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Abstract
Gastric cancer is a significant public health concern, emphasizing the need for accurate evaluation of lymphatic
invasion (LI) for determining prognosis and treatment options. However, this task is time-consuming,
labor-intensive, and prone to intra- and interobserver variability. Furthermore, the scarcity of annotated data
presents a challenge, particularly in the field of digital pathology. Therefore, there is a demand for an accurate
and objective method to detect LI using a small dataset, benefiting pathologists. In this study, we trained
convolutional neural networks to classify LI using a four-step training process: (1) weak model training,
(2) identification of false positives, (3) hard negative mining in a weakly labeled dataset, and (4) strong model
training. To overcome the lack of annotated datasets, we applied a hard negative mining approach in a weakly
labeled dataset, which contained only final diagnostic information, resembling the typical data found in hospital
databases, and improved classification performance. Ablation studies were performed to simulate the lack of
datasets and severely unbalanced datasets, further confirming the effectiveness of our proposed approach.
Notably, our results demonstrated that, despite the small number of annotated datasets, efficient training was
achievable, with the potential to extend to other image classification approaches used in medicine.
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Introduction

Gastric cancer is a major global public health concern,
with a reported incidence of more than 1 million new
cases and 769,000 deaths in 2020 alone [1]. Specific
regions such as East Asia, Eastern Europe, and South
America are particularly affected by gastric cancer and
its complications. Lymphatic invasion (LI) plays a cru-
cial role in the prognosis and treatment of gastric
cancer. As per the invasion–metastasis cascade theory, LI
occurs when tumor cells enter the lymphatic system,
which is a key event during cancer cell dissemination.
LI is associated with a poor prognosis and an increased
risk of recurrence, making it an important factor to con-
sider in treatment decisions [2–7]. However, accurate
evaluation of the presence of LI remains a challenge

for pathologists because of the labor-intensive and
time-consuming nature of the task and the potential for
intraobserver and interobserver variability.
Recently, computational pathology has made signifi-

cant advancements in the field by enabling high-
resolution imaging of tissue specimens using whole
slide images (WSIs). This technology allows the digi-
tization of slide images, which can then be stored and
analyzed using deep learning-based artificial intelli-
gence (AI) algorithms. These algorithms can be used
to classify and detect pathological features with a
high degree of accuracy and efficiency [8–11].
However, the detection of LI using digital pathology
remains challenging for several reasons: (1) complex
patterns, (2) variability of the lymphatic system, and
(3) scarcity of LI regions.
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Previous studies attempted to detect LI using
segmentation models. Ghosh et al [12] used a segmen-
tation model to detect LI foci in testicular cancer,
whereas Chen et al [13] attempted to detect LI in
breast cancer using a similar approach. However, these
studies were limited by the scarcity of labeled data and
the potential for intra- and interobserver variability,
which could affect the accuracy and robustness of the
models. To address these challenges, we propose a
classification-based approach for LI detection using
digital pathology. This approach is simpler and easier
to train than the segmentation-based approaches.
Although classification-based approaches offer a

simpler and more efficient way of detecting LI in digital
pathology, they require a large number of annotated
datasets for effective training. This requirement presents
a challenge in medical image assessment, in which the
collection and annotation of data can be costly and
time-consuming. Several approaches have been pro-
posed to address this issue, including unsupervised,
active, and semisupervised learning. Semisupervised
learning is a powerful approach that utilizes both labeled
and unlabeled data to train a model. Notably, this
approach maximizes the use of weakly labeled datasets,
thereby improving the performance of deep learning-
based AI algorithms in medical diagnosis systems.
Hard negative mining is a technique employed in

semisupervised learning to improve the performance
of deep learning models in object detection and
classification tasks, as demonstrated in numerous
studies [8–11,14,15]. This approach involves the
identification and selection of challenging negative
samples incorrectly classified by the current model;
thereafter, these samples are employed to train the
model, thereby yielding a robust model. Hard nega-
tive mining improves the performance of deep learn-
ing models for various medical imaging applications,
including the classification of pulmonary nodules
[16–18], diagnosis of prostate cancer [19,20], and
analysis of skin lesions [21,22]. Moreover, this
method mitigates false positives, enhances sensitivity,
and improves the overall accuracy of deep learning
models. Furthermore, the proposed method demon-
strates the capacity to train models that exhibit
increased robustness in the face of class imbalance [23].
The application of hard negative mining has the poten-
tial to advance the creation of deep learning algorithms
for various medical imaging applications.
This study aimed to evaluate the potential of deep

learning algorithms for detecting and classifying LI in
gastric cancer histopathology images. This study aimed to
develop a robust model that can cope with a small-sized
and/or class-imbalanced annotated dataset. This was

achieved by (1) developing a deep learning-based
model for detecting LI in gastric cancer histopathology
images and (2) training a model based on hard nega-
tive mining, a semisupervised learning technique.

