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Abstract—Many underlying relationships among data in several
areas of science and engineering, e.g., computer vision, molec-
ular chemistry, molecular biology, pattern recognition, and data
mining, can be represented in terms of graphs. In this paper, we
propose a new neural network model, called graph neural network
(GNN) model, that extends existing neural network methods for
processing the data represented in graph domains. This GNN
model, which can directly process most of the practically useful
types of graphs, e.g., acyclic, cyclic, directed, and undirected,
implements a function (G, n) € IR™ that maps a graph G
and one of its nodes n into an m-dimensional Euclidean space. A
supervised learning algorithm is derived to estimate the param-
eters of the proposed GNN model. The computational cost of the
proposed algorithm is also considered. Some experimental results
are shown to validate the proposed learning algorithm, and to
demonstrate its generalization capabilities.

Index Terms—Graphical domains, graph neural networks
(GNNs), graph processing, recursive neural networks.

I. INTRODUCTION

ATA can be naturally represented by graph structures in
D several application areas, including proteomics [1], image
analysis [2], scene description [3], [4], software engineering [5],
[6], and natural language processing [7]. The simplest kinds of
graph structures include single nodes and sequences. But in sev-
eral applications, the information is organized in more complex
graph structures such as trees, acyclic graphs, or cyclic graphs.
Traditionally, data relationships exploitation has been the sub-
ject of many studies in the community of inductive logic pro-
gramming and, recently, this research theme has been evolving
in different directions [8], also because of the applications of
relevant concepts in statistics and neural networks to such areas
(see, for example, the recent workshops [9]-[12]).
In machine learning, structured data is often associated with
the goal of (supervised or unsupervised) learning from exam-
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ples a function 7 that maps a graph G and one of its nodes n to
a vector of reals!: 7(G,n) € IR™. Applications to a graphical
domain can generally be divided into two broad classes, called
graph-focused and node-focused applications, respectively, in
this paper. In graph-focused applications, the function 7 is in-
dependent of the node n and implements a classifier or a re-
gressor on a graph structured data set. For example, a chemical
compound can be modeled by a graph G, the nodes of which
stand for atoms (or chemical groups) and the edges of which
represent chemical bonds [see Fig. 1(a)] linking together some
of the atoms. The mapping 7(G) may be used to estimate the
probability that the chemical compound causes a certain disease
[13]. In Fig. 1(b), an image is represented by a region adjacency
graph where nodes denote homogeneous regions of intensity of
the image and arcs represent their adjacency relationship [14]. In
this case, 7(G) may be used to classify the image into different
classes according to its contents, e.g., castles, cars, people, and
SO on.

In node-focused applications, 7 depends on the node 7, so
that the classification (or the regression) depends on the proper-
ties of each node. Object detection is an example of this class of
applications. It consists of finding whether an image contains a
given object, and, if so, localizing its position [15]. This problem
can be solved by a function 7, which classifies the nodes of the
region adjacency graph according to whether the corresponding
region belongs to the object. For example, the output of 7 for
Fig. 1(b) might be 1 for black nodes, which correspond to the
castle, and O otherwise. Another example comes from web page
classification. The web can be represented by a graph where
nodes stand for pages and edges represent the hyperlinks be-
tween them [Fig. 1(c)]. The web connectivity can be exploited,
along with page contents, for several purposes, e.g., classifying
the pages into a set of topics.

Traditional machine learning applications cope with graph
structured data by using a preprocessing phase which maps the
graph structured information to a simpler representation, e.g.,
vectors of reals [16]. In other words, the preprocessing step first
“squashes” the graph structured data into a vector of reals and
then deals with the preprocessed data using a list-based data
processing technique. However, important information, e.g., the
topological dependency of information on each node may be
lost during the preprocessing stage and the final result may de-
pend, in an unpredictable manner, on the details of the prepro-
cessing algorithm. More recently, there have been various ap-
proaches [17], [18] attempting to preserve the graph structured
nature of the data for as long as required before the processing

Note that in most classification problems, the mapping is to a vector of inte-
gers IN™, while in regression problems, the mapping is to a vector of reals IR™ .
Here, for simplicity of exposition, we will denote only the regression case. The
proposed formulation can be trivially rewritten for the situation of classification.
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Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters w of a func-
tion ¢,,, which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]-[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]-[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLSs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 17,2025 at 21:15:31 UTC from |IEEE Xplore. Restrictions apply.



SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL

framework. We will call this novel neural network model a
graph neural network (GNN). It will be shown that the GNN
is an extension of both recursive neural networks and random
walk models and that it retains their characteristics. The model
extends recursive neural networks since it can process a more
general class of graphs including cyclic, directed, and undi-
rected graphs, and it can deal with node-focused applications
without any preprocessing steps. The approach extends random
walk theory by the introduction of a learning algorithm and by
enlarging the class of processes that can be modeled.

GNNs are based on an information diffusion mechanism. A
graph is processed by a set of units, each one corresponding to a
node of the graph, which are linked according to the graph con-
nectivity. The units update their states and exchange informa-
tion until they reach a stable equilibrium. The output of a GNN
is then computed locally at each node on the base of the unit
state. The diffusion mechanism is constrained in order to en-
sure that a unique stable equilibrium always exists. Such a real-
ization mechanism was already used in cellular neural networks
[47]-[50] and Hopfield neural networks [51]. In those neural
network models, the connectivity is specified according to a pre-
defined graph, the network connections are recurrent in nature,
and the neuron states are computed by relaxation to an equilib-
rium point. GNNs differ from both the cellular neural networks
and Hopfield neural networks in that they can be used for the
processing of more general classes of graphs, e.g., graphs con-
taining undirected links, and they adopt a more general diffusion
mechanism.

In this paper, a learning algorithm will be introduced, which
estimates the parameters of the GNN model on a set of given
training examples. In addition, the computational cost of the pa-
rameter estimation algorithm will be considered. It is also worth
mentioning that elsewhere [52] it is proved that GNNs show a
sort of universal approximation property and, under mild condi-
tions, they can approximate most of the practically useful func-
tions ¢ on graphs.3

The structure of this paper is as follows. After a brief de-
scription of the notation used in this paper as well as some pre-
liminary definitions, Section II presents the concept of a GNN
model, together with the proposed learning algorithm for the
estimation of the GNN parameters. Moreover, Section III dis-
cusses the computational cost of the learning algorithm. Some
experimental results are presented in Section IV. Conclusions
are drawn in Section V.

II. THE GRAPH NEURAL NETWORK MODEL

We begin by introducing some notations that will be used
throughout the paper. A graph G is a pair (N, E), where N is
the set of nodes and FE is the set of edges. The set ne[n| stands
for the neighbors of n, i.e., the nodes connected to n by an arc,
while co[n] denotes the set of arcs having n as a vertex. Nodes
and edges may have labels represented by real vectors. The la-
bels attached to node n and edge (n1,n2) will be represented
by l, € R' andl,, .,y € IR'", respectively. Let I denote the
vector obtained by stacking together all the labels of the graph.

3Due to the length of proofs, such results cannot be shown here and is included
in [52].
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The notation adopted for labels follows a more general scheme:
if 9 is a vector that contains data from a graph and S is a subset of
the nodes (the edges), then y g denotes the vector obtained by se-
lecting from g the components related to the node (the edges) in
S. For example, l,,.[,) stands for the vector containing the labels
of all the neighbors of n. Labels usually include features of ob-
jects related to nodes and features of the relationships between
the objects. For example, in the case of an image as in Fig. 1(b),
node labels might represent properties of the regions (e.g., area,
perimeter, and average color intensity), while edge labels might
represent the relative position of the regions (e.g., the distance
between their barycenters and the angle between their principal
axes). No assumption is made on the arcs; directed and undi-
rected edges are both permitted. However, when different kinds
of edges coexist in the same data set, it is necessary to distin-
guish them. This can be easily achieved by attaching a proper
label to each edge. In this case, different kinds of arcs turn out
to be just arcs with different labels.

The considered graphs may be either positional or nonposi-
tional. Nonpositional graphs are those described so far; posi-
tional graphs differ since a unique integer identifier is assigned
to each neighbors of a node n to indicate its logical position.
Formally, for each node n in a positional graph, there exists an
injective function v,, : ne[n] — {1,...|N|}, which assigns to
each neighbor u of n a position v, (u). Note that the position
of the neighbor can be implicitly used for storing useful infor-
mation. For instance, let us consider the example of the region
adjacency graph [see Fig. 1(b)]: v,, can be used to represent the
relative spatial position of the regions, e.g., v,, might enumerate
the neighbors of a node n, which represents the adjacent regions,
following a clockwise ordering convention.

The domain considered in this paper is the set D of pairs of
a graph and a node, i.e., D = G x N where G is a set of the
graphs and V is a subset of their nodes. We assume a supervised
learning framework with the learning set

L= {(Givni7j7ti;j)|7Gi = (vaEl) € g;
nij € Nisty; € R™, 1 <i<p1<j<q}

where n; ; € N; denotes the jth node in the set N; € N and
t; ; is the desired target associated to n; ;. Finally, p < |G| and
¢; < |N;|. Interestingly, all the graphs of the learning set can be
combined into a unique disconnected graph, and, therefore, one
might think of the learning set as the pair £ = (G, 7) where
G = (N,E) is a graph and 7 a is set of pairs {(n;,t;)|n; €
N, t; € R™,1 <3 < q}. It is worth mentioning that this com-
pact definition is not only useful for its simplicity, but that it
also captures directly the very nature of some problems where
the domain consists of only one graph, for instance, a large por-
tion of the web [see Fig. 1(c)].

