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ARTICLE INFO ABSTRACT

Keywords: To facilitate early detection of breast cancer, there is a need to develop risk prediction schemes that can prescribe
Cancer risk prediction personalized screening mammography regimens for women. In this study, we propose a new deep learning ar-
Mammography ) chitecture called TRINet that implements time-decay attention to focus on recent mammographic screenings, as
Computer-aided diagnosis dels d f h 1 £ . . diomic f ith

Radiomics current models do not account for the relevance of newer images. We integrate radiomic features with an

Attention-based Multiple Instance Learning (AMIL) framework to weigh and combine multiple views for better
risk estimation. In addition, we introduce a continual learning approach with a new label assignment strategy
based on bilateral asymmetry to make the model more adaptable to asymmetrical cancer indicators. Finally, we
add a time-embedded additive hazard layer to perform dynamic, multi-year risk forecasting based on individ-
ualized screening intervals. We used two public datasets, namely 8528 patients from the American EMBED
dataset and 8723 patients from the Swedish CSAW dataset in our experiments. Evaluation results on the EMBED
test set show that our approach performs comparably with state-of-the-art models, achieving AUC scores of
0.851, 0.811, 0.796, 0.793, and 0.789 across 1-, 2-, to 5-year intervals, respectively. Our results underscore the
importance of integrating temporal attention, radiomic features, time embeddings, bilateral asymmetry, and

continual learning strategies, providing a more adaptive and precise tool for breast cancer risk prediction.

1. Introduction

There is a clear need to develop effective breast cancer screening
protocols and individualized risk assessment models (Dadsetan et al.,
2022; Lee et al., 2023; Yala et al., 2021b; Yeoh et al., 2023). However,
current screening protocols are generic, based on fixed schedules and
broad risk categories (Ren et al., 2022). This can lead to over-screening,
causing harm in the form of false positives, unnecessary anxiety, and
overtreatment for those who have low cancer risk (Bond et al., 2013;
Habib et al., 2021; Salz et al., 2010). Conversely, these fixed screening
protocols could also lead to under-screening and missing early cancer
signs in high-risk women, leading to cancers being detected too late.

In the United States, agencies including the American Cancer Society
(Smith et al., 2019) and the American College of Physicians (Qaseem

et al., 2007) have multiple recommendations on mammographic
screening guidelines for women, including when to start screening and
how often to get screened. What is common is that they all recommend
screening with some frequency over a certain portion of a woman’s
lifetime (Qaseem et al., 2007; Smith et al., 2019). Several risk models
have been developed to assess risk in the general population. These
include the Tyrer-Cuzick (Cuzick, 2004), Breast Cancer Surveillance
Consortium (Tice et al., 2008, 2015), and Gail (Gail et al., 1989) models.
These models incorporate demographic and clinical risk factors, such as
age, family history of breast cancer, ethnicity, genetics, race, and
mammographic breast density in their risk assessment. However, these
clinically used models have only moderate performance in discrimi-
nating cancer risk, achieving Area under the Receiver Operating Char-
acteristic Curve (AUC) results below 70 % (Cuzick, 2004; Gail et al.,
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1989; Tice et al., 2008, 2015).

Image based risk assessment modelling is underutilized in current
clinical practice although recent artificial intelligence (AI) studies report
significantly-improved performance using mammography data (Arasu
et al.,, 2023). Recent deep learning advances allow us to build risk
assessment models that analyze mammograms directly and show sig-
nificant improvements over conventional models (Dadsetan et al., 2022;
Lee et al., 2023; Lotter et al., 2021; McKinney et al., 2020; Yala et al.,
2021b). These models use convolutional neural networks (CNNs) to
learn patterns in images and outperform traditional models that use
manually handcrafted features (Gastounioti et al., 2016; Tan et al.,
2019, 2016).

While these models demonstrate improvements over previous con-
ventional methods, one of the biggest limitations of current models is
that they are designed to analyze a single static mammogram, ignoring
the temporal progression of mammographic changes across multiple
screenings (Donnelly et al., 2024; Lotter et al., 2021; McKinney et al.,
2020; Tan et al., 2019; Yala et al., 2021b). As cancer is a dynamic
process and structural changes in breast tissue progress gradually over
time, sequential mammograms that capture these changes contain crit-
ical information for identifying emerging cancer risks. Without incor-
porating temporal data, current models may miss the subtle yet critical
signs of risk progression, thus limiting their predictive ability. Several
studies (Dadsetan et al., 2022; Lee et al., 2023; Yeoh et al., 2023) in the
literature have included previous mammographic screenings in training
their model.

Another drawback of current risk models is that although both
parenchymal texture features and deep learning features have proved
beneficial for risk assessment, only a few studies combine both radiomic
and deep learning features in their models (Yeoh et al., 2023). The
simplest way to combine both feature groups is to concatenate them in
the fully-connected (FC) layer (Yeoh et al., 2023). However, examining
more advanced, optimal methods (Bahdanau et al., 2014; Ilse et al.,
2018) is required to combine these features to maximally leverage both
feature groups’ strengths and to synthesize new combinations of fea-
tures for better model performance. Additionally, models that only
utilize either the craniocaudal (CC) or mediolateral oblique (MLO) view
(Arefan et al., 2019; Carneiro et al., 2015) to form a final risk prediction
score are outperformed by models that incorporate both views.
Conversely, we propose a new model that combines sequential radiomic
and deep learning based image features from all four images of both
views to generate a final comprehensive risk score for individual
patients.

Furthermore, although implementing a personalized screening
regime is highly recommended to avoid over-screening or under-
screening of women, to date, none of the risk models incorporate this
information into their models to better stratify women in a risk predic-
tion scheme. We present a new time-interval embedding method for
better risk classification in the feature space that can forecast the risk of
cancer occurring in six months to five years. Incorporation of this new
time-embedding method can help stratify women into personalized
screening regimens to avoid over-screening in women who have a low
short-term cancer risk and can thus come back later (for example, in
three years) for their next screening and avoid under-screening women
who have suspicious signs and thus have high short-term cancer risk and
should come back earlier (for example, in six months) for their next
screening.

Another issue that is present not just in risk prediction schemes but in
Al schemes in the medical field is that the full capacity of current
methods might be limited by their inability to continually learn (Liu
et al., 2024; Wang et al., 2023). Current risk prediction models are only
trained on a single dataset of a single demographic group, e.g., a
Swedish (Yeoh et al., 2023), American (Yala et al., 2021b), or Asian (Tan
et al., 2019) population. If a new dataset becomes available, it would be
most unfortunate if the trained model suffers from catastrophic forget-
ting and is unable to increase its knowledge through a continual learning
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method, given how challenging it is to obtain ethics clearances, etc., for
any given dataset. To resolve this issue, we present a new method that
enables a model to continually learn and increase its knowledge using a
new dataset of a different population without catastrophically forgetting
its previous knowledge of the primary dataset.

Additionally, bilateral asymmetry — differences in parenchymal tis-
sue between left and right breasts — is a well-known risk factor, as
cancers typically develop in only one breast over time (Tan et al., 2016;
Zheng et al., 2012). However, many risk models, with the exception of a
few (Donnelly et al., 2024; Tan et al., 2016; Yeoh et al., 2023), do not
incorporate this measurement as indicators in their models. In this
study, we propose a new approach to measuring bilateral asymmetry
and incorporate it with our continual learning method to enhance our
model’s performance. The results show that using our new approach, the
model can continually learn on a new dataset and improve its perfor-
mance without catastrophic forgetting of the previous dataset.

Thus, to overcome all these limitations, we present a Time-decay
Radiomics Integrated Network (TRINet), which is a new deep learning
cancer risk model with the following contributions:

e We present a new Time-Decay (TD) attention mechanism for both

Non-Local (Wang et al., 2018) and Fastformer (Wu et al., 2021)

blocks. Although TD attention improves both Non-Local and Fast-

former performances, its application on the Fastformer block yields
better overall performance.

We introduce a new Radiomics and Deep learning feature-based

Multiple Instance Learning (RADMIL) method to integrate and

combine deep learning and radiomic features effectively. RADMIL

effectively integrates features from CC and MLO views of both left
and right breasts in an interpretable and effective manner using
attention mechanisms.

e We propose a new cancer forecast network that incorporates time-
interval embeddings for risk prediction in six-month intervals (i.e.,
6 months to 5 years). In our new method, a time-embedded additive
hazard layer is presented for risk prediction. The time embedding
provides context to the risk model to forecast individualized
screening intervals better.

o We present a new self-training method based on continual learning
called Reinforced Self-Training (ReST) with Continual Learning
(ReSTY). ReST enables our model to continually learn new
knowledge on new datasets without catastrophically forgetting the
primary dataset. To identify useful samples for finetuning from the
secondary dataset, bilateral asymmetry features are computed, and
the model is trained iteratively. Results show that new knowledge is
gained on the secondary dataset of a different population without
catastrophically forgetting previous knowledge of the primary
dataset.

2. Related work
2.1. Multiple time-point risk prediction models

The development of breast cancer risk prediction for mammographic
images has come a long way. The earlier methods were based on
radiomic features including parenchymal texture (Anandarajah et al.,
2021; Tan et al., 2016) and mammographic density (Anandarajah et al.,
2021; Keller et al., 2012) based features. More recently, deep learning
(Dadsetan et al., 2022; Lee et al., 2023; Yala et al., 2021b; Yeoh et al.,
2023; Zhu et al., 2021) features have been incorporated into newer
models. However, the vast majority of existing methods do not incor-
porate temporal information in the form of prior screening mammo-
grams, with the exception of several methods (Dadsetan et al., 2022;
Karaman et al., 2024; Lee et al., 2023; Yeoh et al., 2023).

Although one of the state-of-the-art methods, Mirai (Yala et al.,
2021b) is robust and generalizable in handling missing clinical risk
factor information and maintains consistent predictions across different
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mammography machines, it has a key limitation of using only single
time-point mammograms for risk prediction. By ignoring longitudinal
information, Mirai cannot capture temporal changes in breast tissue that
can be critical to cancer risk progression, which is an issue that was
acknowledged by the authors in their paper (Yala et al., 2021b). The
authors acknowledge that a natural next step is to develop methods that
utilize a patient’s full history of imaging, which we attempt to do in this
study.

Longitudinal Mammogram Risk Prediction (LoMaR) (Karaman et al.,
2024) is a new deep-learning framework that builds on Mirai. LoMaR
incorporates changes in mammograms over time to predict cancer risk.
However, Lomar does not leverage attention mechanisms in its feature
extraction procedure, which might hinder it from detecting subtle
changes in the breasts over time.

LRP-NET (Dadsetan et al., 2022) models spatiotemporal changes in
breast tissue across multiple sequential mammograms to capture lon-
gitudinal changes for any given patient. This is achieved through
capturing image features using a CNN encoder and modelling temporal
changes with a Gated Recurrent Unit (GRU). The highest AUC result of
67 % is reported for information obtained from four prior screening
mammograms. However, LRP-NET does not incorporate radiomic fea-
tures in its model, which can provide additional information to deep
learning features. It also does not address short-term risk forecasting (e.
g., l-year or 2-year AUC) for the implementation of individualized
screening regiments.

