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a b s t r a c t 

Breast density is an important risk factor for breast cancer that also affects the specificity and sensitiv- 

ity of screening mammography. Current federal legislation mandates reporting of breast density for all 

women undergoing breast cancer screening. Clinically, breast density is assessed visually using the Amer- 

ican College of Radiology Breast Imaging Reporting And Data System (BI-RADS) scale. Here, we introduce 

an artificial intelligence (AI) method to estimate breast density from digital mammograms. Our method 

leverages deep learning using two convolutional neural network architectures to accurately segment the 

breast area. An AI algorithm combining superpixel generation and radiomic machine learning is then ap- 

plied to differentiate dense from non-dense tissue regions within the breast, from which breast density is 

estimated. Our method was trained and validated on a multi-racial, multi-institutional dataset of 15,661 

images (4,437 women), and then tested on an independent matched case-control dataset of 6368 digital 

mammograms (414 cases; 1178 controls) for both breast density estimation and case-control discrimina- 

tion. On the independent dataset, breast percent density (PD) estimates from Deep-LIBRA and an expert 

reader were strongly correlated (Spearman correlation coefficient = 0.90). Moreover, in a model adjusted 

for age and BMI, Deep-LIBRA yielded a higher case-control discrimination performance (area under the 

ROC curve, AUC = 0.612 [95% confidence interval (CI): 0.584, 0.640]) compared to four other widely-used 

research and commercial breast density assessment methods (AUCs = 0.528 to 0.599). Our results suggest 

a strong agreement of breast density estimates between Deep-LIBRA and gold-standard assessment by an 

expert reader, as well as improved performance in breast cancer risk assessment over state-of-the-art 

open-source and commercial methods. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Studies have shown that breast density, the extent of fibrog- 

andular tissue within the breast, not only limits the sensitivity of 

creening mammography but is also an independent breast can- 

er risk factor ( Engmann et al., 2017; Freer, 2015; Brentnall et al., 

018 ). Breast density can be estimated from full-field digital mam- 

ography (FFDM) images and is most commonly assessed in the 
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linic by visual grading into one of the four categories defined by 

he American College of Radiology BI-RADS ( D’orsi et al., 2003 ). 

owever, BI-RADS density assessment is highly subjective and does 

ot provide a quantitative, continuous measure of breast density, 

hich would allow for more refined risk stratification and assess- 

ent of breast density changes ( Irshad et al., 2016; Sprague et al., 

016 ). 

Automated quantitative measurement of breast density from 

FDM can be performed through commercially available software 

 Hartman et al., 2008; Regini et al., 2014 ) and research-based tools 

 Keller et al., 2012; Mustra et al., 2016; Li et al., 2013; Shi et al.,

018; Anitha et al., 2017; Ferrari et al., 2004; Kwok et al., 2004; 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Development and evaluation experiments. White boxes: workflow of the 

Deep-LIBRA algorithm. Green, blue, yellow, and red boxes: training, validation, in- 

dependent testing, and blinded independent testing, respectively. HUP: Hospital of 

the University of Pennsylvania; MC: Mayo Clinic.. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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ustra and Grgic, 2013; Nagi et al., 2010; Taghanaki et al., 2017; 

ampun et al., 2017; Czaplicka and Włodarczyk, 2011; Dembrower 

t al., 2020 ). Although these tools are useful, important limitations 

ersist. Most commercially available packages, such as Quantra and 

olpara ( Hartman et al., 2008; Regini et al., 2014 ) calculate breast 

ensity based on x-ray beam interaction models. These packages 

ake assumptions based on specific metadata to simplify various 

stimates, including identifying the fatty tissue. Therefore, these 

ssumptions can lead to inaccurate estimates, especially when the 

equired metadata is missing. Moreover, commercial tools do not 

rovide the corresponding spatial maps of dense tissue segmenta- 

ion, while they are also costly, and therefore inaccessible for gen- 

ral use. On the other hand, with a few exceptions, such as the 

ublicly available LIBRA software ( Keller et al., 2012; Gastounioti 

t al., 2020 ), research-based methods are not freely available, mak- 

ng it challenging to adopt such tools broadly and rigorously com- 

are their performances. Most research-based tools have also been 

eveloped using small, single-institution datasets, and lack inde- 

endent validation ( Keller et al., 2012; Li et al., 2013; Shi et al.,

018; Anitha et al., 2017 ). 

In general, the key computational steps for automated breast 

ensity quantification from FFDM are image background removal; 

dentification of the pectoralis muscle; and segmentation of the 

ense tissue areas within the breast region. Background removal 

onsists of identifying the air and extraneous objects (paddles, 

arkers, rings, etc.) to accurately delineate the breast region and 

emove extraneous objects from density calculations. Similarly, the 

ectoralis muscle must be removed from the area to be processed, 

hich can be challenging due to anatomic variation of the pec- 

oralis muscle and the extension of dense glandular tissue which 

ften superimposes over the pectoralis muscle in the axillary tail. 

o simplify its delineation, the pectoralis muscle has typically been 

odeled as a straight line ( Keller et al., 2012; Mustra et al., 2016;

wok et al., 2004; Ferrari et al., 2004 ) or a curve ( Mustra and Gr-

ic, 2013 ), which can lead to inaccurate breast density estimation. 

ost crucial to breast density evaluation is the segmentation of 

ense versus non-dense tissue. Most methods for this task to date 

 Keller et al., 2012; Zhou et al., 2001; Anitha et al., 2017 ) are rel-

tively simplistic, leading to over- or underestimating the amount 

f dense tissue. 