A. The Model

The intuitive idea underlining the proposed approach is that
nodes in a graph represent objects or concepts, and edges rep-
resent their relationships. Each concept is naturally defined by
its features and the related concepts. Thus, we can attach a state
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Fig. 2. Graph and the neighborhood of a node. The state #; of the node 1
depends on the information contained in its neighborhood.

x, € IR’ to each node n that is based on the information con-
tained in the neighborhood of n (see Fig. 2). The state x,, con-
tains a representation of the concept denoted by n and can be
used to produce an output o,,, i.e., a decision about the concept.

Let fy be a parametric function, called local transition func-
tion, that expresses the dependence of a node 7 on its neighbor-
hood and let gy, be the local output function that describes how
the output is produced. Then, z,, and o,, are defined as follows:

Ty = fw(ln7lco[n]>zne[n]7lne[n])
Op = gw(xnvln)

ey
where L., loon]> nefn]> and l,c[,) are the label of n, the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of 7, respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels [,.[,), since
they include information that is implicitly contained in [
Moreover, the neighborhood could contain nodes that are two
or more links away from n. In general, (1) could be simplified
in several different ways and several minimal models* exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood. |

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function f,, can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, f,, may take as input a variable d, for each arc £ € co[n]
such that d, = 1, if £ is directed towards n and d, = 0, if ¢
comes from n. In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.
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also for directed graphs and for graphs with mixed directed and
undirected links. |

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node n. In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes k,, has its own transition function f k| output function

gk, and a set of parameters wy,,. Thus, (1) becomes z,, =

(5w, (o Leofn]s Bnefn]s nefn]) @nd 0 = (9", (T, 1n).
However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation. |
Let 2, o, I, and Iy be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

z = Fy(2,l)
0= Gy(z,ly) 2
where F,, the global transition function and G, the global
output function are stacked versions of | N| instances of f,, and
Jw, respectively.

We are interested in the case when z, 0 are uniquely defined
and (2) defines a map ¢, : D — IR™, which takes a graph
as input and returns an output o,, for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that F,, is a contraction map with respect to the
state, i.e., there exists p, 0 < p < 1, such that ||Fy,(z,1l) —
Fu(y,1)|| < pllz — y|| holds for any z,y, where || - | denotes
a vectorial norm. Thus, for the moment, let us assume that F,,
is a contraction map. Later, we will show that, in GNNS, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, f,, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in
Znen]> beofn)» and Ly is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,
Teln] = [Y1:---»Ynr), where M = max, ,, vn(u) is the max-
imal number of neighbors of a node; y, = x,, holds, if u is the
ith neighbor of n (v,(u) = 7); and y; = =z, for some prede-
fined null state &y, if there is no sth neighbor.

However, for nonpositional graphs, it is useful to replace
function f, of (1) with

T, = Z hw(lnvl(n,u)vxuvlu)v

uene[n]

neN (3

where h,, is a parametric function. This transition function,

which has been successfully used in recursive neural networks

[54], is not affected by the positions and the number of the chil-

dren. In the following, (3) is referred to as the nonpositional

form, while (1) is called the positional form. In order to imple-

ment the GNN model, the following items must be provided:
1) a method to solve (1);
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to

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing f., and g,, (the squares). When f,, and ¢,, are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) alearning algorithm to adapt f,, and g,, using examples
from the training data set5;
3) an implementation of fy, and gy,.
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

z(t+ 1) = Fyu(z(t),1) 4)

5In other words, the parameters w are estimated using examples contained in
the training data set.

where z(t) denotes the tth iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value (0). We can, therefore, think of Z(¢) as the state that
is updated by the transition function F3,. In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

Ty (t + 1) = f‘w(ln7 lco[n] » Lne[n] (t)7 lno[n])
0n(t) = guw(®n(1),1,), n € N. (5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute f,, and gy,. Such a network will be called an encoding
network, following an analog terminology used for the recursive
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neural network model [17]. In order to build the encoding net-
work, each node of the graph is replaced by a unit computing the
function f,, (see Fig. 3). Each unit stores the current state &, ()
of node n, and, when activated, it calculates the state z,, (¢t + 1)
using the node label and the information stored in the neigh-
borhood. The simultaneous and repeated activation of the units
produce the behavior described in (5). The output of node n is
produced by another unit, which implements gy,.

When f,, and g,, are implemented by feedforward neural net-
works, the encoding network turns out to be a recurrent neural
network where the connections between the neurons can be di-
vided into internal and external connections. The internal con-
nectivity is determined by the neural network architecture used
to implement the unit. The external connectivity depends on the
edges of the processed graph.

C. The Learning Algorithm

Learning in GNNs consists of estimating the parameter w
such that ¢,, approximates the data in the learning data set

L ={(Gi,ni;ti;),Gi = (N, E;) € G;
nij € Nistij € R™, 1 <i<p,1<j<g}

where ¢; is the number of supervised nodes in G;. For graph-fo-
cused tasks, one special node is used for the target (¢; = 1
holds), whereas for node-focused tasks, in principle, the super-
vision can be performed on every node. The learning task can
be posed as the minimization of a quadratic cost function

p qi
cw=y_ Y (tij— pw(Girni;))’. (©)

i=1 j=1

Remark 4: As common in neural network applications, the
cost function may include a penalty term to control other prop-
erties of the model. For example, the cost function may contain
a smoothing factor to penalize any abrupt changes of the outputs
and to improve the generalization performance. |

The learning algorithm is based on a gradient-descent
strategy and is composed of the following steps.

a) The states &, () are iteratively updated by (5) until at time

T they approach the fixed point solution of (2): 2(T') = 2.

b) The gradient de,,(T")/Ow is computed.

¢) The weights w are updated according to the gradient com-

puted in step b).

Concerning step a), note that the hypothesis that F, is a
contraction map ensures the convergence to the fixed point.
Step c) is carried out within the traditional framework of gra-
dient descent. As shown in the following, step b) can be carried
out in a very efficient way by exploiting the diffusion process
that takes place in GNNSs. Interestingly, this diffusion process
is very much related to the one which takes place in recurrent
neural networks, for which the gradient computation is based
on backpropagation-through-time algorithm [17], [56], [57]. In
this case, the encoding network is unfolded from time 1" back to
an initial time ¢o. The unfolding produces the layered network
shown in Fig. 3. Each layer corresponds to a time instant and
contains a copy of all the units f,, of the encoding network. The
units of two consecutive layers are connected following graph
connectivity. The last layer corresponding to time 7" includes

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

also the units g,, and computes the output of the network.
Backpropagation through time consists of carrying out the
traditional backpropagation step on the unfolded network to
compute the gradient of the cost function at time 7" with respect
to (w.r.t.) all the instances of f,, and gy. Then, Jey, (T) /0w is
obtained by summing the gradients of all instances. However,
backpropagation through time requires to store the states of
every instance of the units. When the graphs and 7' — ¢, are
large, the memory required may be considerable.® On the
other hand, in our case, a more efficient approach is possible,
based on the Almeida—Pineda algorithm [58], [59]. Since (5)
has reached a stable point 2 before the gradient computation,
we can assume that 2(¢) = z holds for any ¢ > t. Thus,
backpropagation through time can be carried out by storing
only . The following two theorems show that such an intuitive
approach has a formal justification. The former theorem proves
that function ¢, is differentiable.

Theorem 1 (Differentiability): Let F,, and G, be the
global transition and the global output functions of a GNN,
respectively. If Fy,(2,1) and Gy (2, Iy) are continuously differ-
entiable w.r.t. £ and w, then ¢,, is continuously differentiable
w.r.t. w.

Proof: Let a function © be defined as O(z,w) =
x — Fy(z,l). Such a function is continuously differ-
entiable w.rt. £ and w, since it is the difference of
two continuously differentiable functions. Note that the
Jacobian matrix (00/0z)(z,w) of © wurt =z fulfills
(00/0z)(z,w) = I, — (0Fy/0z)(z,l), where I, de-
notes the a-dimensional identity matrix and a = s|N|, s is
the dimension of the state. Since F,, is a contraction map,
there exists 1,0 < pu < 1 such that ||(0F,/0z)(z,l)|| < p,
which implies ||(00/0z)(z,w)|| > (1 — p). Thus, the de-
terminant of (0©/0xz)(z,w) is not null and we can apply the
implicit function theorem (see [60]) to © and point w. As
a consequence, there exists a function ¥, which is defined
and continuously differentiable in a neighborhood of w, such
that O(¥(w),w) = 0 and V(w) = Fu,(¥(w),1). Since this
result holds for any w, it is demonstrated that ¥ is continu-
ously differentiable on the whole domain. Finally, note that
ow(G,n) =[Gy (¥ (w),IN)]n, where [-],, denotes the operator
that returns the components corresponding to node n. Thus,
oy 1s the composition of differentiable functions and hence is
itself differentiable. u

It is worth mentioning that this property does not hold for
general dynamical systems for which a slight change in the pa-
rameters can force the transition from one fixed point to another.
The fact that ¢, is differentiable in GNNs is due to the assump-
tion that Fy, is a contraction map. The next theorem provides a
method for an efficient computation of the gradient.

