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CANCER

Toward robust mammography-based models for
breast cancer risk

Adam Yala'?*, Peter G. Mikhael'?, Fredrik Strand®*, Gigin Lin>, Kevin Smith®’, Yung-Liang Wan®,
Leslie Lamb?®, Kevin Hughes®, Constance Lehman®!, Regina Barzilay"rr

Improved breast cancer risk models enable targeted screening strategies that achieve earlier detection and less
screening harm than existing guidelines. To bring deep learning risk models to clinical practice, we need to fur-
ther refine their accuracy, validate them across diverse populations, and demonstrate their potential to improve
clinical workflows. We developed Mirai, a mammography-based deep learning model designed to predict risk at
multiple timepoints, leverage potentially missing risk factor information, and produce predictions that are
consistent across mammography machines. Mirai was trained on a large dataset from Massachusetts General
Hospital (MGH) in the United States and tested on held-out test sets from MGH, Karolinska University Hospital in
Sweden, and Chang Gung Memorial Hospital (CGMH) in Taiwan, obtaining C-indices of 0.76 (95% confidence
interval, 0.74 to 0.80), 0.81 (0.79 to 0.82), and 0.79 (0.79 to 0.83), respectively. Mirai obtained significantly higher
5-year ROC AUCs than the Tyrer-Cuzick model (P < 0.001) and prior deep learning models Hybrid DL (P < 0.001)
and Image-Only DL (P < 0.001), trained on the same dataset. Mirai more accurately identified high-risk patients
than prior methods across all datasets. On the MGH test set, 41.5% (34.4 to 48.5) of patients who would develop
cancer within 5 years were identified as high risk, compared with 36.1% (29.1 to 42.9) by Hybrid DL (P =0.02) and 22.9%
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(15.9 to 29.6) by the Tyrer-Cuzick model (P < 0.001).

INTRODUCTION

It is estimated that 39 million mammograms are performed in the
United States every year (1, 2), with $1.1 billion dollars being spent
by Medicare alone (3). Despite the wide adoption of breast cancer
screening, the practice is riddled with controversy. Proponents of
more aggressive screening strategies aim to maximize the benefits
of early detection (4-9), whereas advocates of less frequent screen-
ing aim to reduce the false-positive assessments, anxiety, and costs
for the patients who will never develop breast cancer (10-14). As a
result, in the United States, there are multiple guidelines with differ-
ent recommendations about when to start screening, how often to
get screened, and when supplemental screening is needed (15-20).
We argue that both goals of earlier detection and reducing over-
treatment can be achieved by leveraging more accurate risk models.
With improved risk-based guidelines, we can offer more sensitive
screening to patients who will develop cancer, achieving earlier
detection while reducing unnecessary screening and overtreatment
for the rest. Moreover, because of the scale of breast cancer screen-
ing, even modest improvements in screening guidelines have the
potential to benefit a wide patient population.
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All guidelines currently in clinical use leverage risk models. Some
guidelines (19) use risk models as simple as a patient’s age to deter-
mine whether, and how often, a woman should get screened, whereas
others (16) combine multiple factors relating to age, hormonal factors,
genetics, and mammographic breast density to determine whether
supplemental imaging should be considered. However, despite de-
cades of effort, the accuracy of risk models used in clinical practice
remains modest. For instance, the Tyrer-Cuzick (21) and Gail (22)
models achieved areas under the curve (AUCs) of 0.62 and 0.59,
respectively, in a prospective UK screening cohort (23). Recently,
image-based deep learning models have shown considerable promise
(24, 25), obtaining AUCs up to 0.70 for assessing 5-year risk and
advancing the state of the art. However, to bring an image-based
risk model to the clinic, we not only need to further improve its
accuracy but must also validate its performance at scale across
diverse populations and clinical settings. Furthermore, we need to
demonstrate that it can identify more accurate high-risk cohorts. Here,
we aimed to achieve all three of these goals by developing Mirai and
studying its performance across multiple populations.

RESULTS
Overview of algorithm
In computational terms, risk assessment can be viewed as a prediction
task, where the model is trained to associate features of mammograms
with future cancer diagnoses. Although this setup, referred to as
supervised learning, is commonly used for medical tasks (26-30),
risk modeling also poses several unique requirements. It requires
risk prediction at various time points, the ability to leverage po-
tentially missing nonimage data (such as age and family history),
and consistent performance across heterogeneous mammography
devices.

Inherent to risk modeling is learning from patients with variable
amounts of follow-up and needing to assess risk at different time
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points. Although it is possible to train separate models to assess risk
for each time point based on patients with the corresponding amount
of follow-up (1 to 5 years), this approach can result in mutually in-
consistent risk assessments. For instance, a model could predict that
a patient has a higher risk of developing cancer within 2 years than
within 5 years. Moreover, this approach does not leverage the inherent
relationship between assessing risk at different time points. We ad-
dress this by training a single model to predict risk at all time points
and by explicitly designing the architecture to produce self-consistent
predictions. This formulation also enables the model to learn from
data with variable amounts of follow-up.

Although our method primarily focuses on mammograms, we
also wanted to leverage nonimage risk factors (for example, age and
hormonal factors) if they were available. An obvious mechanism for
incorporating nonimage risk factors is to add them as an input to
the model jointly with the image. However, this design would pre-
vent hospitals that do not collect this kind of information from us-
ing the model. Although we could impute this missing information
by using a reference population, that would not take into account
the relationship between the mammogram and the risk factors. To
address this challenge, we trained our model to predict risk factor
values from the mammogram, enriching our original objective with
this new prediction task. This formulation enabled the model to
benefit from available risk factor data while allowing it to impute the
information if it is missing.

