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Breast density is an important risk factor for breast cancer that also affects the specificity and sensitiv-
ity of screening mammography. Current federal legislation mandates reporting of breast density for all
women undergoing breast cancer screening. Clinically, breast density is assessed visually using the Amer-
ican College of Radiology Breast Imaging Reporting And Data System (BI-RADS) scale. Here, we introduce
an artificial intelligence (Al) method to estimate breast density from digital mammograms. Our method
leverages deep learning using two convolutional neural network architectures to accurately segment the
breast area. An Al algorithm combining superpixel generation and radiomic machine learning is then ap-
plied to differentiate dense from non-dense tissue regions within the breast, from which breast density is
estimated. Our method was trained and validated on a multi-racial, multi-institutional dataset of 15,661
images (4,437 women), and then tested on an independent matched case-control dataset of 6368 digital
mammograms (414 cases; 1178 controls) for both breast density estimation and case-control discrimina-
tion. On the independent dataset, breast percent density (PD) estimates from Deep-LIBRA and an expert
reader were strongly correlated (Spearman correlation coefficient = 0.90). Moreover, in a model adjusted
for age and BMI, Deep-LIBRA yielded a higher case-control discrimination performance (area under the
ROC curve, AUC = 0.612 [95% confidence interval (CI): 0.584, 0.640]) compared to four other widely-used
research and commercial breast density assessment methods (AUCs = 0.528 to 0.599). Our results suggest
a strong agreement of breast density estimates between Deep-LIBRA and gold-standard assessment by an
expert reader, as well as improved performance in breast cancer risk assessment over state-of-the-art
open-source and commercial methods.
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1. Introduction clinic by visual grading into one of the four categories defined by

the American College of Radiology BI-RADS (D’orsi et al., 2003).

Studies have shown that breast density, the extent of fibrog-
landular tissue within the breast, not only limits the sensitivity of
screening mammography but is also an independent breast can-
cer risk factor (Engmann et al., 2017; Freer, 2015; Brentnall et al.,
2018). Breast density can be estimated from full-field digital mam-
mography (FFDM) images and is most commonly assessed in the
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However, BI-RADS density assessment is highly subjective and does
not provide a quantitative, continuous measure of breast density,
which would allow for more refined risk stratification and assess-
ment of breast density changes (Irshad et al., 2016; Sprague et al.,
2016).

Automated quantitative measurement of breast density from
FFDM can be performed through commercially available software
(Hartman et al., 2008; Regini et al., 2014) and research-based tools
(Keller et al., 2012; Mustra et al., 2016; Li et al., 2013; Shi et al,,
2018; Anitha et al., 2017; Ferrari et al.,, 2004; Kwok et al., 2004;
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Mustra and Grgic, 2013; Nagi et al., 2010; Taghanaki et al., 2017;
Rampun et al., 2017; Czaplicka and Wtodarczyk, 2011; Dembrower
et al.,, 2020). Although these tools are useful, important limitations
persist. Most commercially available packages, such as Quantra and
Volpara (Hartman et al., 2008; Regini et al., 2014) calculate breast
density based on x-ray beam interaction models. These packages
make assumptions based on specific metadata to simplify various
estimates, including identifying the fatty tissue. Therefore, these
assumptions can lead to inaccurate estimates, especially when the
required metadata is missing. Moreover, commercial tools do not
provide the corresponding spatial maps of dense tissue segmenta-
tion, while they are also costly, and therefore inaccessible for gen-
eral use. On the other hand, with a few exceptions, such as the
publicly available LIBRA software (Keller et al., 2012; Gastounioti
et al., 2020), research-based methods are not freely available, mak-
ing it challenging to adopt such tools broadly and rigorously com-
pare their performances. Most research-based tools have also been
developed using small, single-institution datasets, and lack inde-
pendent validation (Keller et al., 2012; Li et al., 2013; Shi et al.,
2018; Anitha et al., 2017).

In general, the key computational steps for automated breast
density quantification from FFDM are image background removal;
identification of the pectoralis muscle; and segmentation of the
dense tissue areas within the breast region. Background removal
consists of identifying the air and extraneous objects (paddles,
markers, rings, etc.) to accurately delineate the breast region and
remove extraneous objects from density calculations. Similarly, the
pectoralis muscle must be removed from the area to be processed,
which can be challenging due to anatomic variation of the pec-
toralis muscle and the extension of dense glandular tissue which
often superimposes over the pectoralis muscle in the axillary tail.
To simplify its delineation, the pectoralis muscle has typically been
modeled as a straight line (Keller et al., 2012; Mustra et al., 2016;
Kwok et al., 2004; Ferrari et al., 2004) or a curve (Mustra and Gr-
gic, 2013), which can lead to inaccurate breast density estimation.
Most crucial to breast density evaluation is the segmentation of
dense versus non-dense tissue. Most methods for this task to date
(Keller et al., 2012; Zhou et al., 2001; Anitha et al., 2017) are rel-
atively simplistic, leading to over- or underestimating the amount
of dense tissue.