Artificial intelligence (AI), including deep learning, has shown 

reat potential in breast imaging applications, substantially im- 

roving image segmentation, risk assessment and cancer detec- 

ion ( Rodríguez-Ruiz et al., 2018; Kontos and Conant, 2019; Kooi 

t al., 2017; Wang et al., 2016; Becker et al., 2017; Lehman et al., 

018; Yala et al., 2019; Mohamed et al., 2018; Hamidinekoo et al., 

018; Ronneberger et al., 2015; Mortazi and Bagci, 2018; Kaul 

t al., 2019; Murugesan et al., 2019 ). Combining conventional im- 

ge processing methods and machine learning with deep learning 

echniques can further boost the performance of AI methods in 

ammographic tasks ( Kooi et al., 2017 ). Here, we introduce Deep- 

IBRA, an AI method for breast density estimation, which com- 

ines the U-Net deep learning architecture with image process- 

ng and radiomic machine learning techniques to estimate breast 

ensity from FFDM. Like LIBRA, but unlike other techniques, Deep- 

IBRA employs radiomic machine learning in dense-tissue segmen- 

ation, but, unlike the earlier tool, incorporates this information 

nto an AI approach. Moreover, Deep-LIBRA was developed using a 

arge racially diverse, multi-institutional train-validation set total- 

ng 15,661 FFDM images from 4437 women. Further, it was inde- 

endently evaluated on 6478 case-control FFDM images from 1702 

omen to assess its accuracy both in breast density estimation 

nd in breast cancer risk assessment. Deep-LIBRA has been imple- 

ented as open-source software using Python packages and has 

een made publicly available through GitHub github.com/CBICA/ 

eep-LIBRA . 
2 
. Methods 

Deep-LIBRA is a pipeline of AI modules sequentially perform- 

ng all three key computational steps involved in automated breast 

ensity quantification from FFDM. Through these steps, Deep- 

IBRA provides estimates of the total dense tissue area (DA), as 

ell as the relative amount of dense tissue within the breast, also 

nown as breast percent density (PD). This section describes the 

tudy datasets and the experiments used to develop and evaluate 

ach AI module of Deep-LIBRA ( Table 1 , Fig. 1 and Supplementary 

igure 1). 

.1. Study datasets 

A total of six non-overlapping datasets were compiled from ret- 

ospectively collected negative FFDM screening exams acquired in 

wo large breast cancer screening practices: the Hospital of the 

niversity of Pennsylvania (HUP), Philadelphia, PA, and the Mayo 

linic (MC), Rochester, MN ( Table 1 ). For all datasets, our study 

sed raw (i.e., “FOR PROCESSING”) FFDM images acquired with Se- 

enia or Selenia DimensionsTM units (Hologic Inc, Bedford, MA, 

SA). 

.1.1. Training and validation datasets 
• Dataset to develop the background removal module (ds1): 

This dataset consisted of 11,200 bilateral images from 2200 

women randomly selected from the HUP screening cohort. The 

images were evenly split among left and right breast later- 

alities, and craniocaudal (CC) and mediolateral oblique (MLO) 

breast views, and represented the racially diverse screening 

population at HUP ( McCarthy et al., 2016 ). 
• Dataset to develop the pectoralis muscle removal module 

(ds2): Since the pectoralis muscle is almost always visible only 

in the MLO view, the MLO-view images of ds1 were used as 

the basis of this dataset. Due to the time required for manual 

delineation of the pectoralis muscle (5 to 10 minutes per im- 

age), 1100 MLO-view images were randomly selected from ds1, 

maintaining the corresponding racial and breast laterality dis- 

tributions. 
• Dataset to develop the breast density estimation module 

(ds3): One portion of this dataset (ds3-a) was used to guide 

the development of this module in terms of accuracy in breast 

density estimation, and another (ds3-b) to account for the per- 

formance of breast density in breast cancer risk assessment. 

https://www.github.com/CBICA/Deep-LIBRA
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Table 1 

General characteristics of the six study datasets. For each dataset, this table shows the institution where images were 

collected, the number of images and individual women, the range of screening dates, the racial distribution, and 

information about the dataset usage in this study. The case-control datasets (ds3-b and ds5) include any available 

cancer case from the HUP and MC screening cohorts as long as a negative FFDM exam acquired prior to breast 

cancer diagnosis was available for analysis. 

