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Abstract. Radiologists consider fine-grained characteristics of mammo-
grams as well as patient-specific information before making the final
diagnosis. Recent literature suggests that a similar strategy works for
Computer Aided Diagnosis (CAD) models; multi-task learning with radi-
ological and patient features as auxiliary classification tasks improves
the model performance in breast cancer detection. Unfortunately, the
additional labels that these learning paradigms require, such as patient
age, breast density, and lesion type, are often unavailable due to privacy
restrictions and annotation costs. In this paper, we introduce a con-
trastive learning framework comprising a Lesion Contrastive Loss (LCL)
and a Normal Contrastive Loss (NCL), which jointly encourage models
to learn subtle variations beyond class labels in a self-supervised manner.
The proposed loss functions effectively utilize the multi-view property of
mammograms to sample contrastive image pairs. Unlike previous multi-
task learning approaches, our method improves cancer detection per-
formance without additional annotations. Experimental results further
demonstrate that the proposed losses produce discriminative intra-class
features and reduce false positive rates in challenging cases.

Keywords: Mammography · Multi-task learning · Contrastive
learning

1 Introduction

Mammography is the most common and cost-effective method for early detec-
tion of breast cancer—the second most common cancer in women worldwide [22].
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Computer aided diagnosis (CAD) systems have been used as a way to assist radi-
ologists in reading millions of mammograms [11]. Thanks to the abundance of
screening data and the recent advance in deep neural networks, CAD applica-
tions for mammography have been developed rapidly; some papers demonstrate
performance comparable to its human counterpart [19,21].

Literature suggests that imitating how a radiologist reads a mammogram
is a promising way to improve the performance of CAD models. For example,
models that use multiple views (left and right or mediolateral oblique (MLO)
and craniocaudal (CC)) in a mammographic exam outperform models that only
work on a single view [12,15,17,25]. Furthermore, multi-task learning, where
a model is trained to predict various radiological features such as the Breast
Imaging-Reporting and Data System (BI-RADS) category [23], breast density,
radiological subtype of a lesion as well as patient features like age, has shown
to be effective in improving the performance of cancer detection [12,25]. How-
ever, this extra information is often unavailable due to privacy issues and huge
annotation costs.

Contrastive learning is a training technique that can bypass this problem
by learning useful features from the data themselves. Its goal is to pull similar
examples (i.e., positive pairs) closer and push dissimilar examples (i.e., nega-
tive pairs) farther in the embedding space. Contrastive learning has recently
surged in popularity for its success in self-supervised learning [4,8] and super-
vised representation learning [7,18,20]. In medical image analysis, contrastive
learning has been used to pre-train a triage system for mammograms [2] and
to improve domain generalization across multiple vendors [14]. Yan et al. [24]
uses contrastive learning to match lesion patches generated from two different
views of a patient as a part of multi-task learning for mammography. Chen et
al. [3] exploits anatomical symmetry of body parts to detect fraction on X-ray
by pixel-level contrastive learning with flipped images.

In this paper, we propose two contrastive losses, a Lesion Contrastive Loss
(LCL) and a Normal Contrastive Loss (NCL), that leverage the multi-view
nature of mammograms to explore rich radiological features beyond binary (can-
cer vs. non-cancer) class labels. The LCL attracts embeddings of different views
of the same lesion and repels embeddings of different lesions. Similarly, the NCL
attracts embeddings of bilateral normal breasts and repels embeddings of normal
breasts from different patients. By contrasting samples that have the same class
but are from distinct patients, our method allows the model to indirectly learn
variations within the class, i.e., the intra-class variations. These losses are opti-
mized jointly along with the image-level cancer classification loss via multi-task
learning.

The main contributions of this paper are summarized as follows. 1)We intro-
duce LCL and NCL that enable the model to learn auxiliary information without
explicit annotations. To the best of our knowledge, our framework is the first app-
roach in mammography that exploits contrastive learning to model intra-class
variations in a self-supervised manner. 2) We show that our losses improve the
overall cancer detection performance of vanilla baseline model as well as previ-
ous multi-task learning approaches, demonstrating the general applicability and
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Fig. 1. Our contrastive learning framework consists of a Lesion Contrastive Loss (LCL)
and a Normal Contrastive Loss (NCL). The LCL learns the similarity of a lesion seen at
different views of a patient and the dissimilarity of lesions from different patients. The
NCL, in contrast, utilizes parenchymal symmetry between both breasts of a normal
patient and diversity of normal breasts from different patients.

efficacy of our method. 3) Extensive experiments on a large scale in-house dataset
show that our method reduces false positive rates on challenging negative cases
and produces features that are transferable to more fine-grained classification
tasks. These results suggest that LCL and NCL combined generates features
that more aptly reflect intra-class variations.