Theorem 2 (Backpropagation): Let F,, and G,, be the tran-
sition and the output functions of a GNN, respectively, and as-
sume that Fy,(2,1) and Gy (z,ln) are continuously differen-
tiable w.r.t.  and w. Let 2(¢) be defined by

OFy, Oty 0G4y

z2(t)=2z(t+1)- W(z./ )+ 50 W(-’BJN) )

6For internet applications, the graph may represent a significant portion of
the web. This is an example of cases when the amount of the required memory
storage may play a very important role.
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Then, the sequence z(T'),z(T — 1),... converges to a vector
z = lim;_, _ ., z(t) and the convergence is exponential and in-
dependent of the initial state 2(7"). Moreover

Oew Oty 0G4y 0Fy
w = g0 ow BWITE G0 ®

holds, where z is the stable state of the GNN.

Proof: Since F,, is a contraction map, there exists
1,0 < p < 1 such that ||(0Fy/0z)(z,w)|| < p holds. Thus,
(7) converges to a stable fixed point for each initial state. The
stable fixed point z is the solution of (7) and satisfies

Dew Gy OF, -
=G ety (L-22wn) O
where @ = s|N| holds. Moreover, let us consider again the

function ¥ defined in the proof of Theorem 1. By the implicit
function theorem

OFy L OF,
— (1.~ G2@n) Sred

holds. On the other hand, since the error e, depends on
the output of the network 0 = Gy (V(w),ln)), the gra-
dient Oe,, /0w can be computed using the chain rule for
differentiation

9ew _ 9w OGw
ow  Jdo Ow

ov

7w (10)

Oew 0G ov

;lN)+%'W($JN)'%(W)- (1D

The theorem follows by putting together (9)—(11)

Oty Oty 0G4y Oeyw OG
(z,In)+ —

Jow _ Vlw Obw ST 1)
ow  do Ow do ox N

9F, IR,

: <I,,, o (a:,l)) w —2(z,1)

Oty 0G4y, OFy

The relationship between the gradient defined by (8) and the

gradient computed by the Almeida—Pineda algorithm can be

easily recognized. The first term on the right-hand side of (8)

represents the contribution to the gradient due to the output func-

tion G,,. Backpropagation calculates the first term while it is

propagating the derivatives through the layer of the functions g,,

(see Fig. 3). The second term represents the contribution due to
the transition function F,. In fact, from (7)

OF, 0w 3Gw
OF, T—t
—=(1)- (G @)
T—t—1 1
Oty O0Gy 0Fw
+ Y Do W(-’”;’N) <8 (J))

If we assume 2(7T') = 0eyw (1) /00(T)(0Gw /0%(T))(2(T), IN)
and z(t) = =z, for tg < ¢t < T, it follows:
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TABLE I
LEARNING ALGORITHM. THE FUNCTION FORWARD COMPUTES THE STATES,
‘WHILE BACKWARD CALCULATES THE GRADIENT. THE PROCEDURE
MAIN MINIMIZES THE ERROR BY CALLING ITERATIVELY
FORWARD AND BACKWARD

MAIN
initialize w;
x=Forward(w);
repeat
Jew =BACKWARD(Z, w);
w w — )\ - L.
xr= FORWARD(w)
until (a stopping criterion);
return w;
end

FORWARD(w)
initialize x(0), t = 0;
repeat
2(t 4+ 1) = Fu(@(t).D);
t=t+1;
until [|z(t) —x(t—1)|| < ey
return x(t);
end

BACKWARD(z,w)

0= Gyl(z,ln);
A= ";;w (z,1):
— Gew . Z)Gw (mlN)
initialize z(O) t=0;
repeat
z(t)=z(t+1)-A+b;
t=t—1;
until Hz(t — 1) —z(t)| < e
c= W z,lN);
d—2(1)- B
Dw =c+ d
de
return 5
end
1 (ke —.0)
7j=1
Tzf Oew (T ' Bew(T)
L 0x(T —i) £ Ox(i)

Thus, (7) accumulates the de,,(T)/0z(i) into the variable
2. This mechanism corresponds to backpropagate the gradients
through the layers containing the f,, units.

The learning algorithm is detailed in Table I. It consists of a
main procedure and of two functions FORWARD and BACKWARD.
Function FORWARD takes as input the current set of parameters
w and iterates to find the convergent point, i.e., the fixed point.
The iteration is stopped when ||2(¢) — (¢ — 1)|| is less than
a given threshold e ¢ according to a given norm || - ||. Function
BACKWARD computes the gradient: system (7) is iterated until
||2(t—1)—2(t)|| is smaller than a threshold &, ; then, the gradient
is calculated by (8).

The main procedure updates the weights until the output
reaches a desired accuracy or some other stopping criterion is
achieved. In Table I, a predefined learning rate A is adopted,
but most of the common strategies based on the gradient-de-
scent strategy can be used as well, for example, we can use a
momentum term and an adaptive learning rate scheme. In our
GNN simulator, the weights are updated by the resilient back-
propagation [61] strategy, which, according to the literature
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on feedforward neural networks, is one of the most efficient
strategies for this purpose. On the other hand, the design of
learning algorithms for GNNs that are not explicitly based on
gradient is not obvious and it is a matter of future research.
In fact, the encoding network is only apparently similar to a
static feedforward network, because the number of the layers
is dynamically determined and the weights are partially shared
according to input graph topology. Thus, second-order learning
algorithms [62], pruning [63], and growing learning algorithms
[64]-[66] designed for static networks cannot be directly
applied to GNNs. Other implementation details along with
a computational cost analysis of the proposed algorithm are
included in Section III.

D. Transition and Output Function Implementations

The implementation of the local output function g,, does not
need to fulfill any particular constraint. In GNNSs, g,, is a mul-
tilayered feedforward neural network. On the other hand, the
local transition function f,, plays a crucial role in the proposed
model, since its implementation determines the number and the
existence of the solutions of (1). The assumption behind GNN
is that the design of f,, is such that the global transition func-
tion F}, is a contraction map w.r.t. the state . In the following,
we describe two neural network models that fulfill this purpose
using different strategies. These models are based on the non-
positional form described by (3). It can be easily observed that
there exist two corresponding models based on the positional
form as well.

1) Linear (nonpositional) GNN. Equation (3) can naturally be

implemented by

hw(lrn l(n,u)va7 lu) = An,uxu + bn (12)

where the vector b, € IR® and the matrix A,, , € R***
are defined by the output of two feedforward neural net-
works (FNNs), whose parameters correspond to the param-
eters of the GNN. More precisely, let us call transition net-
work an FNN that has to generate A,, ,, and forcing net-
work another FNN that has to generate b,,. Moreover, let
bw : R2N+lE — RS and py, : IR'Y — IR® be the func-
tions implemented by the transition and the forcing net-
work, respectively. Then, we define

An u = L -2 (13)
" s|nefu]|

where 1 € (0,1) and E = resize(¢pw(ln, l(5,u), lu)) hold,
and resize(-) denotes the operator that allocates the ele-
ments of a s2-dimensional vector into as s x s matrix. Thus,
A, ., is obtained by arranging the outputs of the transition
network into the square matrix Z and by multiplication
with the factor p/s|ne[u]|. On the other hand, b,, is just
a vector that contains the outputs of the forcing network.
Here, it is further assumed that ||¢w(ln, ln,u), bu)|l1 < 5
holds7; this can be straightforwardly verified if the output
neurons of the transition network use an appropriately

"The 1-norm of a matrix M =
max; y_, |[mi .

{m;, ;} is defined as ||M]|. =

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

bounded activation function, e.g., a hyperbolic tangent.
Note that in this case Fy,(2,1) = Az + b, where b is the
vector constructed by stacking all the b, and A is a block
matrix {An w}s With A, u = Ap, if u is a neighbor of
n and A,, = O otherwise. Moreover, vectors b,, and
matrices A,, ,, do not depend on the state z, but only on
node and edge labels. Thus, dF,,/0z = A, and, by simple
algebra

OFy
— | =41 < A
1% | =t < m [ X sl
nene[u]
< max | ——— - 1€l | <n
3 \ el 2,
which implies that F,, is a contraction map (w.r.t. || - ||1)

for any set of parameters w.

2) Nonlinear (nonpositional) GNN. In this case, hy, is real-
ized by a multilayered FNN. Since three-layered neural
networks are universal approximators [67], h,, can approx-
imate any desired function. However, not all the parameters
w can be used, because it must be ensured that the corre-
sponding transition function F,, is a contraction map. This
can be achieved by adding a penalty term to (6), i.e.,

=33 )

=1 j=1

where the penalty term L(y) is (y — p)? if y > p and 0
otherwise, and the parameter 1 € (0, 1) defines the desired
contraction constant of F,. More generally, the penalty
term can be any expression, differentiable w.r.t. w, that
is monotone increasing w.r.t. the norm of the Jacobian.
For example, in our experiments, we use the penalty term
Pw = iy L(||A"||1), where A" is the ith column of
0F,, /0. In fact, such an expression is an approximation
of L(||0Fy/02ll,) = L(max; |A']).