ds 1 ds 2 ds 3-a ds 3-b ds 4 ds 5 

Institution HUP HUP MC HUP HUP MC 

Number of Images 11,200 1100 3314 1147 110 6368 

Number of Women 2200 1100 1662 575 110 1592 

Screening start date 2010 2010 2008 2010 2010 2013 

Screening end date 2012 2012 2012 2014 2012 2015 

Caucasian/White (%) 45 45 98 47 45 97 

African American/Black (%) 45 45 _ 53 45 _ 

Other (%) 10 10 2 _ 10 3 

Used in development Yes Yes Yes Yes No No 

Cross-validation or Bootstrap No No Yes Yes No Yes 

Training (%) 90 90 67 67 _ _ 

Validation (%) 10 10 33 33 _ _ 

Testing (%) _ _ _ _ 100 100 

Accuracy in breast density assessment No No Yes No No Yes 

Case-control classification based on breast density No No No Yes No Yes 

2

u

o

Fig. 2. Detailed illustration of the Deep-LIBRA algorithm operation. Panel (a) shows 

the original FFDM image in 16-bit resolution, and panel (b) is the zero-padded im- 

age in an 8-bit intensity resolution. The zero-padded image is used by the back- 

ground segmentation U-Net, which generates the image shown in panel (c). Panel 

(d) is the output of the module of pectoralis muscle removal using the second U- 

Net resulting to the final breast segmentation shown in panel (e). The image from 

panel (e) is used to generate superpixels as shown in panel (f) and perform ra- 

diomic feature analysis. Finally, the SVM classifies the superpixels based on the ex- 

tracted features, resulting in dense tissue segmentation, as shown in panel (g). The 

panel (h) shows the final dense tissue segmentation overlaid on the original im- 

age. Note: The image sizes are different in this figure because the panels (a), (e)-(h) 

show images in the original image resolution, while the panels (b)-(d) are down- 

sampled images of size 512 × 512 pixels used in U-Net segmentation. 
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1. Dataset to train and validate the breast density estima- 

tion module (ds3-a): This subset consisted of 3314 bilateral 

CC-view images from 1662 women from the MC dataset, 

for which “gold-standard” human-rater Cumulus PD values 

were available by a single reader with over twenty years 

of experience estimating density with Cumulus (FFW). Auto- 

mated density scores extracted with LIBRA were also avail- 

able for these images. This dataset has been previously pub- 

lished ( Brandt et al., 2016; Gastounioti et al., 2020 ). 

2. Case-control dataset to evaluate the breast density estima- 

tion module in breast cancer risk-assessment (ds3-b): We 

used 1147 bilateral MLO-view images from 115 women who 

developed breast cancer at least one year later and 460 age- 

and ethnicity-matched controls, acquired at HUP. Clinical BI- 

RADS density assessments, as well as automated density 

scores extracted with LIBRA and Quantra, were also ascer- 

tained for these images. This case-control dataset has been 

previously published ( Gastounioti et al., 2018 ) and is de- 

scribed in detail in Supplementary Table 1. 

.1.2. Independent test datasets 

The following two datasets were used to independently eval- 

ate Deep-LIBRA after development was complete. There was no 

verlap with images nor women used in training and validation. 

• Dataset to evaluate breast segmentation performance (ds4): 

This dataset consisted of 110 MLO-view images from 110 

women randomly selected from the HUP screening cohort, with 

a racial distribution representative of the diverse screening pop- 

ulation at HUP ( McCarthy et al., 2016 ). 
• Dataset to evaluate breast cancer risk assessment perfor- 

mance (ds5): This dataset consisted of 6368 bilateral CC and 

MLO images from 414 women who developed breast cancer an 

average of 4.7 years [interquartile range (IQR): 4.1, 5.1] later and 

1178 matched controls, acquired at MC. Approximately three 

controls without prior breast cancer were matched to each case 

on age (5-year caliper matching), race, state of residence, FFDM 

screening exam date, and FFDM machine. Automated breast 

density scores extracted with LIBRA and Volpara, as well as 

semi-automated Cumulus breast density scores and clinical BI- 

RADS density assessments, were also ascertained for these im- 

ages. This dataset is described in detail in Supplementary Table 
2. v

3 
.2. Algorithm operation 

The core of Deep-LIBRA are three AI modules for (1) removal of 

he FFDM image background, (2) removal of the pectoralis mus- 

le, and (3) segmentation of the dense versus fatty tissue and 

ubsequent breast density estimation ( Fig. 2 ). The first two mod- 

les of Deep-LIBRA are based on deep learning; radiomic ma- 

hine learning forms the basis of the third module. Before applying 

hese modules, standard pre-processing steps for raw FFDM images 

re applied ( Keller et al., 2012 ), in which image intensity is log- 

ransformed, inverted, and squared, and image orientation is stan- 

ardized. 

.2.1. Background removal 

This module performed binary segmentation of the background 

ersus non-background image regions, where the background con- 
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Fig. 3. The majority voting approach. The majority voting approach uses the out- 

come of three SVM models, each trained on two folds of ds3-a, to make the final 

dense tissue segmentation. The majority voting scheme assigns the dense or non- 

dense label to each superpixel based on at least two SVM models agreeing on the 

label. 
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isted of both air and extraneous objects. This module was im- 

lemented as a binary segmentation convolutional neural network 

CNN) based on the widely used U-Net architecture, slightly mod- 

fied by replacing the simple convolutional layers of the encoder 

ith ResNet encoder modules to extract more in-depth informa- 

ion ( Szegedy et al., 2017; Maghsoudi et al., 2020 ). The U-Net was

eveloped using the dataset ds1 and a 90%-10% split-sample ap- 

roach for training and validation. To further improve the U-Net 

erformance, data augmentation ( Ronneberger et al., 2015 ) was ap- 

lied: for each training epoch, each image was randomly altered by 

ombinations of rotation (-22.5 to +22.5 degrees); horizontal shift 

-20% to +20% of image width); vertical shift (-20% to +20% of im- 

ge height); zoom (-20% to +20%); and horizontal flip. The back- 

round region segmented by the U-Net was further refined by re- 

oving any regions not connected to any of the four image bound- 

ries. Fig. 2 (c) shows the outcome from this step. 