To incorporate deep learning risk models into clinical guidelines,
the models must be consistent across a range of mammography de-
vices, in other words, they must predict the same risk for a patient
regardless of the mammography device. We addressed this challenge
by adopting a conditional-adversarial training scheme (31). This
training regime forces the model to induce image representation in
a device-invariant fashion and to produce consistent risk assessments.

Our full model, named Mirai, is depicted in Fig. 1. It takes as
input all standard views of a mammogram: left craniocaudal (L CC),
left mediolateral-oblique (L MLO), right craniocaudal (R CC), and
right mediolateral-oblique (R MLO). Mirai consists of four modules:
an image encoder, an image aggregator, a risk factor predictor, and
an additive-hazard layer. A run through the model works as follows:
first, we pass each mammogram view independently through the
image encoder. Next, we take each image representation as well as
which view it came from (for example, L CC and R MLO), and pass
it into the image aggregation module to combine information
across views and obtain a representation of the entire mammogram.
Given this rich representation of the mammogram, we then predict
a patient’s traditional risk factors as used in Tyrer-Cuzick (such as
age, weight, and hormonal factors) and refer to this as our risk fac-
tor prediction module. If risk factor information is not available at
inference time, we then use the predicted values. Next, we take the
mammogram representation from our image aggregator, combined
with our risk factor information (predicted or given), and predict a
patient’s risk with an additive-hazard layer. The additive-hazard layer
predicts a patient’s risk for each year over the next 5 years. Architec-
tural details for each module are presented in the Supplementary
Materials and Methods, and all code is released.

Training and testing at MGH

We developed Mirai using the Massachusetts General Hospital (MGH)
dataset, which consists of 210,819, 25,644, and 25,855 examinations
from 56,786, 7020, and 7005 patients, for the training, validation,
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Fig. 1. Schematic description of Mirai. The four standard views of an individual
mammogram were fed into Mirai. The image encoder mapped each view to a vector,
and the image aggregator combined the four view vectors into a single vector for
the mammogram. In this work, we used a single shared ResNet-18 as an image en-
coder, and a transformer as our image aggregator. The risk factor predictor module
predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed
family history, and hormonal factors, from the mammogram vector. The additive
hazard layer combined information from both the image aggregator and risk fac-
tors (predicted or given) to predict coherent risk assessments across 5 years (Yr).

and test sets, respectively. This dataset contained detailed risk factor
information, as used in Tyrer-Cuzick version 8 (TCv8), that was
available at the time of mammography. The distribution of clinical
risk factors in the MGH dataset, as used by TCv8, is shown in table
S1. A flowchart illustrating the construction on the MGH dataset is
shown in Fig. 2.

To determine the impact of using predicted risk factors on
Mirai’s performance, we evaluated the model both when using the
electronic health record-based and predicted risk factors, referring
to the two scenarios as “Mirai with risk factors” and “Mirai without
risk factors,” respectively. We compared Mirai against three alter-
native risk models: Hybrid DL (25), Image-Only DL (25), and TCv8.
Hybrid DL is a deep learning model based on both mammograms
and traditional risk factors, and Image-Only DL is a deep learning
model based only on mammograms. Hybrid DL requires traditional
risk factors to predict risk, whereas Image-Only DL does not use such
information. We note that Hybrid DL and Image-Only DL were
both developed using the same MGH dataset as Mirai, and so, differ-
ences in performance can only be attributed to the algorithm design.
Image-Only DL is equivalent to the image encoder component of
Mirai trained by itself as a 5-year risk classifier. TCv8 is a traditional
risk model that combines a variety of risk factors including age,
family history, and hormonal factors and is a current clinical stan-
dard. We obtained TCv8 risk assessments using the Command-Line
version of the IBIS Breast Cancer Risk Evaluation tool (version 8).
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MGH Karolinska CGMH
80,134 patients 11,303 patients 15,178 patients
2009-2016 2008-2016 2010-2011
| | 1

Exclude 97 patients with other cancers
in the breast

Select 70% of patients randomly from
the full case-control set

Exclude 1681 patients that lack at
least 1 year of screening follow-up

Exclude 8956 patients that lack at
least 1 year of screening follow-up

Exclude 1290 patients that lack at
least 1 year of screening follow-up

Exclude 141 patients with fewer than
4 images per examination

Exclude 109 patients with fewer than

Exclude 80 patients with fewer than 4

4 images per examination images per examination CGMH test set
13,356 patients
70,972 patients 13,356 exams
262,798 exams Karolinska test set
7353 patients
19,328 exams

v v

MGH training set MGH validation set Exclude 161 patients

56,786 patients 7020 patients with prior history of
210,819 exams 25,644 exams cancer
MGH test set

7005 patients
25,855 exams

Fig. 2. Dataset construction flowchart. Shown are the MGH (left), Karolinska (middle), and CGMH (right) datasets.

To better investigate the connection between risk estimation and
cancer detection, we also compared Mirai with retrospective radiologist
BI-RADS (Breast Imaging-Reporting and Data System) assessments
and a recently proposed cancer detection model, Image-and-Heatmaps
(32), on the MGH test set. Image-and-Heatmaps is a convolution-
al neural network trained on a large dataset from New York University
(NYU) using both pixel-level and whole-image annotations to pre-
dict cancer within 120 days. We obtained Image-and-Heatmaps
cancer predictions using their publicly available GitHub (33) and
did not use test-time data augmentations or model ensembling.