PRIME+ (Lee et al., 2023) incorporates multiple screening mam-
mograms in its risk assessment and has a network architecture similar to
Mirai’s. It includes a cross-attention mechanism in its transformer block,
whereby queries are obtained from the current exam and keys and
values from the prior exams. This allows PRIME+ to capture temporal
changes in breast tissue, e.g., density changes and outperforms single
time-point models. However, like Mirai and LRP-NET, PRIME+ does not
incorporate radiomic features or continual learning methods for better
performance.

2.2. Time-decay (TD) attention

Time-sensitive time-decay attention plays an important role across
diverse domains, addressing the need for deep learning models to
effectively adapt to temporal variations. Notably, in the field of Natural
Language Processing (NLP), Receptance Weighted Key Value (RWKV)
(Peng et al., 2023) presents an innovative approach to reconcile the
trade-offs between computational efficiency and model performance in
sequence processing. The authors introduce a novel model architecture,
which combines the strengths of transformers and recurrent neural
networks (RNNs). RWKV draws inspiration from the Attention Free
Transformer (AFT) (Zhai et al., 2021) and introduces a channel-wise
exponential time decay vector, to ensure proper decay characteristics.
This is multiplied by the relative position and traced backward from the
current time, facilitating the attention mechanism to focus more
consciously on recent inputs. In another similar architecture, the
Retentive Network (RETNET) (Sun et al., 2023) instead employs expo-
nential decay within the causal mask, which combines with the
query-key matrix through the dot product. RETNET introduces a
retention mechanism for sequence modelling, supporting various
computation paradigms such as parallel, recurrent, and chunk-wise
recurrent representations.

A notable contribution in the medical field is GLIM-Net (Hu et al.,
2023), a Chronic Glaucoma Forecast Transformer, which introduces
time positional encoding to learn temporal information from sequential
fundus images. GLIM-Net achieves time-sensitive attention through a
time-related matrix T, combined with the attention matrix through the
Hadamard product to better enable the self-attention mechanism to
handle irregularly sampled data. Another paper (Li et al., 2022) intro-
duced two extensions to the standard Vision Transformer (ViT)
(Dosovitskiy et al., 2021) for the task of lung cancer diagnosis from
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longitudinal computed tomography. The authors introduced
continuous-time vector embeddings by constructing a relative time
distance vector to incorporate linear time information into the trans-
former, allowing the model to capture temporal dependencies between
the images. Additionally, they proposed a time-aware ViT that learns
through a flipped sigmoid function to scale self-attention weights at each
head, addressing the challenge of decreasing information over irregu-
larly sampled time intervals.

2.3. Radiomic features for breast cancer risk prediction

Radiomics (Lambin et al., 2012), the extraction and quantification of
imaging biomarkers, is important to advance cancer risk prediction but
is seldom leveraged for this purpose. By capturing quantitative infor-
mation such as texture, shape, and intensity patterns from images,
radiomics can uncover features that are not visible to the human eye.

Radiomics has been applied to predict breast cancer risk factors
including molecular subtypes and recurrence risks. Ma et al. developed
radiomics-based mammographic classifiers to differentiate between
triple-negative (TN) and non-TN cancers as well as HER2-enriched and
luminal breast cancers with an AUC of up to 86.5 % (Ma et al., 2019).
Kontos et al. applied radiomics classifiers to identify mammographic
parenchymal complexity phenotypes associated with cancer risk and
reported an AUC of 84 % in their study (Kontos et al., 2019).

Deep-LIBRA (Maghsoudi et al., 2021) is an important artificial in-
telligence (AI) method using radiomics for breast cancer risk assessment.
This method combines CNNs for breast segmentation with a radiomic
algorithm to differentiate dense and non-dense breast tissue.
Deep-LIBRA quantifies breast percent density (PD), a well-established
risk factor [15-18] for breast cancer. The study results show that
Deep-LIBRA outperforms several state-of-the-art breast density assess-
ment methods in case-control discrimination with an AUC of 61.2 %.
While these results demonstrate the potential of combining deep
learning and radiomics for risk prediction, the approach only focuses on
breast density as a single biomarker and does not incorporate prior
mammographic images in its risk assessment.

2.4. Continual learning

Continual learning (Wang et al., 2023), also known as incremental
learning or lifelong learning, aims to acquire new knowledge in different
environments, etc., without forgetting previous knowledge learned or
experiencing catastrophic forgetting. To our knowledge, this method has
not been examined yet in the breast cancer risk prediction field.
Continual learning has been more widely explored in the medical image
segmentation field. First, Liu et al. (2024) proposed a new universal and
extensible language-vision model for organ segmentation and tumor
detection from abdominal CT images. The authors’ continual learning
method trains and adds a new multilayer perceptron for each new organ
to their network architecture, to minimize disruption caused by the
introduction of new classes on the old classes.

Ji et al. (2023) proposed a novel continual learning method that
froze the encoder and decoder. Separable, trainable decoders were then
incrementally added to continually learn new datasets, thus avoiding
catastrophic forgetting of the previous dataset. Liu et al. (2022) pre-
sented a light memory module to store prototypes of different organ
categories, which are updated during the training process for multiple
organ segmentation.

While all these methods present important contributions to cancer
risk assessment models, there is a need to develop an integrated and
comprehensive model that combines all unique and individual charac-
teristics into an all-encompassing model. In the subsequent sections, we
introduce our novel TRINet model, whose overall architecture is shown
in Fig. 1, which implements TD attention, effectively integrates radiomic
features and time-interval embeddings, and continually learns on new
datasets for more accurate risk prediction.
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Fig. 1. The proposed TRINet model uses a shared backbone encoder across all four images. The encoder incorporates a new time-decay attention that can capture
changes in breast tissue structure over time while focusing on more recent screenings. The handcrafted radiomic features are the same as in (Yeoh et al., 2023) and
are included in the model through our new Radiomics and Deep learning-based Multiple Instance Learning (RADMIL) architecture.

3. Materials and methods
3.1. Datasets

Two datasets were examined in this study, namely the Emory Breast
Imaging Dataset (EMBED) and the Cohort of Screen-Aged Women
(CSAW) datasets. All mammograms that were used in this study are two-
dimensional (2D) full-field digital mammography (FFDM) images and
were not 2D synthetic mammograms from digital breast tomosynthesis
(DBT). Both invasive cancers and ductal carcinoma in situ (DCIS) can-
cers are included as cases in both datasets (Dembrower et al., 2020;
Jeong et al., 2023).

For both datasets, the following timepoints were used for cases and
controls: For cases, the “current” timepoint is defined as the screening
exam that led to the cancer diagnosis. For the “prior” timepoints, we
applied a sliding window approach across longitudinal screening exams
to generate all valid prior—current pairs within the 1 to 5-year interval.
For controls, the “current” time point is the earliest screening exam that
did not have screen-detected cancer, whereas the “prior” time point is
the closest screening exam 1 to 5 years before that. This consistent time
point pairing enables the model to learn from temporal changes in breast
tissue. For patients with multiple prior exams, all current-prior combi-
nations were used. This allows us to fully utilize longitudinal data and
supports more robust modeling of temporal changes.

3.1.1. EMBED dataset
The EMBED dataset (Jeong et al., 2023) contains over 3.4 million

images from 116,000 women including a balanced mix of African
American and white patients. EMBED addresses the diversity and
granularity gaps in breast imaging datasets. This dataset includes
mammography images along with lesion-level annotations and longi-
tudinal follow-up data. Demographic data, including age, race, and tis-
sue density, are included in the dataset. The mammogram vendors that
were assessed for EMBED are Hologic, GE, and Fujifilm. The controls
within this dataset are women who had no diagnosis of breast cancer for
at least three years following their latest/ “current” screening
examination.

The EMBED dataset consists of sequential mammograms that can be
used to train and validate machine learning models for recognizing
changes in mammographic findings over time. This is crucial for risk
prediction as models can be trained to recognize subtle changes that may
indicate increasing risk over time and potentially allow for early inter-
vention. The dataset’s racial diversity enables the development of risk
models that work well across different demographics, addressing known
biases in cancer screening and reducing disparities in early detection
and outcomes. The dataset used in this study is the 20 % portion of the
dataset that is “open” for research access, thus facilitating performance
comparisons with other methods in the literature. Fig. 2 describes our
procedure of filtering this dataset for the purpose of this study.

We have also tabulated the detailed demographics of the dataset in
Table 1. From Table 1, we observe that using Student’s t-test, except for
age, there is no significant difference (i.e., p < 0.05) among other
characteristics between positive and negative case groups. The observed
age differences are expected and reflect the established relationship
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v

Exclude 263 male patients

v
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Exclude 2,189 patients with
missing views

v
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of 8,528 patients

\ 4 | \ 4

Training/Validation
Set of 7103 patients

Testing Set of
1425 patients

Fig. 2. Dataset construction flowchart for the EMBED dataset used in
this study.

between increasing age and cancer risk (Tan et al., 2016). While
age-matching could remove this difference, we intentionally followed
the approach used in prior state-of-the-art studies (Yala et al., 2022,
2021b), which employ screening datasets that reflect real-world popu-
lation distributions. This design allows the model to learn from natural
variation in age and risk.

The selection criteria of cases and controls are given in the paper that
describes the dataset (Jeong et al., 2023); we will provide a brief sum-
mary here. Women aged 18 years or older with at least one available
mammogram were included in the dataset. Exclusion criteria were any
patient younger than 18 years old. Patients without three years of
follow-up data were excluded from our dataset, along with patients with
missing views (refer to Fig. 2).

EMBED is a very unique dataset in that it contains longitudinal data
or screening mammograms of patients who eventually develop cancer.
Patients in the dataset have multiple screenings over time, reflecting
real-world scenarios where regular imaging is key to early detection and
monitoring of disease progression. This dataset is particularly valuable
for understanding how screening intervals and adherence impact out-
comes and enable the optimization of personalized screening protocols.
Fig. 3 shows the breakdown of the number of screenings for cancer
patients in this dataset.

3.1.2. CSAW dataset

In this study, we utilize the same CSAW (Dembrower et al., 2020)
dataset as in our previous work (Yeoh et al., 2023). This dataset, pre-
viously described in detail in (Yeoh et al, 2023), comprises a
population-based cohort of women aged 40-74 years old from the
Stockholm region, Sweden, with FFDM images collected between 2008
and 2016. For consistency and reproducibility, we applied the same data
processing strategy used in (Yeoh et al., 2023), maintaining the control
and case partitioning, along with the categorization of clinical risk

Medical Image Analysis 107 (2026) 103829

Table 1
Detailed demographics for the EMBED dataset. We employed a five-fold cross-
validation method, whereby the training and validation dataset was divided into
five subsets, ensuring each subset was used for both training and validation at
different iterations. The test set remained independent and was unseen during
training.