Materials and methods

Study populations
Patients who underwent stomach excision at Korea
University Anam Hospital between March 2021 and
February 2022 were included in the study. All patients
underwent excision surgery, including total gastrectomy,
subtotal gastrectomy, and endoscopic submucosal
dissection with or without lymph node dissection.
The 115 archived WSIs were obtained from 81 patients.
Clinicopathological factors, including age, sex, histolog-
ical diagnosis, and other pathological features, were
retrieved from the pathology reports (Table 1).
Histological diagnosis was performed in accordance with
the 2019 WHO classification of tumors of the digestive
system (fifth edition), and TNM staging was performed
in accordance with the eighth edition of the American
Joint Committee on Cancer staging system [3,24].

Dataset
Slide images were scanned using an Aperio AT2 digital
slide scanner (Leica Biosystems, Wetzlar, Germany)
with a �20 objective (0.5 μm/pixel). The entire dataset
was divided into two datasets: hard labeled and weakly
labeled. All WSIs were from hematoxylin and eosin–
stained slides. To accurately assess LI, only cases
confirmed by D2-40 immunohistochemical staining
were included [25,26]. This study was approved by
the Institutional Review Board of Korea University
Hospital (2023AN0039), and the requirement for
informed consent was waived.
The hard-labeled dataset consisted of 27 patients,

and expert gastrointestinal pathologists, J. Sim and
S. Ahn, confirmed that 48 WSIs corresponded to posi-
tive LI status. LI-positive and LI-negative regions are
marked in Figure 1. Annotation was conducted using
an open-source platform, the automated slide analysis
platform (Diagnostic Image Analysis Group, Nijmegen,
The Netherlands). In total, 302 LI-positive and 671
LI-negative regions were annotated. As LI refers to tumor
cells entering the lymphatic system, negative labels are
assigned to lymphatic vessels without tumor cells. Patch
images were generated using a standard digital pathology
image analysis approach involving sampling from the
WSI. The datasets were randomly shuffled at the WSI
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level in a 6:2:2 ratio for the training, validation, and test
sets. The initial size of the patch images was 512 � 512
pixels with a �5 objective setting (2 μm/pixel).
The weakly labeled dataset comprised 56 patients

and 56 WISs whose final diagnosis of LI was negative.
The dataset was referred to as weakly labeled because
it contained only a final diagnosis label without
annotations. Patch images were generated using the
sliding-window method without overlap, and one-third
of the total patch images were randomly sampled to
reduce redundancy. The resolution of the patch images
was consistent with that of the hard-labeled dataset.

Model development
To develop a classification model for LI diagnosis, the
ResNet 18 model that was pretrained on ImageNet

weights was utilized. The binary cross-entropy loss
and Adam optimizer with a learning rate 1e�4 were
utilized, with the learning rate controlled using a
cosine annealing scheduler. During the training
step, data augmentation techniques, such as geo-
metric transformation, elastic deformation, blurring,
and adjustments in brightness and contrast, were
applied to the input patch images. Patch images
were resized to 224 � 224-pixel size for processing.
After 30 epochs, the weights of the model with the
minimum loss were selected as the final model
parameters. To determine binary labels, a threshold
of 0.1 was set. The model was developed using
Python 3.9 and Pytorch 2.0.0 with automated half
precision.
A conceptual diagram of LI classification using hard

negative mining is shown in Figure 2. The model

Table 1. Clinicopathological factors of the 81 patients

Variable

Hard-labeled dataset Weakly labeled dataset

p valueN = 54, n (%) N = 27, n (%)

Sex
Male 40 (74.07) 18 (66.67) 0.486*
Female 14 (25.93) 9 (33.33)

Age 65.26 ± 11.29 69.83 ± 11.92 0.102†

Procedure
Endoscopic submucosal dissection 7 (12.96) 13 (48.15) 0.001*
Subtotal gastrectomy 37 (68.52) 13 (48.15)
Total gastrectomy 10 (18.52) 1 (3.70)

Histologic type
Tubular adenocarcinoma, well differentiated 4 (7.41) 13 (48.15) <0.001*
Tubular adenocarcinoma, moderately differentiated 30 (55.56) 7 (25.93)
Tubular adenocarcinoma, poorly differentiated 7 (12.96) 1 (3.70)
Poorly cohesive carcinoma 12 (22.22) 5 (18.52)
Carcinoma with lymphoid stroma 0 (0.00) 1 (3.70)
Hepatoid adenocarcinoma 1 (1.85) 0 (0.00)