— ol Girni))? +/3L<H

E. A Comparison With Random Walks and
Recursive Neural Networks

GNN:ss turn out to be an extension of other models already pro-
posed in the literature. In particular, recursive neural networks
[17] are a special case of GNNs, where:

1) the input graph is a directed acyclic graph;

2) the inputs of fy, are limited to I, and Zy[,), where ch[n]
is the set of children of n8;
3) there is a supersource node sn from which all the other
nodes can be reached. This node is typically used for output
05, (graph-focused tasks).
The neural architectures, which have been suggested for real-
izing f,, and g, include multilayered FNNs [17], [19], cascade
correlation [68], and self-organizing maps [20], [69]. Note that
the above constraints on the processed graphs and on the inputs
of fu exclude any sort of cyclic dependence of a state on itself.
Thus, in the recursive neural network model, the encoding net-
works are FNNs. This assumption simplifies the computation of

8A node w is child of n if there exists an arc from n to «. Obviously, ch[n] C
ne[n] holds.
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TABLE 11
TIME COMPLEXITY OF THE MOST EXPENSIVE INSTRUCTIONS OF THE LEARNING ALGORITHM. FOR EACH INSTRUCTION AND EACH GNN MODEL,
A BOUND ON THE ORDER OF FLOATING POINT OPERATIONS IS GIVEN. THE TABLE ALSO DISPLAYS
THE NUMBER OF TIMES PER EPOCH THAT EACH INSTRUCTION IS EXECUTED

instruction positional non—linear linear execs.
zt+1)==2(t)-A+b s2|E| s2|E| s2|E| ity,
0= Gu(@(t), lw) INIT, INIC, INIT, 1
z(t + 1) = Fu(2(t),1) IN|Cy |E|C, s2|E| itg
IN|C, + |E|Cy 1
A= 2Lw (g ) s|N|T s|E| T, - 1
e IN| IN| IN| 1
%‘%‘L tR~max(32~hif,ﬁf) tg - max(s2 - hip, Cp) - 1
b= 9ew 0Cu (5 1) IN|T, IN|T, IN|T, 1
c = Sew 00w (g 1) IN|T, IN|T, IN|T, 1
d=z(t) 2w (x,1) |N|T |E| T}, IN|T, +|E|Cy 1

the states. In fact, the states can be computed following a prede-
fined ordering that is induced by the partial ordering of the input
graph.

Interestingly, the GNN model captures also the random walks
on graphs when choosing f,, as a linear function. Random walks
and, more generally, Markov chain models are useful in several
application areas and have been recently used to develop ranking
algorithms for internet search engines [18], [21]. In random
walks on graphs, the state x,, associated with a node is a real
value and is described by

To= ) Gni®i (15)
i€pa[n]
where paln| is the set of parents of n, and a,; € IR,

an; > 0 holds for each n,i. The a, ; are normalized so that
> iepa[n) @i,n = 1. In fact, (15) can represent a random walker
who is traveling on the graph. The value a, ; represents the
probability that the walker, when visiting node n, decides to go
to node 7. The state ,, stands for the probability that the walker
is on node n in the steady state. When all z,, are stacked into
a vector z, (15) becomes & = Az where A = {a,;} and a, ;
is defined as in (15) if ¢ € pa[n] and a,,; = O otherwise. It is
easily verified that ||A||; = 1. Markov chain theory suggests
that if there exists ¢ such that all the elements of the matrix A’
are nonnull, then (15) is a contraction map [70]. Thus, provided
that the above condition on A holds, random walks on graphs
are an instance of GNNs, where A is a constant stochastic
matrix instead of being generated by neural networks.

III. COMPUTATIONAL COMPLEXITY ISSUES

In this section, an accurate analysis of the computational cost
will be derived. The analysis will focus on three different GNN
models: positional GNNs, where the functions f,, and g, of (1)
are implemented by FNNs; linear (nonpositional) GNNs; and
nonlinear (nonpositional) GNNs.

First, we will describe with more details the most complex
instructions involved in the learning procedure (see Table II).
Then, the complexity of the learning algorithm will be defined.
For the sake of simplicity, the cost is derived assuming that the
training set contains just one graph G. Such an assumption does
not cause any loss of generality, since the graphs of the training
set can always be merged into a single graph. The complexity is
measured by the order of floating point operations.®

In Table II, the notation hi is used to denote the number of
hidden-layer neurons. For example, hiy indicates the number of
hidden-layer neurons in the implementation of function f.

In the following, it;, it¢, and it}, denote the number of epochs,
the mean number of forward iterations (of the repeat cycle in
function FORWARD), and the mean number of backward itera-
tions (of the repeat cycle in function BACKWARD), respectively.
Moreover, we will assume that there exist two procedures FP
and BP, which implement the forward phase and the backward
phase of the backpropagation procedure [71], respectively. For-
mally, given a function /,, : JR® — IR" implemented by an
FNN, we have

lw(y) = FP(lw,y)

Ol
()| = BP(lw,y,90).

Ol
) -
Jy

Here, y € IR® is the input vector and the row vector § € IR’ is a
signal that suggests how the network output must be adjusted to
improve the cost function. In most applications, the cost func-
tion is ey (y) = (t — y)? and § = (Deyw/00)(y) = 2(t — o),
where 0 = l,,(y) and ¢ is the vector of the desired output cor-
responding to input y. On the other hand, 6(9ly,/Jy)(y) is the
gradient of e,, w.r.t. the network input and is easily computed

9According to the common definition of time complexity, an algorithm re-
quires O((a)) operations, if there exist & > 0,a@ > 0, such thatc(a) < al(a)
holds for each a > a, where ¢(a) is the maximal number of operations executed
by the algorithm when the length of input is a.
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as a side product of backpropagation.!0 Finally, Z')l and (61 de-
note the computational complexity required by the application
of FP and BP on [, respectively. For example, if [,, is imple-
mented by a multilayered FNN with « inputs, b hidden neurons,

— —
and ¢ outputs, then C; = C'; = O(ab + ac) holds.

A. Complexity of Instructions

1) Instructions z(t + 1) = 2(t) - A+ b, 0 = Gy(z,lN), and
z(t + 1) = Fy(z(t),l): Since A is a matrix having at most
52| E| nonnull elements, the multiplication of z(t) by A, and as
a consequence, the instruction z(¢t + 1) = 2(t) - A + b, costs
O(s?|E|) floating points operations. Moreover, the state ( +
1) and the output vector o are calculated by applying the local
transition function and the local output function to each node
n. Thus, in positional GNNs and in nonlinear GNNs, where f,,,
hay, and gy, are directly implemented by FNNs, (¢ + 1) and o
are computed by running the forward phase of backpropagation
once for each node or edge (see Table II).

On the other hand, in linear GNNs, z,,(t) is calculated in
two steps: the matrices A,, of (13) and the vectors b,,(14) are
evaluated; then, 2,,(¢) is computed. The former phase, the cost

of which is O(|E|6)¢ + |N|5>p), is executed once for each
epoch, whereas the latter phase, the cost of which is O(s?|E|),
is executed at every step of the cycle in the function FORWARD.

2) Instruction A = (0F,,/0z)(z,l): This instruction re-
quires the computation of the Jacobian of F,,. Note that A =
{A,, ,} is a block matrix where the block 4, , measures the
effect of node u on node n, if there is an arc (n,u) from u to
n, and is null otherwise. In the linear model, the matrices An,u
correspond to those displayed in (13) and used to calculate 2(t)
in the forward phase. Thus, such an instruction has no cost in
the backward phase in linear GNNs.

In nonlinear GNNs, A, = (Ohw/0%y,)(Ln, lin u), Tus L),
is computed by appropriately exploiting the backpropagation
procedure. More precisely, let ¢; € IR® be a vector where all
the components are zero except for the ith one, which equals
one, i.e.,, ¢; = [1,0,...,0], g, = [0,1,0,...,0], and so on.
Note that BP, when it is applied to [, with 6 = b;, returns
A; w = 4;(0ly,/0y)(y), i.e., the ith column of the Jacobian
(81,‘, / 8y) (y). Thus, A,, ,, can be computed by applying BP on
all the gq;, i.e.,

u = [Arlz,u7 e 7Afz,u] A:z,u = BP?(hw7y7 Qz) (16)
where BP5 indicates that we are considering only the first com-
ponent of the output of BP. A similar reasoning can also be used
with positional GNNs. The complexity of these procedures is
easily derived and is displayed in the fourth row of Table II.

3) Computation of Oey, /00 and Ipy, /Ow: In linear GNNS,
the cost function is ey, = Y1, (8 — ow(G, ni))?, and, as a con-
sequence, Jey, /0 = 2(t; — 0y, ), if nk is a node belonging
to the training set, and O otherwise. Thus, Je,, /0o is easily cal-
culated by O(|N|) operations.

