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With the emergence of multimodal electronic health records, the evidence for diseases, events, or findings
may be present across multiple modalities ranging from clinical to imaging and genomic data. Developing
effective patient-tailored therapeutic guidance and outcome prediction will require fusing evidence across
these modalities. Developing general-purpose frameworks capable of modeling fine-grained and multi-faceted
complex interactions, both within and across modalities is an important open problem in multimodal fusion.
Generalized multimodal fusion is extremely challenging as evidence for outcomes may not be uniform across
all modalities, not all modality features may be relevant, or not all modalities may be present for all patients,
due to which simple methods of early, late, or intermediate fusion may be inadequate. In this paper, we present
a novel approach that uses the machinery of multiplexed graphs for fusion. This allows for modalities to be
represented through their targeted encodings. We model their relationship between explicitly via multiplexed
graphs derived from salient features in a combined latent space. We then derive a new graph neural network
for multiplex graphs for task-informed reasoning. We compare our framework against several state-of-the-
art approaches for multi-graph reasoning and multimodal fusion. As a sanity check on the neural network
design, we evaluate the multiplexed GNN on two popular benchmark datasets, namely the AIFB and the
MUTAG dataset against several state-of-the-art multi-relational GNNs for reasoning. Second, we evaluate our
multiplexed framework against several state-of-the-art multimodal fusion frameworks on two large clinical
datasets for two separate applications. The first is the NIH-TB portals dataset for treatment outcome prediction
in Tuberculosis, and the second is the ABIDE dataset for Autism Spectrum Disorder classification. Through
rigorous experimental evaluation, we demonstrate that the multiplexed GNN provides robust performance
improvements in all of these diverse applications.

1. Introduction and radiological imaging. Studies have revealed that predicting disease
specific targets, eg, diagnoses/treatment outcomes, is often a function
of multiple patient-specific factors. For these applications, systematic
collection and careful processing of multimodal data covering diverse,

and often unstructured information about the patient has become essen-

The past decade has seen tremendous advances in targeted measure-
ments being generated through multiple data modalities. In turn, this
has provided novel perspectives and improved the understanding for
many of the world’s most challenging problems. The curation of large
multimodal electronic health records has made it possible to capture
information about a patient through multiple data-rich modalities. In

tial (Munoz-Sellart et al., 2010). At the same time, it is unclear what
information is best captured in each modality and how best to combine

turn, this allows us to obtain a holistic view of a patient’s condition.
For example, in complex diseases such as cancer (Subramanian et al.,
2020), tuberculosis (Munoz-Sellart et al., 2010) or autism spectrum
disorder (Dsouza et al., 2021; D’Souza et al., 2021b; Li et al., 2020),
evidence for a diagnosis or treatment outcome may be present in
multiple modalities such as clinical, genomic, molecular, pathological
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them.

In such cases, multimodal fusion is needed because evidence for an
entity, such as an event, or a disease may be present in more than one
modality and no single modality is sufficient to reach strong conclu-
sions. At the same time, determining how best to fuse the information is
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challenging since some modalities capture complementary, while oth-
ers indicate contradictory information. In fact, modality features may
be mutually exclusive, mutually reinforcing, or mutually correlated. A
single modality may even be confirmatory in some cases, making other
modalities redundant. Finally, not all modalities may be present for a
sample, and those that are present could be spurious and error-prone.
Despite the importance of the problem, there is currently no princi-
pled domain-agnostic approach to fuse modalities that is universally
applicable.

Existing attempts to fuse modalities for outcome prediction can be
divided into at least three approaches, namely, feature vector-based,
statistical or graph-based techniques. Vector-based approaches perform
early, intermediate, or late fusion (Subramanian et al., 2020; Bal-
trusaitis et al., 2018; Wang et al., 2021). In early fusion, features from
different modalities are concatenated and then fed into a predictive
model. Intermediate fusion methods compute modality-specific projec-
tions of features, that are folded into predictive models. Finally, late
fusion aggregates the results of modality-specific predictors post-hoc
rather than fusing the modality features themselves. Unfortunately, due
to the underlying assumptions made by these methods, they may be in-
adequate for characterizing the broader range of possible relationships
among modality features and their relevance for prediction.

Statistical approaches such as Canonical Correlation Analysis (CCA)
are designed to identify highly-correlated features across and within
modalities as modeled by a set of canonical variates of the data.
Thus, CCA and its deep variants (Yang et al., 2019) can model fea-
ture dependence, either in the native representation or in a latent
space (Subramanian et al., 2020). In the past, these representations
have been useful for studying a variety of problems such as the identi-
fication of genotype-phenotype associations (Subramanian et al., 2018)
in cancer, or for survival analysis in breast cancer (Subramanian et al.,
2021) or recurrence of lung cancer (Subramanian et al., 2020). Never-
theless, these methods have limitations to the extent to which they can
model possible relationships between modalities and are not guaran-
teed to learn discriminative patterns in their projections (Wang et al.,
2019) natively.

Graph Neural Networks (GNN) are deep learning architectures de-
signed for data structured as a graph. They distill complex connectivity
information (i.e dependence across data-streams) to guide a down-
stream inference task (Scarselli et al., 2008). For fusion, graph-based
approaches have garnered significant interest for various clinical appli-
cations such as brain connectomics (Dsouza et al., 2021; D’Souza et al.,
2020; Sebenius et al., 2021; D’Souza et al., 2021a). Here, the graph
connectivity naturally arises as a consequence of the data geometry
and acquisition (D’Souza and Venkataraman, 2023; D’Souza et al.,
2019; Nandakumar et al., 2018, 2020). Alternatively, in the case of
applications such as Cosmo et al. (2020), Zheng et al. (2022) involving
unstructured imaging and non-imaging data, the fusion problem is less
straightforward and the graph needs to be defined implicitly from the
data. Thus, a latent graph learning from modality features is performed,
either by concatenation (Cosmo et al., 2020) or by learnable weighted
averaging (Zheng et al., 2022). Unfortunately, such collapsed repre-
sentations (i.e. allowing only one type of edge connectivity/feature-
relation) may be too constraining, and may miss subtleties of cross-
modality and intra-modality dependence. To address this, the approach
of Hou et al. (2023) keeps the modality identities separate through
individualized graph convolutional networks, which are then mixed
together using hyper-graph convolutions and hyper-edge cross-modal
mixing. However, the modality and feature semantics may not be
preserved through these mixed transformations. An alternative, yet
close parallel to graph based approaches is the recent development of
transformer representations (Parmar et al., 2018) which construct of a
weighted fully connected graph between multimodal features/feature
vectors. Here, all possible edge-weights inferred in a data-driven fash-
ion via the attentional mechanism (Hou et al., 2022). While widely
successful, especially in the image and text domain, such approaches
often suffer from overfitting in applications where limited training data
is available due to insufficient regularization.
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1.1. Our contribution

In contrast, our multiplexed framework allows for the modalities
to retain their individuality while still participating in exploring ex-
plicit relationships between the modality features. Specifically, our
multiplexed graph explicitly models relationships within and across
modality features via a two stage approach. First, we use an unsuper-
vised learning (autoencoders) on unstructured raw modality features
to convert them into a multiplex graph. This graph models feature
interactions across and within modalities simultaneously. We then
design, for the first time, a novel graph neural network for reasoning
from this construction via structured message passing. To this end, we
adopt the walk formulation native to multiplex graphs to implicitly
leverage multi-hop feature dependence and relate these patterns to the
outcome of interest.