On the 25,855 examinations (588 positive) in the MGH test set,
Mirai with and without risk factors obtained C-indices of 0.76 (0.74
to 0.80) and 0.75 (0.72 to 0.78) compared with C-indices of 0.72
(0.69 to 0.75), 0.72 (0.69 to 0.75), and 0.64 (0.60 to 0.67) by Hybrid
DL, Image-Only DL, and TCv8, respectively. The full results on the
MGH dataset are summarized in Table 1, and receiver operating
characteristic (ROC) curves for each time point are shown in Fig. 3.
Mirai with risk factors had a significantly higher 5-year AUC than
Hybrid DL, Image-Only DL, and TCv8 with P values of <0.001, <0.001,
and <0.001, respectively. Mirai with risk factors did not have a sig-
nificantly higher 5-year AUC than Mirai without risk factors (P = 0.27).
We also present an analysis of model performance excluding
cancers identified within 6 months of the screening mammogram,
resulting in 25,708 examinations (441 positive) (table S2). In this
setting, Mirai with risk factors had a significantly higher 5-year
AUC than Hybrid DL, Image-Only DL, and TCv8, with P values of
<0.001, 0.02, and <0.001, respectively, and did not have a signifi-
cantly higher 5-year AUC than Mirai without risk factors (P = 0.27).
We also evaluated the performance of radiologist BI-RADS assess-
ments and Image-and-Heatmaps (32) in Table 1. Radiologists
obtained ROC AUCs of 0.92 (0.90 to 0.95) and 0.75 (0.72 to 0.78) at
1 and 2 years, respectively, compared with 0.84 (0.81 to 0.88) and
0.80 (0.76 to 0.83) by Mirai. We found that Image-and-Heatmaps
obtained a 1-year AUC of 0.78 (0.73 to 0.82) and a C-index of 0.68
(0.65 to 0.72).
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We performed an ablation study of Mirai to investigate the effects
of different design choices on overall performance and mammography
device bias (table S3 and fig. S1). To evaluate the mammography
device bias of a risk model, we trained a classifier to predict which
machine was used to acquire a mammogram from the model’s cor-
responding risk assessment and measured the AUC of this device-
identity classifier on the MGH test set. We found that an ablation of
Mirai without risk factors that removed conditional adversarial
training obtained a device-identity AUC of 0.76 (0.75 to 0.76), re-
flecting large device bias. With the addition of conditional adversarial
training, Mirai without risk factors obtained a device-identity AUC
of 0.50 (0.50 to 0.50), effectively removing the bias. We evaluated
the saliency of each risk factor in Mirai’s predictions across the MGH
test set in fig. S2. The most important risk factors were a patient’s
BRCA status, if they had any family history (binary family history),
and if they had had any children (parous), with average saliency scores of
0.07 (0.07,0.07), 0.04 (0.04, 0.04), and 0.03 (0.03, 0.03), respectively.
In contrast, mammograms had an average saliency score of 2.19
(2.17, 2.22). We note that the mammogram obtained a 30-fold higher
saliency score than the most important clinical factor, BRCA status.
This finding is consistent both with the reported performance of
Mirai with and without risk factors shown in Table 1 and the result
that Mirai with risk factors did not obtain a significantly higher
5-year AUC than Mirai without risk factors (P = 0.27).

Generalization to additional populations

For Mirai to be useful to the larger community, it must be validated
in a diverse set of clinical environments and patient populations. To
this end, we tested the model on a dataset from the Karolinska
University Hospital in Sweden consisting of 19,328 examinations
(1413 positive) from 7353 patients and a dataset from the Chang
Gung Memorial Hospital (CGMH) in Taiwan consisting of 13,356
examinations (244 positive) from 13,356 patients. A dataset con-
struction flowchart for both datasets is shown in Fig. 2. Traditional
risk factors were not available in either dataset. As a result, we tested
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Table 1. ROC AUCs and C-indices for Mirai and prior risk models on all test sets. On the MGH test set, we also evaluated Image-and-Heatmaps (32) and
radiologist BI-RADS assessments. All metrics are followed by their 95% confidence interval.

Model Use risk factors C-index 1-Year AUC

2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC

MGH test set: 25,855 exams, 558 followed by cancer diagnosis

Tyrer-Cuzick Version
8 (TCv8) (21)

di

Image-and-

Heatmaps (32)

Imag y

Hybrid DL (25)

Yes

No 0.75(0.72-0.78)  0.84 (0.80-0.87
erai (OUI’S) ......................................................................................................

Yes 0.76 (0.74-0.80)  0.84 (0.81-0.88

Karolinska test set: 19,328 examinations, 1413 followed by cancer diagnosis

0.80(0.76-0.83)  0.78(0.75-0.81)  0.76 (0.73-0.80)  0.76 (0.73-0.80)

Image-Only DL (25) 0.75(0.73-0.77)

Mirai (ours) 0.81(0.79-0.82)

CGMH test set: 13,356 examinations, 244 followed by cancer diagnosis

0.83 (0.81-0.86)

0.90 (0.89-0.92)

0.79(0.77-0.81)  0.75(0.73-0.77)  0.73(0.71-0.75)  0.71(0.69-0.73)

0.86 (0.84-0.88)  0.82(0.80-0.84) 0.80(0.79-0.82) 0.78 (0.76-0.80)

Image-Only DL (25) 0.70 (0.66-0.74)

Mirai (ours) 0.79 (0.76-0.83)

Mirai (without risk factors) and Image-Only DL but not TCv8 or
Hybrid DL, which require risk factors.