Artificial intelligence (Al), including deep learning, has shown
great potential in breast imaging applications, substantially im-
proving image segmentation, risk assessment and cancer detec-
tion (Rodriguez-Ruiz et al., 2018; Kontos and Conant, 2019; Kooi
et al., 2017; Wang et al., 2016; Becker et al., 2017; Lehman et al.,
2018; Yala et al., 2019; Mohamed et al., 2018; Hamidinekoo et al.,
2018; Ronneberger et al, 2015; Mortazi and Bagci, 2018; Kaul
et al., 2019; Murugesan et al., 2019). Combining conventional im-
age processing methods and machine learning with deep learning
techniques can further boost the performance of Al methods in
mammographic tasks (Kooi et al., 2017). Here, we introduce Deep-
LIBRA, an Al method for breast density estimation, which com-
bines the U-Net deep learning architecture with image process-
ing and radiomic machine learning techniques to estimate breast
density from FFDM. Like LIBRA, but unlike other techniques, Deep-
LIBRA employs radiomic machine learning in dense-tissue segmen-
tation, but, unlike the earlier tool, incorporates this information
into an Al approach. Moreover, Deep-LIBRA was developed using a
large racially diverse, multi-institutional train-validation set total-
ing 15,661 FFDM images from 4437 women. Further, it was inde-
pendently evaluated on 6478 case-control FFDM images from 1702
women to assess its accuracy both in breast density estimation
and in breast cancer risk assessment. Deep-LIBRA has been imple-
mented as open-source software using Python packages and has
been made publicly available through GitHub github.com/CBICA/
Deep-LIBRA.
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Fig. 1. Development and evaluation experiments. White boxes: workflow of the
Deep-LIBRA algorithm. Green, blue, yellow, and red boxes: training, validation, in-
dependent testing, and blinded independent testing, respectively. HUP: Hospital of
the University of Pennsylvania; MC: Mayo Clinic.. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Validated and tested on ds3-b in a
nested 3-fold cross-validation
modeling: 1,147 HUP images

Breast Cancer Risk
Assessment

2. Methods

Deep-LIBRA is a pipeline of Al modules sequentially perform-
ing all three key computational steps involved in automated breast
density quantification from FFDM. Through these steps, Deep-
LIBRA provides estimates of the total dense tissue area (DA), as
well as the relative amount of dense tissue within the breast, also
known as breast percent density (PD). This section describes the
study datasets and the experiments used to develop and evaluate
each Al module of Deep-LIBRA (Table 1, Fig. 1 and Supplementary
Figure 1).

2.1. Study datasets

A total of six non-overlapping datasets were compiled from ret-
rospectively collected negative FFDM screening exams acquired in
two large breast cancer screening practices: the Hospital of the
University of Pennsylvania (HUP), Philadelphia, PA, and the Mayo
Clinic (MC), Rochester, MN (Table 1). For all datasets, our study
used raw (i.e., “FOR PROCESSING”) FFDM images acquired with Se-
lenia or Selenia DimensionsTM units (Hologic Inc, Bedford, MA,
USA).

2.1.1. Training and validation datasets
o Dataset to develop the background removal module (ds1):

This dataset consisted of 11,200 bilateral images from 2200

women randomly selected from the HUP screening cohort. The

images were evenly split among left and right breast later-
alities, and craniocaudal (CC) and mediolateral oblique (MLO)
breast views, and represented the racially diverse screening

population at HUP (McCarthy et al., 2016).

Dataset to develop the pectoralis muscle removal module

(ds2): Since the pectoralis muscle is almost always visible only

in the MLO view, the MLO-view images of ds1 were used as

the basis of this dataset. Due to the time required for manual

delineation of the pectoralis muscle (5 to 10 minutes per im-

age), 1100 MLO-view images were randomly selected from ds1,

maintaining the corresponding racial and breast laterality dis-
tributions.

o Dataset to develop the breast density estimation module
(ds3): One portion of this dataset (ds3-a) was used to guide
the development of this module in terms of accuracy in breast
density estimation, and another (ds3-b) to account for the per-
formance of breast density in breast cancer risk assessment.
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Table 1
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General characteristics of the six study datasets. For each dataset, this table shows the institution where images were
collected, the number of images and individual women, the range of screening dates, the racial distribution, and
information about the dataset usage in this study. The case-control datasets (ds3-b and ds5) include any available
cancer case from the HUP and MC screening cohorts as long as a negative FFDM exam acquired prior to breast

cancer diagnosis was available for analysis.

ds 1 ds 2 ds3-a ds3-b ds4 ds 5
Institution HUP HUP MC HUP HUP MC
Number of Images 11,200 1100 3314 1147 110 6368
Number of Women 2200 1100 1662 575 110 1592
Screening start date 2010 2010 2008 2010 2010 2013
Screening end date 2012 2012 2012 2014 2012 2015
Caucasian/White (%) 45 45 98 47 45 97
African American/Black (%) 45 45 _ 53 45 _
Other (%) 10 10 2 _ 10 3
Used in development Yes Yes Yes Yes No No
Cross-validation or Bootstrap No No Yes Yes No Yes
Training (%) 90 90 67 67 _ _
Validation (%) 10 10 33 33 _ -
Testing (%) _ _ _ _ 100 100
Accuracy in breast density assessment No No Yes No No Yes
Case-control classification based on breast density  No No No Yes No Yes

1. Dataset to train and validate the breast density estima-
tion module (ds3-a): This subset consisted of 3314 bilateral
CC-view images from 1662 women from the MC dataset,
for which “gold-standard” human-rater Cumulus PD values
were available by a single reader with over twenty years
of experience estimating density with Cumulus (FFW). Auto-
mated density scores extracted with LIBRA were also avail-
able for these images. This dataset has been previously pub-
lished (Brandt et al., 2016; Gastounioti et al., 2020).