As a sanity check, we evaluate our multiplexed GNN as a stan-
dalone module. We compare against existing graph neural frameworks
designed for multi-relational graphs by performing experiments on
two public benchmark graph datasets. Our model demonstrates robust
performance improvements against state-of-the-art GNNs, suggesting
enhanced representational capabilities. To demonstrate the efficacy of
the multiplex formulation for multimodal fusion, we experiment on two
large clinical databases with multi-omics data. We perform extensive
experiments on the NIH-TB portals dataset for tuberculosis outcome
prediction and the ABIDE dataset for autism spectrum disorder (ASD)
classification. We demonstrate that by relaxing the fusing constraints
through the multiplexed formulation, our method outperforms several
state-of-the-art methods.

A preliminary version of our work appeared in D’Souza et al. (2022),
which we extend in this work. In addition to more detailed presentation
of the multiplexed formulation, we perform a more comprehensive
evaluation to demonstrate the generality of the approach. Firstly, we
perform a dedicated set of comparisons on the inference model (mul-
tiplexed GNN) on two separate benchmark graph datasets, AIFB and
MUTAG. Here, we compare the multiplexed GNN against several state-
of-the-art approaches for multi-relational reasoning. Second, we extend
the comparisons presented on the outcome prediction for Tuberculosis
in D’Souza et al. (2022) to include comparisons against recent fusion
frameworks including representation learning based, graph based, and
transformer frameworks. Given the challenge with using modest sized
datasets for evaluation, we examine different dataset splits than those
in our conference submission. We observe consistent improvements
in terms of performance comparison against baselines, indicating the
robustness of our approach. Third, we evaluate our fusion framework
on a second clinical application, i.e. case/control discrimination on the
ABIDE dataset, which is a large Autism study. Finally, we also perform a
qualitative evaluation of the patterns mined by representation learning
step for both datasets and examine the differential contribution of
individual modalities for the prediction.

Taken together, these experiments highlight that the multiplexed
formulation is a promising first step in the development of flexible yet
powerful data-driven solutions for general multimodal fusion problems.

2. Materials and methods

To address the fusion problem, we would like to explicitly model
various facets of cross-modal interactions. To this end, we propose to
utilize the representation learning theory of multiplexed graphs and
neural networks designed on such graphs.

2.1. Related works

In this section, we provide a short introduction to graph neural
networks and multiplex graphs as explored in literature.

Graph Neural Networks: Graph Neural Networks (GNN) are deep
learning frameworks designed for graphs that can distill connectivity
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Outcome Prediction via the Multiplexed GNN
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Fig. 1. Multiplexed Graph Based Fusion for Outcome Prediction. Green Box: A feature vector is formed by concatenating individual modality features. (The modality features
may first be reduced through domain specific autoencoders (d-AE) for dimensionality reduction). The concatenated feature vector is projected into a common latent space using a
concept auto-encoder (c-AE). Salient activations in the latent space are used to form the planes of the multiplexed graph. Blue Box: The multiplexed GNN uses message passing
walks to combine latent concepts for inference. At the input layer, the node embeddings are copied over from the concatenated features x across the planes. During the message
passing, the filtered embeddings maintain their plane-specific and node-specific identity. The output MLP aggregates these to map to the outcome Y. We construct one multiplex

graph per subject.

and attribute information to guide an inference task (Scarselli et al.,
2008). Intuitively, they generalize the notion of convolutional oper-
ations in convolutional neural networks (CNN) (LeCun et al., 1995)
designed on images to graph structured data. Due to their substan-
tial expressive power and versatility, GNNs have become a popu-
lar tool across diverse applications in natural, physical and social
sciences (Zhou et al., 2020)

Formally, a graph can be defined as g = (¥, &) with a vertex set
7 with number of nodes as |7| = P. The set & = {(i,j)} € VXV
denotes the edges linking pairs of nodes i and j. These relationships
are captured as an adjacency matrix A € ® P*P. In the simplest case,
the elements of this matrix are binary A[i,j] = 1 if (i, j) € £ and zero
otherwise. More generally, A[i,j] € [0,1], indicating the strength of
connectivity between nodes i and j. A typical GNN schema comprises
of two components: (1) a message passing scheme for propagating
information across the graph and (2) task-specific supervision to guide
the representation learning. Conventionally, each node i of the input
graph ¢ has a fixed input feature descriptor x; € ® °%! associated with
it. The message passing scheme ascribes a set mathematical operations
occurring at each layer / € {1,..., L} of the GNN. Let hgl) e ®P'x1 be
node feature for node i at layer (/). GNNs infer the representations at
subsequent layers (/+1) by aggregating representations ({hy) 1) of nodes
j that is connected to i. At the input layer (/), we have:

n+h = ¢<{h§.”},A;9<’>) where j : (i,j) €€ D

where ¢() : ®? - ®P™" is an aggregation function, and 6" denote
learnable parameters for layer /. hﬁo) = x; at the input. From here,
the node embeddings are used to estimate the outputs of the GNN via
a mapping f,: Y = fa({hiL}). Depending on the task, the targets Y
provide either graph, edge, or node level supervision during training.
The parameters of the GNN are then estimated by optimizing a loss
function #(Y,Y) via back-propagation for gradient estimation.

Conventional GNN architectures (Velickovi¢ et al., 2017; Duvenaud
et al., 2015; Defferrard et al., 2016; Duvenaud et al., 2015; Fey, 2019;
Kipf and Welling, 2016; Xu et al., 2018) propose different variants
of message passing schemes with varying levels of expressive power.
However, by design, these frameworks can handle graphs with only a single
edge type (i.e. monoplex graphs) and are not suitable for multi-relational
representations, such as those seen in multiplexed graphs

Multiplexed Graphs and their Applications: A multiplexed graph
(Cozzo et al., 2018) is a type of multi-graph in which the nodes are
grouped into multiple planes, each representing an individual edge-
type. The information captured within a plane is multiplexed to other
planes through vertical connections as shown in Fig. 1.

In the real world, data-entities may interact in multiple ways, giving
rise to multiple different types of relationships between them (i.e. K >
1). The multiplexed graph has been known in literature and used for
various modeling purposes (Kiveld et al., 2014; De Domenico et al.,
2014; Ferriani et al., 2013; Maggioni et al., 2013). For example, simple
graph theoretic properties (Musmeci et al., 2017; Tudisco et al., 2018)
or tensor decompositions have been used to study financial data and
other dynamical processes (Bartesaghi et al., 2022) or for link pre-
diction (Matsuno and Murata, 2018). Random walks on the multiplex
have been used for navigation planning (Guo et al., 2016). Diffusion
dynamics on the multiplex have been adopted for applications in
physical science (Gomez et al., 2013). However, its potential to address
the fusion problem has been relatively unexplored in the literature and
is the new perspective we bring.

2.2. Multiplexed graphs for multimodal fusion

The multiplexed graph is suitable for general multimodal fusion as it
allows for different types of relationships between modality features to
be captured through conceptual “planes”. Mathematically, we define a
multiplexed graph as: Gyiplex = (Wviplex Emplex)> Where | Wyprex| = [VIXK
and Eyplex = {(i.J) € Myplex X Nuplex }- There are K distinct types of
edges which can link two given nodes. Analogous to ordinary graphs,
we have k adjacency matrices A, € RP*F, where P = |¥|, each
summarizing the connectivity information given by the edge-type k.
The elements of these matrices are binary A, [m,n] = 1 if there is an
edge of type k between nodes m,n € V.