Depth of invasion
Mucosal (pT1a) 3 (5.56) 19 (70.37) <0.001*
Submucosal (pT1b) 18 (33.33) 4 (14.81)
Muscularis propria (pT2) 10 (18.52) 2 (3.70)
Subserosal connective tissue (pT3) 9 (16.67) 1 (3.70)
Serosa (pT4a) 12 (22.22) 1 (3.70)
Adjacent organ (pT4b) 2 (3.70) –

Lymphatic invasion
Absence – 27 –

Presence 54 –

Venous invasion
Absence 43 (79.63) 26 (96.30) 0.047*
Presence 11 (20.37) 1 (3.70)

Perineural invasion
Absence 28 (51.85) 23 (85.19) 0.003*
Presence 26 (48.15) 4 (14.81)

Lymph node status
Nx 7 (12.96) 13 (48.15) <0.001*
N0 9 (16.67) 12 (44.44)
N1-3 38 (70.37) 2 (7.41)

*Chi-square test.
†Student’s t-test.
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training process was initiated using a hard-labeled
dataset (weak model). After the initial training, false-
positive predictions were selected, and similar images
were queried from the weakly labeled dataset. The
number of N similar patch images was selected and
added to the original training dataset to form an aug-
mented dataset, which was then utilized to train a
strong model.

Hard negative mining
In this study, a hard negative mining algorithm
was used to improve a weakly supervised object detec-
tion model. The algorithm, presented in Algorithm 1,
involves collecting false positives among the patch

images misclassified by the weak model. The image
features of these false-positive patches were obtained
using activation maps immediately before the classifi-
cation head of the weak model.
Next, the features of all patch images in the weakly

labeled dataset were computed. In this study, we
employed L2 distance (Euclidean distance) and cosine
similarity as the metrics for assessing similarity. It is
noteworthy that alternative measures can be consid-
ered for this purpose. The L2 distance, represented by
Equation (1), and the cosine similarity, expressed in
Equation (2), were employed to calculate the similarity
score Si,j, where xi and xj denote the feature vectors
corresponding to the false-positive and weakly labeled
patches, respectively.

Figure 1. A set of patch images representing LI-positive and LI-negative samples. The images depict (A, B) LI-positive and
(C, D) LI-negative patches, respectively. The LI-positive areas are highlighted with red boxes, while the LI-negative areas are marked with
green boxes. Note that the LI-positive patch image may contain one or more LI-positive areas, and the number of LI-negative areas does
not impact the classification. Conversely, the LI-negative patch image should not contain any LI-positive areas.
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In this equation, xi and xj are elements of Rdmodel ,
where dmodel is the last hidden dimension of each weak
model. Subscripts i and j correspond to individual data
points. The α parameter, representing the number of
samples similar to the query for each false-positive
patch, served as a hyperparameter that could be
influencing the performance. In each experiment, in
the absence of explicit specification of the alpha
parameter, it was standardized to a value of 20.
Similarly, if the query criteria were not specified, they
were set to utilize the L2 distance.

Ablation study
To evaluate the efficacy of hard negative mining, we
conducted experiments by perturbing the original
training dataset in two ways. First, we perturbed only
the positive labels under the assumption that the
number of positive cases was limited, and randomly
sampled 10%, 30%, 50%, and 70% of the positive
labels. Second, we perturbed the entire dataset without
considering labels and randomly sampled 10%, 30%,

Figure 2. A schematic diagram of the weak–strong model training process with hard negative mining. The weak model was initially
trained to utilize a hard-labeled dataset annotated by human experts. False-positive images, which the weak model struggled to
accurately classify, were selected and similar images were queried from the weakly labeled dataset. The original training dataset was
augmented with these queried images to train a stronger model.

Algorithm 1 Hard negative mining algorithm
INPUT:

f(�): last hidden layer of the weak model
xifalse: false positive of the weak model, i¼ 1,…,N:

x j
weakly: weakly labeled dataset j¼ 1,…,M

α: the number of data to query
OUTPUT:

xhard: hard negative

For i = 1 to N do
Compute hidden state using f xifalse

� �

For j = 1 to M do

Compute hidden state using f xjweakly

� �

Compute similarity score Si,j based on Equations (1)
or (2)

End for
Select α of the most similar data in the Si,j
Add data to xhard

End for
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50%, and 70% of the dataset. In this scenario, the
entire dataset is assumed to be restricted. For each
subset of the training dataset, we followed the same
procedures involving weak model training, hard nega-
tive mining, and strong model training.

t-distributed stochastic neighbor embedding and
gradient-weighted class activation mapping
visualization
To visualize the high-dimensional features of the
model, we utilized t-distributed stochastic neighbor
embedding (t-SNE) analysis. [27] The hyperparameters
were set to 50 perplexities, and 500 perplexities were
used in this analysis. In addition, to further visualize the
areas of focus within the model, we applied gradient-
weighted class activation mapping (Grad-CAM) to
predict patch images. [28] The Grad-CAM technique
marked the focused area in red, allowing for the inter-
pretation of the areas that were most critical in deter-
mining the model’s final decision.