2. Case-control dataset to evaluate the breast density estima-
tion module in breast cancer risk-assessment (ds3-b): We
used 1147 bilateral MLO-view images from 115 women who
developed breast cancer at least one year later and 460 age-
and ethnicity-matched controls, acquired at HUP. Clinical BI-
RADS density assessments, as well as automated density
scores extracted with LIBRA and Quantra, were also ascer-
tained for these images. This case-control dataset has been
previously published (Gastounioti et al., 2018) and is de-
scribed in detail in Supplementary Table 1.

2.1.2. Independent test datasets

The following two datasets were used to independently eval-
uate Deep-LIBRA after development was complete. There was no
overlap with images nor women used in training and validation.

» Dataset to evaluate breast segmentation performance (ds4):
This dataset consisted of 110 MLO-view images from 110
women randomly selected from the HUP screening cohort, with
a racial distribution representative of the diverse screening pop-
ulation at HUP (McCarthy et al., 2016).

Dataset to evaluate breast cancer risk assessment perfor-
mance (ds5): This dataset consisted of 6368 bilateral CC and
MLO images from 414 women who developed breast cancer an
average of 4.7 years [interquartile range (IQR): 4.1, 5.1] later and
1178 matched controls, acquired at MC. Approximately three
controls without prior breast cancer were matched to each case
on age (5-year caliper matching), race, state of residence, FFDM
screening exam date, and FFDM machine. Automated breast
density scores extracted with LIBRA and Volpara, as well as
semi-automated Cumulus breast density scores and clinical BI-
RADS density assessments, were also ascertained for these im-
ages. This dataset is described in detail in Supplementary Table
2.

(e) (h)

Fig. 2. Detailed illustration of the Deep-LIBRA algorithm operation. Panel (a) shows
the original FFDM image in 16-bit resolution, and panel (b) is the zero-padded im-
age in an 8-bit intensity resolution. The zero-padded image is used by the back-
ground segmentation U-Net, which generates the image shown in panel (c). Panel
(d) is the output of the module of pectoralis muscle removal using the second U-
Net resulting to the final breast segmentation shown in panel (e). The image from
panel (e) is used to generate superpixels as shown in panel (f) and perform ra-
diomic feature analysis. Finally, the SVM classifies the superpixels based on the ex-
tracted features, resulting in dense tissue segmentation, as shown in panel (g). The
panel (h) shows the final dense tissue segmentation overlaid on the original im-
age. Note: The image sizes are different in this figure because the panels (a), (e)-(h)
show images in the original image resolution, while the panels (b)-(d) are down-
sampled images of size 512 x 512 pixels used in U-Net segmentation.

2.2. Algorithm operation

The core of Deep-LIBRA are three Al modules for (1) removal of
the FFDM image background, (2) removal of the pectoralis mus-
cle, and (3) segmentation of the dense versus fatty tissue and
subsequent breast density estimation (Fig. 2). The first two mod-
ules of Deep-LIBRA are based on deep learning; radiomic ma-
chine learning forms the basis of the third module. Before applying
these modules, standard pre-processing steps for raw FFDM images
are applied (Keller et al., 2012), in which image intensity is log-
transformed, inverted, and squared, and image orientation is stan-
dardized.

2.2.1. Background removal
This module performed binary segmentation of the background
versus non-background image regions, where the background con-
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sisted of both air and extraneous objects. This module was im-
plemented as a binary segmentation convolutional neural network
(CNN) based on the widely used U-Net architecture, slightly mod-
ified by replacing the simple convolutional layers of the encoder
with ResNet encoder modules to extract more in-depth informa-
tion (Szegedy et al., 2017; Maghsoudi et al., 2020). The U-Net was
developed using the dataset ds1 and a 90%-10% split-sample ap-
proach for training and validation. To further improve the U-Net
performance, data augmentation (Ronneberger et al., 2015) was ap-
plied: for each training epoch, each image was randomly altered by
combinations of rotation (-22.5 to +22.5 degrees); horizontal shift
(-20% to +20% of image width); vertical shift (-20% to +20% of im-
age height); zoom (-20% to +20%); and horizontal flip. The back-
ground region segmented by the U-Net was further refined by re-
moving any regions not connected to any of the four image bound-
aries. Fig. 2 (c) shows the outcome from this step.