The nodes Vjyjex Of the multiplex graph are produced by creating
copies of nodes across the planes. We henceforth refer to these as supra-
nodes. Within each plane, we connect supra-nodes to each other via
a plane-specific adjacency matrix A ). These intra-planar connections
allow us to traverse across the multi-graph according to individual
relational edge-types. The information captured within a plane is mul-
tiplexed to other planes through vertical connections, thus connecting
each supra-node with its own copy in other planes. These connections
allow us to traverse across the planes and exploit cross-relational
dependencies in tandem with in-plane traversal.

2.3. Multimodal graph representation learning

The construction in the Green Box in Fig. 1 is used to produce the
multiplexed graph from the individual modality features. First, domain
specific autoencoders (d-AE, trained on an MSE reconstruction loss)
may be used to convert each modality into compact feature spaces.
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This effectively reduces the dimensionality of the input representation,
i.e. reduces the within modality redundancy.

To capture the cross-modal feature dependence, we first concatenate
the reduced modality features and bring them to a common low dimen-
sional subspace via a concept autoencoder (c-AE). The c-AE is trained to
reconstruct the concatenated features using the MSE metric. From here,
each latent dimension of the autoencoder represents an abstract aspect
of the multimodal fusion problem. Specifically, features projected to
be salient in the same latent dimension are likely to form meaningful
joint patterns in relation to a specific task. The salient features form
a “conceptual” plane of the multiplexed graph. The |%jypex| “supra-
nodes” of the multiplexed graph are produced by creating copies of
features (i.e. nodes) across the planes. The edges between nodes in
each plane represent features whose projections in the respective latent
dimensions were salient (we provide implementation details for specific
datasets in Section 3). Thus, each plane is endowed with its own
topology. This acts as a proxy for the correlation between features with
respect to the corresponding latent dimension. The connectivity in each
plane is denoted by individual planar adjacency matrices.

Let the concatenated reduced modality features be denoted by the
vector x € ®FX!. To form the multiplexed graph planes, the c-AE
projects x to a ‘conceptual’ latent space of dimension where K <« P.
We use the projections in the latent space to explore the dependence
between the features. We infer within plane connectivity along each
latent dimension by perturbing the features and recording those pairs of
features giving rise to the largest incremental responses. Let A& (-) :
®P — %K be the c-AE mapping to the concept space. Let £’ denote
the perturbation of the input by setting *”[j] = x[j] V j # i and
0 for j = i. Then for concept axis k, the perturbations are p,[i] =
[AEene®P) — 2E,,.(x)|. Thresholding p, € ®F*! selects feature nodes
with the strongest responses along concept k. To encourage sparsity,
we retain the top one percent of salient patterns. We connect all pairs
of such feature nodes with edge-type k via a fully connected (complete)
subgraph between nodes thus selected (Fig. 1). Across the K concepts,
we expect that different sets of features are prominent. The input
features x; are one dimensional node embeddings for node i

Overall, the graph construction procedure implicitly models the
interactions between the various modality features in a principled
fashion. Accordingly, we connect supra-nodes within a plane to each
other via the intra-planar adjacency matrix A ). These matrices allow
us to traverse the multi-graph according to the edge-type k. Each supra-
node in a given plane i is also connected with its own copy along other
planes j via vertical connections. This connectivity is denoted by pair-
wise inter-planar adjacency matrices (AJ(,»‘ j)» allowing for cross-planar
traversal.

2.4. Multiplexed GNN for outcome prediction

We develop a novel graph neural network for outcome prediction
from the multiplexed graph (Blue Box in Fig. 1). Our main motivation
is to utilize the native formulation of the multiplex in the design of
layerwise GNN reasoning steps.

A typical Graph Neural Network schema consists of two key com-
ponents: (1) a message passing scheme for propagating information
across the graph and (2) task-specific supervision. Recall that for GNNs
designed for ordinary graphs (Kipf and Welling, 2016), the adjacency
matrix A and its matrix powers allows us to keep track of graph
neighborhoods (at arbitrary / hop distance) during message passing.
In turn, cascading / GNN layers is equivalent to pooling information
at each node i from its /-hop neighbors (M(’ )) that can be reached by
a walk starting at i. Using this guiding principle, we design, for the
first time, a Multiplexed GNN that can emulate this behavior within its
representation learning.
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We first define two key quantities associated with the multiplex
graph Gyplex to design our message passing for inference. The intra-
planar adjacency matrix 4 € RFX*PK  and the inter-planar transition
control matrix C € R PKXPK (Cozzo et al., 2018) are denoted by:

a=@PAy : C=,IRI, ®)
k

where @ denotes the Kronecker direct sum operation, ® is the Kro-
necker product, 1y is the K vector of all ones, and I, is the identity
matrix of size P x P.

By construction, 4 is block-diagonal and captures transitions across
supra-nodes within each plane. Analogously, C has identity matrices
along off-diagonal blocks, implicitly restricting cross-planar transitions
to be between supra-nodes corresponding to the same node (i.e. s; <
i = s5;=P(k—1)+i for some k € {1,...,K}).

Note that supra-nodes across planes can be reached by using a
combination of within and across-planar transitions. This provides com-
parable representational properties at a reduced complexity of O(PK))
inter-planar edges instead of O(P2K). Together, 4 and C allow us to
define multi-hop transitions on the multiplexed graph in a convenient
factorized form.

2.4.1. Multiplex walks for message passing

A walk on the supra-nodes of the multiplexed graph is defined
according to the following transition rules (Cozzo et al., 2018). A walk
On Gyplex combines within and across planar transitions to reach a
supra-node j € VYyplex from a given supra-node i € Vypjex- This gives
rise to two types of steps: (1) A single intra-planar step or (2) A step
that includes both an intra-planar step and an inter-planar step moving
from one plane to another (this can be before or after the occurrence
of an intra-planar step).

To recreate these transitions exhaustively, we have two supra-walk
matrices. Specifically, 4C encodes transitions where after an intra-
planar step, the walk is allowed to continue in the same plane or
transition to a different plane (Type I). Similarly, via €4, the multi-
plexed walk may continue in the same plane or transition to a different
plane before an intra-planar step (Type II). Starting at a given node i
in a plane k,, Type I steps (4C) indicate that the walk first transitions
to a node j in the same plane k; through the intra-planar adjacency 4
followed by the transition control matrix C, allowing for transitions to
the node j but in a different plane k,. Analogously, applying a Type II
(€A) step starting at a given node i in a plane k, may first transition
across planes (by applying C, staying at node i but its copy in plane k,)
and then move to a different node j in plane k, (i.e. applying 4).

To provide an intuition for this mechanism, we take the toy mul-
tiplex graph in Fig. 2 with two planes and three nodes. For a walk
starting at node i in plane k;, we show examples of nodes that can
be reached using a multiplex walk with relevant portions of the factor-
ization highlighted. Notice that the factorized forms defining the walk,
i.e. 2C and €A allow starting from a given supra-node to either reach
a different node in the same plane (Fig. 2(a)), transition across planes
but continue to remain at the corresponding node (Fig. Fig. 2(c)), and
transition across planes and reach a different node in the new plane.
(Fig. 2(b) or (d)). Note that keeping the two sets of steps (Type I and
II) distinct allows us to distinguish between cases (b) and (d) while
accounting for both in the design of the GNN message passing described
below.

Leth! e % P'x1 denote the (supra)-node representation for (supra)-
node s; associated with node i. We compute the filtered representation
at layer (/ + 1) this via the following operations:

' = ¢,({h§’j>,sj  [4C][s,, 5] = 1}) 3)
h' = ¢,,({h§?,sj L [CANs;, 5,1 = 1}) (4)
B = Jeonear{ B0 g (M) =¥ (5)
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Fig. 2. Example of possible transitions within the multiplex graph with node (i) in plane (k,) is the starting point (red node). Sub-figures (a — d) correspond to different types
of end-points that can be reached using the portion of the factorization highlighted in red below the corresponding examples. Taken together, the factorized supra-matrix forms
allow coverage across all nodes of the multiplex across planes, while maintaining the distinctiveness of the order in which within- and across-planar transitions are enumerated.