Statistical analysis
To evaluate prediction performance, several metrics
were utilized, such as the area under the receiver operat-
ing characteristic (AUROC) curve, area under the
precision-recall curve (AUPRC), F1 score, sensitivity,
and specificity. The F1 score is a metric that combines
positive predictive value (precision) and sensitivity (recall)
into a single value, providing a balanced measure of a
model’s performance, particularly useful in class imbal-
anced classification tasks; the equation is as follows:

F1 score¼ 2�precision� recall
precisionþ recall

: ð3Þ

Results

Patient characteristics
The clinicopathological characteristics of the patients
are summarized in Table 1. Patients’ ages ranged from
35 to 95 years, with a mean age of 68.3 years. The
study cohort consisted of 58 male patients and
23 female patients. Among the 81 gastric carcinoma
cases, the most common histological type was tubu-
lar adenocarcinoma, which was well differentiated
(17 cases, 21.0%), moderately differentiated (37 cases,
45.7%), and poorly differentiated (solid) (8 cases, 9.9%).
The other histological types included 17 poorly cohe-
sive carcinomas, including signet ring cell carcinoma

(21.0%), 1 carcinoma with lymphoid stroma (1.2%),
and 1 hepatoid adenocarcinoma (1.2%). The T stage
comprised 22 patients with T1a, 22 with T1b, 12 with T2,
10 with T3, 13 with T4a, and 2 with T4b tumors. Of
the 81 patients, 54 (66.7%) had LI, 12 (14.8%) had
venous invasion, and 51 (63%) had perineural invasion.
Forty (49.4%) patients had lymph node metastasis. Sex
and age did not exhibit statistically significant differences
between the hard-labeled and weakly labeled datasets.
However, the remaining variables, namely histological
type (p < 0.001), depth of invasion (p < 0.001), venous
invasion (p = 0.047), perineural invasion (p = 0.003),
and lymph node status (p < 0.001), showed significant
differences. Given that LI is associated with poor
prognosis, it was reasonable to observe a higher pres-
ence of risk factors in the hard-labeled dataset with LI.

LI classification performances
We evaluated the effectiveness of hard negative min-
ing in improving the performance of classification
models. The false-positive patch images of the weak
model and the queried hard negative patch images are
depicted in Figure 3. The results obtained using the
three randomly initialized models are summarized in
Table 2 and Figure 4, indicating that the use of hard
negative mining led to a significant improvement in
classification. Irrespective of the chosen similarity
measurements, namely L2 distance and cosine similarity,
the classification performance of the hard model
exhibited enhancements across all metrics except for
the sensitivity of cosine similarity. Comparatively, the
L2 distance-based hard negative mining demons-
trated superior performance compared with the cosine
similarity-based approach. Specifically, for L2 distance-
based hard negative mining, improvements were
observed in AUROC (2.88%), AUPRC (2.17%), F1
(5.83%), sensitivity (6.39%), and specificity (4.72%).
In our setting, the strong model trained using hard

negative mining with L2 distance-based queried
models exhibited notable classification performance
on LI with values of 0.9738, 0.9501, 0.9334, 0.8930,
and 0.9437 for AUROC, AUPRC, F1 score, sensitivity,
and specificity, respectively.

Impact of the number of hard negative images,
parameter α
The impact of hard negative mining exhibited a linear
increase corresponding to the parameter α, as shown
in Table 3. The enhancements in AUROC were
1.89% (α = 5), 2.55% (10), 2.88% (20), 3.59% (50),
and 4.05% (100). Similarly, improvements in AUPRC
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were 1.16% (5), 2.41% (10), 2.17% (20), 2.32% (50),
and 3.02% (100). This suggests that, by having ade-
quate computational resources and a sufficient amount
of weakly labeled datasets, increasing the alpha param-
eter has the potential to improve the performance of
the model.