On the Karolinska dataset, Mirai obtained a C-index of 0.81
(0.79 to 0.82) compared with a C-index of 0.75 (0.73 to 0.77) by
Image-Only DL. Mirai performed similarly on the CGMH test set,
obtaining a C-index of 0.79 (0.76 and 0.83) compared with a C-index
of 0.70 (0.66 and 0.74) by Image-Only DL. The full results on the
Karolinska and CGMH test sets are summarized in Table 1, and
ROC curves for each time point are displayed in Fig. 3. In both
Karolinska and CGMH, Mirai had a significantly higher 5-year
AUC than Image-Only DL with P values of <0.001 and <0.001, re-
spectively. We note that Mirai obtained similar 5-year AUCs across
all test sets, achieving AUCs of 0.76 (0.73 to 0.80), 0.78 (0.76 to
0.80), and 0.79 (0.75 to 0.82) for the MGH, Karolinska, and CGMH
test sets, respectively. We also present an analysis excluding cancers
identified within 6 months of the screening mammogram in table
S2. In this setting, Mirai had a significantly higher 5-year AUC than
Image-Only, with P values of <0.001 and <0.001 on the Karolinska
and CGMH test sets, respectively.

Subgroup analysis

We also validated all risk models for different clinical subgroups of
interest. In the MGH test set, we computed model C-indices for
patients of different races (White, African American, and Asian
American), different age groups, different density categories, and
different mammography devices. We found that Mirai performed
similarly across all groups. This information is available in table S4.
We note that the C-indices for Mirai with risk factors for White,
Asian American, and African American patients were 0.75 (0.72 to
0.78), 0.80 (0.68 to 0.95), and 0.71 (0.55 to 0.90), respectively, com-
pared with 0.64 (0.60 to 0.68), 0.54 (0.36 to 0.75), and 0.62 (0.44 to
0.84) for TCv8. The consistent performance for Asian Americans is
further supported by the C-index 0£0.79 (0.76 to 0.83) in the CGMH

Yala et al., Sci. Transl. Med. 13, eaba4373 (2021) 27 January 2021

0.80 (0.75-0.64)

0.90 (0.87-0.93)

0.76 (0.71-0.80)  0.72(0.67-0.76) 0.71 (0.67-0.75)  0.70 (0.66-0.73)

0.86 (0.83-0.90) 0.82(0.78-0.85) 0.80(0.77-0.84) 0.79(0.75-0.82)

dataset. In the Karolinska dataset, we computed Mirai C-indices by
future cancer subtype (invasive, HER2 status, and so on) in table S5.
The distribution of cancer subtypes is reported in table S6. We found
that Mirai obtained similar C-indices across different subtypes, which
is further supported by a t-SNE (t-distributed stochastic neighbor
embedding) (34) analysis (fig. S3) showing that the model learns
similar representations for mammograms regardless of the subtype
of the future cancer.

Identifying high-risk cohorts
Our next objective was to investigate whether improved risk models
can advance early detection. A wide range of guidelines already
exist to offer either supplemental screening (15-20, 35) or chemo-
prevention (36, 37) for patients at high risk of future cancer. To
improve these guidelines, it is necessary to improve our definitions
of who is at “high risk.” To this end, we evaluated the ability of dif-
ferent risk models to identify high-risk patients. We restricted our
analysis to patients in the MGH, Karolinska, and CGMH test sets
who were screening negative and had either cancer within 5 years or
had 5 years of negative follow-up. We did not have access to radiologist
BI-RADS assessments for all datasets, so we defined a screening nega-
tive examination as not receiving a cancer diagnosis within 6 months.
The MGH, Karolinska, and CGMH 5-year cohorts had 3957,
5707, and 11,167 patients and consisted of 9284 examinations with
441 future cancers, 5707 examinations with 869 future cancers, and
11,167 examinations with 139 future cancers, respectively. Intuitively,
we wanted a risk model to identify the most future cancers
(high sensitivity) without directing unnecessary interventions to
patients without future cancer (high specificity). We considered four
possible methods of determining high-risk patients: Tyrer-Cuzick
lifetime risk, Image-Only DL, Hybrid DL, and Mirai. For Tyrer-Cuzick
lifetime risk, we used a high-risk threshold of 20%, which is used in
current guidelines for supplemental screening by the American Cancer
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Year 1
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Fig. 3. ROCs for model predictions on MGH, Karolinska, and CGMH test sets. Results are shown in the top, middle, and bottom rows, respectively. The curves are ar-

ranged left to right from 1- to 5-year outcomes.

Society, the American College of Radiology, and the National Com-
prehensive Cancer Network (19, 20, 35). For Image-Only DL, Hybrid
DL, and Mirai, we chose high-risk thresholds to match the specificity of
Tyrer-Cuzick lifetime risk model on the MGH development set. On
the Karolinska and CGMH 5-year cohorts, we evaluated the perform-
ance of Mirai and Image-Only DL using the thresholds computed
on the MGH test. To enable more direct comparison, we also com-
puted the performance of Image-Only DL when we chose a thresh-
old to match Mirai’s specificity on each dataset.