Reference background segmentation masks were generated us-
ing the publicly available LIBRA software (Keller et al., 2012) and
were further reviewed and manually corrected using the Image]
software (Rueden et al., 2017) by a research scientist (OHM, two
years of experience) under the guidance of a fellowship-trained,
board-certified, breast imaging radiologist (EFC, more than 25
years of experience). The loss function for training was the in-
verse weighted Dice measure, calculated as 1 - weighted dice
(Chang et al., 2009), to reduce the effect of unbalanced regions in
training (definition available in the Supplementary Material).

2.2.2. Pectoralis muscle removal

This module segmented the breast from the image remaining
after background removal (Fig. 2 (c, d)). As with the background
removal module, this module was implemented as a binary seg-
mentation CNN based on the U-Net architecture. Training used the
ds2 dataset, again using a 90%-10% split-sample approach for train-
ing and validation, and the inverse weighted dice measure as the
loss function. Data augmentation was applied, with alterations of
rotation (-22.5 to +22.5 degrees); horizontal shift (-15% to +15% of
image width); vertical shift (-15% to +15% of image height); and
zoom (-15% to +15%). The zoom and shift ranges were bounded at
15%, rather than 20% used in background removal because the pec-
toralis muscle occupies an appreciably smaller portion of an image
than the background. Any abdominal tissue remaining in the image
was removed. The paddle compression effect, a bump of abdom-
inal tissue below the breast caused by paddle compression, was
also removed, based on the gradient of the breast contour coor-
dinates (see also Supplementary Material). Reference delineations
of the pectoralis muscle were manually obtained using the Image]
software by OHM under the guidance of EFC.

2.2.3. Dense tissue segmentation and breast density calculation

The breast density calculation module involved three major
steps: 1) Partitioning the breast into superpixels using image in-
tensity information. 2) Calculating global and superpixel-wise ra-
diomic features. 3) Using these radiomic features as inputs to ma-
chine learning models to classify superpixels as either dense or
non-dense, and calculate breast density (Fig. 2 (e)-(h)).

A superpixel is a contiguous subregion of the breast image.
By defining superpixels using gray-level intensity values and spa-
tial information, we can generate meaningful localized clusters
(Achanta et al., 2012). To aggregate neighboring pixels into super-
pixels, we used simple linear iterative clustering (SLIC), a spatially
localized version of k-means clustering, which is fast, adheres to
local boundaries, and generates superpixels of similar sizes (mak-
ing the superpixels suitable for representation of scale-variant fea-
tures such as texture features) (Achanta et al., 2012). Based on the
image size, we partitioned each image into 512 superpixels.
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SVM 1

Input Majority Vote

Fig. 3. The majority voting approach. The majority voting approach uses the out-
come of three SVM models, each trained on two folds of ds3-a, to make the final
dense tissue segmentation. The majority voting scheme assigns the dense or non-
dense label to each superpixel based on at least two SVM models agreeing on the
label.

Then, we generated a reference classification of each superpixel
as dense versus non-dense, using the image-wise “gold-standard”
PD scores available for ds3-a. Specifically, an average intensity was
calculated for each superpixel. For a given intensity cutoff, an over-
all (across all images) PD score was calculated. Similarly, the “gold-
standard” PD values were combined into an overall PD. The inten-
sity cutoff that minimized the difference between the overall PD
and the “gold-standard” PD values was selected and was used to
assign each superpixel a reference value of dense versus non-dense
region.

For each image, the module then computed a total of 101 ra-
diomic features from the entire image, and an additional 50 ra-
diomic features on each superpixel (Supplementary List 1). Ra-
diomic features were extracted using the PyRadiomics library
(Van Griethuysen et al., 2017) and additional Python packages (a
detailed list of packages can be found on GitHub).

To reduce feature dimensionality, two steps were applied. First,
for highly-correlated groups of radiomic features (i.e., absolute
Pearson’s correlation r > 0.95), a single feature from each group
was retained (100 features remained from the total of 151 features)
which had a maximum interquartile range. Second, a random-
forest classifier was applied to all superpixels with the remain-
ing radiomic features as predictors and the reference dense versus
non-dense classification as the supervised classification labels. This
two-step procedure determined the 80 most-predictive features to
retain.

In this module’s final step, we trained a support vector ma-
chine (SVM) on ds3-a, classifying superpixels as dense versus non-
dense with the retained texture features as predictors. Three-fold
cross-validation was used, resulting in three trained SVM models.
To reduce the effect of data partitioning in the SVM performance
(Table 2) and to alleviate potential overfitting, an ensemble model
based on the majority vote of the three SVMs was used as the fi-
nal model assigning dense versus non-dense labels to superpixels
(Fig. 3), based on which Deep-LIBRA provided estimates of DA and
PD.