Reference background segmentation masks were generated us- 

ng the publicly available LIBRA software ( Keller et al., 2012 ) and 

ere further reviewed and manually corrected using the ImageJ 

oftware ( Rueden et al., 2017 ) by a research scientist (OHM, two 

ears of experience) under the guidance of a fellowship-trained, 

oard-certified, breast imaging radiologist (EFC, more than 25 

ears of experience). The loss function for training was the in- 

erse weighted Dice measure, calculated as 1 - weighted dice 

 Chang et al., 2009 ), to reduce the effect of unbalanced regions in

raining (definition available in the Supplementary Material). 

.2.2. Pectoralis muscle removal 

This module segmented the breast from the image remaining 

fter background removal ( Fig. 2 (c, d)). As with the background 

emoval module, this module was implemented as a binary seg- 

entation CNN based on the U-Net architecture. Training used the 

s2 dataset, again using a 90%-10% split-sample approach for train- 

ng and validation, and the inverse weighted dice measure as the 

oss function. Data augmentation was applied, with alterations of 

otation (-22.5 to +22.5 degrees); horizontal shift (-15% to +15% of 

mage width); vertical shift (-15% to +15% of image height); and 

oom (-15% to +15%). The zoom and shift ranges were bounded at 

5%, rather than 20% used in background removal because the pec- 

oralis muscle occupies an appreciably smaller portion of an image 

han the background. Any abdominal tissue remaining in the image 

as removed. The paddle compression effect, a bump of abdom- 

nal tissue below the breast caused by paddle compression, was 

lso removed, based on the gradient of the breast contour coor- 

inates (see also Supplementary Material). Reference delineations 

f the pectoralis muscle were manually obtained using the ImageJ 

oftware by OHM under the guidance of EFC. 

.2.3. Dense tissue segmentation and breast density calculation 

The breast density calculation module involved three major 

teps: 1) Partitioning the breast into superpixels using image in- 

ensity information. 2) Calculating global and superpixel-wise ra- 

iomic features. 3) Using these radiomic features as inputs to ma- 

hine learning models to classify superpixels as either dense or 

on-dense, and calculate breast density ( Fig. 2 (e)-(h)). 

A superpixel is a contiguous subregion of the breast image. 

y defining superpixels using gray-level intensity values and spa- 

ial information, we can generate meaningful localized clusters 

 Achanta et al., 2012 ). To aggregate neighboring pixels into super- 

ixels, we used simple linear iterative clustering (SLIC), a spatially 

ocalized version of k-means clustering, which is fast, adheres to 

ocal boundaries, and generates superpixels of similar sizes (mak- 

ng the superpixels suitable for representation of scale-variant fea- 

ures such as texture features) ( Achanta et al., 2012 ). Based on the

mage size, we partitioned each image into 512 superpixels. 
4 
Then, we generated a reference classification of each superpixel 

s dense versus non-dense, using the image-wise “gold-standard”

D scores available for ds3-a. Specifically, an average intensity was 

alculated for each superpixel. For a given intensity cutoff, an over- 

ll (across all images) PD score was calculated. Similarly, the “gold- 

tandard” PD values were combined into an overall PD. The inten- 

ity cutoff that minimized the difference between the overall PD 

nd the “gold-standard” PD values was selected and was used to 

ssign each superpixel a reference value of dense versus non-dense 

egion. 

For each image, the module then computed a total of 101 ra- 

iomic features from the entire image, and an additional 50 ra- 

iomic features on each superpixel (Supplementary List 1). Ra- 

iomic features were extracted using the PyRadiomics library 

 Van Griethuysen et al., 2017 ) and additional Python packages (a 

etailed list of packages can be found on GitHub ). 

To reduce feature dimensionality, two steps were applied. First, 

or highly-correlated groups of radiomic features (i.e., absolute 

earson’s correlation r > 0 . 95 ), a single feature from each group 

as retained (100 features remained from the total of 151 features) 

hich had a maximum interquartile range. Second, a random- 

orest classifier was applied to all superpixels with the remain- 

ng radiomic features as predictors and the reference dense versus 

on-dense classification as the supervised classification labels. This 

wo-step procedure determined the 80 most-predictive features to 

etain. 

In this module’s final step, we trained a support vector ma- 

hine (SVM) on ds3-a, classifying superpixels as dense versus non- 

ense with the retained texture features as predictors. Three-fold 

ross-validation was used, resulting in three trained SVM models. 

o reduce the effect of data partitioning in the SVM performance 

 Table 2 ) and to alleviate potential overfitting, an ensemble model 

ased on the majority vote of the three SVMs was used as the fi- 

al model assigning dense versus non-dense labels to superpixels 

 Fig. 3 ), based on which Deep-LIBRA provided estimates of DA and 

D. 