Impact on the limited dataset
Table 4 presents a summary of the effects associated
with the limited dataset and the application of hard nega-
tive mining within the constraints of a restricted dataset.
In contrast to the complete dataset, there was a degrada-
tion in classification performance when the model was
trained with the perturbed dataset. Nonetheless, across all
scenarios, the strong model employing hard negative
mining consistently exhibited superior performance

compared to the weak model. This improvement is par-
ticularly conspicuous in the 10% setting (AUROC:
+29.89%, AUPRC: +18.44%), which represents the
smallest amount of utilized data. The general perfor-
mance of the model exhibited a strong linear correlation
with the quantity of the hard label data, indicating that
an increase in annotated datasets can enhance overall
performance. Conversely, it is observed that the perfor-
mance enhancement attributed to hard negative mining is
more substantial in perturbed scenarios with a reduced
number of labeled datasets.

Impact on the imbalanced dataset
Table 5 shows the effects of hard negative mining and
imbalanced datasets. We conducted an ablation study
to assess the effectiveness of hard negative mining in

Figure 3. Sample false-positive and hard negative patch images. In the upper row panels (A–D), the false positive instances are
presented. These images exhibit blood vessels containing red blood cells, along with gland cells showing distortion caused by retraction
artifact. In the lower row panels (E–H), the hard negative patch images are depicted. The selection of candidate images for hard negative
mining was guided by feature similarity, resulting in the identification of hard negative samples that exhibited comparable patterns to
the false-positive samples (upper row panels).

Table 2. Classification performances
Query criterion Model AUROC AUPRC F1 score Sensitivity Specificity

L2 distance Weak 0.9465 (0.00) 0.9299 (0.02) 0.8821 (0.01) 0.8393 (0.02) 0.9012 (0.01)
Strong 0.9738 (0.01) 0.9501 (0.01) 0.9334 (0.03) 0.8930 (0.03) 0.9437 (0.02)
Delta 2.88% 2.17% 5.83% 6.39% 4.72%

Cosine similarity Weak 0.9424 (0.02) 0.9324 (0.02) 0.8632 (0.02) 0.8502 (0.06) 0.8690 (0.05)
Strong 0.9682 (0.01) 0.9496 (0.01) 0.9132 (0.01) 0.7910 (0.07) 0.9477 (0.01)
Delta 2.74% 1.85% 5.79% �6.97% 9.06%

The score is the average value of three random initialized models. The standard deviation is reported in brackets.
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a clinical setting characterized by severe data imbalance,
specifically, more negative cases than positive cases. In
the 10% perturbation setting (positive versus negative,

1:10 label ratio) and the 30% perturbation setting
(1:6 label ratio), where the dataset exhibited the highest
imbalance, hard negative mining impeded the

Figure 4. Raider plot of classification performances. The results are presented in two panels for the perturbing condition, which includes
the entire dataset and the positive label-only condition. The left, middle, and right panels correspond to the AUROC, AUPRC, and
F1 scores, respectively. The weak model’s performance is indicated by the green color, while the strong model’s performance is shown by
the gray color. In each plot, the green area represents the weak model’s performance, and the gray area represents the strong model’s
performance. It is noteworthy that the gray areas always cover the green areas, indicating that the strong model’s performance
surpasses that of the weak model in all three evaluation metrics.

Table 3. Influence of the number of hard negative samples
Parameter α Model AUROC AUPRC F1 score Sensitivity Specificity

5 Weak 0.9422 (0.01) 0.9304 (0.02) 0.8513 (0.02) 0.8573 (0.05) 0.8497 (0.03)
Strong 0.9601 (0.00) 0.9412 (0.01) 0.9080 (0.01) 0.8416 (0.01) 0.9299 (0.02)
Delta 1.89% 1.16% 6.66% �1.83% 9.45%

10 Weak 0.9362 (0.01) 0.9190 (0.01) 0.8650 (0.01) 0.8151 (0.07) 0.8882 (0.04)
Strong 0.9600 (0.01) 0.9412 (0.01) 0.9110 (0.02) 0.8193 (0.05) 0.9391 (0.04)
Delta 2.55% 2.41% 5.33% 0.52% 5.73%

20 Weak 0.9465 (0.00) 0.9299 (0.02) 0.8821 (0.01) 0.8393 (0.02) 0.9012 (0.01)
Strong 0.9738 (0.01) 0.9501 (0.01) 0.9334 (0.03) 0.8930 (0.03) 0.9437 (0.02)
Delta 2.88% 2.17% 5.83% 6.39% 4.72%

50 Weak 0.9444 (0.00) 0.9279 (0.01) 0.8735 (0.02) 0.8690 (0.03) 0.8770 (0.03)
Strong 0.9783 (0.00) 0.9494 (0.01) 0.9423 (0.01) 0.8395 (0.04) 0.9617 (0.00)
Delta 3.59% 2.32% 7.87% �3.40% 9.66%

