also al- 

ows non-orthogonal representations. The AE continuously models 
5 
he projection that provides the codeword to the hash table up- 

ate procedure. The added cost of learning such AE is negligible 

.r.t. the Siamese network training. The choice of s is related to 

wo factors: (1) the smaller s, the more difficult to reconstruct (in 

he L 2 sense) the original sized embedding and (2) the bigger s, 

he larger the number of bins obtained after the binarization, more 

recisely B = 2 s . A detailed analysis on the behaviour of BoN as a

unction of s is presented in the experimental section. 

.2. Dynamic quantization thresholds 

Since the lower dimensional space h (x ) changes dynamically 

uring the training and the AE does not guarantee a zero mean 

idden representation, the correct thresholds μ for its binarization 

ave to be estimated as a running mean: μ ← β μ +(1 − β) h 

 x ), where β controls how quickly the running average forgets old 

amples ( Algorithm 2 line 9). In our experiments we noticed that 

arying β ∈ [0 . 95 0 . 999] does not influence the results so that it is

ot a critical parameter to tune. 

.3. Hash table dynamic update 

We maintain an hash table L ( hash _ table in Algorithm 2 ) that,

or each entry indexed by an integer j, contains a collection 

f images identified by pairs (v , I(v )) , where v is an integer

hat uniquely represents an image in the dataset ( image _ idx in 

lgorithm 2 ), and I(v ) is an integer that uniquely represents the 

lass of the given image ( image _ l abel in Algorithm 2 ). Also, we

eep track of the latest hash entry for every image in the dataset, 

sing integer values, such that C[ v ] = j (line 8 in Algorithm 2 ). In

uch a way, updating the hash table has a very limited computa- 

ional cost. The slowest part of the update procedure is removing 

he tuple (v , I(v )) from the bin to which it had been assigned (line

 in Algorithm 2 ), and it has a cost of O(N/ 2 s ) . In term of memory

ost, assuming that both the classes I(v ) and the sample v identi- 

ers can be represented with 4 bytes integers, we need only a total 

f 4(N + 2 N) bytes to store both the hash table L and the hash en-

ry C. As an example, even a very large dataset with 10M images 

equires only 115 Megabytes for the hash table. The update proce- 

ure is described in Algorithm 2 . 
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Fig. 2. Negative distances calculated in the whole dataset ( x -axis) vs. negative dis- 

tances calculated inside of bins ( y -axis) for 100 anchors. 
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.4. Bag of Negatives with triplet loss 

The simplest way of using BoN is to create mini-batches by ran- 

omly sampling b anchor-positive image pairs. For each pair, we 

ample a negative image randomly among the images that belong 

o the same bin as the anchor. In case the anchor belongs to a bin

n which there are no other images from a different class, we sam- 

le the negative image randomly from the whole dataset. 

.5. Bag of Negatives with batch hard loss 

As BoN is able to provide relevant images for batch sampling, 

t can be easily combined with a loss such as batch hard . It is im-

ortant to create batches of size m, which contain k images from l

lasses for batch hard (see Algorithm 3 ). We set k = 2 for all the ex-

eriments, as we are focusing on showing the importance of good 

egative sampling, and we want to avoid the results being influ- 

nced by hard positive sampling. We randomly sample l classes 

hat belong to the same bin as the first, random sample (lines 

–9 in Algorithm 3 ). If the bin has only one element, we sample

he rest of the images needed for the batch randomly (line 10 in 

lgorithm 3 ). In case the number of classes in the bin is greater 

han one and lower than l, we append the missing classes from an- 

ther bin, which is randomly chosen. The process is repeated until 

ampling l classes. Once we have a set of l classes, we choose k 

mages randomly from the images that belong to that class (lines 

6 and 17 in Algorithm 3 ). 

lgorithm 3 Mini batch creation. 