.3. Algorithm evaluation 

.3.1. Evaluation on development datasets 
• Background and pectoralis muscle removal: Images in the ds1 

and ds2 datasets were used to train and validate the CNNs 

for background and pectoralis muscle removal, respectively. The 

segmentation performance of the trained CNNs was measured 

using four parameters: 1) dice ( Chang et al., 2009 ), 2) weighted 

dice, 3) sensitivity ( Chang et al., 2009 ), and 4) weighted sensi- 

tivity. Detailed definitions of the performance evaluation mea- 

sures are available in the Supplementary Material. 
• Breast density estimation: Deep-LIBRA training resulted in 

three SVMs, each trained on two of three folds of ds3-a. For 

https://upenn.box.com/s/9myv3at6cu3kzqsuphv56uwstj0fhoh9
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Table 2 

Case-control discrimination performance on the dataset ds3-b for breast percent density (PD) values generated by Deep-LIBRA and LIBRA, 

area-based (A_Quantra) and volumetric (V_Quantra) PD values by Quantra, and clinical BI-RADS density assessments. Results correspond to 

mean AUCs and 95% CIs in parentheses. Folds 1, 2 and 3 are the held-out folds used for the evaluation of the corresponding Deep-LIBRA 

SVM. Unadj. and adj. indicate unadjusted logistic regression models and logistic regression models adjusted for age and BMI, respectively. 

LIBRA V_Quantra A_Quantra BI-RADS Deep_LIBRA 

Fold 1 unadj. 0.469 (0.465, 0.472) 0.578 (0.578, 0.579) 0.560 (0.559, 0.560) 0.541 (0.540, 0.541) 0.532 (0.528, 0.536) 

Fold 2 unadj. 0.460 (0.455, 0.465) 0.579 (0.578, 0.579) 0.560 (0.559, 0.560) 0.541 (0.540, 0.541) 0.594 (0.593, 0.594) 

Fold 3 unadj. 0.467 (0.463, 0.471) 0.578 (0.578, 0.579) 0.561 (0.559, 0.561) 0.541 (0.541, 0.541) 0.561 (0.560, 0.561) 

All unadj. 0.467 (0.464, 0.471) 0.579 (0.579, 0.580) 0.561 (0.560, 0.561) 0.540 (0.539, 0.542) 0.578 (0.577, 0.578) 

All adj. 0.498 (0.494, 0.502) 0.586 (0.584, 0.587) 0.568 (0.567, 0.570) 0.550 (0.548, 0.552) 0.582 (0.581, 0.583) 

2

Fig. 4. Deep-LIBRA evaluation curves in the development phase. Panels (a) and 

(b) show the training and validation (noted as “val_”) results for background and 

pectoral muscle segmentation CNNs, respectively. As the panel (b) shows, there is 

no sign of overfitting for pectoralis muscle segmentation while panel (a) indicates 

some possible signs of overfitting after epoch 40 shown by a wider fluctuation on 

the validation set. 
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unbiased evaluation of its performance in breast density esti- 

mation, we measured each SVM’s performance separately on 

the corresponding held-out fold via Spearman correlation coef- 

ficients and absolute differences between Deep-LIBRA and gold- 

standard Cumulus PD values. We also compared the perfor- 

mance of Deep-LIBRA with the performance of the LIBRA soft- 

ware on the images of each fold. 
• Breast cancer risk assessment based on breast density: Us- 

ing ds3-b, we evaluated the case-control discriminatory abil- 

ity of Deep-LIBRA PD and DA measures, while also comparing 

with LIBRA PD and DA, Quantra area-based (A-Quantra) and 

volumetric (V-Quantra) density measures, and clinical BI-RADS 

density assessments. For each breast density measure, the case- 

control status was modeled as the outcome in each of two con- 

ditional logistic regression models ( Breslow et al., 1978 ): an un- 

adjusted model consisting of the breast density measure alone, 

and an adjusted model including also age and body-mass in- 

dex (BMI). Case-control discriminatory ability was assessed via 

the mean area under curve (AUC) of the receiver operation 

curve (ROC) across 100 bootstrap samples where case-control 

matching was maintained, with confidence intervals (CIs) de- 

rived from those 100 repetitions. Additionally, we examined dif- 

ferences in breast density distributions between cases and con- 

trols using the Wilcoxon rank sum test. 

.3.2. Evaluation on independent testing datasets 
• Breast segmentation: The images of the ds4 dataset were used 

to independently evaluate the total segmented breast area by 

Deep-LIBRA. The Dice, weighted Dice, sensitivity and weighted 

sensitivity were used as the evaluation measures, while also 

comparing with the breast segmentation performance of LIBRA 

via two-sided t-tests. 
• Breast cancer risk assessment based on breast density: A 

blinded evaluation of the associations of Deep-LIBRA PD and 

DA with breast cancer was independently performed by an an- 

alyst at MC on the dataset ds5, with the Deep-LIBRA developing 

team being blinded to the case-control status of the images. LI- 

BRA density measures, area-based and volumetric Volpara den- 

sity metrics, gold-standard Cumulus density metrics, and clini- 

cal BI-RADS density assessments were also analyzed for com- 

parison purposes. Unadjusted and adjusted conditional logis- 

tic regression analysis was performed for each density measure 

with case-control status as the outcome. Model discriminatory 

ability was assessed via AUCs, and effect sizes as odds ratios 

(ORs) per one standard deviation of breast density. P-values, for 

both AUCs and ORs, versus the null hypothesis of no difference 

from the AUC or OR derived from Deep-LIBRA, were estimated 

from testing across 10 0 0 bootstrap samples where case-control 

matching was maintained. 