EMBED training p- EMBED testing p-
and validation value  set value
sets

Controls  Cases Controls  Cases

Characteristics
All examinations 6528 575 1308 117
Age 0.02 0.02
<40 31 42 5 6
40 - 50 1085 118 211 22
50 - 60 1804 143 334 31
60 - 70 1817 141 398 32
70 - 80 1423 101 282 21
80+ 368 30 78 5
Tissue density 0.12 0.09
Almost entirely 702 40 140 7
fatty
Scattered 2812 212 554 40
fibroglandular
densities
Heterogeneously 2653 286 552 62
dense
Extremely dense 347 34 61 8
Unknown 14 3 1 0
Race 0.14 0.12
African American 2927 271 583 56
or Black
American Indian 14 1 2 0
or Alaskan
Native
Asian 366 33 65 6
Caucasian or 2828 247 585 51
White
Native Hawaiian 60 4 12 1
Other Races 333 19 61 3

factors. The proportion of cases and controls was also maintained for the
training, validation, and testing sets. All images in this dataset were
acquired on Hologic mammography equipment. For the controls within
this dataset, 75 % had at least two years of follow-up time, and 25 % had
less than two years of follow-up time. The 25 % were relatively evenly
distributed between zero and two years of follow-up time, and they did
not have screen-detected cancer.

In the CSAW dataset, women with a prior history of breast cancer or
diagnosed at an age outside the screening range were excluded. Table 2
tabulates the demographic and LIBRA percent densities (Keller et al.,
2012) of the CSAW dataset, although the dataset is heavily censored and
only contains publicly released information. From Table 2, we observe
that there is only a significant difference for age (i.e., p < 0.01) between
positive and negative case groups.

3.2. Time-decay (TD) attention

Traditional attention mechanisms weigh each pixel in spacetime
equally, giving equal importance to each pixel’s position (Wang et al.,
2018). However, in a scenario where the individual image frame pro-
gresses through time, the relevance of information changes over time,
and an equally weighted attention mechanism may not suffice. To
address this issue, we propose to incorporate the concept of time decay
into the attention mechanism. Our aim is to leverage existing insights
that earlier images carry less relevant information as compared with
more recent ones. In line with this, attention mechanisms should
selectively pay less attention to prior mammographic features and focus
more on the most recent images. This emulates the diagnostic approach
of radiologists who, while referencing prior mammograms, place greater
emphasis on the most current images in making their final diagnosis
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Fig. 3. Breakdown of the number of screenings for cancer patients in the publicly released 20 % EMBED dataset subset used in this study.

Table 2

Demographic and LIBRA percent densities (Keller et al., 2012) for the CSAW dataset. We employed a five-fold cross-validation method, whereby the training and
validation dataset was divided into five subsets, ensuring each subset was used for both training and validation at different iterations. The test set remained inde-
pendent and was unseen during training. This dataset is heavily censored and only contains publicly released information on age and LIBRA percent density.

CSAW Training and validation sets p-value CSAW Testing set p-value
Characteristics Controls Cases Controls Cases
All examinations 6279 695 1571 178
Age <0.01 <0.01
40 - 55 3084 255 769 64
55+ 3195 440 802 114
LIBRA percent density 0.35628 0.26982
Mean 24.29 24.48 24.07 26.35
Min 0.67 1.55 0.97 1.67
Max 96.55 94.52 94.75 72.95

(Hayward et al., 2016).

A strong assumption is made here, namely that the earlier images
carry less information than more recent ones, as the “trend” of changes
in the breast regions might be important. However, many methods in
both the NLP field and the medical image processing field make the same
assumption. For example, in the NLP field, two popular networks, RWKV
(Peng et al., 2023) and RETNET (Sun et al., 2023), both implement
attention as decaying exponentials to place less importance on earlier
text. The same assumption is also made in the medical image processing
field for glaucoma forecasting (Hu et al., 2023) and lung cancer diag-
nosis from longitudinal computed tomography (Li et al., 2022). In the
context of breast cancer risk prediction, the trend could be more
important for recent images than previous images, which might justify
this strong assumption. For example, hormone therapy for menopause is
associated with an increase in mammographic breast density, which
might increase cancer risk. Thus, for a woman who started hormone
replacement therapy (HRT), her recent mammograms might be more

relevant for risk assessment than her previous ones; namely, her
screening mammograms when she resumed HRT might be more relevant
for risk prediction. This also applies to lifestyle changes in a woman, e.g.,
alcohol consumption or other risk factors that might have a more recent
effect on parenchymal breast density or texture of the breast.

The novelties in this section draw inspiration from the time-sensitive
self-attention mechanism in (Hu et al., 2023) proposed for glaucoma
forecasting using time interval data, and the RWKV (Peng et al., 2023),
and RETNET (Sun et al., 2023) for large language models. We hereby
propose a new time-decay attention for the Non-Local self-attention
(Wang et al.,, 2018) and Spatial Channel Image Fastformer (SHIFT)
blocks (Yeoh et al., 2023). A time-sensitive mechanism was proposed in
(Hu et al., 2023) in a Transformer (Vaswani et al., 2017) architecture
with Encoder-Decoder blocks; however, Transformers generally require
an abundance of images to be trained efficiently, which might not be
available in the medical imaging field (Dosovitskiy et al., 2021).
Conversely, we propose new time-decay attention mechanisms in CNN
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architectures that generally require fewer images to train. Another
advantage is that in CNN architectures, 3D convolution can be imple-
mented to find useful information in the time dimension, e.g., in a
sequence of yearly mammograms. By incorporating time decay into the
attention mechanism, we aim to enhance the model’s ability to discern
temporal patterns and direct its focus appropriately, ultimately
improving its performance in tasks where recent information holds more
significance than past observations.

To implement the time decay attention mechanism, a negative
exponential decay is applied, similar to previous methods in NLP (Peng
et al., 2023; Sun et al., 2023) and medical image processing (Hu et al.,
2023; Li et al., 2022; Yang et al., 2024). This method is reasonably well
known for information decay in the literature. First, in NLP, the RWKV
method proposes a channel-wise negative exponential decay in its
attention mechanism (Peng et al., 2023). Another popular method,
RETNET (Sun et al., 2023) combines causal masking and negative
exponential decay along relative distance as one matrix within the
causal mask.

In the medical image processing field, GLIM-Net (Hu et al., 2023)
proposed a negative exponential decay by multiplying a time-related
matrix with the attention mechanism so that their model pays less
attention to fundus images acquired a long time ago. In (Li et al., 2022;
Yang et al., 2024), the authors also incorporate a negative exponential
decay for glaucoma forecasting and lung cancer diagnosis from longi-
tudinal images. Both methods leverage the time distance between pre-
sent and distant events to scale the attention scores using a negative
exponential decay function.

3.2.1. Time-decay non-local (TD-NL) block

To implement time-decay attention, our proposed method builds
upon the attention mechanisms of Non-Local networks (Wang et al.,
2018) and our previously-proposed SHIFT (Yeoh et al., 2023) block. In
this subsection, we focus on formulating a new time-decay attention for
non-local as displayed in Fig. 4; we will propose a similar definition for
SHIFT in the next subsection. We first linearly transform our input
X € R®* ™ where C represents the channel dimension and n denotes
time x height x width, respectively, into query, key, and value matrices

of Q, K,V € RC * ™. The formulation can be expressed as follows:

Q = MgX, (€]
K = MgX, 2
V =MyX, 3)

where Mg, Mk and My are 1 x 1 convolutions. To incorporate a time
interval vector, t, as an input into our modified attention block, Hada-
mard product in the time dimension is used. For Non-Local self-atten-
tion, the time-decay attention mechanism can thus be formally
represented as follows:

NL(Q,K, V,t) = softmax(Q K)V, (4

Q=Qxt, )

Hadamard ~
Q Q
t
K Hadamard I MatMul
Product
|4

Fig. 4. Time-decay non-local (TD-NL) attention block.
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K=Kxt, (6)
1

b= ags 7

Aty = 7“”@;‘" 7 ®)

where A and B are fixed parameters and At; , is the time interval between
images in the sequence, x; and the most recent image in the sequence, x;,.
As patients generally have follow-up screenings in a year’s time, we
measure time intervals in months. Threshold T is used to clip the time
interval, At;,. Following that, the resulting value is normalized by
dividing it by T to normalize the range of At;, to be between 0 and 1.
The threshold value T in the formula can be chosen arbitrarily; however,
it is recommended to select a value that is not too high, as patients tend
to come annually for their screening mammogram as typified in our
dataset(s). The negative exponential in Eq. (7) is a monotonically
decreasing function, which ensures less attention is given to “prior”
mammograms that are further away in the time dimension from the
“current” mammogram.

Our formulation and implementation for handling time attention
differs from (Hu et al., 2023). First and foremost, we avoided the use of
transformers, which typically demand a substantial amount of training
samples. Unlike the transformer-based approaches to handle time
attention, our method directly influences the query and key matrices
through Hadamard product with the time interval vector. This direct
integration of temporal information into the query and key matrices
eliminates the need for constructing and learning a separate query-key
interaction matrix with more trainable parameters, contributing to a
more efficient and sample-efficient approach.

3.2.2. Time-decay shift (TD-SHIFT) block

In this subsection, we extend the time-decay attention to our SHIFT
block proposed previously in (Yeoh et al., 2023), which is originally
based on the Fastformer model (Wu et al., 2021). It is imperative to
highlight the motivation for proposing TD-SHIFT as an improvement to
Non-Local and SHIFT. In contrast to the quadratic complexity of TD-NL,
TD-SHIFT has linear computational and memory complexity. This
enhancement aims to address the computational challenges associated
with TD-NL, ensuring improved performance and scalability in handling
temporal focus. This is especially useful for risk prediction with multiple
prior screening mammograms to predict cancer risk, as incorporating
multiple prior mammograms increases the accuracy of risk prediction

Hadamard
Product

Hadamard
Product

O —
2o

2]
[o}}

Hadamard
Product
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™
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\4
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Fig. 5. Time-decay SHIFT (TD-SHIFT) attention block.
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but has high memory requirements. For our TD-SHIFT block depicted in
Fig. 5, only the query is multiplied with the time interval vector,
extending time-decay attention to the SHIFT block (Yeoh et al., 2023):

SHIFT(Q.K,V,t) =k =V, )
Q=Qxt, (10)
@ = softmax(FCq(Q)), an
c
q= ; aQ;, (12)
p=G+K, a3)
f = softmax(FCx(p)), L))
k= iﬁg (15)

where FCq and FCy are the fully connected layers for attention weights,

while g and k are the global query and key, respectively. The time in-
terval vector, t only interacts with the query, Q through the Hadamard
product. It is crucial to note that the time-decay attention is inherently
incorporated in the transformation from query to key. This eliminates
the necessity for an explicit Hadamard product of the time interval
vector with the key, extending the original Fastformer implementation
(Wu et al., 2021). Consequently, the subsequent attention weight cal-
culations through FC, and FCk for both global query and key encapsu-
late the decaying attention to prior images.