1: function create_mini_batch ( image _ l abel s , hash _ tabl e , batch _

size , n _ classes ) 

2: batch _ labels ← empty list 

3: while length( batch _ labels ) < n _ classes do 

4: anchor _ idx ← random((1 to length( image _ l abel s )), size=1) 

5: anchor _ hash ← C[ anchor _ idx ] 

6: if anchor _ hash > 0 then 

7: classes ← classes from hash _ table [ anchor _ hash ] 

8: new _ classes ← random( classes , size = min(length 

( classes ), n _ classes − length( batch _ labels )) 

9: else 

0: new _ classes ← random((1 to max( image _ l abel s )), size= 

n _ classes −length( batch _ labels )) 

11: end if 

2: add new _ classes to batch _ labels 

3: end while 

14: batch _ idxs ← empty list 

5: for class in batch _ labels do 

6: class _ idxs ← indexes of class in image _ labels 

17: add random( class _ idxs , size= batch _ size / n _ classes ) to 

batch _ idxs 

18: end forreturn batch _ idxs , batch _ l abel s 

9: end function 

. Empirical evidence 

.1. Datasets 

Person re-identification large dataset . We merged eleven pub- 

icly available datasets for person re-identification, CUHK01 [43] , 

UHK02 [44] , 3DPeS [45] , VIPeR [46] , airport [47] , MSMT17 [48] ,

arket-1501 [49] , DukeMTMC [50] . The merged dataset has 10.5k 

Ds, and 178k images. We used both training and testing parti- 

ions of all the datasets except for Market-1501 and DukeMTMC- 

eID and we did not use the images that are labeled as distructors 

r junk. 
6 
Stanford online products Oh Song et al. [7] is a retrieval dataset 

hich contains 120k images of 22.6k products. The dataset is split 

nto two partitions, the training one, which contains 59.5k images 

f 11,3k products, and testing, 60.5k images of 11.3k classes. 

DeepFashion - in-shop clothes retrieval Liu et al. [23] is a part of 

eepFashion dataset which is designed for instance retrieval. The 

ataset is made of 54.6k images of 11.7k clothing items. All the 

mages are taken under controlled conditions. 

.2. Pre-trained backbone and training parameters 

We use Inception-V3 as a backbone for our model. In particular, 

e take the convolutional layers and initialize them with weights 

rom a standard network pre-trained on ImageNet. The final de- 

criptors are further globally max-pooled and � 2 normalized. The 

escriptors size is 2,048. The model is trained using ADAM opti- 

izer, with the initial learning rate 10 −4 , and with learning rate 

ecay 0.9 each 50 k iterations. The images for person re-ID are re- 

ized to 192 ×384 pixels. At test time, we extract representations 

nd compare them using the dot product. 

.3. Analysis of Bag of Negatives 

In this section we answer the following relevant questions: (1) 

ow does BoN compare to the exhaustive search? (2) How does 

oN behave in terms of non-zero loss triplets? (3) How does BoN 

erform changing the subspace dimension s ? (4) How much over- 

ead it adds to the training? and (5) How stable is the hash ta- 

le during training? We provide all the analysis on the person re- 

dentification dataset, as it is challenging, as well as appropriate for 

esting of all the algorithms mentioned in the Section 3 . 

.3.1. BoN vs. exhaustive search 

In the motivation section we explained that an exhaustive 

earch in the embedding provides always a non-zero loss negative 

ample, if existing. Nonetheless, its cost is prohibitive when dealing 

ith large datasets. Fig. 2 shows the distance between 100 anchor 

amples and a set of negative samples at 200k steps of training for 

oN-random with s = 18 . The abscissa shows the average distance 

red) and the minimal distance (blue) when applying an exhaustive 

earch over the whole training partition of the large person re-ID 

ataset. For the very same anchor sample, the ordinate shows the 
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Fig. 3. Percentage of non-zero loss triplets per mini-batch as a function of mAP on 

the training set. 

d

t

n

e  

s

w

i

t

a

p

o

a

c

d

m

m

s

b

i

t

u

q

6

a

s

l

b  

s  

t  

f

t

l

m

i

n

m

f

o

l

n

p

s

w

t

t

s

a

s

t

t

s

t

i

s

a

o

t  

t

c

s

(

m

D

i

i

c

a

e

t

i

m

s

s

i

t

t

l

n

a

a

d

s

p

l

t

r

D

t

(

t

t

o

istance where the search is limited to the samples belonging in 

he same hash bin as the anchor. 