The full results of our analysis across the MGH, Karolinska, and
CGMH test sets are in Table 2, and the ROC curves of all models in
this setting are shown in Fig. 4. On the MGH 5-year cancer cohort,
the Tyrer-Cuzick lifetime risk >20% guideline obtained a sensitivity
and specificity of 22.9% (15.9 to 29.6) and 85.4% (84.1 to 86.6), re-
spectively. Although obtaining similar specificity, Mirai with risk
factors, Mirai without risk factors, Hybrid DL, and Image-Only DL
obtained sensitivities of 41.5% (34.2 to 48.5), 39.7% (32.9 to 46.5),
36.1% (29.1 to 42.9), and 32.9% (26.1 to 39.4), respectively. Moreover,
the sensitivity of Mirai with risk factors was significantly higher
than that of Hybrid DL, Image-Only DL, and Tyrer-Cuzick lifetime
risk, with P values of P = 0.02, P < 0.001, and P < 0.001, respectively.
The sensitivity of Mirai with risk factors was not significantly higher
than Mirai without risk factors (P = 0.37). We present a supplemen-
tary analysis of the MGH dataset in table S7, where we used radiologist
BI-RADS assessments in determining who was screening negative.
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On the Karolinska and CGMH test sets, Mirai without risk factors
obtained sensitivities of 26.0% (22.4 to 29.6) and 37.4% (29.3 to 45.5)
and specificities of 93.1% (92.4 to 93.9) and 88.5% (88.0 to 89.2),
respectively. We found that Image-Only DL performed poorly when
using the risk threshold identified on the MGH test set. When cali-
brated to obtain the same specificities as Mirai, Image-Only DL
obtained sensitivities of 18.9% (15.6 to 22.1) and 24.5% (16.9 to
31.3), respectively. Mirai obtained significantly higher sensitivities
than Image-Only DL in both datasets (P < 0.001 and P < 0.001).

GZ0Z ‘70 Ae Al UO ousy epensN J0 AlSIBAIUN T8 BI0°30Us 105" MAMM//:ST1Y LWOJ | PSpeo|UMO(

DISCUSSION

We developed a risk model, Mirai, to assess breast cancer risk from
screening mammograms. Mirai demonstrated improved discriminatory
capacity over the state-of-the-art clinically adopted Tyrer-Cuzick and
prior deep learning approaches Hybrid DL and Image-Only DL.
Moreover, we found that Mirai, which was trained at MGH, maintained
its performance on datasets from both Karolinska in Sweden and
CGMH in Taiwan without additional training. Externally validating
our model across diverse clinical settings is especially important given
recent negative findings for the generalization of other proposed
mammography-based models for cancer risk (38). We evaluated Mirai
across races, ages, and breast density categories in the MGH test set
and across cancer subtypes on the Karolinska dataset and found that
it performed similarly across all subgroups. We also demonstrated
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Table 2. Sensitivity and specificity of different risk models in
identifying high-risk cohorts. We excluded screening positive
mammogrames. In this analysis, we defined a screening positive
mammogram as one followed by a cancer diagnosis within 6 months.
Thresholds were chosen to match the specificity of the Tyrer-Cuzick
lifetime risk on the MGH development set. Thresholds marked with * were
chosen to best match the specificity of Mirai on the respective test set. All
metrics are followed by their 95% confidence interval.

Userisk High risk

Method Sensitivity  Specificity

factors threshold
Dataset MGH: 9284 examinations from 3957 patients;
441 examinations followed by future cancer
Tyrer-Cuzick o 22.9% 85.4%
lifetime risk ves 20% (159-296)  (84.1-86.6)
Image-Only o 32.9% 85.9%
DL (25) No 34% (26.1-39.4) (84.8-86.9)
36.1% 86.0%
i 0
Hybrid DL (25) Yes 3.4% (291-429)  (849-87.1)
39.7% 85.2%
()
No 26% (32.9-465)  (84.1-86.4)
Mirai 5_year riSk ...............................................................................................
0, 0
Yes 3.0% 41.5% 85.6%

Karolinska: 7194 examinations from 5707 patients;

LIEEGS 869 examinations followed by future cancer
0.6% 99.9%
0
3:4% (0.0-07)  (99.9-100.0)
|mage_on|y DL (25) NO .............................................................................
1.30%* 18.9% 93.1%
=7 (156-22.1)  (92.4-93.8)
26.0% 93.1%
il R . .
Mirai 5-year risk No 2.6% (224-296)  (92.4-93.9)
CGMH: 11,167 examinations from 11,167 patients;
Dataset

139 examinations followed by future cancer

how Mirai could be implemented in current clinical pipelines fo-
cused on identifying high-risk patients and showed that it improved
over existing risk models such as Tyrer-Cuzick lifetime risk and
Image-Only DL.

Risk models in clinical practice today, namely, breast density and
traditional statistical models, are the foundation of current guide-
lines for personalized screening and prevention. For instance, breast
density, which was described as early as 1967 (39), was the first to
recognize that a woman’s imaging could inform her future cancer
risk; the DENSE trial (40) later showed that giving women with
extremely dense breasts supplemental magnetic resonance imaging
could substantially reduce interval cancers. Traditional statistical risk
models, like the Gail and Tyrer-Cuzick models (21, 22), have long
recognized that combining multiple sources of information can yield
better predictions, and they are the base of both current supplemental
imaging and chemoprevention guidelines (16, 19, 35-37). Our
research builds upon their seminal works. We hypothesize that de-
veloping more accurate risk models will enable further guideline
personalization and thus lead to better outcomes.