3.2.3. Implementation details

We train both attention mechanisms by leveraging weights learned
from a previously trained attention model (same architecture) to
initialize the learning process. The training process for time-decay
attention starts at a higher learning rate of 5e™, facilitating rapid
adaptation to new inputs. Subsequently, we use a lower learning rate of
5e” to finetune the model. Experimental results, presented in the Results
section, demonstrate the necessity of this approach. These steps are
distinct from (Hu et al., 2023), but should achieve the same goal for the
different architectures employed. For instance, (Hu et al., 2023) utilize
six different learning rates throughout the training procedure. However,
experimental results show that our method of using two different
learning rates produces the highest results for our model.

3.3. A new radiomics and deep learning feature based multiple instance
learning (RADMIL) method

In existing literature, explainable methods to integrate radiomic
features with deep learning features are lacking, and we recognize the
need to advance beyond rudimentary approaches. Conventional
methods combine radiomic features with deep learning features by
concatenating them (Li et al., 2023; Yeoh et al., 2023). Our previous
study and another recent study show that radiomic feature inclusion
improves the deep learning network’s performance (Li et al., 2023; Yeoh
et al., 2023); however, current approaches are rather rudimentary and
not interpretable as to how radiomic features influence deep learning
features and vice versa. Rather than treating radiomic features as con-
ventional tabular or clinical data and concatenating them through an FC
layer, we propose to consider them as features similar to deep learning
features obtained from an encoder-like CNN. This shift in perspective
lays the foundation for our proposed approach.

At the heart of this integration is Attention based Multiple Instance
Learning (AMIL) (Ilse et al., 2018), which serves as the feature combi-
nation method. The usage of AMIL not only enhances the model’s

Medical Image Analysis 107 (2026) 103829

predictive capabilities but also improves the interpretability of the
model, offering unique insights into each feature’s contribution for the
risk assessment task. Let H be a bag of n number of features from either
deep learning or radiomics; the formulation for AMIL is:

2= ahy, 16)
k=1

_ exp(FCy(tanh(FC; (hk))))
%= S exp(FC, (tanh (FC, (1)) an

where FC; and FC, are trainable parameters in the form of fully con-
nected layers. AMIL pools the features in bag H through weighted
averaging using the attention score a, calculated to produce a bag-level
feature z. The compiled feature can then be used to make predictions
through an output FC layer.

The attention score a, which sums to one, can be used to visualize the
contribution of each feature. In the case of deep learning features, it can
weigh the importance of the features coming from each CC or MLO view.
Through training, the calculated attention scores facilitate the model in
deciding which view contributes more to risk assessment. Importantly,
AMIL also allows the model to weigh the importance of deep learning
and radiomic features. In our approach, we froze the CNN encoder to
preserve the learned weights, ensuring a robust feature embedding.
However, it is important to note that the results presented here would be
comparable if the encoder were replaced by another well-trained
encoder.

Inspired by Wu et al. (2020), who evaluated several ways to combine
information from different mammographic views in an exam using FC
layers, we explored different combinations of feature combination and
compared them to the conventional method of incorporating tabular
data through concatenation before the FC layer. The configurations
differ in how the features from all 4 views are aggregated to produce the
final predictions. The different architectures to combine features from
all views are displayed in Fig. 6 and are as follows:

1. Default/Baseline: Radiomic features are integrated through an FC
layer by concatenating with the deep learning features. Predictions
are made from each view, and the final prediction is obtained by
averaging the 4 risk scores.

2. Config A: Deep learning and radiomic features are combined
through AMIL, creating a bag-level feature for each view. Predictions
are made from each view, and the final prediction is obtained by
averaging the 4 risk scores.

3. Config B: Both deep learning and radiomic features are first com-
bined through an FC layer, forming merged features for each view.
These features are then merged using AMIL, and predictions are
made using the patient feature.

4. Config C: All features from all views are combined directly using
AMIL, and predictions are made based on this combined feature.

5. Config D: Deep learning features are combined first through AMIL,
and then the intermediate bag-level feature is merged with radiomic
features through another AMIL. Predictions are made using the final
bag-level feature.

6. Config E: Deep learning features are combined first through AMIL,
and then the intermediate bag-level feature is merged with radiomic
features mapped to a lower dimensional space through an FC layer.
Predictions are made using the final bag-level feature.

3.3.1. Integration of lateral attention for improved risk assessment
As cancer usually develops in only one breast, having the ability to
identify the cancer laterality should be beneficial for early detection. We
hereby extend the initial AMIL configuration to account for cancer lat-
erality, thus providing additional interpretability to the model.
Drawing insights from (Huang et al. (2023), we introduce an
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Fig. 6. Different configurations of AMIL implemented through the attention weights, a examined in our network architecture. The Default configuration depicts the
conventional method to combine radiomic (Rad) and deep learning (DL) features that does not incorporate AMIL.

additional attention score called lateral attention I, which is trained in a
supervised manner. The lateral attention scores serve a different purpose
from the softmax attention a in the previous section. Instead of uni-
formly aggregating features from both breasts, the lateral attention is
specifically designed to steer the attention mechanism to focus more on
the affected breast. Incorporating lateral attention results in a modifi-
cation of the original AMIL equation (i.e., Eq. (16)), as follows:

2= Gh, as)
k=1

a- (19)
il

lk = a(FClz(tanh(FCu(hk)))) s (20)
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where FC;; and FCj, are trainable parameters for lateral attention and ¢
represents either the sigmoid or softmax function. With this formulation,
the full lateral attention [ that ranges from 0-1 can be given to a rele-
vant (e.g., cancer-affected) image, whereas the classifier will learn to
allocate an attention of near O for an irrelevant (e.g., abnormal breast)
image.

We utilized the cancer (left/right) laterality information of the his-
topathological results from the datasets to construct both soft and hard
training labels. Our experiments (see Results section) showed that
Config E was the best architecture to aggregate deep learning and
radiomic features; therefore, we extended Config E to incorporate lateral
attention, as displayed in Fig. 7.

In our experiments, we found that simultaneously training both
softmax attention a in AMIL and lateral attention [ produced a perfor-
mance drop, which could be due to task interference as the learning of
one task inhibited that of the other. To circumvent this issue, we first
trained our AMIL architecture without lateral attention. Following the
successful training of AMIL, we utilized the learned weights as initiali-
zation; by keeping the AMIL weights frozen, we exclusively trained the
lateral attention component. This approach aimed to leverage the
knowledge acquired by AMIL and prevented interference between the
two components during training.

3.4. ReSTCL: reinforced self-training with continual learning

Recent advancements in machine learning have demonstrated the
potential of self-training frameworks, such as Reinforced Self-Training
(ReST) (Gulcehre et al., 2023) for improved classification perfor-
mance. The ReST method and its variant with expectation-maximization
(ReSTEM) (Singh et al.,, 2023) improve model performance using
self-generated data. ReST leverages a combination of synthetic data and

VJ(0) = —Eeop [AByr, (0 [F(x, ¥: 7) V108 (¥13)] + (1 — A) Eyrpiyie) [F(x, y: 7) Viogry (y]x)]

human-labeled data and refines the model through iterative finetuning.
Here, we propose a new ReST approach called ReST" that uses a
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continual learning (CL) (Wang et al, 2023) framework to further
improve an existing risk model on a secondary dataset, which may come
from a different population. Unlike (Singh et al., 2023; Xie et al., 2020),
we don’t filter out samples based on a confidence threshold or a reward
function. ReST®" allows the model to incrementally adapt to new data
from other populations without catastrophic forgetting or model per-
formance degradation on the original population. The learning pro-
cedure can be repeated as new datasets become available, enabling the
model to continually learn whilst avoiding model collapse (Shumailov
et al., 2023).

In the original ReST method (Gulcehre et al., 2023), the authors start
off by training an initial model 7y (y|x) to map inputs x to outputs y on a
given dataset of sequence pairs Dp using the negative log likelihood loss,

L(x,y;0). A “grow” step creates a new dataset Dy, which augments the
initial training dataset with synthetic data from the model:

D, = {(x.¥)[i% such that X ~ Dp,y ~ 7(y[x') } UDs @D

Subsequently, an “improve” step uses D, to finetune the policy 7.
The authors first define a filtering function that includes only samples
with rewards, R(x,y) higher than a certain threshold t:

F(x,y;7) = 1p(xy)>e (22)

Next, the authors finetune the current best policy typically trained
with an offline reinforcement learning loss or the supervised learning
loss L(x,y;0) on the filtered data. To sum up, they use the following
reward weighted loss J:

J(H) = [E(X.y)NDg [F(xmy:, T)L(X7y; 0)]

When iterating over “improve” steps, the authors increase the
filtering thresholds: 7; < ... < 7y_1 < 7n. The expression for the gradient
takes the following form:

(23)

(29

with ¢ being the parameters of the model from the last “grow” step, A the
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Fig. 7. Integration of lateral attention with Config E of Fig. 6.
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proportion of data sampled from this model in D, and a single step of
growth. The authors state that the second term in (24) is a form of offline
policy gradients that prevents 7y(y|x) to move too far from p(y|x), which
could lead to model collapse (Shumailov et al., 2023).

However, there are several issues with the ReST model that we hope
to address here: First, the reward function R(x,y) is not explicitly stated;
the authors only state that they use reference-free reward models. Sec-
ond, the authors’ claim that their model does not suffer from model
collapse might not be entirely correct as the filtering function in Egs.
(22) and (23) applies to the grown dataset D,, which is a combination of
the primary dataset Dp and the synthetic samples. In other words, the
primary dataset Dp gets reduced in subsequent training steps, which
could lead to the model drifting further and further away from the initial
training dataset, leading to model collapse. Third, the authors picked the
filtering thresholds 7; from a sequence of increasing values: [0.0, 0.7,
0.8, 0.9, 0.95, 0.99]. These seem to be rather arbitrarily decided, and
could there be a better way of filtering dataset samples that might
improve classification performance?

To address these issues, we present our new ReST" method. In our
application, the secondary dataset is the CSAW dataset that originates
from a Swedish population. For each exam date, there is an assessment
by a first radiologist, a second radiologist, and a consensus decision. In
this case, the reward model and filtering function is clear, and is based
on the radiologists’ consensus decision. For the American EMBED
dataset, a semi-automated supervised machine learning pipeline and a
hierarchical hybrid NLP system are used to extract pathologic diagnoses
from free-text pathology reports. In a way, the filtering function of the
CSAW dataset based on radiologists’ consensus might be somewhat
analogous to Reinforcement learning from human feedback (RLHF) used
to improve the quality of large language model’s (LLM) outputs by
aligning them with human preferences.