An ideal hashing method would exhibit blue dots on the diago- 

al of the plot, meaning that every hardest negative sample (clos- 

st to the anchor) lies in the corresponding anchor bin. As it can be

een, the blue dots are not deviating excessively from the diagonal, 

hich means that BoN is able to retrieve negatives of good qual- 

ty. Again, for the purpose of training a Siamese architecture with 

riplet loss, using always the hardest negative can be disruptive 

nd particularly dangerous due to mislabeled samples [24] . This is 

articularly true and the authors of [33] introduce stochasticity in 

rder to avoid this problem. 

The analysis of the red dots is also of interest: as expected, on 

verage, sampling from the reference bin provides samples that are 

loser to the anchor sample w.r.t. random sampling from the whole 

ataset. 

It is worth mentioning that the distance between the mini- 

al and average distances in the full embedding space is 0.7. This 

eans that the data distribution is sparse and that the random 

ampling can lead to choosing negative samples which are far from 

eing hard. On the other hand, the distribution of the distances 

nside of a bin has smaller standard deviation, as the distance be- 

ween the minimal and average distances is 0.2. This allows us to 

se random sampling inside of the bins, without decreasing the 

uality of the chosen samples. 

.3.2. Non-zero loss triplets analysis 

Fig. 3 shows the percentage of non-zero loss triplets (measured 

t train time) as a function of the training mean Average Preci- 

ion (mAP) for the random sampling, BoN-Random, the semi hard 

oss, the batch hard loss and BoN- batch hard , Spectral Hashing- 

atch hard , 100k IDs- batch hard and SPL- batch hard loss on the per-

on re-ID dataset. For all methods the margin is set to α = 0 . 3 ,

he mini-batch size is m = 48 , and the leftmost point on the plot

or every method is obtained at 10k steps of training. As expected, 

he percentage of non-zero triplets for the random sampling (blue 

ine) starts at only 20% and decreases as the mAP increases; at 
7 
AP = 77.4 the non-zero triplets are less than 5% and the train- 

ng is virtually unable to learn anything else. 

BoN-random (red line) significantly increases the number of 

on-zero loss triplets w.r.t. the pure random sampling, without 

odifying the loss nor the way the anchor-positive pairs are 

ormed. The improvement is solely due to the improved sampling 

f negatives. 

BoN-random exhibits a behaviour similar to semi hard (green 

ine) and batch hard (orange line) while providing, in general, more 

on-zero losses triplets. However, the nature of the improvement 

rovided by our method and batch hard is very different: BoN 

earches for negatives in a local region of the embedding space 

hile the batch hard forms the triplets seeking for the non-zero 

riplets in an explicit way within a mini-batch but sampling from 

he whole embedding. 

These two complementary strategies can be easily combined as 

een in Section 5.5 . The combination inherits the benefits of both 

pproaches: at 10k steps batch hard and BoN- batch hard have a 

imilar mAP ≈ 83% but BoN- batch hard (black line) has about 2 

imes more non-zero loss triplets, and it has more non-zero loss 

riplets systematically until the end of the training. As it will be 

een in the comparison, this behaviour not only speeds-up the 

raining, but also provides better triplets, which leads to significant 

mprovement of the performance on validation sets. 