Moreover, we investigated the effect of simultaneously using 

Deep-LIBRA density measures with measures from other breast 

density estimation approaches in case-control discrimination 

performance. To this end, we evaluated Deep-LIBRA density 

measures in combination with density measures from LIBRA, 
5 
Volpara, and Cumulus, as well as with clinical BI-RADS density 

assessments. 

Last, for each density measure, we tested for breast den- 

sity distribution differences between cases and controls using 

Wilcoxon rank sum tests. We also evaluated the correlations of 

different breast density measures using the Spearman correla- 

tion coefficient. SAS version 9.4 (Cary, NC) was used for all sta- 

tistical analyses, and p-values were considered statistically sig- 

nificant at the 0.05 cutoff. 

. Results 

.1. Evaluation on development datasets 

.1.1. Background and pectoralis muscle removal 

The evaluation curves in the development phase of Deep-LIBRA 

how sufficient training and high performance in breast segmen- 

ation ( Fig. 4 ). The highest weighted dice score achieved by the 

ackground removal module on the validation set was 99.4% after 

5 epochs, with a value of 99.5% on the training set at the same 

poch ( Fig. 4 (a)). The pectoralis muscle removal module achieved 

he highest weighted dice of 95.0% on the validation set after 158 

pochs, with a valueof 96.3% on the training set at the same epoch 

 Fig. 4 (b)). 

.1.2. Breast density estimation 

Deep-LIBRA breast density evaluation on ds3-a showed high 

greement with “gold-standard” Cumulus values. Mean PD differ- 

nces between Deep-LIBRA and Cumulus, measured with each of 

he three Deep-LIBRA SVMs on the corresponding held-out fold, 

ere 4.91 [95% CI: 4.48, 5.34], 4.64 [95% CI: 4.31, 4.99], and 4.22 

95% CI: 3.95, 4.49]; mean PD differences between LIBRA and Cu- 

ulus on the same folds were 5.28 [95% CI: 4.95, 5.60], 5.24 [95% 

I: 4.96, 5.52], and 5.39 [95% CI: 5.08, 5.70]. For two of the three 

olds, PD differences between Deep-LIBRA and Cumulus were sig- 

ificantly lower than those between LIBRA and Cumulus (paired 

wo-sided t -test p-values: 0.179, 0.008 and 0.001, respectively). The 

orrelations between Deep-LIBRA and Cumulus PD (0.80, 0.79, and 

.84) were also higher than those between LIBRA and Cumulus 

0.70, 0.70, and 0.69) for all three folds. 
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Table 3 

Associations of percent density (PD) measures with breast cancer and case-control discriminatory perfor- 

mance on ds5, using logistic regression models adjusted for age and BMI. P-values for both AUCs and ORs 

were obtained from 10 0 0 bootstrap samples to test for the null hypothesis of no difference from the AUC 

or OR derived from Deep-LIBRA using the same breast views. 

Density score OR (95% CI) p-value AUC (95% CI) p-value 

Deep-LIBRA PD (4 views) 1.61 (1.37, 1.88) – 0.612 (0.584, 0.640) –

Deep-LIBRA PD (CC) 1.64 (1.40, 1.91) – 0.611 (0.583, 0.639) –

Deep-LIBRA PD (MLO) 1.46 (1.26, 1.69) – 0.596 (0.568, 0.624) –

Cumulus PD (CC) 1.64 (1.39, 1.93) 0.99 0.619 (0.592, 0.647) 0.85 

LIBRA PD (4 views) 1.26 (1.09, 1.46) < .001 0.564 (0.535, 0.592) 0.01 

LIBRA PD (CC) 1.19 (1.04, 1.36) < .001 0.557 (0.528, 0.585) 0.01 

LIBRA PD (MLO) 1.26 (1.10, 1.46) 0.07 0.561 (0.533, 0.589) 0.04 

Volumetric Volpara PD (4 views) 1.55 (1.31, 1.82) 0.43 0.599 (0.572, 0.627) 0.37 

Volumetric Volpara PD (CC) 1.45 (1.24, 1.71) 0.02 0.588 (0.559, 0.616) 0.09 

Volumetric Volpara PD (MLO) 1.62 (1.37, 1.92) 0.10 0.598 (0.570, 0.626) 0.88 

Area Volpara PD (4 views) 1.48 (1.25, 1.74) 0.10 0.578 (0.551, 0.607) 0.04 

Area Volpara PD (CC) 1.38 (1.18, 1.61) < .001 0.567 (0.539, 0.596) 0.01 

Area Volpara PD (MLO) 1.62 (1.28, 1.79) 0.53 0.591 (0.563, 0.619) 0.49 

BI-RADS density 1.54 (1.30, 1.81) 0.45 0.596 (0.568, 0.624) 0.35 

Table 4 

Breast density distributions on ds5. Except for BI-RADS density, data corresponds to median 

and interquartile range in parentheses. For BI-RADS density, data corresponds to number of 

women and percentage in parentheses. ∗P-values from Wilcoxon Rank-sum tests for continu- 

ous density measures and from Pearson chi-squared test for BI-RADS density. 