To address the second issue of ReST, we propose a new approach for
ReST that enables continual learning of the model without slashing the
original dataset Dp, thus avoiding model collapse. To address the third
issue, we filter new samples from the secondary dataset not by applying
arbitrary thresholds, but by stratifying samples based on bilateral
asymmetry characteristics related to cancer risk in the finetuning

Algorithm 1
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procedure. Given that the secondary dataset comes from a different
population, we implemented a mixed-labeling strategy to assign either
hard true labels or soft pseudo-labels to the samples. The choice between
hard and soft labels is guided by the lateral attention scores assigned to
each view by the model trained on the primary EMBED dataset. We
determine the model’s confidence in a new sample by calculating the
difference in attention scores between the left and right breasts. A case
with a high difference in attention scores signifies strong confidence by
the model; likewise, for a control with a low difference in attention
scores. Since cancer typically develops in only one breast, cases typically
demonstrate higher bilateral asymmetry between left and right breasts
compared to controls. Thus, the difference in lateral attention score is
formulated as:

AA(x)

|A(x) — A(xr)|
[(A(xece) + Alxmio)) — (Alxree) + A(xrmro))|

Thus, for the secondary CSAW dataset, a hard label is assigned if the
lateral difference exceeds the 99th quantile Q¢3* for cases. For controls, a
hard label is assigned if the lateral difference is below the 1st quantile
Qconrl As the model has high confidence in these samples, it is more
likely that its prediction aligns with the true label. Training on these
confident samples with hard labels reinforces correct decision bound-
aries, enhancing the overall accuracy of the model. In this way, the label
assignment function Lab(x) is defined as:

Lab(x) = {

This improvement is also achieved by retaining Dp, which ensures
that the model does not lose its ability to generalize to the original
population while gaining insights from new data sources. We also first
finetune on the secondary dataset, before going back to finetuning on
our original dataset of the target population in each epoch during
training. This alternating process ensures that the model learns from
new data without experiencing catastrophic forgetting, preserving per-
formance on the target population. Algorithm 1 outlines the full ReST

(25)

Hard label, if 4A(x) C Q&% U Q!

26
Soft pseudo label, if AA(x)~CQ%* U Q¢! (26)

ReST<" algorithm. ReST " promotes continual learning using laterality based label assignments. The initial classifier is trained on the primary dataset. Then, ReST"
iteratively applies finetuning on the secondary dataset and finetuning on the primary dataset in an alternating process to update the classifier.

Input:

e Primary Dataset Dp: Original dataset from the target population, with labeled samples.
e Secondary Dataset D;: New dataset from a different population, with labeled samples.

e Batch Sizes Bp, B;: Batch sizes for primary and secondary datasets.
e E: Number of epochs.
e L;: Loss on secondary dataset.
e L,: Loss on primary dataset.
Initialize:

o Set thresholds for label assignment: case threshold Q5% and control threshold Q™.

e Train 7y on Dp using loss Lp
for e=1 to E do:
// Fine-tune on secondary dataset
for mini batch B; from D; do:
for each sample in B; do:
Compute lateral difference: AA(x) = |A(xy) — A(xgr)|
if AA(x) C Qe U Qi
Assign hard label
else:
Assign soft pseudo-label
end
end
Compute loss Ly & Update model parameters
end
// Fine-tune on primary dataset
for mini batch Bp from Dp do:
Compute loss Lp & Update model parameters
end
end
Output: Classifier 7y

11
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algorithm.

3.5. Cancer forecast network with time-interval embeddings

Developing risk forecast models that empower radiologists to
recommend personalized screening programs would optimize resource
allocation, reduce radiation accumulation in a woman’s body, and help
implement preventative measures for early cancer detection. By
leveraging deep learning techniques and incorporating various risk
factors, these models can provide a dynamic assessment of an in-
dividual’s likelihood of developing cancer throughout a period. This
approach helps to stratify high-risk patients from low-risk individuals
and facilitate early intervention.

The additive hazard layer introduced in (Yala et al., 2021b) aims to
predict cancer risk by utilizing mammographic features and traditional
risk factors. The hazard layer predicts a patient’s risk for each year over
the next 5 years by first predicting a baseline risk using a small linear
layer, B(x). This baseline risk is the cancer risk of the individual in the
current year, which is the standard risk score of other risk models in the
literature. The additive hazard layer subsequently calculates a marginal
hazard for each year separately using individual networks, each imple-
mented as a linear layer followed by a ReLU activation function denoted
as H;(x). The overall risk at year T is obtained by summing the baseline
risk and the marginal hazards up to that particular year (i.e., year 1 to 5
for a 5-year forecasting model) (Yala et al., 2021b), as follows:

T
P(Teancer =T | X) = B(x) + Y _ Hi(x) @7
1

The additive property of the hazard layer ensures that a patient’s risk
in two years’ time is always higher than their risk in the first year while
offering a clear visual representation of risk trajectories, aiding in timely
clinical interventions. Cancer patients will have risk scores that escalate
significantly over time as compared to control patients who maintain a
steady, low-risk profile.

By building upon the additive hazard layer, we propose a new
method incorporating an embedding layer to use time intervals between
patients’ previous and current mammographic screenings for improved
predictive accuracy. Adding this time-interval embedding helps the
model adjust the risk scores more precisely by adding a temporal
dimension for better risk prediction or classification in the feature space.
The time-interval input embedding ranges from 0 to 10, representing
six-month intervals up to 5 years (i.e., 0 represents cancer occurrence in
0 years; 1 represents cancer occurring in 6 months’ time; 2 represents
cancer occurring in 1 years’ time, etc.). A similar idea was first presented
in (Hu et al., 2023) for a glaucoma forecast network. However, in that
paper (Hu et al., 2023), the authors input the time interval as a token
into a transformer network. As glaucoma screening intervals are not
fixed, unlike breast cancer screening paradigms, which typically occur
at regular intervals (i.e., 6 months, 1 year, or 2 years), the authors
included the time interval as an additional token to the input of an
image-based encoder. However, many issues with tokenization,
including multi-modality tokenization (Spathis and Kawsar, 2024) have
led researchers to try to eliminate this process altogether (Yu et al.,
2023). Our method of incorporating a time-interval embedding is
similar to providing the risk model labels or context in a conditional
generative adversarial network (CGAN) (Mirza and Osindero, 2014), to
help the model forecast individualized screening intervals better.

To the best of our knowledge, the inclusion of time-interval em-
beddings has not been examined yet in the literature (Arefan et al., 2019;
Dadsetan et al., 2022; Lee et al., 2023; Yala et al., 2021b), which could
be crucial information to guide the risk model towards better prediction
in the feature space. Yala et al. (2022) proposed the Tempo-Mirai
reinforcement learning-based method to recommend personalized
screening intervals. However, training neural network reinforcement
learning methods is challenging (Ding and Dong, 2020) due to sample
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efficiency issues, training stability, etc., which might be unnecessary for
a fixed time-interval screening paradigm. Furthermore, our approach is
simple, enabling radiologists to recommend screening recommendations
based on the operating points along the ROC curves for each time in-
terval (6 months, 1 year, 1.5 years, etc.). The formulation for the new
additive layer incorporating time-interval embeddings is thus:

P(Tuancer = T | x) = B(x) + ZHi(x+ e(t)) (28)

where e(t) represents the embedding features of time interval, t between
screenings and T is the time of cancer diagnosis. We incorporate this new
additive layer into our lateral-attentive AMIL based method as depicted
in Fig. 8. The x input in the additive layer represents the aggregated deep
learning features from all four views with the radiomic features. The
additive layer can thus be fully expressed as follows:

P(Tmm, =T |m,r) = B(AMIL(m,r)) + iHi(AMIL(m, r)+ e(t)) (29)

where m represents deep learning features obtained from the CNN
encoder and r represents the extracted radiomic features. AMIL repre-
sents our lateral-attentive AMIL based method presented in the previous
section.

Our new method is not just constrained to predicting future cancer
risk of screening mammograms; it can be used in any forecasting

]
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AMIL ‘ Embedding
—
Y
T

( N\
Lateral attentive
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Fig. 8. Additive hazard layer with time-interval screening embeddings. The
deep learning features m are combined with radiomic features r by our lateral-
attentive AMIL based method. Then, the resulting feature embedding x is added
with the screening time-interval t embedding, to form an additive hazard for
future cancer risk prediction.
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Table 3
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Summary of AUC results with 95 % confidence intervals (CIs) for GLIM (Hu et al., 2023), Non-Local networks, SHIFT, and their respective time-decay variants. An
attention block version of GLIM is used as a comparison. The “+ T” here denotes the time-decay variants.

Attention Model

1-year AUC

2-year AUC

3-year AUC

4-year AUC

S-year AUC

Baseline
NL
NL+T

GLIM (Hu et al., 2023)

SHIFT
SHIFT + T

0.789 (0.746- 0.835)
0.805 (0.763-0.847)
0.821 (0.782- 0.864)
0.813 (0.774-0.855)
0.81 (0.769- 0.852)

0.825 (0.783-0.867)

0.756 (0.713- 0.799)
0.775 (0.730- 0.817)
0.784 (0.743- 0.831)
0.783 (0.742- 0.827)
0.777 (0.737- 0.819)
0.784 (0.742-0.829)

0.747 (0.704- 0.787)
0.765 (0.724- 0.808)
0.765 (0.727- 0.805)
0.772 (0.733- 0.811)
0.771 (0.735- 0.816)
0.771 (0.729- 0.816)

0.737 (0.696- 0.780)
0.752 (0.713- 0.795)
0.757 (0.718- 0.797)
0.757 (0.718- 0.798)
0.755 (0.716- 0.797)
0.764 (0.725-0.805)

0.739 (0.697- 0.777)
0.753 (0.713-0.794)
0.756 (0.717- 0.796)
0.757 (0.719- 0.798)
0.754 (0.717- 0.796)
0.76 (0.721-0.8)

network that implements screening at regular time intervals. Namely,
the time-interval embedding can be incorporated for any risk model that
involves screening at regular intervals — in our study, 6-month intervals
were applicable, but the method can also be used for risk prediction of
annual lung cancer screening in computed tomography (CT) scans, for
example.

3.6. Experimental setup and classification methodology

3.6.1. Preprocessing

We maintained the same preprocessing steps as in our previous work
(Yeoh et al., 2023). First, we used Otsu’s thresholding to segment the
images, removing background regions and irrelevant labels. All images
in the dataset were originally 3328 x 2560 pixels and were resized to
256 x 256 pixels for model input. This resizing was necessary to
maintain computational feasibility and memory constraints while
training the deep learning models. Despite the reduction in resolution,
our results demonstrate that the model still effectively learns discrimi-
native features for breast cancer risk assessment. It is worth noting that
this approach is not unique to our work. Downsizing of mammograms to
an even lower resolution of 224 x 224 compared to 256 x 256 used in
our study has also been applied in similar studies that utilize single and
sequential screening mammograms, e.g., (Arefan et al., 2019; Dadsetan
et al., 2022). Given the high resolution of the mammograms and the
computational costs of our methodology, we scaled the image resolution
to a value that is a trade-off between 224 x 224 and a higher resolution
to handle the memory issue and still capture the information in the
mammograms, namely 256 x 256 pixels. This enabled us to overcome
memory constraints when training and testing our models. While the
AUC results of our model are better than the corresponding results in
(Arefan et al., 2019; Dadsetan et al., 2022) that utilized a 224 x 224
resolution, we acknowledge that direct comparisons cannot be made due
to the different datasets used in both studies.