We measure the limitations of BoN by comparing it to the “gold 

tandard”, Spectral Hashing. The combination of Spectral Hashing 

nd batch hard requires the following steps: (1) feature extraction 

n the whole training set, (2) reduction of the feature size by PCA 

o the size s ( s = 18 ) and (3) hash table construction; we repeat

his procedure every 5k steps. Given this hash table, batches are 

reated the same way as explained in Section 5.5 . BoN- batch hard 

hows very similar behavior to the Spectral Hashing - batch hard 

magenta line): they both train quickly, obtaining almost the same 

AP after 10k steps, with high percentage of non-zero loss triplets. 

uring the whole training Spectral Hashing - batch hard is provid- 

ng more non-zero loss triplets. This is expected, as the hash table 

s updated at the same moment for all the samples. However, this 

onfiguration does not scale for datasets with large number of im- 

ges. 

We analyze the behavior of batch creation proposed in Wang 

t al. [18] , using 10 clusters as suggested by the authors. We use 

hese clusters for creating the hash table and we do not update 

t during the training. In addition to longer training time, this 

ethod lacks flexibility in updating the hash table. In other words, 

amples that are considered relevant negatives to an identity are 

et at the beginning of the training and are static w.r.t. the train- 

ng process. Moreover, a possible sub-optimal clustering is going 

o be seriously detrimental to the training. In the beginning of the 

raining, this method obtained lower mAP on the train set (gray 

ine) while having more non-zero loss triplets than batch hard . The 

umber of relevant triplets in the end of the training decreases, 

nd both accuracy and the percentage of the non-zero loss triplets 

re inferior to BoN- batch hard . 

Even though Semantic-Preserving Loss (SPL) [37] has not been 

esigned as a hashing method for hard negative mining, we con- 

ider it relevant to our work, and thus we adapted it to this pur- 

ose. We use SPL loss ( Eq. (3) ) as a replacement of reconstruction 

oss in BoN. In this case, the encoder is a fully connected layer with 

anh activation function, that maps image descriptors d i into cor- 

esponding hash entries h (x i ) . Following the rationale proposed in 

eng et al. [37] , the similarity matrix S is a non-linear function of 

he dot product between images’ descriptors within a mini-batch 

4) : a pair of similar images (with dot product above a certain 

hreshold, set to 0.6) are mapped to 1, otherwise they are mapped 

o −1 . The minimization of Eq. (3) should encourage the mapping 

f similar images to the same hash entry, thus providing useful 
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Fig. 4. Validation mAP as a function of s . 
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Table 4 

validation results at peak performance for every method and 

dataset. ∗ stands for the best number found in literature that uses 

additional attention ensembles. � means that the method uses bi- 

linear pooling. 

Method Stanford inShop 

r1 r10 r1 r10 

lifted structured [7] 61.5 80.0 – –

DAML [30] 68.4 83.5 – –

hierarchical tree [32] 74.8 88.3 80.9 94.3 

sampling matters [24] 72.7 86.2 – –

ABE- 8 512 [52] ∗ 76.3 86.4 87.3 96.7 

Stochastic class-based [33] � 77.6 89.1 91.9 98.0 

BoN- batch hard 80.2 91.4 91.4 97.9 
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egatives samples as efficiently as BoN. 

 SP = 

1 

m 

2 

m ∑ 

i =1 

m ∑ 

j=1 

(
1 

s 
h (x i ) h (x j ) − S i j 

)2 

(3) 

 i j = 

{
1 , d i · d j > threshold 

−1 , otherwise 
(4) 

BoN-BH shows superior results: it trains faster with more non- 

ero loss triplets (see Table 3 ). We believe that the advantage of 

oN over SPL resides in the fact that the BoN AE loss does not 

epend on the relationship between mini-batch samples, thus pro- 

ide a more stable hash table. Also, the quality of SPL mapping 

epends on the quality of the mini-batch sampling, which in turn 

epends on the hash table itself; such dependence can introduce 

 non-negligible instability in the training. Finally, in this context, 

PL can be improved by adding an extra dedicated network that 

rovides the mapping between the input image and the hash en- 

ry, instead of using the descriptor as an approximation of the in- 

ut image; such a strategy could importantly increase the compu- 

ational cost of the approach, and it is currently out of the scope 

f the paper. 