Here, feoncat(-) concatenates the Type I and Type II representations.
At the input layer, we have d® = x ® 1, where x € VX! are the
node inputs (concatenated modality features). ¢,,,; are graph neural
network transformations, such as a Graph Isomorphism Network (Xu
et al., 2018), Graph Convolutional Network (Kipf and Welling, 2016)
layers etc. Egs. (3)-(5) performs message passing according to the
neighborhood relationships given by the supra-walk matrices. For each
subject, we can thus construct one multiplexed graph with Y being
the vector patient-specific prediction target. Thus, g,(-) is a graph
readout network that maps to the one-hot encoded outcome. It is a two-
layered fully connected network with Leaky ReLU activation. Finally,
the learnable parameters of the Multiplex GNN can be estimated via
standard backpropagation.

2.4.2. Implementation details

We chose the model architecture and hyperparameters (learning
rate, weight decay, number of epochs, number of planes K etc.) for
our framework and the comparison baselines using grid-search and
performance on the validation set as a guide for generalization. We
utilize the ADAMw optimizer (Loshchilov and Hutter, 2017) due to its
empirical stability and robustness. All models were implemented using
the Deep Graph Library (v=0.6.2) in PyTorch (v=0.10.1) and trained
on an 2.3 GHz 8-Core Intel i9 machine with 64 GB RAM.

As mentioned earlier, we perform two sets of evaluations. The
first experiment is designed to validate the Multiplex GNN message
passing alone (i.e. semi-supervised node classification on benchmark
graph datasets). The second set of experiments form the main clinical
evaluation on the multimodal fusion problem. We utilize Graph Con-
volutional layers (GCN) (Kipf and Welling, 2016) for message passing
(.e. {¢;(),¢;;()} from Egs. (3)-(5) for the semi-supervised node clas-
sification task and Graph Isomorphism Network (GIN) layers (Xu et al.,
2018) for the multimodal fusion task, in each case with L = 2 layers.
Our non-linearity of choice was LeakyReLU (negative slope= 0.01)
due to its empirical robustness during training. In the semi-supervised
setting, the node based readout g,(-) computes a linear combination of
the supra-embeddings, followed by a softmax to estimate the (node-
specific) logits at the output. An analogous procedure was performed
at the readout layers for the baseline GNNs. For the multimodal fu-
sion task, we perform graph based classification task with one graph
constructed per subject. Therefore, for all methods, we attach a graph
readout function g,(-) after the GNN layers. For each case, g,(-) this
was a two-layered MLP (with hidden layer widths as {100,20}), with
LeakyReLU (negative slope= 0.01) activation. Applying a softmax to
the graph outputs gives the logits for classification. We used the Cross
Entropy loss for training all models in every experiment.

Software platform- multimodal fusion toolkit (MMMT). We introduce the
multimodal-model-toolkit (MMMT, pronounced mammut): a platform
for accelerating research and development designed to handle multi-
modal data. The code is available in open source (Multimodal-Models-
Toolkit). This platform automates the entire analysis pipeline for mul-
timodal data. MMMT has been designed to have a modular structure
and integrates the following main steps: (1) Data Loading (2) Data
Representation: Unimodal/Multimodal (3) Training (4) Inference (5)
Evaluation. Along with the modular structure, MMMT enables users to
launch multiple model computations by configuring a readable YAML
file and by calling a single starting script. The multiplexed framework
and several baselines models are available as a part of this current
release. We envision that this effort would accelerate the rapid testing
and benchmarking of multimodal modeling frameworks in the future.

3. Experiments and results

We divide the evaluation of our contributions into two parts. In the
first section, we are interested in examining the efficacy of the Multi-
plexed GNN as a tool for reasoning from general multi-graphs. Here, the
primary focus is on verifying the validity of the GNN message passing design
in relation to state-of-the-art graph neural networks designed to operate
on multi-graphs. We accordingly run experiments on two benchmark
graph datasets, where the multi-graph is predefined.

On the other hand, the main focus of the second set of experiments is
to evaluate the utility of the Multiplexed formulation (Multiplex Graph
Representation Learning + Inference) for general purpose multimodal
fusion of medical data. In these experiments, we compare the pipeline in
Fig. 1 against existing models developed to address the fusion problem.

Evaluation metrics. Most prediction tasks considered in this section
have a multi-class classification setting. We evaluate the performance
using AU-ROC (Area Under the Receiver Operating Curve), which
measures the one-vs-all tradeoff between the True Positive Rate (TPR)
and False Positive Rate (FPR) considering the class of interest as the
conventional “positive class”. We also report weighted average AU-ROC
as an overall summary statistic. We also report standard deviation val-
ues on the AU-ROCs. Note that for comparisons where only two target
classes are present, we report only one combined AU-ROC measure of
performance.

For all experiments and models, we rely on 10 randomly gener-
ated train/test/validation splits for each model. We evaluate statistical
differences between the baselines and our method via the DeLong
test (DeLong et al., 1988) computed on the distribution of the class-wise
AU-ROCs.
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https://github.com/BiomedSciAI/multimodal-models-toolkit
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3.1. Evaluating the multiplex GNN design

As a sanity check on the design of our novel GNN framework, we
would like to verify its applicability for reasoning from pre-constructed
multi-graphs. To this end, we use two public benchmark datasets,
commonly adopted in literature.

3.1.1. Datasets

To test the ability of the Multiplexed GNN for reasoning from multi-
graphs, we evaluate on two benchmark datasets for semi-supervised
node classification, namely, the AIFB and the MUTAG datasets. Note
that the classification problem being studied here is performed in a
semi-supervised transductive setting, with supervision provided by the
labeled training examples.

AIFB Dataset: The AIFB dataset described the staff, research group,
and publications of the AIFB research institute at the University of
Karlsruhe (Bloehdorn and Sure, 2007). It contains 8285 entities, nearly
29k edges, and 45 different relationships or edge types. We define a
multiplex graph on these entities. The dataset contains labels for 176
members of a research group with 4 different research subgroups. The
goal is to predict the affiliation of a researcher to one of the subgroups.
Since we have only 176 labeled examples, we utilized 122/18/36
(Train/Validation/Test) splits during evaluation. We instantiated 8 di-
mensional learnable features for each node which are updated within
the overall optimization scheme.

MUTAG dataset: MUTAG is a graph dataset introduced in Debnath
et al. (1991) in which the goal is to predict the mutagenicity of a
collection of nitroaromatic compounds. Thus there are two classes, is-
mutagenic or not. In the node classification setting, there are 27163
nodes with 23 relationship types. The dataset has 340 labeled nodes,
with each node belonging to one of two classes. We utilize ten ran-
dom 238/34/68 Train/Val/Test splits. We instantiated 8 dimensional
learnable features for each node which are updated within the overall
optimization scheme.

3.1.2. Baseline comparisons
We compare against several state-of-the art deep networks designed
to operate on multiplexed graphs.

Relational GCN: The relational GCN (Schlichtkrull et al., 2018) is a
GNN designed to handle multi-relational edges between a given set
of nodes. Essentially, a separate GCN layer is used for each relation-
type (i.e. plane). The distinct embeddings thus obtained are aggre-
gated post-hoc at each layer by averaging them. Note that this im-
plicitly assumes independence across different edge-types, and may ig-
nore vital information arising from the complementarity in multi-edge
relationships.