We added prior screening images by stacking the processed mam-
mograms in chronological order, with each screening as a separate time
point in a video-like sequence. We also normalized each image to have
zero mean and unit variance by calculating the mean and standard de-
viation within each cross-validation fold’s training subset. To introduce
regularization and prevent overfitting, we applied random augmenta-
tions during training, including horizontal and vertical flips with a 0.5
probability.

3.6.2. Implementation details

We used the Adam (Kingma and Ba, 2015) optimizer to train our
model with the default parameters of #; = 0.9, #, = 0.999 and ¢ = le~8.
The learning rate was set to 1e~* with a batch size of 12.

Table 4

During continual learning with label assignment, the vanilla SGD
(Ruder, 2016) optimizer was used instead for finetuning the model, with
a significantly reduced learning rate of 1e~7. This switch from the Adam
optimizer to vanilla SGD was chosen to facilitate more stable, incre-
mental updates during the continual learning phase, which was critical
for preserving previously learned knowledge while integrating new in-
formation without overfitting.

Our entire code, including CNN architecture and analysis scripts, is
implemented in Python (v3.8.5) using Scikit-learn (v1.0.2), Matplotlib
(v3.5.1) and PyTorch (v1.10.1). We implemented our TRINet model on 2
RTX 2080 Ti GPUs, each with 12 GB of memory.

3.6.3. Performance metrics

We calculated the 1-year to 5-year Area Under the receiver operating
Curve (AUC) using the same approach as in (Yala et al., 2021b). For
example, to compute the 3-year AUC, we considered as positive cases
that had a cancer diagnosis within 3 years of a previous year’s
mammogram. We computed the 1-year, 2-year to 5-year AUC in the
same way as per the ground truth labels in the dataset.

All results are tabulated in the Results section. We also utilized
bootstrapping methods to obtain the 95 % confidence intervals (CI) for
all the AUC values. To assess significant differences between two AUC
values, we used DeLong’s test (DeLong et al., 1988) as implemented in
the pROC package in R (Robin et al., 2011) at a predefined p < 0.05 for
significance. We plotted ROC curves for the 1-year to 5-year prediction
results to measure the true positive rates versus the false positive rates
for each prediction category. We also computed the Concordance index
or C-index (Uno et al., 2011), which represents a generalized AUC result
across all time points. We also performed ablation studies of each nov-
elty introduced in the Methods section to demonstrate the improvement
brought about by each new addition to the model.

4. Results
4.1. Time-decay attention

Table 3 presents the results of different attention mechanisms inte-
grated into our CNN encoder and their time-decay counterparts. As
shown in our previous work (Yeoh et al., 2023), the inclusion of atten-
tion mechanisms into the deep learning model can greatly improve risk
prediction performance. The results in Table 3 demonstrate the benefits
of including information in the time dimension in both Non-Local and
SHIFT attention mechanisms. A time-sensitive self-attention mechanism
in (Hu et al., 2023) called GLIM is also compared using Non-Local as the
baseline method.

Specifically, we observe that the introduction of time-decay

AUC results with 95 % CIs of training different time-decay attention mechanisms using different finetuning learning rates.

Attention Model Learning Rates 1-year AUC

2-year AUC

3-year AUC 4-year AUC 5-year AUC

NL+T [1e-5] 0.813 (0.774- 0.855)
[Se-4, 5e-5] 0.821 (0.782- 0.864)
SHIFT + T [1e-5] 0.816 (0.776- 0.86) 0.778 (0.736-0.82)

[5e-4, 5e-5] 0.825 (0.783-0.867)

0.782 (0.744- 0.825)
0.784 (0.743- 0.831)

0.784 (0.742-0.829)

0.772 (0.733-0.81)

0.765 (0.727- 0.805)
0.759 (0.713- 0.799)
0.771 (0.729- 0.816)

0.756 (0.717- 0.795)
0.757 (0.718- 0.797)
0.743 (0.699- 0.785)
0.764 (0.725-0.805)

0.757 (0.718-0.795)
0.756 (0.717- 0.796)
0.741 (0.701- 0.786)
0.76 (0.721-0.8)
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attention between screenings contributes to improved model perfor-
mance across almost all metrics for both Non-Local and SHIFT attention.
We observe the highest performance improvement in 1- and 2-year
AUGCs, possibly attributed to more information present in recent
screenings as opposed to previous screenings for recent years’ cancer
prediction. Both time-decay versions of Non-Local and SHIFT attention
mechanisms outperform GLIM. We attribute this to our approach of
performing the Hadamard product directly on the query and key vectors
with the time vector. This direct scaling of the query and key vectors by
the time vector enhances the temporal sensitivity of the attention
mechanism more effectively than applying the time matrix to the query-
key product performed in GLIM.

The results in Table 4 show that models trained with the two-step
learning rate strategy consistently outperform those trained with a sin-
gle learning rate of 1e°. For instance, Non-Local trained with the two-
step learning rate achieves a 1-year AUC of 0.821 compared to 0.813
with a single learning rate. Similarly, SHIFT achieves a 1-year AUC of
0.825 with the two-step strategy versus 0.816 with a single learning rate.
These AUC improvements reinforce the necessity of the two-step strat-
egy to handle the domain shift for the new time vector inputs, which
imitates the training approach from (Hu et al., 2023). Namely, the
training process for time-decay attention starts at a higher learning rate
of 5e*, for rapid adaption to the new inputs. A lower learning rate of 5™
is subsequently used to finetune our model in the two-step training
method. Although (Hu et al., 2023) employ 6 different learning rates in
their training procedure, our experimental results show that 2 different
learning rates are sufficient to produce good results.

To effectively apply time-decay attention, the model requires pre-
trained weights from a previously trained attention model as an initial
starting point. For example, we first train a model with Non-Local
attention, then we use this trained model to finetune a time-decay
attention model. Table 5 highlights the impact of initializing time-
decay attention mechanisms with weights from previously trained
attention models. We observe that the performance of the time-decay
models is better across all performance metrics with initialized
weights for both Non-Local and SHIFT. Moreover, the performance of
the time-decay models without pre-trained weights is even worse than
the baseline Non-Local and SHIFT models in Table 3. For instance, the
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time-decay Non-Local model without pre-trained weights achieves a 1-
year AUC of 0.746, which is significantly lower than 0.805 achieved
by the baseline Non-Local model. This degradation in performance can
be attributed to the time vector obfuscating the training process, hin-
dering the model’s ability to converge without a good initial set of
attention weights.

To find the optimal values for parameters A, B and threshold T in the
time-decay attention (Egs. (7) and 8), we performed a hyperparameter
sweep of possible values, similar to (Hu et al., 2023). The results of the
different hyperparameter values are tabulated in Tables 6, 7, and 8.
From Tables 6 and 7, we observe that the best performance was achieved
with A = 2.0 and B = 0.1, whereby the model maintained high AUC
scores across all performance metrics, reflecting an effective balance in
how past data influences predictions at these parameter values. Lower
values of A and B led to insufficient attention decay, under-prioritizing
recent data, while higher values caused excessive decay, leading to the
underutilization of valuable historical information.

Table 8 tabulates the effects of different threshold values, T, used in
the time-decay attention. Time-decay attention performs best at T = 60
(i.e., 5 years). Performance deterioration occurs for other values of T,
especially for higher values of T, namely T = 66 and 72, which confirms
our initial hypothesis that T should not be too big as patients in this
dataset tend to come annually for their screening mammogram.

4.2. Radiomics integration with RADMIL

A results summary of integrating radiomic features using different
RADMIL configurations is tabulated in Table 9. From the results of
Config C with and without radiomic feature inclusion in Table 9, we
make two important observations: First, we observe that radiomic
feature inclusion using our new attention based RADMIL method im-
proves model performance. Similar performance improvements were
observed for other configurations. Second, we observe the importance of
using attention to aggregate features from all four images as each image
contributes uniquely to risk prediction.

The lower results of Configs A and B show that combining radiomic
features early with their corresponding deep learning features does not
yield significant improvements in the baseline result. We conclude that

AUC results with 95 % CIs of training different time-decay attention mechanisms using initialized weights from previously trained attention models.

3-year AUC 4-year AUC 5-year AUC

0.729 (0.686- 0.773)
0.784 (0.743- 0.831)

0.784 (0.742-0.829)

0.722 (0.681- 0.766)
0.765 (0.727- 0.805)
0.739 (0.696- 0.783)
0.771 (0.729- 0.816)

0.706 (0.662- 0.749)
0.757 (0.718- 0.797)
0.730 (0.691- 0.772)
0.764 (0.725-0.805)

0.708 (0.667- 0.75)
0.756 (0.717- 0.796)
0.728 (0.69- 0.77)
0.76 (0.721-0.8)

3-year AUC

4-year AUC

5-year AUC

0.769 (0.731-0.811)
0.762 (0.717-0.804)
0.771 (0.729- 0.816)
0.773 (0.736-0.81)

0.765 (0.723-0.811)

0.763 (0.725-0.8)
0.747 (0.704-0.788)
0.764 (0.725-0.805)
0.762 (0.726-0.803)
0.748 (0.71-0.789)

0.763 (0.726- 0.803)
0.743 (0.702- 0.785)
0.76 (0.721-0.8)
0.760 (0.725-0.8)
0.746 (0.708-0.791)

3-year AUC

4-year AUC

5-year AUC

0.758 (0.718-0.802)
0.770 (0.731-0.814)
0.771 (0.729- 0.816)

0.744 (0.702-0.784)
0.760 (0.723-0.798)
0.764 (0.725-0.805)

Table 5
Attention Model Initialized Weights 1-year AUC 2-year AUC
NL+T - 0.746 (0.7- 0.795)
v 0.821 (0.782- 0.864)
SHIFT + T - 0.793 (0.75- 0.836) 0.755 (0.716- 0.8)
v 0.825 (0.783-0.867)
Table 6
AUC results with 95 % CIs for different values of A with a fixed value of B = 0.1 and threshold, T = 60 for SHIFT+T attention.
A 1-year AUC 2-year AUC
1.6 0.813 (0.773-0.858) 0.780 (0.738-0.825)
1.8 0.818 (0.776- 0.864) 0.781 (0.737-0.827)
2 0.825 (0.783-0.867) 0.784 (0.742-0.829)
2.2 0.817 (0.777-0.857) 0.785 (0.745-0.826)
2.4 0.816 (0.772-0.859) 0.782 (0.741-0.825)
Table 7
AUC results with 95 % CIs for different values of B with a fixed value of A = 2.0 and threshold, T = 60 for SHIFT+T attention.
B 1-year AUC 2-year AUC
0.01 0.812 (0.772-0.857) 0.775 (0.736-0.822)
0.05 0.803 (0.764-0.843) 0.778 (0.734-0.821)
0.1 0.825 (0.783-0.867) 0.784 (0.742-0.829)
0.5 0.811 (0.773-0.851) 0.776 (0.737-0.82)

0.791 (0.748-0.838)

0.758 (0.714-0.802)

0.754 (0.711-0.798)
0.745 (0.699-0.787)

0.741(0.701-0.788)
0.732 (0.692-0.775)