.3.3. BoN-random behaviour varying s 

Being s the only relevant meta-parameter of BoN, we find ex- 

remely important to discuss its influence on BoN performance. It 

s interesting to note that BoN-Random degenerates to pure ran- 

om sampling for s = 0 . Fig. 4 shows the mAP results on the Mar-

et and Duke validation datasets for different values of s at 200k 

teps. As it can be seen, the performance increases with s and 

t reaches a maximum at s = 18 ; nonetheless, with s = 22 , BoN

eaches its breaking point and the average number of samples per 

ins (for non empty bins) is very low, such that BoN-Random starts 

o perform negative sampling in the whole dataset too frequently. 

.3.4. Training time 

Table 2 presents the time needed for training a model for 100k 

teps, and total time needed for convergence for batch hard and 

oN - batch hard methods, as BoN provides the best results when 

ombined with batch hard . Both experiments are conducted un- 

er the same conditions; we trained the models on a TITAN X 

PU with non-augmented images of size 384x192 pixels, using in- 

eption_v3 as backbone architecture, initialized with the weights 

btained from ImageNet pretraining. The relative overhead that 
8 
oN introduces is 3%. However, the model trained with BoN needs 

ewer steps to train, which means that total train time is reduced 

.4 times. In other words, BoN saves 24.26 h when trained with 

atch hard loss, while significantly improving the performance of 

atch-hard , as it will be shown in Section 7 . 

We additionally measured the time needed for one full for- 

ard pass of all the images in the train partition of the person 

e-identification dataset, which is independent on the sampling 

trategy, or loss function. The time to extract all the features is 

1.5 min, which is equal to 1527 training steps of BoN-BH or 1572 

teps of batch hard . All methods that require the computation of 

eatures in each epoch ( [18,32–34] and Spectral Hashing) introduce 

n overhead of at least 42% at train time. BoN has equal or better 

erformance than [18,32–34] (see Table 4 ) while adding one order 

f magnitude less overhead. 

.3.5. Bin stability analysis 

The majority of recently published strategies for hard triplet 

ining take a snapshot of the full embedding in each epoch and 

reate batches of hard triplets based on that information. In con- 

rast, we create mini-batches based on an online hash table that 

tores all the training images in bins. In every training step, we 

ove all samples from the mini-batch from old to new hash 

ins, which are approximated by the latent representations of the 

utoencoder that is trained to reconstruct the embedding. Even 

hough this strategy introduces minimal computational overhead, 

t uses a noisy embedding approximation for triplet mining. In this 

ection we analyse the tendency of images moving from one bin 

o another, as well as the Hamming distance between the former 

nd current hashes (see Fig. 5 ). 

In each training step we assign all 2 l images (2 images from 

ach of l classes) from the mini-batch to new bins. In the begin- 

ing of the training we sample one image per identity randomly 

rom the list of images that have not been sampled as the first im- 

ges, and the second image randomly. The images are initially not 

ssigned to any bin, so all of them are added to the hash table as

ew (orange bar in Fig. 5 ). As the training continues, the number 

f newly inserted images is reducing, as both images per ID could 

ave been sampled earlier in the training. While the hash table is 

ot fully populated, the associated hash entry is unstable, and the 

mages are moving from one bin to another frequently. Once the 

mbedding becomes more stable, the percentage of images stay- 

ng in the same bin increases significantly (green bar). However, 

round 90% of images still keep moving. 