100 Weak 0.9454 (0.01) 0.9256 (0.03) 0.8667 (0.01) 0.8871 (0.06) 0.8587 (0.02)
Strong 0.9836 (0.00) 0.9535 (0.01) 0.9510 (0.00) 0.8692 (0.06) 0.9661 (0.01)
Delta 4.05% 3.02% 9.73% �2.01% 12.52%

The parameter α represents the count of samples similar to the query for each false-positive patch. The score is the average value of three random initialized
models. The standard deviation is reported in brackets.
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model’s performance (for 10%, AUROC: +1.72%,
AUPRC: �0.34%; for 30%, AUROC: �0.06%,
AUPRC: �1.99%). It appears that the model strug-
gled to enhance its performance due to an excessive
focus on hard negative samples, whereas insufficient
attention was given to learning from positive cases.
However, at the 50% perturbation (1:4 label) and
70% perturbation (1:3 label) setting, hard negative
mining was found to be beneficial (for 50%,
AUROC: +3.86%, AUPRC: +1.79%; for 70%,
AUROC: +3.69%, AUPRC: +2.68%).

t-SNE and Grad-CAM visualization
The t-SNE results, shown in Figure 5, were analyzed
to compare the effectiveness of hard negative mining

in enhancing the performance of the classification
models. The results indicated that the strong model,
trained with hard negative mining, could distinguish
between false-positive and true-positive samples more
robustly than the weak model. Similarly, Figure 6
depicts the Grad-CAM outputs, which were analyzed
to evaluate the degree of focus exhibited by each
model. The strong model displays a more focused
view of the target region than the weak model.
Notably, in Figure 6B, the weak model was found to
be focused on the lower left part of the patch image,
which corresponds to the region structurally similar
to LI, namely the circular form of gland cells distorted
by retraction artifact. In contrast, Figure 6D shows that
the strong model could differentiate between gland cells
and LI foci more accurately.

Table 4. Impact of hard negative mining on the limited dataset
Ratio of perturb Model AUROC AUPRC F1 score Sensitivity Specificity

10 Weak 0.6549 (0.10) 0.6443 (0.11) 0.6256 (0.05) 0.5079 (0.35) 0.6572 (0.19)
Strong 0.8506 (0.02) 0.7631 (0.03) 0.7749 (0.03) 0.7309 (0.02) 0.7823 (0.04)
Delta 29.89% 18.44% 23.85% 43.90% 19.04%

30 Weak 0.8693 (0.01) 0.8347 (0.02) 0.7863 (0.02) 0.8146 (0.05) 0.7699 (0.04)
Strong 0.9332 (0.01) 0.8922 (0.01) 0.8952 (0.00) 0.6779 (0.06) 0.9426 (0.01)
Delta 7.35% 6.88% 13.84% �16.78% 22.43%

50 Weak 0.8993 (0.02) 0.8858 (0.02) 0.8051 (0.03) 0.8518 (0.06) 0.7793 (0.07)
Strong 0.9581 (0.01) 0.9135 (0.02) 0.9114 (0.02) 0.7767 (0.12) 0.9380 (0.03)
Delta 6.53% 3.13% 13.20% �8.82% 20.37%

70 Weak 0.9173 (0.03) 0.9038 (0.02) 0.8205 (0.02) 0.8462 (0.11) 0.8119 (0.02)
Strong 0.9563 (0.01) 0.9178 (0.01) 0.9171 (0.02) 0.8083 (0.07) 0.9448 (0.01)
Delta 4.25% 1.54% 11.77% �4.47% 16.38%

100 Weak 0.9465 (0.00) 0.9299 (0.02) 0.8821 (0.01) 0.8393 (0.02) 0.9012 (0.01)
Strong 0.9738 (0.01) 0.9501 (0.01) 0.9334 (0.03) 0.8930 (0.03) 0.9437 (0.02)
Delta 2.88% 2.17% 5.83% 6.39% 4.72%

Perturbations were applied to the entire dataset in accordance with the specified ratio. The score is the average value of three random initialized models. The
standard deviation is reported in brackets.