10Backpropagation computes for each neuron v the delta value
(Oew/0a,)(y) = 6(lw/Da,)(y), where e, is the cost function and a., the
activation level of neuron v. Thus, 6(9l., /0y)(y) is just a vector stacking all
the delta values of the input neurons.
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In positional and nonlinear GNNSs, a penalty term p,, is added
to the cost function to force the transition function to be a con-
traction map. In this case, it is necessary to compute Opy, /0w,
because such a vector must be added to the gradient. Let A7,
denote the element in position ¢, j of the block A,, ,,. Accordiﬁg
to the definition of p,,, we have

=TT T Suii-a) -

ueN j=1 n,u)eE 1=1

> Z .

ueN j=1

where aw,j = 30, er 2iz1 |A;’,| — p, if the sum is larger

than 0, and it is O otherwise. It follows:

ap—w—ZZZauj Z ngnAf;Ju-

ueN j=1 (n,u)€E i=1

OA;,
ow
AZ J

uEN (nu)€E j=1i=1

where sgn is the sign function. Moreover, let Rn .« be a matrix
whose element in position 7, j is ay, -sgn(A%7 ) and let vec be
the operator that takes a matrix and produce a column vector by
stacking all its columns one on top of the other. Then

ap—w =2 Z Z vec (R, ) )’ . —avef?(;l"?")

u€EN (n,u)eE

7)

holds. The vector 0 vec(A,, ,,)/Ow depends on selected imple-
mentation of h,, or fy,. For sake of simplicity, let us restrict our
attention to nonlinear GNNs and assume that the transition net-
work is a three-layered FNN. 0}, @;, V';, and t; are the activa-
tion function!!, the vector of the activation levels, the matrix of
the weights, and the thresholds of the jth layer, respectively. The
following reasoning can also be extended to positional GNNs
and networks with a different number of layers. The function
hy is formally defined in terms of 0, a;, V ;, and ;

a; = [l Ty, 0y, L]

a;=Via +1

a3 =Vjyo05(as)+ts
oo (b L) T L) = 03(as).

By the chain differentiation rule, it follows:

vec(A, ) = vec (%(lnal(n,u)azualu)>
= vec (diag(ag(ag,)) -V, - diag(ch(a)) -171)

where a;- is the derivative of o, diag is an operator that
transforms a vector into a diagonal matrix having such a vector
as diagonal, and V| is the submatrix of V'; that contains only
the weights that connect the inputs corresponding to x, to

the hidden layer. The parameters w affect four components of

g, is a vectorial function that takes as input the vector of the activation
levels of neurons in a layer and returns the vector of the outputs of the neurons
of the same layer.
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vec(As, ), 1.e., a3, Vo, as, and V1. By properties of derivatives
for matrix products and the chain rule

(vec(Ry.)) - W —
= (vec (Ruw)) - agf;(‘z:)“) . 8025:,13)
+ (vec (Ru,))'- 3@Vj;§$;> veclVs)
+ (vee (Ru)) 822(63:;3“) drb(as
o el 2

holds.

Thus, (vec (R, ,))" -0 vec(A,, ,.)/Ow is the sum of four con-
tributions. In order to derive a method to compute those terms,
let I, denote the a X a identity matrix. Let ® be the Kro-
necker product and suppose that P, is a a®> x a matrix such
that vec(diag(v)) = P, for any vector v € IR”. By the Kro-
necker product properties, vec(AB) = (B'®1,)-vec(A) holds
for matrices A, B, and I, having compatible dimensions [72].
Thus, we have

vec(An) = (Vs - diag(ch(a2)) - V1) @ 1) - Py - oy (as)

which implies
ovec(A, )

e = ((v- diag(ch(a2)) - V1) @ 1,) - P,

Similarly, using the properties vec(ABC) = (C' ® A) - vec(B)
and vec(AB) = (I, ® A) - vec(B), it follows:

% = (diag(dh(a2)) - V1) ® diag(c}(as))
% = (vec (R, )" (Vi®(diag(ch(as))-Vs)) Py,
ovec(Anu) — Vo dine(o!
vecyy = e @ (ing(3(az)) - V- ding(03(02))))

where d}, is the number of hidden neurons. Then, we have
, Ovec(A, ) 0oj(asz)

(vec(Ry v)) - 9o (as) ow
— (vec (Ru’v Vll -diag(oh(aq)) - V’2>)I - Py - %
(19)
, Ovec(Any) Ovec(A,.u)
(vee(Ru))"- dvec(Vy) ow
= (vec (diag(aé(ag)) Ry, Vll -diag(a'z(ag))))
dvec(A, y)
N T (20)
, Ovec(Anu) doh(as)
(vec(Ry v)) - ol (as) ow
= (vec (V- diag(o3(a3)) - Ruv 'Vll))l P, - %
(21)
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dvec(A,.) dvec(Vy)

(vec(Ru0))'- dvec(Vy) ow
= (vec (diag(o}(az)) - V', - diag(0}(as)) - Ru))
) 8vec(V1) (22)
ow

where the mentioned Kronecker product properties have been
used.

It follows that (vec (Ry,)) - 9 vec(Ay .,)/Ow can be written
as the sum of the four contributions represented by (19)—(22).
The second and the fourth term [(20) and (22)] can be computed
directly using the corresponding formulas. The first one can be
calculated by observing that o (a3) looks like the function com-
puted by a three-layered FNN that is the same as h,, except for
the activation function of the last layer. In fact, if we denote by
hw such a network, then

, Ovec(Ay ) dos(as) .
(vec (Ry0)) - 9oL (as) o = BP(hw,a1,6) (23)

holds, where 6 = (vec(R,,,)) - 0 vec(An)/00%(as). A sim-
ilar reasoning can be applied also to the third contribution.

The above described method includes two tasks: the matrix
multiplications of (19)—(22) and the backpropagation as defined
by (23). The former task consists of several matrix multiplica-
tions. By inspection of (19)—(22), the number of floating point
operations is approximately estimated as 2s? + 12s - hi, +
1052 - hiy,,!2 where hi;, denotes the number of hidden-layer neu-
rons implementing the function h. The second task has approx-
imately the same cost as a backpropagation phase through the
original function A,.

Thus, the complexity of computing Op.,, /0w is O(|E]

max(s2-hip, el n)). Note, however, that even if the sum in (17)
ranges over all the arcs of the graph, only those arcs (n, w) such
that R, , # 0 have to be considered. In practice, R, ,, # 0
is a rare event, since it happens only when the columns of the
Jacobian are larger than p and a penalty function was used
to limit the occurrence of these cases. As a consequence, a
better estimate of the complexity of computing Op,, /0w is

O(tg - max(s? - hip, (5;7,)), where tg is the average number of
nodes v such that R,, ,, # 0 holds for some 7.

4) Instructions b = (0eq,/00)(0Gy /0%)(z,lN) and ¢ =
(€4 /00)(0Gy /Ow)(z,lN): The terms b and ¢ can be
calculated by the backpropagation of Oe,, /0o through the
network that implements g,,. Since such an operation must
be repeated for each node, the time complexity of instruc-
tions b = (0ey/00)(0Gyw/0%)(z,lN) and ¢ = (Oey/00)

(0Gw/0w)(z,1x) is O(|N| C ) for all the GNN models.

12Such a value is obtained by considering the following observations: for an
a x b matrix C and b X ¢ matrix D, the multiplication C'D requires approxi-
mately 2abc operations; more precisely, abe multiplications and ac(b—1) sums.
If D is a diagonal b X b matrix, then C'D requires 2ab operations. Moreover, if
Cisana X b matrix, D is a b X a matrix, and P, is the a® X a matrix defined
above and used in (19)—(22), then computing vec(CD)P.. costs only 2ad op-
erations provided that a sparse representation is used for P, . Finally, a1, a2, as
are already available, since they are computed during the forward phase of the
learning algorithm.
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5) Instruction d = z(t)(0Fy/0w)(z,1):
Fy, fw, and BP, we have

By definition of

OFy Ofw
2(t) - W(“’J) = Z zn(t) - S —— (U, leon], Tu, bneln))
neN
= > BP1(fu ¥, 2a(t)) 24)
neN
where y = [l,,, %l ), l.] and BP; indicates that we are

considering only the first part of the output of BP. Similarly

z(t) =Y >zl

n€EN uenen]

— Z Z BPl hw;yvzn(t))

n€N u€neln]

(ln y l(n u)s Ty, lu)

(25)

where y = [L,,,%u,l(; 4, lu]. Thus, (24) and (25) provide a
direct method to compute d in positional and nonlinear GNNs,
respectively.