Fig. 5 shows Hamming distance between the old and new hash 

ntries for all images processed in a mini-batch. It can be noticed 

hat, after 25,0 0 0 steps, the bins become stable, and only 8% of 

mages move to a bin that is on Hamming distance greater than 4. 

e set s = 16 , which means that more than 75% of bits are kept

he same. 92% of images are moving inside of the neighborhood of 
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Fig. 5. The percentage of samples that were added to the hash table or moved from one bin to another. HD stands for Hamming distance between the old and new hash 

entry. 

b

i

e

d

w

c

c

a

s

a

l

t

7

p

t

t

[

o

o

s

a

α
H  

c

a

v

i

o

v

t

b

t

p

s

w

t

t

t

o

g

r

m

a

p

f

p

t

t

c

s

t

i

W

u

w

t

T

s

H

c

S

o

i

t

t

s

h

d

n

l

t

I

i

i

e  
ins on Hamming distance smaller than 5 means that most of the 

mages are moved to another bin with similar content. 

The fact that images are moving from one bin to another is 

xpected, and there are a couple of reasons for that. First, the 

ecision boundary that separates bins is updated during training, 

hich means that the samples that are close to the boundary 

an easily move from one bin to another. Second, the embedding 

hanges through time, as does its compressed approximation, so 

n image that was assigned to one bin can move and be closer to 

ome other samples in a different step of training. As mentioned 

bove, the fact that images move in neighboring bins is not a prob- 

em; it is actually beneficial to avoid sampling negative samples 

hat are either noisy or overly-difficult. 

. Results and comparison 

In this section we perform a controlled comparison of our 

roposal with some of the most commonly used ranking losses: 

riplet, semi hard and batch hard , contrastive- batch hard and the 

hree methods for triplet selection: hierarchical tree [32] , 100k IDs 

18] and SPL [37] . We avoid extra variables (e.g. augmentation, 

ther architectures, etc.) that could mask the empirical results for 

ther reasons not related to negative sampling and triplets con- 

truction. For such reasons, we use the same mini-batch size for 

ll the methods, the same pre-trained back-bone, the same margin 

and the same embedding size (see Section 6.2 for the details). 

arwood et al. [34] and Suh et al. [33] are not included in this

omparison, since they require an extra loss which can corrupt the 

nalysis; a performance comparison with these approaches is pro- 

ided in Table 4 . 

Table 3 shows the results of the comparison on the person re- 

dentification dataset. As it can be noticed, BoN-random clearly 

utperforms pure random sampling in fewer steps and provides 

alidation mAPs comparable to semi hard and batch hard . Even 

hough BoN improves results of batch hard sampling when com- 

ined with the contrastive loss, it performs significantly worse 

han the original batch hard (combined with triplet loss), so we 

erformed all the experiments using the batch hard - triplet loss 

etting. Spectral Hashing - batch hard outperforms BoN- batch hard , 

hich is expected, considering that BoN is an online approxima- 

ion of Spectral Hashing. The numbers show that the margin be- 

ween BoN and Spectral Hashing is only 1.5% on average on the 
9 
wo evaluation datasets. However, Spectral Hashing can be used 

nly if the train set is reasonably small; thus its application on big- 

er datasets would be unfeasible. 

One can argue that the performance of BoN can be easily 

eached by just increasing the mini batch size of the batch hard 

ethod. The experiment batch hard (2x batch) in Table 3 shows 

 training in which the mini-batch size has been doubled. As ex- 

ected, in this case, the method trains faster and has better per- 

ormance, but still does not outperform BoN- batch hard . This ex- 

eriment shows that BoN is a key component to the accelerated 

raining and improved validation results of BoN- batch hard . 

We implemented two methods for batch selection known in 

he literature, Hierarchical Tree (HT) [32] and 100k IDs [18] , and 

ombined them with batch hard . We followed the procedure de- 

cribed in Ge [32] and computed the distance matrix between all 

he IDs every 5k steps. We formed a batch by randomly select- 

ng one ID, and taking the remaining l − 1 as its closest neighbors. 

e trained a classifier on the whole train set for 10k steps and 

sed this model to create the hash table with 10 bins. Additionally, 

e adapted one state-of-the-art hashing method [37] on image re- 

rieval task for hard negative mining (see Section 6.3.2 for details). 

he results of all three methods confirm our hypothesis that batch 

ampling is important for improving and speeding up the training. 

owever, none of them outperforms BoN neither in speed nor ac- 

uracy. 