2 Method

Our work aims to exploit the four-view nature of mammograms (RCC, LCC,
RMLO, and LMLO) to learn intra-class variations without using extra labels.
Inspired by contrastive clustering [13], we introduce two contrastive losses—
Lesion Contrastive Loss (LCL) and Normal Contrastive Loss (NCL)—that
together encourage the model to explore intricate variability within class beyond
the simple binary classification defined by the presence or absence of lesions. The
overview of the proposed method is illustrated in Fig. 1.

2.1 Multi-task Learning

Following the success of multi-task learning in mammograms [12,24], our method
is built upon a multi-task learning framework comprising three losses: an image-
level classification loss, LCL and NCL. As shown in Fig. 1, an input mammogram
is first fed into a fully-convolutional encoder, which consists of a pre-trained con-
volutional neural network followed by additional convolutional layers to further
abstract the output feature maps. Global average pooling (GAP) is subsequently
applied to reduce the feature maps into a 1-dimensional vector. The produced
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feature vector is then passed to a classification head for distinguishing cancer
from non-cancer, and two projection heads to produce embedding vectors that
are used for contrastive learning as described below.

2.2 Contrastive Losses

Contrastive loss is a function designed to learn an embedding space in which
inputs with similar properties lie close to each other while inputs with distinct
characteristics are placed distantly. One way to implement the contrastive loss is
utilizing a unit of three images—a triplet—consisting of a reference image called
an anchor (a), a matching image called a positive (p), and a non-matching image
called a negative (n). We adopt the triplet loss proposed in [20]. Given triplets
(a, p, n) ∈ T , where T is the entire set of triplets, the triplet loss is formulated
as

Ltriplet =
1

|T |
∑

(a,p,n)∈T

max(d(a, p)2 − d(a, n)2 + m, 0), (1)

where m is a margin and d(i, j) is the L2 distance between two images i and
j on the embedding space. The triplet loss tries to keep the distance from the
anchor (a) to the positive (p) smaller than the distance to the negative (n) by a
margin m. We apply this formula to both LCL and NCL.

Lesion Contrastive Loss. Radiologists read mammograms not only by assess-
ing the malignancy of a lesion (e.g. BI-RADS category) but also by describing
various radiological features of the lesion such as the lesion type (e.g. mass, cal-
cification, asymmetry, and distortion), shape (e.g. oval, round, and irregular),
size, density, etc. These features are not captured when a model is trained merely
with malignancy labels such as BI-RADS categories or biopsy results.

Motivated by this, we introduce the Lesion Contrastive Loss (LCL) that
indirectly learns the various aspects of lesions by comparing breasts containing
lesions in a self-supervised manner. In mammogram screening, lesions often in
two different images called CC and MLO views. In LCL, the two images contain-
ing the same lesion (e.g. RCC and RMLO from a patient having cancer in the
right breast) are pulled together, while images of different lesions (e.g. RCCs of
two patients having cancer in their right breasts) are repelled from each other.
Let an image containing a lesion be an anchor a. The ipsilateral image of the
same lesion acts as a positive (p) and other patient’s image that also contain a
lesion (hence a different lesion) act as a negative (n) in Eq. 1

Normal Contrastive Loss. Normal breasts (i.e., breasts that contain neither
a malignant nor benign lesion) exhibit radiological variations such as parenchy-
mal patterns (breast density), unsuspicious benign patterns, surgical scars, and
other textural characteristics. Literature indicates that these features may asso-
ciate with the risk of cancer [1]. Additionally, a normal contralateral breast of a
positive exam has a higher risk of developing cancer [10,26].
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The normal Contrastive Loss (NCL) is designed to make better use of this
latent variability among normal breasts. Based on the assumption that bilateral
breasts are anatomically symmetric [3], the NCL draws together the images of
left and right breasts of a normal patient (e.g. RCC and LCC of a normal patient)
and pushes apart normal images from different patients (e.g. RCCs of two normal
patients). Let an image without a lesion, i.e., a normal sample, to be an anchor
(a). The corresponding view of its opposite breast acts as a positive (p), and an
image of normal breast from a different patient acts as a negative (n).

2.3 Hard Negative Sampling

The proposed triplet strategy requires all four views of each case to be present in
a single mini-batch. To this end, we draw batches on a case level. Furthermore,
to ensure unbiased training, we maintain class balance by sampling an equal
number of lesion (cases including a cancer or benign lesion) and non-lesion cases
(cases not including a lesion) for each batch.