2.3. Algorithm evaluation

2.3.1. Evaluation on development datasets

» Background and pectoralis muscle removal: Images in the ds1
and ds2 datasets were used to train and validate the CNNs
for background and pectoralis muscle removal, respectively. The
segmentation performance of the trained CNNs was measured
using four parameters: 1) dice (Chang et al., 2009), 2) weighted
dice, 3) sensitivity (Chang et al., 2009), and 4) weighted sensi-
tivity. Detailed definitions of the performance evaluation mea-
sures are available in the Supplementary Material.

o Breast density estimation: Deep-LIBRA training resulted in
three SVMs, each trained on two of three folds of ds3-a. For
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Table 2
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Case-control discrimination performance on the dataset ds3-b for breast percent density (PD) values generated by Deep-LIBRA and LIBRA,
area-based (A_Quantra) and volumetric (V_Quantra) PD values by Quantra, and clinical BI-RADS density assessments. Results correspond to
mean AUCs and 95% Cls in parentheses. Folds 1, 2 and 3 are the held-out folds used for the evaluation of the corresponding Deep-LIBRA

SVM. Unadj. and adj. indicate unadjusted logistic regression models and logistic regression models adjusted for age and BMI, respectively.

LIBRA

V_Quantra

A_Quantra

BI-RADS

Deep_LIBRA

Fold 1 unadj.
Fold 2 unadj.
Fold 3 unadj.
All unadj.

0.469 (0.465, 0.472
0.460 (0.455, 0.465

0.467 (0.464, 0.471

0.578 (0.578, 0.579
0.579 (0.578, 0.579

0.579 (0.579, 0.580

0.560 (0.559, 0.560
0.560 (0.559, 0.560

0.561 (0.560, 0.561

0.541 (0.540, 0.541
0.541 (0.540, 0.541

0.540 (0.539, 0.542

0.532 (0.528, 0.536)
0.594 (0.593, 0.594)

0.578 (0.577, 0.578)

) ( )
) ( )
0.467 (0.463, 0.471) 0578 (0.578, 0.579)
) ( )
) ( )

All adj. 0.498 (0.494, 0.502 0.586 (0.584, 0.587

( )
( )
0.561 (0.559, 0.561)
( )
( )

0.568 (0.567, 0.570

( ) (
( ) (
0.541 (0.541, 0.541)  0.561 (0.560, 0.561)
( ) (
( ) (

0.550 (0.548, 0.552 0.582 (0.581, 0.583)

unbiased evaluation of its performance in breast density esti-
mation, we measured each SVM'’s performance separately on
the corresponding held-out fold via Spearman correlation coef-
ficients and absolute differences between Deep-LIBRA and gold-
standard Cumulus PD values. We also compared the perfor-
mance of Deep-LIBRA with the performance of the LIBRA soft-
ware on the images of each fold.

Breast cancer risk assessment based on breast density: Us-
ing ds3-b, we evaluated the case-control discriminatory abil-
ity of Deep-LIBRA PD and DA measures, while also comparing
with LIBRA PD and DA, Quantra area-based (A-Quantra) and
volumetric (V-Quantra) density measures, and clinical BI-RADS
density assessments. For each breast density measure, the case-
control status was modeled as the outcome in each of two con-
ditional logistic regression models (Breslow et al., 1978): an un-
adjusted model consisting of the breast density measure alone,
and an adjusted model including also age and body-mass in-
dex (BMI). Case-control discriminatory ability was assessed via
the mean area under curve (AUC) of the receiver operation
curve (ROC) across 100 bootstrap samples where case-control
matching was maintained, with confidence intervals (Cls) de-
rived from those 100 repetitions. Additionally, we examined dif-
ferences in breast density distributions between cases and con-
trols using the Wilcoxon rank sum test.

2.3.2. Evaluation on independent testing datasets

» Breast segmentation: The images of the ds4 dataset were used
to independently evaluate the total segmented breast area by
Deep-LIBRA. The Dice, weighted Dice, sensitivity and weighted
sensitivity were used as the evaluation measures, while also
comparing with the breast segmentation performance of LIBRA
via two-sided t-tests.

o Breast cancer risk assessment based on breast density: A
blinded evaluation of the associations of Deep-LIBRA PD and
DA with breast cancer was independently performed by an an-
alyst at MC on the dataset ds5, with the Deep-LIBRA developing
team being blinded to the case-control status of the images. LI-
BRA density measures, area-based and volumetric Volpara den-
sity metrics, gold-standard Cumulus density metrics, and clini-
cal BI-RADS density assessments were also analyzed for com-
parison purposes. Unadjusted and adjusted conditional logis-
tic regression analysis was performed for each density measure
with case-control status as the outcome. Model discriminatory
ability was assessed via AUCs, and effect sizes as odds ratios
(ORs) per one standard deviation of breast density. P-values, for
both AUCs and ORs, versus the null hypothesis of no difference
from the AUC or OR derived from Deep-LIBRA, were estimated
from testing across 1000 bootstrap samples where case-control
matching was maintained.

Moreover, we investigated the effect of simultaneously using
Deep-LIBRA density measures with measures from other breast
density estimation approaches in case-control discrimination
performance. To this end, we evaluated Deep-LIBRA density
measures in combination with density measures from LIBRA,

Percentage
Percentage

Fig. 4. Deep-LIBRA evaluation curves in the development phase. Panels (a) and
(b) show the training and validation (noted as “val_") results for background and
pectoral muscle segmentation CNNs, respectively. As the panel (b) shows, there is
no sign of overfitting for pectoralis muscle segmentation while panel (a) indicates
some possible signs of overfitting after epoch 40 shown by a wider fluctuation on
the validation set.