For linear GNNs, let hi’u denote the ith output of h,, and note
that

h‘iu (ln/ l(n,u) y Lo lu)

=bL+ZA;Ju z,
DR

holds. Here, A”1 and (,bi‘ ' are the element in position 7, 7 of ma-
trix A,, , and the corresponding output of the transition network
[see (13)], respectively, while bz is the 7th element of vector bu,
pl, is the corresponding output of the forcing network [see (14)],

= p,(1n) s|ne i1, Ay lu)

and z! _is the ith element of x,,. Then
0Fw
t) —(x,1
2(t) - S 2 (a,0)
Z Z (l l(nu)7xu7l )
n€N u€neln]

DI L

n€N u€ne[n] i=1

=Y BPi(pw.y.0)

neN

ln7 l(n u)zzuzlu)

Z > BPi(¢w.9.0)

n€N uenen]

where y = U, § = [ln,ln,u), L], & = |ne[n]| - 2'(t), and & is
a vector that stores 2%, (t) - 11/ s|nefu]| - 27, in the position corre-
sponding to i, j, thatis, & = (u/s|ne[u]|)vec(z,(t) - 2/,). Thus,
in linear GNNss, d is computed by calling the backpropagation
procedure on each arc and node.

B. Time Complexity of the GNN Model

According to our experiments, the application of a trained
GNN on a graph (test phase) is relatively fast even for large
graphs. Formally, the complexity is easily derived from

Table II and it is O(|N|5>g + it - |N|5>f) for positional
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GNN, O(|N|6g + itg - |E|8;L) for nonlinear GNNs, and
O(IN|C , +its - |[E|s* + |[N|C , + |E| C ) for linear GNN.
In practice, the cost of the test phase is mainly due to the
repeated computation of the state z(¢). The cost of each it-
eration is linear both w.r.t. the dimension of the input graph
(the number of edges), the dimension of the employed FNNs
and the state, with the only exception of linear GNNs, whose
single iteration cost is quadratic w.r.t. to the state. The number
of iterations required for the convergence of the state depends
on the problem at hand, but Banach’s theorem ensures that the
convergence is exponentially fast and experiments have shown
that 5—15 iterations are generally sufficient to approximate the
fixed point.

In positional and nonlinear GNNs, the transition function
must be activated its - |N| and it¢ - | E| times, respectively. Even
if such a difference may appear significant, in practice, the
complexity of the two models is similar, because the network
that implements the f,, is larger than the one that implements
hw. In fact, f,, has M(s + lg) input neurons, where M is
the maximum number of neighbors for a node, whereas hy,
has only s + [ input neurons. An appreciable difference can
be noticed only for graphs where the number of neighbors
of nodes is highly variable, since the inputs of f,, must be
sufficient to accommodate the maximal number of neighbors
and many inputs may remain unused when f,, is applied. On
the other hand, it is observed that in the linear model the FNNs
are used only once for each iteration, so that the complexity

of each iteration is O(s%|E|) instead of O(|E|6;L). Note that

Ch = O((s+1p+2ly)-hi,) = O(s - hi, ) holds, when hy, is
implemented by a three-layered FNN with hi; hidden neurons.
In practical cases, where hij, is often larger than s, the linear
model is faster than the nonlinear model. As confirmed by the
experiments, such an advantage is mitigated by the smaller
accuracy that the model usually achieves.

In GNNG, the learning phase requires much more time than
the test phase, mainly due to the repetition of the forward and
backward phases for several epochs. The experiments have
shown that the time spent in the forward and backward phases
is not very different. Similarly to the forward phase, the cost
of function BACKWARD is mainly due to the repetition of the
instruction that computes 2z(¢). Theorem 2 ensures that 2(t)
converges exponentially fast and the experiments confirmed
that ity, is usually a small number.

Formally, the cost of each learning epoch is given by the sum
of all the instructions times the iterations in Table II. An inspec-
tion of Table II shows that the cost of all instructions involved in
the learning phase are linear both with respect to the dimension
of the input graph and of the FNNs. The only exceptions are due
to the computation of 2(t + 1) = 2(¢) - A + b, (0F,,/0z)(2,1)
and Op,, /w, which depend quadratically on s.

The most expensive instruction is apparently the computa-
tion of Opy /w in nonlinear GNNs, which costs O(tg - max(s? -

hip, C 1))- On the other hand, the experiments have shown that
usually tg is a small number. In most epochs, tg is O, since
the Jacobian does not violate the imposed constraint, and in
the other cases, tg is usually in the range 1-5. Thus, for a
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small state dimension s, the computation of 9p,,/w requires
few applications of backpropagation on h and has a small im-
pact on the global complexity of the learning process. On the
other hand, in theory, if s is very large, it might happen that

s2 - hip > 6;1 ~ (s + lg + 2ly) - hi; and at the same time
tr > 0, causing the computation of the gradient to be very
slow. However, it is worth mentioning that this case was never
observed in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results, obtained
on a set of simple problems carried out to study the properties
of the GNN model and to prove that the method can be ap-
plied to relevant applications in relational domains. The prob-
lems that we consider, viz., the subgraph matching, the mutage-
nesis, and the web page ranking, have been selected since they
are particularly suited to discover the properties of the model
and are correlated to important real-world applications. From
a practical point of view, we will see that the results obtained
on some parts of mutagenesis data sets are among the best that
are currently reported in the open literature (please see detailed
comparison in Section IV-B). Moreover, the subgraph matching
problem is relevant to several application domains. Even if the
performance of our method is not comparable in terms of best
accuracy on the same problem with the most efficient algorithms
in the literature, the proposed approach is a very general tech-
nique that can be applied on extension of the subgraph matching
problems [73]-[75]. Finally, the web page ranking is an inter-
esting problem, since it is important in information retrieval and
very few techniques have been proposed for its solution [76]. It
is worth mentioning that the GNN model has been already suc-
cessfully applied on larger applications, which include image
classification and object localization in images [77], [78], web
page ranking [79], relational learning [80], and XML classifica-
tion [81].

The following facts hold for each experiment, unless other-
wise specified. The experiments have been carried out with both
linear and nonlinear GNNs. According to existing results on re-
cursive neural networks, the nonpositional transition function
slightly outperforms the positional ones, hence, currently only
nonpositional GNNs have been implemented and tested. Both
the (nonpositional) linear and the nonlinear model were tested.
All the functions involved in the two models, i.e., gu, Pw, and
pw for linear GNNs, and g¢,, and h,, for nonlinear GNNs were
implemented by three-layered FNNs with sigmoidal activation
functions. The presented results were averaged over five dif-
ferent runs. In each run, the data set was a collection of random
graphs constructed by the following procedure: each pair of
nodes was connected with a certain probability §; the resulting
graph was checked to verify whether it was connected and if
it was not, random edges were inserted until the condition was
satisfied.

The data set was split into a training set, a validation set, and
a test set and the validation set was used to avoid possible issues
with overfitting. For the problems where the original data is only
one single big graph G, a training set, a validation set, and a test

73

Fig. 4. Two graphs G and G that contain a subgraph 5. The numbers inside
the nodes represent the labels. The function 7 to be learned is T(G i T j) =1,
if n; ; is a black node, and 7(G;, n; ;) = —1,if n; ; is a white node.

set include different supervised nodes of G. Otherwise, when
several graphs were available, all the patterns of a graph G; were
assigned to only one set. In every trial, the training procedure
performed at most 5000 epochs and every 20 epochs the GNN
was evaluated on the validation set. The GNN that achieved the
lowest cost on the validation set was considered the best model
and was applied to the test set.

The performance of the model is measured by the accuracy
in classification problems (when #; ; can take only the values
—1 or 1) and by the relative error in regression problems (when
t; ; may be any real number). More precisely, in a classifi-
cation problem, a pattern is considered correctly classified if
Yw(Gi,n;j) > 0and t; ; = 1 or if u(G;,n; ;) < 0 and
t;; = —1. Thus, accuracy is defined as the percentage of
patterns correctly classified by the GNN on the test set. On
the other hand, in regression problems, the relative error on a
pattern is given by |(t; j — Yw(Gi, 14 j))/ti ;-

The algorithm was implemented in Matlab® 7!3 and the soft-
ware can be freely downloaded, together with the source and
some examples [82]. The experiments were carried out on a
Power Mac G5 with a 2-GHz PowerPC processor.

A. The Subgraph Matching Problem

The subgraph matching problem consists of finding the nodes
of a given subgraph S in a larger graph G. More precisely, the
function 7 that has to be learned is such that 7(G;,n; ;) = 1
if n; ; belongs to a subgraph of G;, which is isomorphic to
S, and 7(G;,n; ;) = —1, otherwise (see Fig. 4). Subgraph
matching has a number of practical applications, such as ob-
ject localization and detection of active parts in chemical com-
pounds [73]-[75]. This problem is a basic test to assess a method
for graph processing. The experiments will demonstrate that
the GNN model can cope with the given task. Of course, the
presented results cannot be compared with those achievable by
other specific methods for subgraph matching, which are faster
and more accurate. On the other hand, the GNN model is a gen-
eral approach and can be used without any modification to a
variety of extensions of the subgraph matching problem, where,
for example, several graphs must be detected at the same time,
the graphs are corrupted by noise on the structure and the labels,

B3Copyright © 1994-2006 by The MathWorks, Inc., Natick, MA.
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TABLE III
ACCURACIES ACHIEVED BY NONLINEAR MODEL (NL), LINEAR MODEL
(L), AND A FEEDFORWARD NEURAL NETWORK
ON SUBGRAPH MATCHING PROBLEM

No. of nodes in G
6 [ 10 [ 14 [ 18 [ Avg.
NL 92.4 | 90.0 | 90.0 | 84.3 89.1
3 L 93.3 | 84.5 | 86.7 | 84.7 87.3
FNN || 81.4 | 78.2 | 79.6 | 82.2 80.3
NL 91.3 | 87.7 | 84.9 | 83.3 86.8
5 L 90.4 | 85.8 | 85.3 | 80.6 85.5
No. FNN || 85.2 | 73.2 | 65.2 | 75.5 74.8
of NL 89.8 | 84.6 | 79.9 84.8
nodes 7 L 91.3 | 84.4 | 79.2 85.0
in S FNN 84.2 | 66.9 | 64.6 71.9
NL 93.3 | 84.0 | 77.8 85.0
9 L 92.2 | 84.0 | 77.7 84.7
FNN 91.6 | 73.7 | 67.0 77.4
NL 91.8 | 90.2 | 85.9 | 81.3
Avg. L 91.9 | 83.5 | 85.1 | 80.6
FNN || 83.3 | 81.8 | 71.3 | 72.3
NL 87.3
:3;"' L 86.5
g FNN 77.2

and the target to be detected is unknown and provided only by
examples.