0.743 (0.704-0.786)
0.757 (0.724-0.796)
0.76 (0.721-0.8)

0.739 (0.699-0.781)
0.730 (0.687-0.771)
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Table 8
AUC results with 95 % CIs for different values of threshold, T with a fixed value of A = 2.0 and B = 0.1 for SHIFT+T attention.
T 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
48 0.819 (0.781-0.857) 0.786 (0.748-0.832) 0.768 (0.741-0.82) 0.754 (0.731-0.805) 0.750 (0.728-0.803)
54 0.823 (0.781-0.863) 0.783 (0.749-0.832) 0.764 (0.738-0.816) 0.748 (0.725-0.805) 0.744 (0.729-0.803)
60 0.825 (0.783-0.867) 0.784 (0.742-0.829) 0.771 (0.729- 0.816) 0.764 (0.725-0.805) 0.76 (0.721-0.8)
66 0.818 (0.779-0.866) 0.777 (0.733-0.822) 0.756 (0.715-0.799) 0.743 (0.701-0.787) 0.740 (0.697-0.782)
72 0.808 (0.771-0.854) 0.779 (0.739-0.819) 0.766 (0.729-0.806) 0.752 (0.709-0.792) 0.752 (0.714-0.792)
Table 9
AUC results with 95 % CIs for the integration of radiomic features with deep learning features using different configurations of RADMIL.
RADMIL Configuration 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
A 0.832 (0.784-0.881) 0.788 (0.738-0.84) 0.779 (0.733-0.833) 0.775 (0.731-0.822) 0.772 (0.726-0.822)
B 0.834 (0.793-0.88) 0.795 (0.748-0.844) 0.790 (0.746-0.834) 0.787 (0.748-0.829) 0.786 (0.746-0.827)
C 0.847 (0.802-0.895) 0.804 (0.757-0.853) 0.791 (0.743-0.84) 0.787 (0.745-0.831) 0.784 (0.74-0.83)

C (no radiomics)
D
E

0.845 (0.798-0.893)
0.850 (0.8-0.901)
0.852 (0.808-0.901)

0.800 (0.751-0.849)
0.804 (0.752-0.856)
0.807 (0.756-0.859)

0.788 (0.743-0.838)
0.793 (0.746-0.843)
0.795 (0.751-0.842)

0.786 (0.742-0.831)
0.790 (0.745-0.833)
0.791 (0.747-0.837)

0.783 (0.74-0.83)
0.787 (0.744-0.836)
0.788 (0.746-0.833)

the best RADMIL methods first aggregate the features from deep
learning and radiomics individually. The aggregated result should be
combined subsequently using another AMIL mechanism as implemented
in Configs E and D. The highest results were obtained with Config E,
which combined radiomic features with an FC layer and deep learning
features with AMIL, followed by combining both results with another
AMIL mechanism.

In Config E, aggregating the radiomic features using an FC layer
might have produced a better result, as the connection weights in the FC
layer can assign relevant importance to the radiomic features from each
of the four views. Assigning differing weights to the different views
enables the model to determine which views are more important than
others instead of assigning equal importance to all four views, as
implemented in Config D. This is the only difference in the architectures
of Configs D and E, and demonstrates the importance of the FC layer to
combine radiomic features extracted from different views.

Table 10 tabulates various methods of combining additional features
into the deep learning model using (i) a conventional FC layer, (ii)
RADMIL, and (iii) RADMIL combined with lateral attention. The results
demonstrate that our RADMIL method, both with and without the
addition of lateral attention, consistently outperforms other methods.
Despite the relatively small gains from lateral attention, its inclusion
consistently outperforms RADMIL alone on 4 out of 5 metrics suggesting
underlying benefits in its inclusion to enhance the model’s feature rep-
resentation capabilities. This is because the lateral attention can learn to
focus on cancer-affected breasts while paying less attention to normal
breasts for better model performance. The lateral attention is also useful
in determining bilateral asymmetry as we will observe in the Continual
Learning results in the next section (Section 4.3).

The results in this section illustrate that while simpler methods like
concatenating additional features through a conventional FC layer can
offer decent performance, more sophisticated approaches like AMIL
significantly enhance prediction accuracy. This is because AMIL and
lateral-based attention can help to direct more attention to relevant
views or deep learning/radiomic features for better risk prediction,
validating the importance of advanced integration techniques in deep
learning models. AMIL and lateral-based attention also enhance the

Table 10

explainability of the different network architectures used instead of
conventional feature concatenation using the FC layer.

4.3. Continual learning with ReST

Table 11 tabulates the results of utilizing CSAW as a secondary
dataset for continual learning. The baseline result in the table reflects
the performance of the model using a modified ReST and ReSTEM
approach of finetuning on both CSAW and EMBED datasets. The reward
function in ReST is replaced with a confidence threshold similar to the
paper (Gulcehre et al., 2023). The ReST and ReSTIM finetuning results
are lower than the two ReST®" methods, indicating that the inclusion of
an additional dataset using our new approach can benefit an existing
model even though the new dataset’s population is considerably
different from the original dataset’s population.

The results also show that our method of label assignment based on
lateral attention improves the finetuning procedure. The improvements
suggest that reassigning labels with a focus on laterality helps our model
better capture bilateral asymmetry in the data, which is important for
risk assessment, confirming the results in Table 10. The second iteration
of label assignment maintains the improvements observed after the first
iteration, confirming the stability of the approach. Only a slight
improvement is observed in the 2-year AUC result after the second
iteration of ReST', which indicates that the model has reached a
plateau in performance after this iteration. This is also why we stopped
the iterations after the second step; subsequent iterations also indicated
that model performance did not improve after two iterations, and had
plateaued at the second step.

4.4. Cancer forecast prediction with time-interval embeddings

Using the additive hazard layer from (Yala et al., 2021b), we can
forecast a patient’s probability of developing breast cancer in 1 to 5
years’ time, as an ever-increasing risk progression. This is notably
different from the previous models that generate a single risk score,
which is then used to compute all five 1- to 5-year AUC scores (Yeoh
et al., 2023). Table 12 tabulates the results of augmenting the output

AUC results with 95 % CIs for the integration of radiomic features using different combination methods. Configuration E of RADMIL is used here as it produces the
highest results in Table 9.

Feature Combination Method

1-year AUC

2-year AUC

3-year AUC

4-year AUC

5-year AUC

FC 0.833 (0.789-0.877) 0.794 (0.745-0.846)
RADMIL 0.852 (0.808-0.901) 0.807 (0.756-0.859)
RADMIL + Lat 0.851 (0.806-0.904) 0.811 (0.764-0.862)

0.791 (0.745-0.839)
0.795 (0.751-0.842)
0.796 (0.751-0.839)

0.788 (0.748-0.831)
0.791 (0.747-0.837)
0.793 (0.751-0.84)

0.786 (0.744-0.831)
0.788 (0.746-0.833)
0.789 (0.743-0.831)
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Table 11

AUC results with 95 % CIs for continual learning using the CSAW dataset as a secondary dataset for the original ReST method, ReST" and ReST™M.
Learning Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
ReST (Threshold: 0.7) 0.846 0.808 0.796 0.793 0.790
ReST (Threshold: 0.35) 0.853 0.812 0.797 0.792 0.789

ReST™ (finetuning on EMBED and CSAW)
ReSTC: (1st Iteration)
ReST: (2nd Iteration)

0.8537 (0.811-0.903)
0.8549 (0.815-0.904)
0.8549 (0.808-0.901)

0.8132 (0.766-0.865)
0.8139 (0.769-0.863)
0.8140 (0.768-0.862)

0.8007 (0.758-0.847)
0.8014 (0.759-0.851)
0.8014 (0.757-0.848)

0.7965 (0.759-0.84)
0.7971 (0.754-0.841)
0.7970 (0.756-0.84)

0.7929 (0.751-0.834)
0.7934 (0.752-0.838)
0.7934 (0.752-0.837)

Table 12
AUC results with 95 % CIs of risk prediction using an additive hazard layer and additive hazard layer combined with time embeddings.

Forecast Prediction Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

Additive Hazard (Yala et al., 2021b)
Additive Hazard + Time Embedding

0.857 (0.821-0.895)
0.865 (0.836-0.915)

0.814 (0.776-0.853)
0.817 (0.785-0.87)

0.796 (0.759-0.838)
0.802 (0.763-0.846)

0.783 (0.744-0.821)
0.779 (0.74-0.82)

0.780 (0.744-0.817)
0.778 (0.737-0.819)

layer of our model with a time-interval embedding and an additive attention blocks, and RADMIL plus laterality. We have also included

hazard layer.

In Table 12, the introduction of a time-interval embedding into the
additive hazard layer improves most of the metrics, namely, the 1 to 3-
year AUC results. In the EMBED dataset, there is a much higher number
of patients with only 1 to 3 consecutive screenings compared to 4 and 5
total screenings (please refer to Fig. 3); thus, the 1 to 3-year AUC results
might be a more accurate reflection of the results in Table 12.

Implementing the additive hazard layer is advantageous as it ensures

the results of the final TRINet model that combines all modifications, the
risk progression model (i.e., additive hazard layer with time embed-
ding), and the Mirai model (Yala et al., 2021b). Again, the ablation
studies show that the TRINet model that combines all modifications
performs comparably with state-of-the-art methods in the literature,
thus justifying the novelties that have been introduced in the model.

4.5. CNN encoder ablation study

that a patient’s risk at a later time, for example, in three years, is always
higher than her risk in a more recent time, for example, in two years.
Intuitively, this makes sense and is also the reason why the additive
hazard layer is implemented in the current state-of-the-art Mirai model
(Yala et al., 2021b). In our model, we introduce the time-interval
embedding into the additive hazard layer to provide context to the
risk model for better risk forecasting similar to labels provided in CGAN.
The results show that the time-interval embeddings assist the model to
predict risk better, especially for short-term risk prediction.

Table 13 tabulates the results of incorporating all the new modifi-
cations to our model. The results show that the final model that com-
bines the SHIFT + T attention mechanism, RADMIL + Laterality,
Additive Hazard + Time Embedding, and ReST produces the best
overall AUC results. The final ReST" model (in the last row of Table 1 3)
that incorporates all modifications produces significantly better results
using DeLong’s test (DeLong et al., 1988) as implemented in the pROC
package in R with p-values of < 0.05 for all years when compared to the
baseline method and all other methods, except Additive Hazard + Time
Embedding for 1-year AUC to 3-year AUC. ReST" also significantly
outperforms Additive Hazard + Time Embedding for 4-year AUC and
5-year AUC.

Finally, we plotted the ROC curves for 1 to 5-year AUC results in
Fig. 9, comparing the baseline model, all models with the time-decay

The results in Table 14 tabulate the ablation study on various base-
line CNN encoders’ performance in predicting cancer risk. We per-
formed the ablation study on the most popular CNN models, namely
AlexNet, VGG16, and ResNet18. We have denoted the models with all
proposed modifications with asterisks in Table 14. The models with all
modifications added refer to the inclusion of all the new components
presented in the Methods section, including TD-SHIFT, RADMIL (Config
E), laterality, additive hazard layer and time embedding, RESTCL, etc. to
the baseline methods in question.