Volpara, and Cumulus, as well as with clinical BI-RADS density
assessments.

Last, for each density measure, we tested for breast den-
sity distribution differences between cases and controls using
Wilcoxon rank sum tests. We also evaluated the correlations of
different breast density measures using the Spearman correla-
tion coefficient. SAS version 9.4 (Cary, NC) was used for all sta-
tistical analyses, and p-values were considered statistically sig-
nificant at the 0.05 cutoff.

3. Results
3.1. Evaluation on development datasets

3.1.1. Background and pectoralis muscle removal

The evaluation curves in the development phase of Deep-LIBRA
show sufficient training and high performance in breast segmen-
tation (Fig. 4). The highest weighted dice score achieved by the
background removal module on the validation set was 99.4% after
35 epochs, with a value of 99.5% on the training set at the same
epoch (Fig. 4 (a)). The pectoralis muscle removal module achieved
the highest weighted dice of 95.0% on the validation set after 158
epochs, with a valueof 96.3% on the training set at the same epoch
(Fig. 4 (b)).

3.1.2. Breast density estimation

Deep-LIBRA breast density evaluation on ds3-a showed high
agreement with “gold-standard” Cumulus values. Mean PD differ-
ences between Deep-LIBRA and Cumulus, measured with each of
the three Deep-LIBRA SVMs on the corresponding held-out fold,
were 4.91 [95% Cl: 4.48, 5.34], 4.64 [95% CI: 4.31, 4.99], and 4.22
[95% CI: 3.95, 4.49]; mean PD differences between LIBRA and Cu-
mulus on the same folds were 5.28 [95% CI: 4.95, 5.60], 5.24 [95%
Cl: 4.96, 5.52], and 5.39 [95% CI: 5.08, 5.70]. For two of the three
folds, PD differences between Deep-LIBRA and Cumulus were sig-
nificantly lower than those between LIBRA and Cumulus (paired
two-sided t-test p-values: 0.179, 0.008 and 0.001, respectively). The
correlations between Deep-LIBRA and Cumulus PD (0.80, 0.79, and
0.84) were also higher than those between LIBRA and Cumulus
(0.70, 0.70, and 0.69) for all three folds.
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Table 3
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Associations of percent density (PD) measures with breast cancer and case-control discriminatory perfor-
mance on ds5, using logistic regression models adjusted for age and BMI. P-values for both AUCs and ORs
were obtained from 1000 bootstrap samples to test for the null hypothesis of no difference from the AUC
or OR derived from Deep-LIBRA using the same breast views.

Density score OR (95% CI) p-value  AUC (95% CI) p-value
Deep-LIBRA PD (4 views) 1.61(1.37,1.88) - 0.612 (0.584, 0.640) -
Deep-LIBRA PD (CC) 1.64 (140, 1.91) - 0.611 (0.583, 0.639) -
Deep-LIBRA PD (MLO) 1.46 (1.26, 1.69) - 0.596 (0.568, 0.624) -
Cumulus PD (CC) 1.64 (1.39, 1.93)  0.99 0.619 (0.592, 0.647)  0.85
LIBRA PD (4 views) 1.26 (1.09, 1.46)  <.001 0.564 (0.535, 0.592)  0.01
LIBRA PD (CC) 1.19 (1.04, 1.36)  <.001 0.557 (0.528, 0.585)  0.01
LIBRA PD (MLO) 1.26 (1.10, 1.46)  0.07 0.561 (0.533, 0.589) 0.04
Volumetric Volpara PD (4 views) 1.55(1.31, 1.82) 043 0.599 (0.572, 0.627)  0.37
Volumetric Volpara PD (CC) 1.45 (1.24, 1.71)  0.02 0.588 (0.559, 0.616)  0.09
Volumetric Volpara PD (MLO) 1.62 (1.37,1.92) 0.10 0.598 (0.570, 0.626)  0.88
Area Volpara PD (4 views) 1.48 (1.25,1.74)  0.10 0.578 (0.551, 0.607)  0.04
Area Volpara PD (CC) 1.38 (1.18, 1.61)  <.001 0.567 (0.539, 0.596)  0.01
Area Volpara PD (MLO) 1.62 (1.28,1.79)  0.53 0.591 (0.563, 0.619)  0.49
BI-RADS density 1.54 (1.30, 1.81)  0.45 0.596 (0.568, 0.624)  0.35

Table 4

Breast density distributions on ds5. Except for BI-RADS density, data corresponds to median
and interquartile range in parentheses. For BI-RADS density, data corresponds to number of
women and percentage in parentheses. *P-values from Wilcoxon Rank-sum tests for continu-
ous density measures and from Pearson chi-squared test for BI-RADS density.