In our experiments, the data set £ consisted of 600 connected
random graphs (constructed using § = 0.2), equally divided into
a training set, a validation set, and a test set. A smaller subgraph
S, which was randomly generated in each trial, was inserted into
every graph of the data set. Thus, each graph G; contained at
least a copy of S, even if more copies might have been included
by the random construction procedure. All the nodes had integer
labels in the range [0, 10] and, in order to define the correct tar-
gets t; ; = 7(G;,n; ), a brute force algorithm located all the
copies of S in G;. Finally, a small Gaussian noise, with zero
mean and a standard deviation of 0.25, was added to all the la-
bels. As a consequence, all the copies of S in our data set were
different due to the introduced noise.

In all the experiments, the state dimension was s = 5 and all
the neural networks involved in the GNNs had five hidden neu-
rons. More network architectures have been tested with similar
results.

In order to evaluate the relative importance of the labels and
the connectivity in the subgraph localization, also a feedforward
neural network was applied to this test. The FNN had one output,
20 hidden, and one input units. The FNN predicted ¢; ; using
only the label ,,, ; of node n; ;. Thus, the FNN did not use the
connectivity and exploited only the relative distribution of the
labels in S w.r.t. the labels in graphs G.

Table III presents the accuracies achieved by the nonlinear
GNN model (nonlinear), the linear GNN model (linear), and the
FNN with several dimensions for S and G. The results allow to
single out some of the factors that have influence on the com-
plexity of the problem and on the performance of the models.
Obviously, the proportion of positive and negative patterns af-
fects the performance of all the methods. The results improve
when |S| is close to |G|, whereas when |S| is about a half of
|G|, the performance is lower. In fact, in the latter case, the data
set is perfectly balanced and it is more difficult to guess the right
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response. Moreover, the dimension |S|, by itself, has influence
on the performance, because the labels can assume only 11 dif-
ferent values and when | S| is small most of the nodes of the sub-
graph can be identified by their labels. In fact, the performances
are better for smaller | S|, even if we restrict our attention to the
cases when |G| = 2|8| holds.

The results show that GNNs always outperform the FNNs,
confirming that the GNNs can exploit label contents and graph
topology at the same time. Moreover, the nonlinear GNN model
achieved a slightly better performance than the linear one, prob-
ably because nonlinear GNNs implement a more general model
that can approximate a larger class of functions. Finally, it can
be observed that the total average error for FNNs is about 50%
larger than the GNN error (12.7 for nonlinear GNNs, 13.5 for
linear GNNs, and 22.8 for FNNs). Actually, the relative differ-
ence between the GNN and FNN errors, which measures the
advantage provided by the topology, tend to become smaller
for larger values of |S| (see the last column of Table III). In
fact, GNNs use an information diffusion mechanism to decide
whether a node belongs to the subgraph. When S is larger, more
information has to be diffused and, as a consequence, the func-
tion to be learned is more complex.

The subgraph matching problem was used also to evaluate the
performance of the GNN model and to experimentally verify the
findings about the computational cost of the model described
in Section III. For this purpose, some experiments have been
carried out varying the number of nodes, the number of edges
in the data set, the number of hidden units in the neural networks
implementing the GNN, and the dimensionality of the state. In
the base case, the training set contained ten random graphs, each
one made of 20 nodes and 40 edges, the networks implementing
the GNN had five hidden neurons, and the state dimension was
2. The GNN was trained for 1000 epochs and the results were
averaged over ten trials. As expected, the central processing unit
(CPU) time required by the gradient computation grows linearly
w.r.t. the number of nodes, edges and hidden units, whereas
the growth is quadratic w.r.t. the state dimension. For example,
Fig. 5 depicts the CPU time spent by the gradient computation
process when the nodes of each graph!4 [Fig. 5(a)] and the states
of the GNN [Fig. 5(b)] are increased, respectively.

It is worth mentioning that, in nonlinear GNNs, the
quadratic growth w.r.t. the states, according to the discus-
sion of Section III, depends on the time spent to calculate the
Jacobian (0F,,/0z)(z,l) and its derivative Op,,/Ow. Fig. 5
shows how the total time spent by the gradient computation
process is composed in this case: line —o— denotes the time
required by the computation of e,, and de,, /Ow; line — * — de-
notes that for the Jacobian (0F,,/0z)(2,1); line —z— denotes
that for the derivative Op,, /Ow; the dotted line and the dashed
line represent the rest of the time!> required by the FORWARD
and the BACKWARD procedure, respectively; the continuous
line stands for the rest of the time required by the gradient
computation process.

14More precisely, in this experiment, nodes and edges were increased keeping
constant to 1/2 their ratio.

I5That is, the time required by those procedures except for that already con-
sidered in the previous points.
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Fig. 5. Some plots about the cost of the gradient computation on GNNSs. (a) and (b) CPU times required for 1000 learning epochs by nonlinear GNNs (continuous
line) and linear GNN (dashed line), respectively, as a function of the number of nodes of the training set (a) and the dimension of the state (b). (c¢) Composition
of the learning time for nonlinear GNNs: the computation of e,, and de,, /dw (—o—); the Jacobian (OF,, /0z)(z,1) (— * —); the derivative Ip,, /dw (—z—);
the rest of the FORWARD procedure (dotted line); the rest of the BACKWARD procedure (dashed line); the rest of the time learning procedure (continuous line).
(d) Histogram of the number of the forward iterations, the backward iterations, and the number of nodes u such that R,, ,, # 0 [see (17)] encountered in each

epoch of a learning session.

From Fig. 5(c), we can observe that the computation of
Opw /Ow that, in theory, is quadratic w.r.t. the states may have a
small effect in practice. In fact, as already noticed in Section III,
the cost of such a computation depends on the number tg of
columns of (OF,/0z)(z,l) whose norm is larger than the
prescribed threshold, i.e., the number of nodes » and v such
that R,, ,, # 0 [see (17)]. Such a number is usually small due to
the effect of the penalty term p,,. Fig. 5(d) shows a histogram
of the number of nodes u for which R, ,, # 0 in each epoch
of a learning session: in practice, in this experiment, the non-
null R, ,, are often zero and never exceed four in magnitude.
Another factor that affects the learning time is the number of
forward and backward iterations needed to compute the stable
state and the gradient, respectively.!¢ Fig. 5(d) shows also the

16The number of iterations depends also on the constant ¢ ; and €, of Table I,
which were both set to 1e — 3 in the experiments. However, due to the exponen-
tial convergence of the iterative methods, these constants have a linear effect.

histograms of the number of required iterations, suggesting that
also those numbers are often small.

B. The Mutagenesis Problem

The Mutagenesis data set [13] is a small data set, which is
available online and is often used as a benchmark in the re-
lational learning and inductive logic programming literature.
It contains the descriptions of 230 nitroaromatic compounds
that are common intermediate subproducts of many industrial
chemical reactions [83]. The goal of the benchmark consists of
learning to recognize the mutagenic compounds. The log mu-
tagenicity was thresholded at zero, so the prediction is a bi-
nary classification problem. We will demonstrate that GNNs
achieved the best result compared with those reported in the lit-
erature on some parts of the data set.
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[O 0.2,5,-0.2,0.3,-0.8 ... ] label
Supervised node -~ RN x\\
. Oxygen Atom Global
properties  properties

[C, 0.15,-2,0.8, 0.3, -0.8 ... |

) [M,0.1,2,04,03,-08... ]

[H, 0.1, 1.5, 0.4, 0.3, -0.8 ... ]

Fig. 6. Atom-bond structure of a molecule represented by a graph with labeled
nodes. Nodes represent atoms and edges denote atom bonds. Only one node is
supervised.