The performance of Mirai can be attributed to how its design
captures unique characteristics of breast cancer risk estimation.
Specifically, the model architecture jointly reasons over both dif-
ferent views of the mammogram and multiple time points of
risk assessment. Moreover, we demonstrated how to incorporate
nonimage risk factors such as age or hormonal factors to further
refine accuracy, while enabling the model to impute this infor-
mation if it is not provided. Last, we used a conditional adver-
sarial training regime to learn image representations that are device
invariant.

Our work is also related to the large volume of work (32, 41-53)
focused on developing deep learning models for breast cancer
detection. Although the tasks of cancer detection and future cancer
risk are distinct, we hypothesize that some of the technical lessons from

2.2% 99.9%
0 . .
34% (0.7-43)  (99.9-100.0) the two tasks can be complementary. For instance, we hypothesize
IEg=elilbllehy) - [ 08506 that aggressive model ensembling strategies used by (32, 53, 54) and
%* - : . . . .
1.2% (16.9-313)  (87.9-89.1) the use of detailed cancer region annotations could be used to im-
e o prove image-based risk models. Moreover, we hypothesize that our
Mirai 5-yearrisk No 26% (293-455)  (88.0-89.2) mechanisms for predicting risk at multiple time points, optionally
using risk factors, and learning representations that are invariant to
MGH Karolinska CGMH
X Tyrer-Cuzick lifetime risk =Image-Only DL (AUC = 0.64) ==Image-Only DL (AUC = 0.61)
—Image-Only DL (AUC = 0.69) ==Mirai 5-year risk - no risk factor (AUC = 0.71) ==Mirai 5-year risk - no risk factor (AUC = 0.70)
Hybrid DL (AUC = 0.69)
—NMirai 5-year risk - no risk factor (AUC = 0.71) 1.00— 1.00—
Mirai 5-year risk - with risk factor (AUC = 0.72)
1,00 P o )
° /;,’ ‘é 0.75—] ‘é 0.75—
® L7 o )
= 075+ . 2 2
o - k= =
> e | -
= 8 0.50 g 0.50
@ 050 n N
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'—
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Fig. 4. ROCs of different risk models in identifying high-risk cohorts. MGH (left), Karolinska (middle), and CGMH (right) cohorts are shown. These datasets are restrict-
ed to include patients who were screening negative and had either cancer within 5 years or 5 years of negative follow-up. The orange and purple curves refer to Mirai with

and without risk factors, respectively.
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mammography machines could be used to improve the current state
of the art in cancer detection systems.

Although Mirai can be tested as a cancer detection system, direct
comparison to prior work in cancer detection is difficult due to a lack
of publicly available code (53, 55) and the lack of common bench-
marks. Not directly comparable, we note that Mirai obtained a 1-year
AUC of 0.90 on the Karolinska test set, similar to the top single-
model AUC 0.90 on a separate Karolinska test set reported by (54).
We also evaluated Image-and-Heatmaps (32), a recently proposed
cancer detection model trained to predict cancer within 120 days,
on a large dataset from NYU. Image-and-Heatmaps obtained a 120-day
AUC 0f 0.89 on the NYU test set (32), and it obtained a 1-year AUC
of 0.78 on the MGH test set. We note that it is difficult to compare

this model with our own because of the difference in study objec-
tives and training datasets. These results further highlight the
importance of creating common benchmarks with standardized
evaluation to enable direct comparison between models. We believe
that sharing trained models is important for the continued develop-
ment of cancer detection and risk assessment systems, and to this
end, we are releasing our code and models for public research use.
There are multiple directions for future work that can further
improve the accuracy and utilization of the imaging-based models
for cancer risk. Although our model only considers a patient’s current
mammogram agnostic of previous imaging, it is known that changes
in imaging over time contain a wealth of information. A natural next
step is to develop methods that can effectively use a patient’s full

Table 3. Detailed demographics for the MGH dataset. For each demographic, we report the number of corresponding mammography examinations and the
percentage they constitute of the total. All cancer counts reflect cancer within 5 years.