Multi-Dimensional GCN: The multi-dimensional GCN (Ma et al., 2019)
extends the R-GCN by adding a learnable cross-modal graph attention
to the node embeddings. Nevertheless, this framework does not directly
model higher order paths in the multi-graph arising from mixing and
matching across and within relational neighborhoods.

Multi-Layered GNN: The multi-layered GNN (Grassia et al., 2021)
is a recent framework designed to model the multi-planar graph in
Fig. 1. It separates the inter 4 and intra-planar C adjacency matrices
into individualized message passing layers and concatenates the embed-
dings after. Both branches use Graph Attention Networks (Velickovi¢
et al., 2017). Note that this procedure introduces an artificial separation
between the cross-planar and intra-planar edges at each operation.

Multi-Behavioral GNN: This framework was designed for prediction
from multiplexed graphs in recommendation systems arising from var-
ious user-item behavioral preferences. It first collapses the multiplexed
graph into a single “quotient” graph i.e. average of the intra-planar
adjacency matrix across planes. Node embeddings are pre-filtered using
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Fig. 3. Performance the on the semi-supervised node classification on the AIFB dataset
as measured by per-class and weighted average AU-ROC. We display mean performance
along with standard errors. Higher values indicate improved performance. Comparisons
marked with « reach a statistical significance threshold of p < 0.01 according to the De-
Long test, as measured for individual class AU-ROCs. The Multiplex GNN outperforms
all of the baselines for multi-class classification compared to the baseline multi-graph
neural networks.

MUTAG Dataset

® Mplex GNN (Ours)

$ Relational GCN

$ Multi-Dim. GCN

$ Multi-Layer GNN
Multi Behav. GNN

09

08

074 %

06

*
*
* e

05

AU-ROC

04
* p<0.01

03

02

1, Vs N M H
Class Frequency (0.37/0.62)

Fig. 4. Performance the on the semi-supervised node classification on the MUTAG
dataset as measured by the overall AU-ROC. We display mean performance along with
standard errors. Higher values indicate improved performance. Comparisons marked
with = reach a statistical significance threshold of p < 0.01 according to the De-Long
test. The Multiplex GNN outperforms all of the baselines for classification compared to
the baseline multi-graph neural networks.

a GCN (Kipf and Welling, 2016) based on quotient connectivity. Next,
the filtered embeddings are input to a second GCN which uses the com-
bined supra-adjacency matrix A = 4 + €. In contrast, our framework
tries to exploit the native formalism of the multiplex walks instead of
collapsing the graph adjacency matrices during message passing.

3.1.3. Classification results

Figs. 3 and 4 illustrate the per-class AU-ROC and weighted average
AU-ROC distribution of our framework (MPlexGNN) against the multi-
GNN baselines for the AIFB and MUTAG datasets respectively. Along
with each errorbar plots, we indicate the frequency of the correspond-
ing class within the dataset. We observe that the Multiplexed GNN
provides the best per class and overall AU-ROC for all of the compar-
isons. The standard errors for our model are also considerably smaller
than the baseline predictions as well. The class imbalance makes the
classification task challenging, particularly for the minority classes.
This partially contributes to the poor performance of the baselines
on these classes, where the averaging or separation of connectivity
information across planes may miss key patterns relevant to the task
at hand. In contrast, our framework is a more efficient alternative for
reliably uncovering stable multi-relational patterns from graph data
that are relevant for prediction. We conjecture that the performance
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Table 1
Dataset description of the NIH-TB dataset.
Modality CT Genomic Demographic Clinical Regimen Continuous
Native Dimensionality 2048 4081 29 1726 233 8
Rank 250 300 24 183 112 8
Reduced Dimensionality 128 64 8 128 64 4
(Demographic m\ N /E ;Tt);:etz description of the ABIDE dataset.
A g § - ﬂ‘ e e Modal. Anatomical Functional Phenotypic Connectomics
pEll < ) Nat. Dim. 6 10 48 256
>~ . ] i
Genomic o @ [ >
§ s JyLe § I the causative pathogen (Seabolt et al., 2019). Briefly, we performed
< > M LS a de novo assembly process on each Mtb genome to yield protein
et m Nl s H {3 and gene sequences. We utilized InterProScan (Jones et al., 2014) to
@ g § [s]c i N g further process the protein sequences and extract the functional do-
"/ U { -g 1 g mains, i.e. sub-sequences located within the protein’s amino acid chain
pap— ] 2l J oo responsible for the enzymatic bioactivity of a protein. This provides
? g % g g I 2 a total of 4000 functional genomic features. Finally, for the imaging
?»." = § Y o 3 modality, the lung was segmented via multi-atlas segmentation (Wang
RN ) ’ and Yushkevich, 2013) followed by a pre-trained DenseNet (Huang
| P M et al., 2017) to extract a 1024-dimensional feature vector for each axial
Clinical ) B I P B " slice intersecting the lung. The mean and maximum of each feature
@1 % ,§ @ - were then assembled to give a total of 2048 features. Missing features
N ; () = LeakyRelU are imputed from the training cohort using mean imputation for all
Continuous | ™ - /f.', runs. Table 1 provides a description of the dataset. We indicate the
@ §_ i 5@ _____ D[] = lgl%l d-AE bottleneck inferred from the validation dataset along with the
s U { rank of the data matrix for each modality. We thus have a total of

Fig. 5. For the NIH-TB dataset, domain specific autoencoders (d-AE) are used to
convert individual modality features to compact feature spaces and reduce the within-
modality redundancy. These are trained on an MSE reconstruction loss. The architecture
of the encoder-decoder pairs is shown in the box at the bottom right corner and
the dimensionality of the reduced features is indicated in Table 1. Then, the reduced
features are concatenated and fed to the model in Fig. 1 to convert it into a multiplexed
graph representation .

gain is due to the walk-based message passing design, which is more
naturalistic and thus suitable for reasoning from multiplexed graphs.

3.2. Evaluating outcome prediction from multimodal medical data

To demonstrate the clinical utility of the multiplexed formulation
for multimodal fusion, we employ two multi-omics datasets.

3.2.1. Datasets

NIH-TB Dataset: We consider the Tuberculosis Data Exploration Por-
tal (Gabrielian et al., 2019) consisting of 3051 patients with five dif-
ferent treatment outcomes (Died, Still on treatment, Completed, Cured,
or Failure) with the class frequencies as: 0.21/0.11/0.50/0.10/0.08 and
five modalities. For each subject, we have features available from
demographic, clinical, regimen and genomic recordings with chest CTs
available for 1015 of them. We have a total of 4081 genomic, 29 de-
mographic, 1726 clinical, 233 regimen features that are categorical, and
2048 imaging and 8 miscellaneous continuous features. Information that
may directly be related to treatment outcomes, eg. drug resistance type,
were removed from the clinical and regimen features. For genomic
data, 81 single nucleotide polymorphisms (SNPs) from the causative
organisms Mycobacterium tuberculosis (Mtb) known to be related to
drug resistance were used. For 275 of the subjects, we also assemble
the raw genome sequence from NCBI Sequence Read Archive. This
provides a more fine-grained description of the biological sequences of

P = 128 + 64 + 8 + 128 + 64 + 4 = 396 features and K = 32 latent
dimensions in the c-AE. Fig. 5 provides a pictorial overview of this
processing pipeline.