Table 5. Impact of hard negative mining on the severely imbalanced dataset
Ratio of perturb Ratio of label Model AUROC AUPRC F1 score Sensitivity Specificity

10 1:10 Weak 0.8917 (0.04) 0.8714 (0.04) 0.8017 (0.04) 0.6804 (0.02) 0.8544 (0.05)
Strong 0.9071 (0.01) 0.8685 (0.03) 0.8871 (0.02) 0.5656 (0.02) 0.9612 (0.02)
Delta 1.72% �0.34% 10.65% �16.87% 12.49%

30 1:6 Weak 0.9156 (0.00) 0.8966 (0.01) 0.8188 (0.02) 0.6957 (0.05) 0.8724 (0.03)
Strong 0.9151 (0.01) 0.8788 (0.03) 0.8853 (0.01) 0.6226 (0.10) 0.9519 (0.02)
Delta �0.06% �1.99% 8.12% �10.52% 9.12%

50 1:4 Weak 0.9284 (0.00) 0.9155 (0.01) 0.8547 (0.01) 0.8444 (0.03) 0.8583 (0.01)
Strong 0.9642 (0.01) 0.9319 (0.01) 0.9127 (0.02) 0.7606 (0.04) 0.9525 (0.01)
Delta 3.86% 1.79% 6.79% �9.92% 10.98%

70 1:3 Weak 0.9364 (0.01) 0.9217 (0.01) 0.8444 (0.04) 0.8565 (0.08) 0.8421 (0.04)
Strong 0.9709 (0.01) 0.9464 (0.00) 0.9297 (0.02) 0.8127 (0.02) 0.9608 (0.01)
Delta 3.69% 2.68% 10.09% �5.11% 14.10%

100 1:2 Weak 0.9465 (0.00) 0.9299 (0.02) 0.8821 (0.01) 0.8393 (0.02) 0.9012 (0.01)
Strong 0.9738 (0.01) 0.9501 (0.01) 0.9334 (0.03) 0.8930 (0.03) 0.9437 (0.02)
Delta 2.88% 2.17% 5.83% 6.39% 4.72%

Perturbations were exclusively applied to the positively labeled dataset in accordance with the specified ratio. Ratio of label, ratio of positive, and negative labels.
The score was average value of three random initialized models. The standard deviation was reported in brackets.
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Discussion

In this study, we aimed to develop a model for
detecting LI foci in gastric cancer using a deep neural
network. Despite the importance of LI detection in
gastric cancer, several studies have been conducted
because of the difficulty of gathering annotated
datasets [4,6,12,13]. To mitigate this issue, we
employed hard negative mining approaches that utilize
weakly labeled datasets to train a robust classification
model. With hard negative mining, the model classifica-
tion performance improved considerably. Specifically,
the strong model showed an improved classification per-
formance of 2.88% for AUROC, 2.17% for AUPRC,
5.83% for the F1 score, 6.49% in sensitivity, and
4.72% in specificity. In subsequent ablation studies, the
use of hard negative mining in the weakly labeled
dataset improved the classification performance under
both perturbing the entire dataset (limited dataset) and
positive label-only conditions (imbalanced dataset).
The LI classification model training process

consisted of two stages: weak and strong model training,
which are based on boosting algorithms, a widely

adopted strategy in the field of machine learning.
The LI region was identified by a distinct pattern
consisting of a small tumor cluster surrounded by
circular or elliptical spheres representing lymphatic
vessels. However, the model was susceptible to confu-
sion with hyperplastic crypts, which had a small tumor
cluster surrounded by space and micropapillary patterns,
as shown in Figure 6A,B. To mitigate this issue, we
employed hard negative mining, a technique that queried
highly confused patch images from weakly labeled nega-
tive datasets. We empirically selected the Euclidean dis-
tance to measure the similarity between false-positive
patch images and weakly labeled patch images.
Li et al achieved remarkable performance in classifi-

cation tasks using hard negative mining, similar to our
proposed approach [11]. However, there are two main
differences between the proposed approach and that of
Li et al: Li et al utilized a weakly labeled dataset and
reweighed the sampling weight of the training data. In
contrast, our approach queried hard samples from a
weakly labeled dataset stored in a hospital’s database.
Consequently, the model was trained using various
sample features. Li et al used K-means clustering

Figure 5. t-SNE visualization of feature dimension. The feature space, encoded by the weak and strong models, is compressed into a
2-dimensional space using t-SNE. The feature space of the weak and strong models is depicted in panels (A) and (B), respectively. In this
figure, LI samples are marked in blue, normal samples are marked in orange, and hard negative samples are marked as green dots. By
employing the hard negative mining strategy, false-positive samples are separated from the cluster of LIs, resulting in a more distinct
cluster separation compared to the weak model feature space. This observation suggests that the model can distinguish LI samples and
false-positive samples more effectively with the hard negative mining approach.
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to identify similar samples in feature dimensions. In
contrast, we applied a simple Euclidean (L2) distance
to the feature dimensions. The K-means clustering
method requires hyperparameters, including the number
of clusters (K), which must be set by the researcher.
Further studies are required to identify the optimal
K parameters. Therefore, in real-world applications,
querying N similar images is a more feasible approach.