MGH training set MGH validation set MGH test set
Characteristics All Cancer All Cancer All Cancer
All examinations 210,819 (100%) 5379 (100%) 25,644 (100%) 612 (100%) 25,855 (100%) 588 (100%)
Age OO 0O 0 OO0 U000 00O OO U000 00O OO OOy OO OO U OO O OO OO OO T RONOSOO
<40 5,812 (2 8%) 84 (1 6%) 711 (2 8%) 7(1. 1%) 724 (2 8%) 7 (1.1%)
..‘40 SOW - 55 905 (26 5%).”“. o .‘1 1 13 (20 7%). - .‘6 821 (26 6%) - .”‘142 (23 2%) - .‘7 025 (27 2%). 95 (162%). o
WSO 60””. S 63 314 (30 0%).”“. o .‘1348 (25 1%). o 7 762 (30 3%) - .”‘1 66 (27 1%) - 7 829 (30 3%) . 188 (32 O%j o
..‘60—70””. - 54,925 (26 1%).””. o .‘1770 (32 9%). - 6674 (26 0%) - .”‘1 79 (29 3%) - .6,708 (25 9%) - 182 (31 O%j o
70—80 S 25,401 (12 0%).”“. o 816 (15 2%) - 3 037 (11 8%) - .”‘102 (16 7%) S 3,001 (11 6%) h 94 (160%). o
>80 s 5451 (2 6%) s 248 (4 5%) s 639 o s (2 5%) e 563 o300 22 o -
Densny e s e SO SO OSSOSO
Almost entirely fatty 20, 41 1 (9 7%) 315 (5 9%) 2, 429 (9 5%) 53 (8 7%) 2,474 (9.6%) 31 (5.3%)
scattered areas of .102 1 12 s 4%).‘,‘,. e .‘2623 s 8%). e .12 519 s 8%).‘,‘,. e .‘,‘261 . 7%) O ST oo SOOI
fibroglandular
tissue 12,490 (48.3%) 264 (44.9%)
Heteroge'neougy - 73892(374%) e 21%(408%) e 9461(369%) PR 263(430%) O O 0o SO R TS OO
dense 9,751 (37.7%) 271 (46.1%)
Exremelydense  9293(44%)  242(45%)  1225(48%)  35(7%  1,129(44%)  22B7%)
0-additional
imaging needed 13,810 (6.6%) 1579 (29.4%) 1,686 (6.6%) 164 (26.8%) 1,785 (6.9%) 186 (31.6%)
1_negatweor 00000 0000000000000 OO OO 00OV O DT eSO UO OOV SO SO OSSOSO
196,797 (93.3%) 3786 (70.4%) 2(93.3%) 447 (73.0%) 24,043 (93.0%) 400 (68.0%)

Asian or Pacific

9,477 (4.5%)

4646 (86.4%)

160 (3.0%)

1,231 (4.8%)

518 (84.6%)

7 (2.8%)

Islander 1,238 (4 8%) 26 (4.4%)
“‘Hlspanlc S 2 266 (1 1%) ' 63 (1 2%) - 260 (‘I 0%) (0 8%) - 225 (0 9%) - (1 0%) o
Other racé 11 423 (5 4%) 138 (2 6%)'”.““ 1 439 (5 6%)“““. 20 (3 3%) 1 486 (5 7%)“““. 15(2 6%)
Dewce e R S R e R R
Lorad Selenla 81,1 06 (38.5%) 2009 (37.4%) 9,850 (38.4%) 21 6 (35.29%) 9,937 (38.4%) 241 (41 .O%)
Selenla Dlmenélons o .129 493 (61 4%)““. o 3150 (58 6%) - .15 767 (61 5%).““. o 369 (60 29%). 15 882 (61 4%).““. 311 (52 9%) o
Unknown o 220 (0 1)% - 220 (4.1%) o 27 (0 1%) - 27 (4. 4%) - 36 (O 1%) 36 (6.1%) o

Yala et al., Sci. Transl. Med. 13, eaba4373 (2021)

27 January 2021

7 of 11

GZ0Z ‘70 Ae Al UO ousy epensN J0 AlSIBAIUN T8 BI0°30Us 105" MAMM//:ST1Y LWOJ | PSpeo|UMO(



SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

Table 4. Demographics of Karolinska and CGMH test sets. For each demographic, we report the number of corresponding mammography examinations and
the percentage they constitute of the total. All cancer counts reflect cancer within 5 years.

Karolinska dataset

Chang Gung Memorial dataset

Characteristics All

Cancer All

Cancer

All examinations 19,328 (100%)

1413 (100%)

13,356 (100%) 244 (100%)

4%)
.8%)

Density as assessed by deep learning model (57)

Almost entirely fatty 933 (4.8%) 39 (2.7%) 51 (0.4%) 0(0.0%)
Scattered areas of o o o o
fibroglandular tissue 9,767 (50.5%) 682 (48.3%) 3,272 (24.5%) 40 (16.4%)
Heterogeneously dense 8,057 (41.7%) 655 (46.4%) 9,278 (69.5%) 194 (79.5%)
Extremely dense 571 (3.0%) 37 (2.6%) 755 (5.7%) 10 (4.1%)

history of imaging. In a similar fashion, expanding the model to use
tomosynthesis is likely to yield further performance improvements.
Beyond work in improving accuracy, additional research is required
to determine how to adapt image-based risk models to different
mammography devices across multiple vendors. Although our condi-
tional adversarial training scheme enabled us to obtain consistent risk
assessments across mammography devices where we have training
data, we did not evaluate whether our models can generalize to un-
seen mammography devices. In addition, although our own evaluation
focused on defining high-risk cohorts, other methods are required
to design more fine-grained risk-based guidelines.

This study has limitations. Although our analysis showed Mirai
obtained strong performance across different races, our datasets con-
tained few African American and Hispanic women, making up 5 and
1% of the MGH test set, respectively. More work is needed to further
validate the model in large Hispanic and African American screening
populations. Moreover, prospective trials are necessary to measure the
impact of these models on clinical care before widespread adoption.

MATERIALS AND METHODS
Study design
The primary objectives of this study were to develop a model to as-
sess breast cancer risk and to validate its performance across diverse
populations and clinical settings. We designed and benchmarked our
algorithm, Mirai, against the Tyrer-Cuzick model and other deep
learning models trained on the same MGH dataset, namely, Image-Only
DL and Hybrid DL, in predicting future risk. Although Mirai was
trained to predict both first-time cancer cases and recurrences, we
limited our analysis to patients without a prior history of breast
cancer to enable a fair comparison against the Tyrer-Cuzick model.
Our secondary objective was to demonstrate the ability of Mirai to
identify high-risk cohorts and to compare it with alternative risk
models.