ABIDE Dataset: The Autism Brain Imaging Data Exchange I (ABIDE)
(Di Martino et al., 2014) is a collection of functional magnetic reso-
nance imaging (rs-fMRI) scans and corresponding phenotypic data from
24 different collection sites for subjects with Autism Spectrum Disorder
(ASD) against normal controls (NC). Analogous to Zheng et al. (2022),
we select 871 subjects for Autism classification with 468 NC and 403
ASD subjects, i.e. which are roughly class balanced. The average subject
ages are 16.84 + 7.23 for the NC cohort (90 males / 378 females) and
17.07 + 7.95 for the ASD group (288 males / 115 females). We follow
the data curation steps outlined in Zheng et al. (2022). Functional
MRI data is processed according to the Configurable Pipeline for the
Analysis of Connectomes (C-PAC) (Craddock et al., 2013). Functional
connectomes are computed using the Pearson’s correlation coefficient
between regional time-series from the fMRI data. Thus, four modalities
are available in total, including 48 phenotypic measures, 6 automated
anatomical assessment metrics, 10 automated functional assessment
metrics, and 256 fMRI connectomics measures. For this dataset, we use
the concatenated features (P = 256+ 10+ 6+48 = 320) directly as input
to the c-AE (K = 32), as the individual features were not found to have
much redundancy (low rank structure) (see Table 2).

3.2.2. Baseline comparisons

We compare our multiplexed framework against three types of
fusion models, namely: (a) No fusion or single modality predictors
(b) traditional fusion approaches (c) ablation studies on the model
components and design, and (d) graph based fusion models developed
for medical applications.

No Fusion: We first run baseline predictive models on the individual
modality features without fusing them as a benchmark. We use a two
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layered multi-layered perception (MLP) with hidden layer widths as
400 and 20 and LeakyReLU activation (neg. slope=0.01).

Early Fusion: Individual modality features are first concatenated and
then fed through a neural network with the same architecture as
described above.

Intermediate Fusion: In this comparison, we perform intermediate
fusion after the d-AE projection by using the concatenated feature x
as input to a two layered MLP (hidden width: 150 and 20, LeakyReLU
activation). Since the ABIDE features do not use the d-AE reduction,
we feed the hidden representation from the c-AE to this model. Both
comparisons evaluate the benefit of using graph based fusion via the
c-AE latent encoder.

Kronecker Product Fusion: An alternative intermediate fusion strat-
egy is to combine individual modality-specific representations via the
Kronecker Fusion model in Chen et al. (2020) developed for out-
come prediction. It creates an intermediate representation by creating
an Mth-order tensor by taking a Kronecker product of the modality
features (M being the number of modalities). The intermediate rep-
resentation is then fed into a classification Multi-Layered Perceptron
(MLP) that maps to the classification targets. We fix the modality-
specific projection networks to be MLP with two hidden layers (hidden
dimensions 32 and output dimension 10), leaky ReLU activations (neg-
ative slope=0.01). The classification network is an MLP with two
hidden layers of dimensionality 32 and ReLU activations. Training
hyperparameters are set according to Chen et al. (2020)

Late Fusion: We utilize the late fusion framework of Wang et al. (2021)
to combine the predictions from the modalities trained individually in
the No Fusion baseline. This framework leverages the uncertainty in the
individual classifiers to improve the robustness of outcome prediction.
We used the hyperparameters in Wang et al. (2021).

Metric Learning based Fusion: A recent alternative to our multiplexed
representation using autoencoders (i.e. d-AE and c-AE projections)
is the metric-learning late fusion framework of Cheerla and Gevaert
(2019). This approach first projects each of the modality representa-
tions to a space of fixed dimensionality, followed by modality-specific
discriminative networks (MLPs) trained on classification (cross-entropy
loss) against the prediction targets. For fusion, they introduce a ‘simi-
larity loss’ to encourage all modality-specific logits for a given patient
(considered pairwise across batches) to be similar to each other, but
dissimilar across patients. The network is trained jointly on the two
losses. For our application, we design the projection and classifica-
tion networks to be two layered MLPs (hidden dimensionality=64,
LeakyReLU activation). Hyperparameters for training are set according
to Cheerla and Gevaert (2019).

rGCN on a Multiplexed Graph: This baseline utilizes the multigraph
representation learning (Blue Box of Fig. 1), but replaces the Multiplex
GNN feature extraction with the rGCN framework of Schlichtkrull et al.
(2018). Since the width, depth and graph readout is the same as with
the Multiplex GNN, this helps evaluate the expressive power of the walk
based message passing in Eq. (5).

rGCN w/o Latent Encoder: For this comparison, we utilize the re-
duced features after the d-AE, but instead create a multi-layered graph
with the individual modalities in different planes. Within each plane,
nodes are fully connected to each other after which a two layered
rGCN (Schlichtkrull et al., 2018) model is trained. Effectively, within
modality feature dependence may still be captured in the planes, but
the concept space is not used to infer the cross-modal interactions.

GCN on monoplex feature graph: This baseline also incorporates a
graph based representation, but does not include the use of latent con-
cepts to model within and cross-modal feature correlations. Essentially,
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we construct a fully connected graph on x instead of using the (multi-
) conceptual c-AE space and train a two layered Graph Convolutional
Network (Kipf and Welling, 2016) for outcome prediction.

Transformers for fusion: Lack of clear semantic correspondences
across features from different modalities is a challenging aspect of
multimodal fusion. In this baseline, we explore the use a transformer
architecture (Hou et al., 2022) to define the relationships between all
pairs of multimodal features. We design a two layered transformer
encoder followed by a two layered MLP (hidden layer width = 256,
ReLU activation) to map the concatenated filtered representation to
the class label for each subject. Since this baseline admits all possible
modality feature interactions, it effectively constructs a weighted fully
connected multimodal graph between modality features. This baseline
could be considered as an ablation that directly evaluates the benefit
of restricting interactions between features via the multiplex graph
representation learning.

Latent Graph Learning: This baseline was developed on multimodal
data (Cosmo et al., 2020) and introduces latent patient graph learning
from the modality features via a graph-attention (GAT-like (Velickovi¢
et al., 2017)) formulation. However, unlike our model, this baseline
concatenates the modality features upfront and constructs a single-
relational (patient-patient) graph that is learned as a part of the
training. Hyperparameters are set according to Cosmo et al. (2020).

Multimodal Graph Learning: This baseline (Zheng et al., 2022) also
performs latent graph learning on a single-relational patient-patient
graph similar to the previous model. Instead of concatenating the
modality features to learn the graph, this model performs an attention
based aggregation across modality features to construct the node fea-
tures. Hyperparameters are set according to Zheng et al. (2022). Note
that this and the previous baselines perform node-based classification
for fusion instead of graph-level prediction.

Hybrid Graph Convolutional Network (HGCN): The HGCN model
is a very recent graph based fusion baseline developed by Hou et al.
(2023). This method consists of identical graph convolutional layers
(GCN) to process the individual modality features and then convert
them into a modality specific hypergraph connecting all features of
each modality to a hypernode densely. The obtained modality repre-
sentations are combined using a hypergraph convolutional layer (HCN)
that implements a hyperedge mixing module to provide a unified mixed
modality representation. Finally, the mixed representation is added
to modality specific embedding to obtain a joint representation for
training a classifier.

3.2.3. Outcome prediction performance

Figs. 67 and Figs. 8-9 illustrate the outcome prediction results for
the NIH-TB and ABIDE datasets.