In [83], it is shown that 188 molecules out of 230 are
amenable to a linear regression analysis. This subset was called
“regression friendly,” while the remaining 42 compounds were
termed “regression unfriendly.” Many different features have
been used in the prediction. Apart from the atom-bond (AB)
structure, each compound is provided with four global features
[83]. The first two features are chemical measurements (C):
the lowest unoccupied molecule orbital and the water/octanol
partition coefficient, while the remaining two are precoded
structural (PS) attributes. Finally, the AB description can be
used to define functional groups (FG), e.g., methyl groups and
many different rings that can be used as higher level features.
In our experiments, the best results were achieved using AB,
C, and PS, without the functional groups. Probably the reason
is that GNNs can recover the substructures that are relevant to
the classification, exploiting the graphical structure contained
in the AB description.

In our experiments, each molecule of the data set was trans-
formed into a graph where nodes represent atoms and edges
stand for ABs. The average number of nodes in a molecule is
around 26. Node labels contain atom type, its energy state, and
the global properties AB, C, and PS. In each graph, there is
only one supervised node, the first atom in the AB description
(Fig. 6). The desired output is 1, if the molecule is mutagenic,
and —1, otherwise.

In Tables IV-VI, the results obtained by nonlinear GNNs!7
are compared with those achieved by other methods. The pre-
sented results were evaluated using a tenfold cross-validation
procedure, i.e., the data set was randomly split into ten parts and
the experiments were repeated ten times, each time using a dif-
ferent part as the test set and the remaining patterns as training
set. The results were averaged on five runs of the cross-valida-
tion procedure.

GNNs achieved the best accuracy on the regression-un-
friendly part (Table V) and on the whole data set (Table VI),
while the results are close to the state of the art techniques
on the regression-friendly part (Table IV). It is worth noticing
that, whereas most of the approaches showed a higher level of
accuracy when applied to the whole data set with respect to the

17Some results were already presented in [80].
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TABLE IV
ACCURACIES ACHIEVED ON THE REGRESSION-FRIENDLY PART OF THE
MUTAGENESIS DATA SET. THE TABLE DISPLAYS THE METHOD, THE
FEATURES USED TO MAKE THE PREDICTION, AND A POSSIBLE
REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

Method Features Reference | Accuracy
non—linear GNN AB+C+PS 94.3
Neural Networks C+PS [13] 89.0%

P-Progol AB+C [13] 82.0%

P-Progol AB+C+FG [13] 88.0%

MFLOG AB+C [84] 95.7%

FOIL AB [85] 76%
boosted-FOIL not available [86] 88.3%

1nn(dm) AB [87] 83

1nn(dm) AB+C [87] 91%

RDBC AB [88] 84%

RDBC AB+C [88] 83%

RSD AB+C+FG [89] 92.6%

SINUS AB+C+FG [89] 84.5%

RELAGGS AB+C+FG [89] 88.0%

RS AB [90] 88.9%

RS AB+FG [90] 89.9%

RS AB+C+PS+FG [90] 95.8%
SVMp not available [91] 91.5

TABLE V
ACCURACIES ACHIEVED ON THE REGRESSION-UNFRIENDLY PART OF THE
MUTAGENESIS DATA SET. THE TABLE DISPLAYS THE METHOD, THE
FEATURES USED TO MAKE THE PREDICTION, AND A POSSIBLE
REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

Method Knowledge | Reference | Accuracy
non-linear GNN | AB+C+PS 96.0%
1nn(dm) AB [87] 2%
1nn(dm) AB+C [87] 2%
TILDE AB [92] 85%
TILDE AB+C [92] 79%
RDBC AB [88] 79%
RDBC AB+C [88] 79%
TABLE VI

ACCURACIES ACHIEVED ON THE WHOLE MUTAGENESIS DATA SET. THE TABLE
DISPLAYS THE METHOD, THE FEATURES USED TO MAKE THE PREDICTION, AND
A POSSIBLE REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

Method Knowledge | Reference | Accuracy
non-linear GNN | AB+C+PS 90.5%

1nn(dm) AB [87] 81%
1nn(dm) AB+C [87] 88%
TILDE AB [92] 7%
TILDE AB+C [92] 82%
RDBC AB [88] 83%
RDBC AB+C [88] 82%

unfriendly part, the converse holds for GNNs. This suggests that
GNNs can capture characteristics of the patterns that are useful
to solve the problem but are not homogeneously distributed in
the two parts.

C. Web Page Ranking

In this experiment, the goal is to learn the rank of a web
page, inspired by Google’s PageRank [18]. According to
PageRank, a page is considered authoritative if it is referred
by many other pages and if the referring pages are authori-
tative themselves. Formally, the PageRank p,, of a page n is

n = A3y epan) Pu/on + (1 — d) , where o, is the outdegree
of n, and d € |0, 1] is the damping factor [18]. In this experi-
ment, it is shown that a GNN can learn a modified version of
PageRank, which adapts the “authority” measure according
to the page content. For this purpose, a random web graph G
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Fig. 7. Desired function 7 (the continuous lines) and the output of the GNN (the dotted lines) on the pages that belong to only one topic (a) and on the other pages
(b). Horizontal axis stands for pages and vertical axis stands for scores. Pages have been sorted according to the desired value 7(G, n).

containing 5000 nodes was generated, with 6 = 0.2. Training,
validation, and test sets consisted of different nodes of this
graph. More precisely, only 50 nodes were supervised in the
training set, other 50 nodes belonged to the validation set, and
the remaining nodes were in the test set.

To each node n, a bidimensional boolean label [a,,, b,,] is at-
tached that represents whether the page belongs to two given
topics. If the page n belongs to both topics, then [ay,b,] =
[1, 1], while if it belongs to only one topic, then [a,,, b,] = [1,0],
or [an, b,] = [0, 1], and if it does not belong to either topics, then
[@n,bn] = [0,0]. The GNN was trained in order to produce the
following output:

7(G,n) = { if (a, XORb,,) =1

otherwise

2pn/|pll1,
2yali e

where p stands for the Google’s PageRank.

Web page ranking algorithms are used by search engines to
sort the URLs returned in response to user’s queries and more
generally to evaluate the data returned by information retrieval
systems. The design of ranking algorithms capable of mixing to-
gether the information provided by web connectivity and page
content has been a matter of recent research [93]-[96]. In gen-
eral, this is an interesting and hard problem due to the difficulty
in coping with structured information and large data sets. Here,
we present the results obtained by GNNs on a synthetic data set.
More results achieved on a snapshot of the web are available in
[79].

For this example, only the linear model has been used, be-
cause it is naturally suited to approximate the linear dynamics
of the PageRank. Moreover, the transition and forcing networks
(see Section I) were implemented by three-layered neural net-
works with five hidden neurons, and the dimension of the state
was s = 1. For the output function, g,, is implemented as
Jw(Zn, ) = &), -mw(2n,1,,) , where 7, is the function realized
by a three-layered neural networks with five hidden neurons.

Fig. 7 shows the output of the GNN ¢ and the target function
7 on the test set. Fig. 7(a) displays the result for the pages that
belong to only one topic and Fig. 7(b) displays the result for
the other pages. Pages are displayed on horizontal axes and are
sorted according to the desired output 7(G, n). The plots denote

Mean square error
3

1 I I
1000 1500 2000

Epoch

1
0 500 2500

Fig. 8. Error function on the training set (continuous line) and on the validation
(dashed line) set during learning phase.

the value of function 7 (continuous lines) and the value of the
function implemented by the GNN (the dotted lines). The figure
clearly suggests that GNN performs very well on this problem.

Finally, Fig. 8 displays the error function during the learning
process. The continuous line is the error on the training set,
whereas the dotted line is the error on the validation set. It
is worth noting that the two curves are always very close and
that the error on the validation set is still decreasing after 2400
epochs. This suggests that the GNN does not experiment over-
fitting problems, despite the fact that the learning set consists of
only 50 pages from a graph containing 5000 nodes.

V. CONCLUSION

In this paper, we introduced a novel neural network model
that can handle graph inputs: the graphs can be cyclic, directed,
undirected, or a mixture of these. The model is based on in-
formation diffusion and relaxation mechanisms. The approach
extends into a common framework, the previous connectionist
techniques for processing structured data, and the methods
based on random walk models. A learning algorithm to esti-
mate model parameters was provided and its computational
complexity was studied, demonstrating that the method is
suitable also for large data sets.
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Some promising experimental results were provided to assess
the model. In particular, the results achieved on the whole Mu-
tagenisis data set and on the unfriendly part of such a data set
are the best compared with those reported in the open literature.
Moreover, the experiments on the subgraph matching and on the
web page ranking show that the method can be applied to prob-
lems that are related to important practical applications.

The possibility of dealing with domains where the data con-
sists of patterns and relationships gives rise to several new topics
of research. For example, while in this paper it is assumed that
the domain is static, it may happen that the input graphs change
with time. In this case, at least two interesting issues can be
considered: first, GNNs must be extended to cope with a dy-
namic domain; and second, no method exists, to the best of our
knowledge, to model the evolution of the domain. The solution
of the latter problem, for instance, may allow to model the evolu-
tion of the web and, more generally, of social networks. Another
topic of future research is the study on how to deal with domains
where the relationships, which are not known in advance, must
be inferred. In this case, the input contains flat data and is auto-
matically transformed into a set of graphs in order to shed some
light on possible hidden relationships.
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