To develop Mirai, we collected consecutive screening mammo-
grams from 80,134 patients screened between 1 January 2009 and
31 December 2016 at the MGH under approval of the MGH’s Insti-

Yala et al., Sci. Transl. Med. 13, eaba4373 (2021) 27 January 2021

tutional Review Board and in compliance with the Health Portability
and Accountability Act. Mammograms were taken either on a Selenia
Dimensions device (Hologic) or a Lorad Selenia device (Hologic).
We obtained outcomes through linkage to a local five-hospital registry
in the Massachusetts General Brigham healthcare system, alongside
pathology findings from MGH’s mammography electronic medical
record. We excluded patients who did not have at least 1 year of
screening follow-up who were diagnosed with other cancers such as
sarcomas of the breast, or who did not have all four views (L CC,
L MLO, R CC, and R MLO), to identify 70,972 patients. Patients were
randomly split into n = 56,786 for training, n = 7020 for develop-
ment, and n = 7166 for testing. To enable fair comparison against
the Tyrer-Cuzick model, we excluded 161 patients with prior histo-
ry of breast cancer from the test set, leaving 7005 patients. Because
each patient had multiple examinations, this resulted in 210,819,
25,644, and 25,855 examinations for training, development, and
testing, respectively. We refer to an examination as “positive” if it was
followed by a pathology-confirmed cancer diagnosis within 5 years.
We collected detailed risk factors, including those used by the TCvS8,
from provider- and patient-entered information in the mammography
reporting system and associated each mammogram with patient
risk factors as they were present at the time of mammography. De-
tailed demographics are shown in Table 3, and our data collection
procedure is illustrated in Fig. 4.

To evaluate the ability of Mirai to generalize to additional popu-
lations, we collected the Karolinska and CGMH datasets under
approval of the relevant institutional review boards. The Karolinska
dataset was extracted from the Cohort of Screen-Aged Women (56).
All women aged 40 to 74 within the Karolinska University uptake
area who had attended screening and were diagnosed with breast
cancer, without implants and without prior breast cancer, from
2008 to 2016 were included, as well as a random sample of controls
with at least 2 years of follow-up from the same time period. The full
Karolinska case-control dataset included 11,301 women, and 70%
of both cases and controls were randomly selected for inclusion in
this study. We included all mammograms, acquired on Hologic
machines, from 2008 to 2016 for the included women that contained
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all four views (L CC,L MLO, R CC, and R MLO), resulting in 19,328
examinations from 7353 patients. To create the CGMH dataset, we
selected random women undergoing screening mammography there
between 2010 and 2011 who were aged 45 to 70 or were aged 40 to
44 and had a family history of breast cancer, resulting in 13,356 ex-
aminations from 13,356 patients. Cancer outcomes were obtained
from the national cancer registry. In both datasets, we excluded pa-
tients who did not have at least 1 year of screening follow-up or did
not have all four views (L CC, L MLO, R CC, and R MLO). We ob-
tained mammographic breast density assessments for both the
Karolinska and CGMH datasets using a clinically validated deep
learning model trained on the MGH dataset (57, 58). More details
about these datasets are available in Table4 and Fig. 4. We emphasize
that the Karolinska and CGMH datasets were only used for testing.

Statistical analysis

We evaluated all models by the AUC for 1- to 5-year outcomes. For
instance, to compute the 3-year AUC, we considered a mammogram
as positive if it was followed by a cancer diagnosis within 3 years
and negative if it had at least 3 years of screening follow-up. Table
S8 describes the distribution of follow-up and cancer times for each
dataset. We also calculated Uno’s C-index (59), which offers a gen-
eralized AUC across all time points. To address that patients may
have multiple examinations, we used a clustered bootstrap approach
with 5000 samples to calculate confidence intervals. To assess the
significance of the difference between two AUCs, we used the paired
DeLong’s test (60) as implemented in the pROC package in R (61).
To assess the significance of the difference between two ratios, we
used a two-tailed ¢ test as implemented in R (62). For both tests, we
used a predefined P < 0.05 for significance.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/578/eaba4373/DC1

Materials and Methods

Fig. S1. t-SNE plot for Mirai’s hidden representation (left) without and (right) with adversarial
training on 5000 random samples from the MGH test set.

Fig. S2. Saliency scores of images and all clinical risk factors across the MGH test set.

Fig. S3. t-SNE plots for Mirai’s hidden representation colored by cancer subtype factors on
1000 random positive examinations from the Karolinska test set.

Table S1. The distribution of clinical risk factors in the MGH dataset.

Table S2. ROC AUCs and C-indices for Mirai and prior risk models on all test sets excluding
cancers confirmed within 6 months of the screening mammogram.

Table S3. Ablation study of Mirai on the MGH datasets.

Table S4. C-index for different models on different subpopulations in the MGH test set.
Table S5. C-indices and ROC AUCs for Mirai in predicting cancers of different subtypes in the
Karolinska test set.

Table S6. Number of examinations per cancer type in the Karolinska dataset.

Table S7. Sensitivity and specificity of different risk models in identifying high-risk cohorts at
MGH, excluding mammograms with a BI-RADS 0 assessment that were followed by a cancer
diagnosis within 1 year.

Table S8. Distribution of follow-up times and times until cancer diagnosis for examinations in
the MGH, Karolinska, and CGMH test sets.

Data file S1. Primary data from figures.
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