Breast density measure Controls (N=1178)  Cases (N=414) *p-Value
Deep-LIBRA PD (4 views) 11.5 (5.7, 19.9) 14.1 (7.7, 23.9) <.001
Deep-LIBRA PD (CC) 12.0 (6.6, 20.6) 15.7 (8.6, 25.7) <.001
Deep-LIBRA PD (MLO) 10.3 (4.4, 19.8) 134 (6.1, 22.1) <.001
Cumulus Proc PD (CC) 12.4 (6.6, 21.6) 15.5 (8.8, 25.3) <.001
LIBRA PD (4 views) 10.8 (7.6, 16.0) 11.9 (8.3, 18.9) 0.004
LIBRA PD (CC) 10.5 (7.1, 15.6) 11.5 (7.6, 18.7) 0.006
LIBRA PD (MLO) 11.2 (7.6, 16.9) 12.3 (8.0, 19.4) 0.005
Volumetric Volpara PD (4 views) 6.0 (4.4, 10.0) 6.7 (4.6, 12.0) <.001
Volumetric Volpara PD (CC) 6.0 (4.4, 9.9) 6.7 (4.6, 11.7) <.001
Volumetric Volpara PD (MLO) 5.9 (4.3,9.7) 6.8 (4.7, 12.7) <.001
Area Volpara PD (4 views) 48 (28.9, 68.3) 53.8 (32.9, 76.7) <.001
BI-RADS density, n (%) <.001

oNnw >

61 (15%)
149 (36%)
170 (41%)
34 (8%)

3.1.3. Breast cancer risk assessment based on breast density

Using the dataset ds3-b and unadjusted logistic regression
models, PD values generated by the three Deep-LIBRA SVMs
yielded mean AUCs of 0.532, 0.594, and 0.561 on the correspond-
ing held-out folds (Table 2). Similar performance was observed for
Quantra and clinical BI-RADS density measures.

The PD generated by the ensemble SVM model gave a mean
AUC of 0.578 and 0.582 in the unadjusted and adjusted logistic re-
gression models, respectively (Table 2). In both cases, the perfor-
mance of Deep-LIBRA PD was comparable to volumetric PD evalu-
ation with Quantra, and substantially improved compared to LIBRA
PD and clinical BI-RADS density assessments.

3.2. Evaluation on independent testing datasets

3.2.1. Breast segmentation

Using the images of ds4, Deep-LIBRA gave a mean dice score of
92.5% for breast segmentation, which was also statistically signifi-
cantly lower (p<0.001) than LIBRA (mean dice 83.4%) (Supplemen-
tary Table 3 and Supplementary Figure 2).

3.2.2. Breast cancer risk assessment based on breast density
Deep-LIBRA PD and DA measures were positively associated
with breast cancer regardless of the breast views considered in
density calculations (Table 3 and Supplementary Tables 4-6). The
ORs for Deep-LIBRA PD ranged from 1.33 to 1.40 in unadjusted

models (Supplementary Table 4) and from 1.46 to 1.61 for models
adjusted for age and BMI (Table 3). Similarly, the ORs for Deep-
LIBRA DA ranged from 1.46 to 1.58 in unadjusted models (Supple-
mentary Table 6) and from 1.50 to 1.64 for models adjusted for age
and BMI (Supplementary Table 5). Best case-control discriminatory
performance for Deep-LIBRA was achieved for PD (AUC = 0.612
[95% CI: 0.583, 0.640]) and DA (AUC = 0.642 [95% CI: 0.615, 0.669])
estimates averaged over the four breast views (i.e. left and right CC
and MLO views). The performance of Deep-LIBRA was comparable
to Cumulus and volumetric Volpara density measures, and signif-
icantly improved compared to area-based LIBRA and Volpara den-
sity metrics (Table 3).

When Deep-LIBRA PD averaged over the four breast views was
evaluated in combination with other density measures, Deep-LIBRA
PD was the only PD measure that maintained significant associ-
ations with breast cancer (Supplenentary Table 8). Moreover, the
AUC was only minimally modified by the addition of other den-
sity measures to Deep-LIBRA PD. Similar observations were found
for Deep-LIBRA DA when evaluated in combination with absolute
density measures from other density estimation approaches (Sup-
plenentary Table 9). However, besides Deep-LIBRA DA, Cumulus DA
and absolute volumetric density by Volpara also maintained signif-
icant associations with breast cancer.

Deep-LIBRA PD averaged over the four breast views was sig-
nificantly lower in controls (median PD = 11.5% [IQR: 5.7, 19.9])
compared to cases (median PD = 14.1% [IQR: 7.7, 23.9]) (Table 4).
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Significant differences between cases and controls were also found
for other breast density estimation approaches, with slightly nar-
rower PD ranges for LIBRA and volumetric Volpara density metrics
(Table 4). Deep-LIBRA PD was also strongly correlated with Cumu-
lus PD (r = 0.90), as well as with LIBRA (r = 0.76) and Volpara
(r = 0.89) PD measures and clinical BI-RADS density assessments
(r = 0.80) (Supplementary Figure 3). However, moderate to strong
correlations were found between Deep-LIBRA DA and Cumulus (r
= 0.79), LIBRA (r = 0.44), Volpara (r = 0.52-0.71), and clinical BI-
RADS density assessments (r = 0.71) (Supplementary Figure 4).