Naive sampling of triplets in a mini batch can be problematic because the
negative pairs are often trivial. In other words, the negative sample is too dis-
tant from the anchor to enter the margin of the triplet loss and yield a signifi-
cant training signal. To address this problem, we employ Hard Negative Mining
(HNM) to select effective triplets that violate the margin constraint. Given an
anchor image, we calculate pairwise L2 distances to all candidate negative images
in the mini batch and select the five closest images as negatives. This not only
accelerates training but also improves the final performance as demonstrated in
ablation studies.

3 Experiments

3.1 Dataset and Metrics

We construct an in-house mammography dataset consisting of 88,753 exams of
four-view full-field digital mammograms from 10 institutions in two countries;
eight in South Korea and two in the USA. Among the exams, 11,276 are cancer
positive confirmed by biopsy, 36,636 are benign confirmed by biopsy or at least
one year of follow-up, and 40,841 are normal confirmed by at least one year of
follow-up. The mammograms are taken using devices from three manufacturers:
GE, Hologic and Siemens with ratio 48.9%, 46.1%, and 5.0% respectively. We
sample a validation set of 2,943 (986 cancer, 963 benign, 994 normal) exams and
a test set of 2,928 (953 cancer, 991 benign, and 984 normal)1 exams to evaluate
models.

We compute three metrics to evaluate the results: area under the receiver
operating characteristic curve (AUROC), sensitivity at a fixed specificity (0.8),
and specificity at a fixed sensitivity (0.8). The DeLong test [5] is used to generate
confidence intervals for AUROC and a p-value when comparing two methods
(Fig. 2).
1 We randomly sampled 1,000 exams per category for each validation and test set,

and a few outlier exams (e.g. breast implants) are excluded.
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Table 1. Cancer diagnosis performance (AUROC with 95% confidence interval and
p-value, sensitivity at specificity 0.8 and vice versa) of our method compared with three
settings. Our method improves every baseline with a statistically significant margin.

Method AUROC p-value Sens. Spec.

Baseline 0.862 ± 0.010 - 0.760 0.742

+Ours 0.878 ± 0.0090.878 ± 0.0090.878 ± 0.009 <0.0001 0.7810.7810.781 0.7730.7730.773

Multi-task learning of [25] 0.867 ± 0.010 - 0.764 0.750

+Ours 0.880 ± 0.0090.880 ± 0.0090.880 ± 0.009 <0.0001 0.7800.7800.780 0.7750.7750.775

Multi-task learning of [12] 0.876 ± 0.009 - 0.782 0.778

+Ours 0.885 ± 0.0090.885 ± 0.0090.885 ± 0.009 <0.0001 0.7990.7990.799 0.7980.7980.798

Fig. 2. ROC curves of each baseline and our method.

3.2 Implementation Detail

Our method is implemented in PyTorch, and trained with four GPUs of NVIDIA
V100. We adopt ResNet-34 [9] pre-trained on ImageNet [6] as the backbone and
use two additional convolution layers followed by global average pooling. A sig-
moid classification layer is applied to predict a cancer score which is used to cal-
culate binary cross-entropy loss. The projection layer for each of our contrastive
losses is composed of 1 × 1 convolution and L2 normalization. We trained the
models for 200K iterations with SGD where the learning rate, weight decay,
and momentum are set to 0.005, 0.0001, and 0.9, respectively; the learning rate
follows the cosine annealing learning rate scheduling [16].

During training, the input images are resized to 960×640 and the batch size
is set to 128 (32 exams and 4 views per exam, as mentioned in Sect. 2.3) to fit our
GPU memory constraint. To avoid overfitting, we augment images with various
geometric transformations (translation, scaling, rotation, etc.) and photometric
transformations (brightness, contrast, noise, etc.). For two contrastive losses,
we use the triplet loss [20] with weight coefficient 5 and margin 0.2. We also
investigate two more forms of contrastive loss: pair-wise contrastive loss [7] and
InfoNCE loss [18]. Hyperparameters for these losses are specified in the ablation
study in Sect. 3.3.
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Table 2. Ablation analysis on the type of contrastive loss and the three components
of our method. HNM means hard negative mining in Sect. 2.3.

Type of loss LCL NCL HNM AUROC p-value Sens. Spec.