Breast density measure Controls (N = 1178) Cases (N = 414) ∗p-Value 

Deep-LIBRA PD (4 views) 11.5 (5.7, 19.9) 14.1 (7.7, 23.9) < .001 

Deep-LIBRA PD (CC) 12.0 (6.6, 20.6) 15.7 (8.6, 25.7) < .001 

Deep-LIBRA PD (MLO) 10.3 (4.4, 19.8) 13.4 (6.1, 22.1) < .001 

Cumulus Proc PD (CC) 12.4 (6.6, 21.6) 15.5 (8.8, 25.3) < .001 

LIBRA PD (4 views) 10.8 (7.6, 16.0) 11.9 (8.3, 18.9) 0.004 

LIBRA PD (CC) 10.5 (7.1, 15.6) 11.5 (7.6, 18.7) 0.006 

LIBRA PD (MLO) 11.2 (7.6, 16.9) 12.3 (8.0, 19.4) 0.005 

Volumetric Volpara PD (4 views) 6.0 (4.4, 10.0) 6.7 (4.6, 12.0) < .001 

Volumetric Volpara PD (CC) 6.0 (4.4, 9.9) 6.7 (4.6, 11.7) < .001 

Volumetric Volpara PD (MLO) 5.9 (4.3, 9.7) 6.8 (4.7, 12.7) < .001 

Area Volpara PD (4 views) 48 (28.9, 68.3) 53.8 (32.9, 76.7) < .001 

BI-RADS density , n (%) < .001 

A 255 (22%) 61 (15%) 

B 487 (41%) 149 (36%) 

C 364 (31%) 170 (41%) 

D 71 (6%) 34 (8%) 
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.1.3. Breast cancer risk assessment based on breast density 

Using the dataset ds3-b and unadjusted logistic regression 

odels, PD values generated by the three Deep-LIBRA SVMs 

ielded mean AUCs of 0.532, 0.594, and 0.561 on the correspond- 

ng held-out folds ( Table 2 ). Similar performance was observed for 

uantra and clinical BI-RADS density measures. 

The PD generated by the ensemble SVM model gave a mean 

UC of 0.578 and 0.582 in the unadjusted and adjusted logistic re- 

ression models, respectively ( Table 2 ). In both cases, the perfor- 

ance of Deep-LIBRA PD was comparable to volumetric PD evalu- 

tion with Quantra, and substantially improved compared to LIBRA 

D and clinical BI-RADS density assessments. 

.2. Evaluation on independent testing datasets 

.2.1. Breast segmentation 

Using the images of ds4, Deep-LIBRA gave a mean dice score of 

2.5% for breast segmentation, which was also statistically signifi- 

antly lower (p < 0.001) than LIBRA (mean dice 83.4%) (Supplemen- 

ary Table 3 and Supplementary Figure 2). 

.2.2. Breast cancer risk assessment based on breast density 

Deep-LIBRA PD and DA measures were positively associated 

ith breast cancer regardless of the breast views considered in 

ensity calculations ( Table 3 and Supplementary Tables 4–6). The 

Rs for Deep-LIBRA PD ranged from 1.33 to 1.40 in unadjusted 
6 
odels (Supplementary Table 4) and from 1.46 to 1.61 for models 

djusted for age and BMI ( Table 3 ). Similarly, the ORs for Deep-

IBRA DA ranged from 1.46 to 1.58 in unadjusted models (Supple- 

entary Table 6) and from 1.50 to 1.64 for models adjusted for age 

nd BMI (Supplementary Table 5). Best case-control discriminatory 

erformance for Deep-LIBRA was achieved for PD (AUC = 0.612 

95% CI: 0.583, 0.640]) and DA (AUC = 0.642 [95% CI: 0.615, 0.669]) 

stimates averaged over the four breast views (i.e. left and right CC 

nd MLO views). The performance of Deep-LIBRA was comparable 

o Cumulus and volumetric Volpara density measures, and signif- 

cantly improved compared to area-based LIBRA and Volpara den- 

ity metrics ( Table 3 ). 

When Deep-LIBRA PD averaged over the four breast views was 

valuated in combination with other density measures, Deep-LIBRA 

D was the only PD measure that maintained significant associ- 

tions with breast cancer (Supplenentary Table 8). Moreover, the 

UC was only minimally modified by the addition of other den- 

ity measures to Deep-LIBRA PD. Similar observations were found 

or Deep-LIBRA DA when evaluated in combination with absolute 

ensity measures from other density estimation approaches (Sup- 

lenentary Table 9). However, besides Deep-LIBRA DA, Cumulus DA 

nd absolute volumetric density by Volpara also maintained signif- 

cant associations with breast cancer. 

Deep-LIBRA PD averaged over the four breast views was sig- 

ificantly lower in controls (median PD = 11.5% [IQR: 5.7, 19.9]) 

ompared to cases (median PD = 14.1% [IQR: 7.7, 23.9]) ( Table 4 ).
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ignificant differences between cases and controls were also found 

or other breast density estimation approaches, with slightly nar- 

ower PD ranges for LIBRA and volumetric Volpara density metrics 

 Table 4 ). Deep-LIBRA PD was also strongly correlated with Cumu- 

us PD (r = 0.90), as well as with LIBRA (r = 0.76) and Volpara

r = 0.89) PD measures and clinical BI-RADS density assessments 

r = 0.80) (Supplementary Figure 3). However, moderate to strong 

orrelations were found between Deep-LIBRA DA and Cumulus (r 

 0.79), LIBRA (r = 0.44), Volpara (r = 0.52-0.71), and clinical BI- 

ADS density assessments (r = 0.71) (Supplementary Figure 4). 