We notice that all fusion frameworks (ours, as well as several
baselines) largely improve the performance over the single modality
outcome classifiers. This observation highlights the need for fusing
multi-modal data for clinical applications. Our framework outperforms
the traditional fusion baselines (Early, Intermediate, and Uncertainty
based Late Fusion, Kronecker Product Fusion and Metric Learning), for
a majority of the comparisons for both datasets. This suggests that the
implicit assumptions made by these frameworks may be too restrictive
for modeling nuanced relationships between modality features.

The rGCN-multigraph baseline is an ablation that replaces the Mul-
tiplexed GNN with the framework in Schlichtkrull et al. (2018) (which
also performed second to best among the comparisons in Section 3.1.2).
We utilize the same multiplexed representation as learned by the c-AE
autoencoder latent space. The performance gains within this ablation
suggest that the Multiplexed GNN is better suited for task-specific
reasoning from multigraphs. The added representational power is likely
due to the design of the message passing (Eq. (5)). Along similar lines,
rGCN w/o latent encoder and the GCN on the monoplex feature graph
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Fig. 6. Outcome prediction performance on the NIH-TB dataset as measured by per-class and weighted average AU-ROC. We display mean performance along with standard
errors. Higher values indicate improved performance. Comparisons marked with # reach a statistical significance threshold of p < 0.01 according to the De-Long test, as measured
for individual class AU-ROCs. The figure illustrates comparisons against (Left): Single Modality Predictors (Middle): Traditional (early/intermediate/late) Fusion, Metric Learning,
Kronecker Product Fusion (Right): Ablations of the framework. We note that the multiplexed GNN provides improved performance for multi-class classification on all comparisons,

with a majority of them achieving the statistical threshold.
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Fig. 7. Outcome prediction performance on the NIH-TB dataset as measured by per-
class and weighted average AU-ROC. Higher values indicate improved performance.
Comparisons marked with % reach a statistical significance threshold of p < 0.01
according to the De-Long test, as measured for individual class AU-ROCs. We display
mean performance along with standard errors. This figure illustrates comparisons
against recent graph based fusion frameworks for medical data. We note that the
multiplexed GNN provides improved performance for multi-class classification on all
comparisons, achieving the statistical threshold in all cases.

baseline comparisons are generic graph based approaches, which we
adapt for fusion. They allow us to examine the benefit of using the
salient activation patterns from the c-AE latent concept space to infer
the multi-graph representation. Specifically, the former separates the
modality features into fully connected multi-planar graph. The latter
constructs a fully connected graph with a single edge-type on the
concatenated modality features. Our framework provides large gains
over these baselines. This highlights the efficacy of our graph construc-
tion. We surmise that the salient learned conceptual patterns are more
successful at uncovering cross modal interactions between features that
are explanative of patient outcomes.

We observe that the multiplex GNN approach outperforms the
transformer baseline on both datasets. We posit that this difference
in performance arises as a direct consequence of the transformer ar-
chitectural design which seeks to estimate all possible pairwise feature
interactions in a data-driven fashion. This is often extremely challenging

for applications in the healthcare domain owing to the high data dimen-
sionality coupled with limited dataset sizes. In contrast, the multiplexed
graph construction pre-selects for connectivity patterns deemed to be
most salient, implicitly regularizing the feature graph representation.
At the same time, the multiplex GNN walk factorizations (i.e. 4C and
Ca) are deliberately designed to combine within and across planar
connection patterns, allowing nodes across planes to seamlessly com-
municate with each other during message passing. We believe that
these two design choices contribute to the improved representational
power over transformers for this application.

Finally, our framework outperforms the latent graph learning mul-
timodal fusion models, and the hybrid graph convolutional network for
the NIH-TB dataset (Fig. 7). It is a close second for ABIDE (Fig. 9) in
terms of mean performance, but provides smaller standard errors. As
opposed to the collapsed patient-patient graphs constructed in Zheng
et al. (2022), Cosmo et al. (2020), our approach allows for subject-
specific modeling of feature interactions in the construction of the
multigraph. The Hybrid GCN (Hou et al., 2023) constructs patient-
specific graphs and processes multimodal features in a modality specific
(using graph and hyper-graph convolutions) as well as mixed fashion
(via a hyper-edge mixing network). However, the feature and modal-
ity semantics may not be preserved through the intermediate mixing
transformations. In contrast, the multiplex GNN design ensures that
the filtered supra-node embeddings maintain their planar and nodal
(i.e. feature and modality) identities throughout, allowing for fine-
grained yet patient-specific reasoning. We believe that this relaxation
of constraints allows us to generalize well to challenging multi-outcome
prediction tasks such as the NIH-TB dataset.

Overall, these observations highlight key representational aspects of
our framework, and demonstrate the efficacy for two different outcome
prediction tasks. Given the clinical relevance, a promising direction for
exploration would be to extend frameworks for explainability in GNNs
(for example, via subgraph exploration (Yuan et al., 2021)) to Multi-
plex GNNs to automatically highlight patterns relevant to downstream
prediction.

4. Discussion
4.1. Examining the multimodal graph representation

After having extensively evaluated the prediction performance for
various applications, we would like to better understand the multi-

plexed graph representation learned as a part of the multimodal fusion.
Recall that the planes of our multiplex graphs refer to directions in
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Fig. 8. Classification performance on the ABIDE dataset as measured by the AU-ROC metric. We display mean performance along with standard errors. Higher values indicate
improved performance. Comparisons marked with * reach a statistical significance threshold of p < 0.01 according to the De-Long test, as measured for individual class AU-ROCs.
The figure illustrates comparisons against (Left): Single Modality Predictors (Middle): Traditional (early/intermediate/late) Fusion Frameworks, Metric Learning, Kronecker Product
Fusion, (Right): Ablations of the framework. We note that the multiplexed GNN provides improved performance for classification on all comparisons, achieving the statistical

threshold in all cases.
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Fig. 9. Classification performance on the ABIDE dataset as measured by the AU-ROC
metric. Comparisons marked with «* reach a statistical significance threshold of p < 0.01
according to the De-Long test, as measured for individual class AU-ROCs. We display
mean performance along with standard errors. This figure illustrates comparisons
against recent graph based fusion frameworks for medical data. The Multiplexed GNN
is a close second on this task, but results in smaller standard errors.

the concept autoencoder (c-AE) latent space. Each direction allows
us to uncover different types of dependence between the multimodal
features. For a given subject, the multimodal features deemed to be
salient with respect to each latent direction induce a unique connectiv-
ity pattern per plane. The multiplexed GNN then leverages this unique
topology to robustly uncover complementary discriminative patterns
from the modality features.

Since this connectivity is different for each patient, we aim to visu-
alize how these connection patterns look on average across the dataset
via a heatmap display. This is used to determine which connections are
more frequently retained, and thus likely more important for outcome
prediction. Specifically, we display the feature connectivity heatmap
obtained from three of K = 32 planes from one of the runs. Fig. 10 for
the NIH-TB dataset and Fig. 11 for the ABIDE dataset, ordered from
left to right from most to least sparse. Each connection is weighted
by the relative frequency of occurrence across patients, i.e. relative
population-level density. Brighter values imply that the pair of features
were connected with each other in the multiplex graph of more sub-
jects. Since the connection patterns are symmetric by construction, we
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display only the lower half of this matrix. For simplicity, we group
features from each modality into contiguous blocks.!