None (Baseline) 0.862 ± 0.010 - 0.760 0.742

Triplet [20] � 0.871 ± 0.010 0.0007 0.763 0.751

� 0.869 ± 0.010 0.0061 0.768 0.759

� � 0.874 ± 0.010 <0.0001 0.778 0.769

� � � 0.878 ± 0.0100.878 ± 0.0100.878 ± 0.010 <0.0001 0.7810.7810.781 0.7730.7730.773

Pairwise loss [7] � � � 0.873 ± 0.010 <0.0001 0.776 0.767

InfoNCE [18] � � � 0.876 ± 0.009 <0.0001 0.777 0.768

3.3 Result and Analysis

Performance Comparison. We evaluate the proposed loss functions by adding
them to three settings: 1) a naive baseline with binary classification between
cancer and non-cancer (i.e., benign and normal), 2) the multi-task learning set-
ting proposed in MommiNet-v2 [25] which trains with BI-RADS categories as an
additional regression task, and 3) the multi-task learning framework proposed in
MVMT [12] which utilizes abundant extra information such as the BI-RADS cat-
egory, breast density, radiological subtype (i.e., mass, micro-calcification, etc.),
conspicuity, and patient age for additional tasks.

As shown in Table 1, adding auxiliary tasks using additional labels tends
to improve the performance of the models. Notably, our unsupervised, label-
free intra-class learning method outperforms supervised multi-task learning
approaches in terms of the AUROC score. Furthermore, our method boosts the
performance of previous multi-task approaches even further, which implies that
LCL and NCL encourage models to learn orthogonal characteristics that are not
captured in supervised multi-task learning methods.

Ablation Study. We perform an ablation analysis to demonstrate the contri-
bution of each component (LCL, NCL, and HNM) and the choice of the specific
implementation of contrastive loss. Table 2 shows that each part of the proposed
framework contributes to the increased performance. Furthermore, our method
achieves improvement regardless of the specific type of contrastive loss: triplet
loss [20], pairwise loss [7] (weight 10 and margin 0.2), and InfoNCE [18] (weight
0.2 and temperature coefficient 2). The triplet loss yields the best performance.

Feature Analysis. We analyze the feature representation trained with our
method by quantifying its capability to learn intra-class distinction. We train
supervised linear classifiers on top of the trained features for two downstream
tasks, lesion type (mass/asymmetry/distortion/micro-calcification) and breast
density (A/B/C/D) predictions, and measure accuracy on the test set. Labels
for these analyses were provided by board-certified radiologists on the in-house
dataset. As shown in Table 3, our method significantly outperforms the base-
line in both tasks with very low p-values, under 10−5, which demonstrates that
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Table 3. Linear classification accuracy (%) with trained feature representations.
Results are shown with 95% confidence interval.

Method Lesion type Breast density

Baseline 53.9 ± 0.053 75.1 ± 0.030

+ Ours 58.2 ± 0.05558.2 ± 0.05558.2 ± 0.055 78.1 ± 0.02978.1 ± 0.02978.1 ± 0.029

Table 4. Subgroup analysis in terms of false positive rate (%) at sensitivity 0.8 with
three different negative groups. Out method effectively reduces false positives in difficult
negative groups.

Negatives All Biopsy-proven benign Contralateral breast

Baseline 20.70 47.51 42.89

+ Ours 16.4116.4116.41 40.3340.3340.33 35.5135.5135.51

the learned representations effectively reflect intra-class variations among lesion
breasts and normal breasts.

Subgroup Analysis. We perform a subgroup analysis on groups of data that
have previously been prone to false positive predictions: (1) a set of biopsy-
proven benign lesions and (2) a set of contralateral breasts (the opposite side to
the breast diagnosed with biopsy-proven malignancy). The size of each negative
subset is 181 and 949 cases respectively. A biopsy-proven benign lesion is not
cancerous but is suspicious enough to be recalled for a pathological examination
and can therefore be seen as a challenging negative sample. Furthermore, a breast
that is contralateral to one that contains cancer does not only share anatomical
similarity with its malignant counterpart such as texture and breast density, but
also has a higher risk of developing cancer [10,26]. This, combined with the batch
dependency in exam-based sampling, may undesirably cause models to associate
contralateral breasts with the presence of cancer.

We show that the proposed loss functions mitigate false positive predictions
for both subgroups. As shown in Table 4, our framework significantly reduces
the false positive rate, demonstrating that learning intra-class variation helps
handling ambiguous examples near the class boundary.

4 Conclusion

We presented an intra-class contrastive learning framework that learns auxiliary
information without supervision. We proved the efficacy of learning an embed-
ding space that reflects intra-class variations through extensive experiments with
a total of 88,753 exams. Compared to supervised multi-task learning approaches,
our LCL+NCL substantially improves the model performance without requir-
ing additional labels. Furthermore, we showed that our losses help models to
learn features that are transferable to more fine-grained classification tasks such
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as breast density and lesion subtype prediction. Lastly, our proposed method
reduces false positive rate on radiologically challenging cases (biopsy-proved
benign) and contextually challenging cases (contralateral breast of a cancerous
breast).
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