4. Discussion

This study introduced Deep-LIBRA, an open-source Al tool for
fully automated breast density evaluation from raw FFDM im-
ages. Deep-LIBRA’s promising performance in breast density esti-
mation and density-based risk assessment suggests the effective-
ness of combining deep learning with conventional radiomic ma-
chine learning methodologies towards developing a useful compu-
tational tool for accurately estimating mammographic density, a
critical imaging biomarker in breast cancer screening.

We acknowledge that Al could be used for direct risk predic-
tion from FFDM images (Dembrower et al., 2020; Yala et al., 2019).
However, accurate estimation of breast density is of utmost im-
portance for several reasons. First, breast density measurements
have been shown to be useful in several tasks beyond predicting
a woman'’s risk for breast cancer, from evaluating the risk of de-
creased mammographic sensitivity due to masking of tumors by
dense breast tissue (Mandelson et al., 2000; Boyd et al., 2007)
to assessing effects of aspirin use and bariatric surgery on breast
parenchymal patterns (Williams et al., 2017; Wood et al., 2017).
Second, spatial dense tissue segmentation maps such as the ones
provided by Deep-LIBRA can provide valuable insights about breast
regions associated with tumor masking, potentially also driving
breast cancer risk. Most importantly, in 2019, federal legislation
mandated that women be notified of their breast density in all 50
states and US Territories as part of routine breast cancer screening
letters (Are-You-Dense-Advocacy, 2019). Therefore, an automated
tool that can accurately evaluate a woman’s actual breast density
value can have a substantial clinical impact.

To segment the breast region, Deep-LIBRA employs two binary
segmentation U-Nets, one for background and one for pectoral
muscle removal instead of a single multi-class network. We found
that this design could better address intensity variations in the in-
put images as well as remove unpredictable artifacts, such as pad-
dles and rings, that can substantially affect breast segmentation.
To segment the dense tissue area within the breast, Deep-LIBRA is
based on a ensemble of radiomic machine learning models. This
design was motivated by the observed effect of data partitioning
in the performance of machine learning models. To alleviate this
effect, an ensemble model based on the majority vote of the three
SVMs is used as the final model assigning dense versus non-dense
labels to superpixels, based on which Deep-LIBRA provides esti-
mates of breast density measures.

Deep-LIBRA was trained and validated on a unique multi-racial
dataset of 15,661 FFDM images (4,437 women) from two different
clinical sites, and then tested on an independent matched case-
control dataset of 6368 digital mammograms for both breast den-
sity estimation and case-control discrimination. Our results sug-
gest a strong agreement of breast density estimates between Deep-
LIBRA and gold-standard assessment by an expert reader, as well
as improved performance in breast cancer risk assessment over
state-of-the-art open-source and commercial methods. Interest-
ingly, Deep-LIBRA DA had a stronger association with breast can-
cer risk than Deep-LIBRA PD, while adjusting for BMI increased the
strength of associations for both density measures. While an in-
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terplay between breast density, BMI, and race has been found in
previous studies (McCarthy et al., 2016), our results potentially in-
dicate the need to better understand the associations of absolute
versus percent density measures with breast cancer risk, especially
across different BMI levels and in diverse populations.

The limitations of our study must also be noted. At this point,
Deep-LIBRA has only been trained on “FOR PROCESSING” FFDM
images from a single manufacturer (Hologic). Motivated by the
promising Deep-LIBRA performance reported in this study, our im-
mediate next step will be training and re-evaluating Deep-LIBRA
for “FOR PRESENTATION” vendor-processed FFDM images, while
utilizing multi-vendor datasets. As such, we will also be able to
compare and potentially integrate Deep-LIBRA density measures
with other Al methods for BI-RADS density estimation and risk as-
sessment which have been developed for vendor-processed FFDM
images (Dembrower et al., 2020; Lehman et al., 2018; Yala et al.,
2019). Moreover, we trained Deep-LIBRA for breast density estima-
tion using semi-automated PD scores as a reference. In reality, ac-
tual ground-truth density estimations could be obtained only via
breast excisions. To overcome this limitation, and acknowledging
the inter-reader variation in semi-automated breast density scores,
we used “gold standard” Cumulus PD estimates by a single reader
with over twenty years of experience estimating density with Cu-
mulus (EEW.). In our future work, we will explore the use of refer-
ence PD estimates from multiple readers and their effect of Deep-
LIBRA training.

Moreover, we realize that evaluating Deep-LIBRA density mea-
sures in predicting breast cancer masking will be another impor-
tant step to help determine its value in precision breast cancer
screening. Although our study had limited power for this anal-
ysis due to the small number of interval cancers in our case-
control datasets (15%), we anticipate that this study will provide
instrumental evidence for Deep-LIBRA to facilitate larger, multi-site
studies to validate Deep-LIBRA density measures in predicting risk
of masking. With Deep-LIBRA being an open-source software, we
aim to encourage a widespread utilization of Deep-LIBRA in vari-
ous studies of mammographic breast density and risk towards an
extensive validation of Deep-LIBRA in multi-site and multi-racial
populations.
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