We notice that for both datasets, the c-AE picks out a large number
of cross-modal interactions (highlighted in the red box), in tandem
with intra-modality feature connections (block diagonal connections
of the matrix, highlighted by the green box). While sparse overall, a
number of connections in each matrix have a considerable frequency
of occurrence, indicating that they are mined fairly consistently (about
20— 60 percent of subjects for the ABIDE dataset and 10—40 percent for
the NIH-TB dataset). Comparing across datasets, we do see differences
in the distribution of the connection strengths in the heatmap, with
those for the ABIDE dataset having relatively higher consensus values
across subjects for the strongest connections. More interestingly, each
plane (i.e. latent direction in the concept space) induces a unique graph
topology, as seen by comparing the connectivity patterns across the
example plots from a given dataset. This is in line with our desire to
automatically uncover complementary modes of interaction (via the c-
AE latent space) from multimodal data. The Multiplexed GNN utilizes
the complementarity in the representations in a principled fashion
during message passing for reasoning

Finally, we would like to examine the contribution that individual
data modalities have for the fusion task for outcome prediction. To
this end, we run a second ablation study that assesses the differen-
tial modality contribution. In this experiment, we remove features
corresponding to a given modality, one modality at a time; then we re-
estimate the multiplex graph (by retraining the c-AE) and re-train the
Multiplexed GNN for prediction. We use the same train-test-validation
folds as in the main experiments. Next, we quantify the change in
the weighted AU-ROC obtained by excluding one modality at a time.
Table 3 denotes the results for the NIH-TB dataset and Table 4 for the
ABIDE dataset. First, we observe that removal of any given modality
lowers the overall performance for both applications. This suggests
that none of the modalities are likely redundant in relation to the
prediction task. Additionally, removing Clinical features for the NIH-
TB dataset and Connectomics features for ABIDE dataset lead to the
largest performance drop. This indicates that the feature connectivity
patterns associated with these modalities are considered informative for
the respective prediction tasks.

1 Note: For the NIH-TB dataset, the features are the outputs of the d-AE
dimensionality reduction and are not the raw input features.
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Fig. 10. Average within-planar connectivity topology for three of the thirty-two multiplex planes for the NIH-TB dataset. We display the relative frequency of occurrence of
the connection across subjects. Brighter values indicate stronger consensus across subjects. Reduced modality features have been grouped together into contiguous blocks in the
matrix. Each plane captures a different set of interaction patterns (i.e. unique connectivity topology). While overall sparse, we observe that several within-modality (block diagonal,

examples highlighted in green) and cross modal (off diagonal, examples highlighted in red) are consistently observed across individuals.
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Fig. 11. Average within-planar connectivity topology for three of the thirty-two multiplex planes for the ABIDE dataset. We display the relative frequency of occurrence of the
connection across subjects. Brighter values indicate stronger consensus across subjects. Reduced modality features have been grouped together into contiguous blocks in the matrix.

Each plane captures a different set of interaction patterns (i.e. unique connectivity topology). While overall sparse, we observe that several within-modality (block diagonal,
examples highlighted in green) and cross modal (off diagonal, examples highlighted in red) are consistently observed across individuals.

Table 3

Modality feature ablation on the NIH dataset:.
Removed modality W. avg. AU-ROC v
Reference 0.74 + 0.008 -
CT 0.71 £0.012 —0.03
Genomic 0.71 + 0.006 —-0.03
Clinical 0.70 + 0.005 —-0.04
Regimen 0.71 + 0.008 -0.03
Demographic 0.71 +0.008 —0.03
Continuous 0.73 +0.009 —0.01

Table 4

Modality feature ablation on the ABIDE dataset.
Removed modality AU-ROC v
Reference 0.87 £ 0.014 -
Anatomical 0.62 +0.052 —-0.25
Functional 0.67 £ 0.046 -0.19
Phenotypic 0.74 +0.045 -0.13
Connectomics 0.54 +0.009 -0.33
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4.2. Advantages and application potential

We have developed a novel graph neural framework grounded
in the native formalism of multiplex graphs to address problems of
generalized multimodal fusion in medical data. Going one step beyond
simple statistical measures, the multiplexed graph construction allows
us to uncover nuanced non-linear notions of dependence between
modality features via the latent space of autoencoder representations.
The Multiplexed GNN layers allow the node features to retain their
individuality in terms of the plane (relationship type) in the filtered
representation. This admits more explainable intermediate representa-
tions in comparison to the baselines, i.e. provides us with the ability
to explicitly reason at the granularity of both the nodal and planar
representations. Conversely, the GNN baselines in Section 3.1.2 and
graph based/traditional fusion baselines in Section 3.2.2 collapse this
information, either in the multimodal representation or in the inference
step. We conjecture that added flexibility contributes to the improved
generalization power in both sets of experiments.

As such, this model makes very mild assumptions about the nature
of the multimodal data. Moreover, we have demonstrated the utility of
the Multiplexed GNN in both the transductive (semi-supervised) and
inductive (fully supervised) inference setting. The general principles
and machinery developed in this work would likely be useful to a wide
variety of applications beyond the medical realm.
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4.3. Limitations and future work

As mentioned previously, lack of clear semantic correspondences
between multimodal features is a challenging aspect of fusion applica-
tions. The development of multiplexed graph neural networks for this is
an important preliminary step towards developing flexible machinery
to explore the dependence across features and modalities in a principled
fashion. At the same time, the current approach suffers from some limi-
tations. Specifically, our model implementation separates the modality
specific feature extraction from the multiplexed graph construction and
inference steps. End-to-end optimization of the two is challenging given
the non-differentiability of our multiplexed graph construction step. As
a result, the current implementation relies on converting the imaging
and non-imaging information to 1D feature signals which are then fused
within the multiplexed GNN. It is important to note that such feature
extraction is not universal, is modality-dependent, and often introduces
heterogeneous characteristics specific to the application under consid-
eration. In this light, an important future direction of exploration is
the integration of modality-specific feature extraction modules end-to-
end with the inference framework to allow them to inform each other
during training. In turn, this would allow for more targeted task-specific
representation learning, which is currently not addressed sufficiently
within this work.

In problems of multimodal fusion, data acquisition is a fairly con-
trived and expensive process. In many applications, especially in med-
ical domain, modalities may often be only partially observed, missing
in totality, or noisy in acquisition. Simple methods such as mean based
imputation may be inadequate as they miss key patterns in the data.
In an aim to mitigate such practical challenges, another active line of
exploration is to extend the framework to handle missing or ambiguous
data in the multiplexed representation by leveraging statistical and
graph theoretic tools in conjunction with message passing.

By definition, the multiplexed formulation assumes that the planes
share a common set of nodes which are connected by vertical connec-
tions. An active direction exploration is to relax this assumption into
multi-layered graph representations (D’Souza et al., 2023) for gener-
alized fusion frameworks. Here, each plane may be allowed to have
an arbitrary number of nodes and inter-planar cross linkages across
planes may also be present. While the transformer model is one instance
where dense connectivity patterns are permitted, such models do not
always work well in practice when limited training data is available
due to poor regularization. Fundamentally, this aspect would require
a rethinking of notions of dependence (connectivity) for constructing
such graphs, as well as extending the message passing scheme to handle
the more general case.

5. Conclusion

We have introduced a novel framework based on multiplexed
graphs that can combine diverse multimodal data for outcome predic-
tion. We have explored the potential of this framework in the medical
domain using two clinical multi-omics datasets. Our Multi-modal Graph
Representation Learning transforms individual modality features into
abstract concept spaces, which allows us to tease apart complex cross
modal dependencies between features. We have also developed a
novel multiplexed graph neural network that can systematically track
information flow within the multi-graph via message passing walks.
Our GNN formulation provides the necessary flexibility to mine rich
representations from multimodal data. Overall, this provides for im-
proved outcome prediction performance against several state-of-the-art
baselines. Finally, our framework makes very few assumptions and
could be easily applied to a variety of fusion problems in general Al
domains.
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