Previous studies that detected LI utilized the
DeepLabV3 architecture to predict LI foci with a
semantic mask [12,13]. This task of semantic segmen-
tation is more complex than that of a classification
model because it necessitates pixel-level prediction
and final classification output. Although semantic seg-
mentation provides more detailed information about
foci, such as the coarseness of the edge, size of the LI

Figure 6. Grad-CAM visualization of sample patch images. The Grad-CAM provides insights into the areas of focus of the model. The
upper row panels (A, B) depict the Grad-CAM outputs of the weak models, while the lower row panels (C, D) illustrate the Grad-CAM
outputs of the strong models. Noteworthy, differences between the Grad-CAM outputs of the weak and strong models are indicated by
arrows. The focused area of the strong model appears comparatively compressed, effectively capturing the patterns indicative of
LI-positivity, in contrast to the wide and distributed focus areas observed in the weak models. Furthermore, panel (B) demonstrates the
weak model’s confusion between gland cell structures and LI-positive patterns.
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foci, and shape of the LI foci, it requires more sophis-
ticated training procedures and pixel-level annotated
mask labels. However, in line with the diagnosis
of LI, we hypothesized that the presence of LI is the
most crucial factor rather than the size, shape, and
form of the LI foci. Thus, we employed a straightforward
classification approach for our model training procedures.
Several studies proposed weakly supervised learning-
based methods for semantic segmentation. Despite this
aspect, the task remains challenging and offers
ample opportunity for further improvement [29,30].
Furthermore, with Grad-CAM visualization, we observed
that the model focused on the LI foci rather than other
areas, and the focused area was slightly wider than the
semantic segmentation approaches demonstrated in pre-
vious studies. However, this limitation was offset using
simple models and weakly labeled datasets.
The t-SNE visualization results (Figure 5) obtained

after hard negative mining show that false positives
have a significantly larger feature distance from true
positives. This indicates that the model was capable of
effectively discerning the differences in features
between false positives and true positives. The pro-
posed method is noteworthy for its independence from
the structure of the model and the features of the data,
rendering it easily adaptable to models with varying
structures or for the detection of different lesions.
Consequently, it facilitates the robust classification of
existing false and true positives, as evidenced by the
t-SNE results, and gains from data augmentation
through the inclusion of weakly labeled datasets.
In general, the performance of machine learning

models benefits from substantial training data; however,
obtaining extensive healthcare data is challenging due to
privacy concerns, collection costs, and other factors.
Moreover, labeling such data is costly, often requiring
specialized knowledge and expertise. To simulate a plau-
sible situation of constructing a machine learning model
applicable to a broad medical setting, we collected data
from a single year, comprising 81 patients and
115 WSIs. Theoretically, both hard-labeled datasets and
weakly labeled datasets could be expanded to the entire
set of electronic medical record data. However, this is
not feasible due to the associated expenses in terms of
labeling and computational resources. By incorporating
hard negative samples within the weakly labeled dataset,
we were able to develop a robust model while minimiz-
ing labeling costs.
In this study, we focused on a classification task for

predicting the presence or absence of LI. Notably, one
of the primary aims of LI detection is to predict lymph
node metastasis, which is a critical factor in determining
cancer prognosis. To establish the relationship between

lymph node metastasis and LI, our future work will be
extended to predicting lymph node metastasis based on
LI prediction. In addition, we employed hard negative
mining to assess similarity at the patch level. This
approach has the potential to expand into the domain of
image retrieval, contributing to the augmentation of
weakly labeled datasets at both WSI and patch levels
through image retrieval techniques. [31] In future work,
our aim is to advance this methodology by integrating
image retrieval and hard negative mining at the WSI
level, aiming to alleviate labeling challenges and
enhance model performance.
In conclusion, we aimed in this study to demonstrate

the feasibility of utilizing a deep learning-based
approach to predict and detect LI in gastric cancer using
high-resolution digital pathology data. We employed a
convolutional neural network and a hard negative min-
ing strategy to reduce the number of false-positive pre-
dictions. Our results demonstrate the potential of this
approach to provide a valuable tool for pathologists and
oncologists in managing gastric cancer patients, while
also advancing deep learning algorithms for medical
imaging applications (AUROC, 0.9738; AUPRC,
0.9501). Furthermore, this study highlights the efficacy
of the hard negative mining approach in improving the
performance of deep learning models, while reducing
the time and cost associated with generating hard labels.
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