Even though BoN is specially designed to improve training of 

iamese networks on large datasets, we tested the influence of BoN 

n two small datasets, CUB-200 [51] and Market-1501 [49] . BoN 

mproves mAP on Market-1501 from 58.4 to 60.0, and from 36.1 

o 37.9 on CUB-200. The improvement in these cases is smaller 

han in the experiments conducted on bigger datasets for two rea- 

ons: (1) Batch hard is usually enough, since the probability that 

ard samples exist in the mini-batch is higher than in case of large 

atasets; (2) Choosing optimal s becomes challenging: small s does 

ot contain enough information for reconstruction, while bigger s 

eads to degenerate solution. 

Table 4 shows the comparison of BoN- batch hard with state-of- 

he-art approaches on Stanford Online Products and DeepFashion 

n Shop datasets. We trained BoN- batch hard using the same train- 

ng parameters as explained in Section 6.2 , with a few changes: 

nception_v1 was used as backbone architecture (as in Oh Song 

t al. [7] , Ge [32] , Suh et al. [33] , Kim et al. [52] ) with an extra
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ully connected layer with frozen weights after the max pooling 

hat reduces the embedding size to 256. We used images of size 

36 × 336 pixels (as in Suh et al. [33] ) with data augmentation 

echniques such as random horizontal flipping, blurring, zooming 

n and out and cutout. As the images in these datasets are more 

eterogeneous, the state-of-the-art methods usually do not use 

ask specific architectures. 

We show that BoN- batch hard provides better or comparable re- 

ults than both [52] , which uses attention ensembles, and stochas- 

ic class-based [33] , which in addition to having higher complex- 

ty enhances its performance by using second order pooling [53] , 

hich introduces even more computational cost with respect to 

he baseline model. Additionally, BoN- batch hard performs better 

han DAML [30] , which uses synthetic negative samples for train- 

ng. 

Our method achieves state-of-the-art results on Stanford Online 

roducts dataset, while being comparable to the previously pub- 

ished methods evaluated on inShop dataset. The nature of Stan- 

ord Online Products dataset is more aligned with the problem that 

e are trying to solve: it has more training images than inShop 

60k vs. 25.8k) as well as more classes (11.3k vs. 4k). We used the 

ame s = 10 in both cases, so the hash table of the Stanford Online

roducts was more densely populated. Better performance would 

robably be obtained by training a model on inShop dataset with 

he smaller embedding size and smaller s. 

. Conclusion and future works 

In this paper we introduced Bag of Negatives (BoN), a novel 

ethod for hard negative mining that accelerates and improves 

raining of Siamese networks and scales well on datasets with 

arge number of identities. 

The main strengths of BoN are being computationally efficient 

nd complementary to the popular batch hard approach. In fact, 

oN provides a set of relevant negative samples, while batch hard 

rovides the explicit hard negative selection process and the in- 

reased number of triplets per mini-batch; their combination pro- 

ides improved validation results thanks to a better sampling of 

egative candidates. We also shown that BoN computational cost is 

egligible with respect to gradients computations during stochastic 

radient descent based learning. It is also way more efficient than 

imilar negative mining algorithms in the literature and it speeds- 

p the Spectral Hashing approach significantly. Summarising, BoN 

s better and faster than previous hard negative mining methods. 

The main disadvantage of BoN is the requirement of a user pro- 

ided s parameter. This parameter can be tuned by means of cross- 

alidation or other standard meta-parameter tuning techniques. 

onetheless, we consider that an automatic strategy for tuning 

 would be very beneficial for the practical use of BoN on large 

atasets. For such a reason, future work will address possible so- 

utions on automatic estimation of the s meta-parameter; since s 

ust be a positive integer, one possible line of research is the si- 

ultaneous use of several values of s combined with an automated 

trategy of meta-parameter selection. 
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