. Discussion 

This study introduced Deep-LIBRA, an open-source AI tool for 

ully automated breast density evaluation from raw FFDM im- 

ges. Deep-LIBRA’s promising performance in breast density esti- 

ation and density-based risk assessment suggests the effective- 

ess of combining deep learning with conventional radiomic ma- 

hine learning methodologies towards developing a useful compu- 

ational tool for accurately estimating mammographic density, a 

ritical imaging biomarker in breast cancer screening. 

We acknowledge that AI could be used for direct risk predic- 

ion from FFDM images ( Dembrower et al., 2020; Yala et al., 2019 ).

owever, accurate estimation of breast density is of utmost im- 

ortance for several reasons. First, breast density measurements 

ave been shown to be useful in several tasks beyond predicting 

 woman’s risk for breast cancer, from evaluating the risk of de- 

reased mammographic sensitivity due to masking of tumors by 

ense breast tissue ( Mandelson et al., 20 0 0; Boyd et al., 20 07 )

o assessing effects of aspirin use and bariatric surgery on breast 

arenchymal patterns ( Williams et al., 2017; Wood et al., 2017 ). 

econd, spatial dense tissue segmentation maps such as the ones 

rovided by Deep-LIBRA can provide valuable insights about breast 

egions associated with tumor masking, potentially also driving 

reast cancer risk. Most importantly, in 2019, federal legislation 

andated that women be notified of their breast density in all 50 

tates and US Territories as part of routine breast cancer screening 

etters ( Are-You-Dense-Advocacy, 2019 ). Therefore, an automated 

ool that can accurately evaluate a woman’s actual breast density 

alue can have a substantial clinical impact. 

To segment the breast region, Deep-LIBRA employs two binary 

egmentation U-Nets, one for background and one for pectoral 

uscle removal instead of a single multi-class network. We found 

hat this design could better address intensity variations in the in- 

ut images as well as remove unpredictable artifacts, such as pad- 

les and rings, that can substantially affect breast segmentation. 

o segment the dense tissue area within the breast, Deep-LIBRA is 

ased on a ensemble of radiomic machine learning models. This 

esign was motivated by the observed effect of data partitioning 

n the performance of machine learning models. To alleviate this 

ffect, an ensemble model based on the majority vote of the three 

VMs is used as the final model assigning dense versus non-dense 

abels to superpixels, based on which Deep-LIBRA provides esti- 

ates of breast density measures. 

Deep-LIBRA was trained and validated on a unique multi-racial 

ataset of 15,661 FFDM images (4,437 women) from two different 

linical sites, and then tested on an independent matched case- 

ontrol dataset of 6368 digital mammograms for both breast den- 

ity estimation and case-control discrimination. Our results sug- 

est a strong agreement of breast density estimates between Deep- 

IBRA and gold-standard assessment by an expert reader, as well 

s improved performance in breast cancer risk assessment over 

tate-of-the-art open-source and commercial methods. Interest- 

ngly, Deep-LIBRA DA had a stronger association with breast can- 

er risk than Deep-LIBRA PD, while adjusting for BMI increased the 

trength of associations for both density measures. While an in- 
7 
erplay between breast density, BMI, and race has been found in 

revious studies ( McCarthy et al., 2016 ), our results potentially in- 

icate the need to better understand the associations of absolute 

ersus percent density measures with breast cancer risk, especially 

cross different BMI levels and in diverse populations. 

The limitations of our study must also be noted. At this point, 

eep-LIBRA has only been trained on “FOR PROCESSING” FFDM 

mages from a single manufacturer (Hologic). Motivated by the 

romising Deep-LIBRA performance reported in this study, our im- 

ediate next step will be training and re-evaluating Deep-LIBRA 

or “FOR PRESENTATION” vendor-processed FFDM images, while 

tilizing multi-vendor datasets. As such, we will also be able to 

ompare and potentially integrate Deep-LIBRA density measures 

ith other AI methods for BI-RADS density estimation and risk as- 

essment which have been developed for vendor-processed FFDM 

mages ( Dembrower et al., 2020; Lehman et al., 2018; Yala et al., 

019 ). Moreover, we trained Deep-LIBRA for breast density estima- 

ion using semi-automated PD scores as a reference. In reality, ac- 

ual ground-truth density estimations could be obtained only via 

reast excisions. To overcome this limitation, and acknowledging 

he inter-reader variation in semi-automated breast density scores, 

e used “gold standard” Cumulus PD estimates by a single reader 

ith over twenty years of experience estimating density with Cu- 

ulus (F.F.W.). In our future work, we will explore the use of refer- 

nce PD estimates from multiple readers and their effect of Deep- 

IBRA training. 

Moreover, we realize that evaluating Deep-LIBRA density mea- 

ures in predicting breast cancer masking will be another impor- 

ant step to help determine its value in precision breast cancer 

creening. Although our study had limited power for this anal- 

sis due to the small number of interval cancers in our case- 

ontrol datasets (15%), we anticipate that this study will provide 

nstrumental evidence for Deep-LIBRA to facilitate larger, multi-site 

tudies to validate Deep-LIBRA density measures in predicting risk 

f masking. With Deep-LIBRA being an open-source software, we 

im to encourage a widespread utilization of Deep-LIBRA in vari- 

us studies of mammographic breast density and risk towards an 

xtensive validation of Deep-LIBRA in multi-site and multi-racial 

opulations. 
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