From Table 14, we observe increases across all five AUCs demon-
strating that our proposed modifications significantly enhance the pre-
dictive power of all models. Resnet18 performs best among all encoders.
This is not surprising as, notably, the state-of-the-art risk prediction
method, Mirai (Yala et al., 2021b) also utilizes ResNetl8 as its CNN
encoder, leveraging its strong feature extraction capabilities and resid-
ual connections to enhance risk prediction.

4.6. Comparisons with state-of-the-art (SOTA) methods

In this section, we compare our new TRINet model with SOTA
methods in the literature and tabulate the results in Table 15. We can
observe that TRINet performs comparably with other SOTA methods in

Table 13
Ablation study results compilation of incorporating new modifications/additions to our model. The p-values were computed using DeLong’s test as implemented in the
PROC package in R, with the ReST": (1st Iteration) model as the referent. Each row corresponds to the final version of an earlier introduced model configuration/

method.

Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
Baseline 0.789 (0.746- 0.835) (p <  0.756 (0.713-0.799) (p <  0.747 (0.704- 0.787) (p =  0.737 (0.696- 0.780) (p = 0.739 (0.697- 0.777) (p =
0.01) 0.01) 0.01) 0.02) 0.02)
SHIFT + T 0.825 (0.783-0.867) (p < 0.784 (0.742-0.829) (p < 0.771 (0.729- 0.816) (p <  0.764 (0.725-0.805) (p < 0.76 (0.721-0.8) (p <
0.01) 0.01) 0.01) 0.01) 0.01)
RADMIL (E) 0.852 (0.808-0.901) (p < 0.807 (0.756-0.859) (p < 0.795 (0.751-0.842) (p < 0.791 (0.747-0.837) (p < 0.788 (0.746-0.833) (p =
0.01) 0.01) 0.01) 0.01) 0.01)
RADMIL (E) + 0.851 (0.806-0.904) (p < 0.811 (0.764-0.862) (p < 0.796 (0.751-0.839) (p < 0.793 (0.751-0.84) (p < 0.789 (0.743-0.831) (p <
Lat 0.01) 0.01) 0.01) 0.01) 0.01)
Additive Hazard + Time 0.865 (0.836-0.915) (p < 0.817 (0.785-0.87) (p < 0.802 (0.763-0.846) (p < 0.779 (0.74-0.82) (p = 0.778 (0.737-0.819) (p =
Embedding 0.01) 0.01) 0.01) 0.02) 0.04)

ReSTC: (1st Iteration)

0.8549 (0.815-0.904)
(referent)

0.8139 (0.769-0.863)
(referent)

0.8014 (0.759-0.851)
(referent)

0.7971 (0.754-0.841)
(referent)

0.7934 (0.752-
0.838) (referent)
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Fig. 9. ROC curves of ablation study results corresponding to 1 to 5-year AUC categories.

terms of C-index and 1 to 5-year AUC results. We reimplemented the
SOTA Mirai (Yala et al., 2021b) and Lomar methods and evaluated them
on the same EMBED dataset split in our study. Specifically, the test set
from our dataset, as described in Section 3.1.1, was used for both our
method and the reimplemented SOTA methods for direct comparisons.
This is because the reported results of Mirai from (Donnelly et al., 2024)
are of a different experimental setup and dataset split of EMBED and
may include different cohort selection, preprocessing pipelines and
sample distributions. While we include these results for reference, they
are not directly comparable to the results in this study, and direct per-
formance comparisons should be made with the Lomar and reimple-
mented Mirai methods in the third and fourth rows of the table.

From Table 15, we observe that TRINet has C-index and AUC results
across all 1- to 5-year AUC scores, which are comparable with other
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SOTA methods. TRINet has significantly higher 2-year to 5-year AUC
results than Lomar, with p values of < 0.007, < 0.002, < 0.0001, and <
0.0001, respectively. TRINet did not have a significantly higher 1-year
AUC result than Lomar, although the obtained p value was just
slightly above the 5 % significance level (p = 0.058). TRINet also had
significantly higher 1-year and 2-year AUC results than Mirai, with p
values of < 0.0007 and 0.040, respectively. TRINet did not have
significantly higher 3-year to 5-year AUC results than Mirai, although
the obtained p values were relatively low, i.e., 0.16, 0.31, and 0.42,
respectively. The C-index of TRINet was also higher at 0.78 (0.74 to
0.82) than Mirai 0.75 (0.72 to 0.79) and Lomar 0.71 (0.66 to 0.76). The
results show that TRINet performs comparably with other methods in
the literature in the cancer risk prediction task.
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Fig. 9. (continued).
Table 14
AUC results with 95 % ClIs of different baseline CNN encoders used in our risk model.
1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
AlexNet 0.691 (0.638-0.746) 0.674(0.623-0.728) 0.678 0.671 (0.623-0.717) 0.675 (0.628-0.723)
(0.626-0.725)
AlexNet* 0.741 (0.697-0.786) 0.709 (0.663-0.757) 0.708 (0.663-0.75) 0.695 (0.649-0.739) 0.697 (0.654-0.743)
VGG16 0.706 (0.663-0.754) 0.689 (0.642-0.735) 0.687 (0.647-0.729) 0.676 (0.633-0.716) 0.680 (0.638-0.719)
VGG16* 0.753 (0.709-0.798) 0.739 (0.697-0.781) 0.736 (0.695-0.776) 0.725 (0.688-0.763) 0.724 (0.687-0.762)
Resnet18 0.789 (0.746- 0.835) 0.756 (0.713- 0.799) 0.747 (0.704- 0.787) 0.737 (0.696- 0.780) 0.739 (0.697- 0.777)
Resnet18* 0.851 (0.806-0.904) 0.811 (0.764-0.862) 0.796 (0.751-0.839)

0.793 (0.751-0.84)

0.789 (0.743-0.831)

* Modifications added.

Table 15

Comparison of AUC results with 95 % CIs and C-indices of our proposed method and other SOTA methods. We reimplemented the SOTA Mirai and Lomar methods and
evaluated them on the same EMBED dataset split as our method. We also report results of Mirai and its variation, AsymMirai, from their original studies. While our
reimplementation ensures a fair or direct comparison, the reported results from the original studies are based on a different dataset or EMBED dataset split, which may
involve variations in preprocessing, cohort selection, or test set composition.

Method

C-index

1-year AUC

2-year AUC

3-year AUC

4-year AUC

5-year AUC

Mirai (Yala et al., 2021a) (Reported)
AsymMirai (Donnelly et al., 2024)

(Reported)

Lomar (Karaman et al., 2024)

Mirai (Yala et al., 2021b)

(Reimplemented)
TRINet

0.77 (0.75-0.79)
Not reported

0.708 (0.659 -
0.757)
0.751 (0.715 -
0.788)
0.780 (0.741 -
0.818)

0.83 (0.81-0.86)
0.79 (0.73- 0.85)

0.836
(0.778-0.895)
0.804
(0.761-0.852)
0.8549
(0.815-0.904)

0.79 (0.77-0.82)
0.69 (0.65-0.73)

0.768
(0.713-0.826)
0.794
(0.756-0.837)
0.8139
(0.769-0.863)

0.77 (0.75-0.80)
0.68 (0.65- 0.71)

0.746
(0.692-0.802)
0.798
(0.759-0.838)
0.8014
(0.759-0.851)

0.77 (0.75-0.79)
0.67 (0.64- 0.70)

0.725 (0.67-0.784)

0.786
(0.749-0.827)
0.7971
(0.754-0.841)

0.76 (0.74-0.79)
0.66 (0.63- 0.69)

0.715
(0.662-0.771)
0.787
(0.746-0.824)
0.7934
(0.752-0.838)

5. Discussion and conclusions

We developed a new risk prediction model that incorporates unique
characteristics to address current limitations in existing risk prediction
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models. Current clinical risk prediction models based on statistical data,
including Tyrer-Cuzick (Cuzick, 2004) and Gail (Gail et al., 1989), are
population-based models with modest discriminatory performance at
the individual level. In the last decade, new risk models that assess risk
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from screening mammograms have been developed that produce higher
AUC results than these conventional models (Tan et al., 2016; Yala et al.,
2021b).

The new models that assess risk from screening mammograms can
generally be divided into two groups: 1) Earlier models based on
radiomic, texture, and mammographic density-based features
(Gastounioti et al., 2016; Tan et al., 2016); 2) Later models trained on
deep learning-based features (Dadsetan et al., 2022; Karaman et al.,
2024; Yala et al., 2021b). The earlier texture and mammographic den-
sity models had better discriminatory power than the conventional
statistical risk models with reported AUC results of around 70 % or
higher (Gastounioti et al., 2016). The more recent deep learning models
have produced models with even better discriminatory capacity with
reported AUC results of around 80 % or higher (Karaman et al., 2024;
Yala et al., 2021Db). The performance improvements observed with deep
learning models demonstrate their potential in this field. It would be
highly beneficial if new, more accurate deep learning-based models
could be developed that improve the discriminatory power of current
models.

More recently, deep learning models that predict short and long-term
risk prediction have emerged (Karaman et al., 2024; Yala et al., 2021b).
These models are very useful as they can be used effectively to predict
the individualized risk of cancer occurring in a woman in 1 to 5 years’
time. In doing so, personalized screening regimens can be prescribed to
individual women based on features extracted from their recent
screening mammograms. Unlike previous statistical-based models that
predict the lifetime risk of developing breast cancer, these models are
based on mammographic features that can vary over time due to lifestyle
changes, such as alcohol consumption, HRT, etc., and are thus more
accurate in predicting short and long-term risks of developing cancer.
These models are also very useful as individualized screening programs
can prevent both over-screening and under-screening of women - If a
woman undergoes screening more frequently than required, this will
result in the accumulation of unnecessary radiation exposure in her
body. Conversely, if she has a high short-term risk of developing cancer,
she should go earlier for her mammogram so that the cancer can be
detected and treated early.

This study builds upon the previously mentioned studies and at-
tempts to address the limitations of those works. First, although both
groups of parenchymal texture and deep learning-based methods have
demonstrated performance improvements individually, few methods
have combined both feature groups to develop a comprehensive risk
model (Yeoh et al., 2023). Furthermore, the previous work uses con-
ventional methods of integrating both feature groups through concate-
nation at the FC layer only; what is required is more sophisticated and
explainable methods of combining both feature groups. Our work
highlights the potential of the new RADMIL method for integrating
radiomic with deep learning-based features, proving essential for model
prediction enhancement. Using RADMIL, the relative importance of
each view can be weighed and aggregated appropriately. Convention-
ally, the CC view is more informative for computerized methods,
whereas MLO is more useful for radiologists; thus, different views pro-
vide differing information (Arefan et al., 2019; Mohamed et al., 2017;
Tan et al., 2015). RADMIL helps the network focus on relevant views to
more accurately predict risk. Instead of focusing on one particular view,
the model can decide on its own, through backpropagation training,
useful views that provide relevant information for risk prediction.

Second, several studies in the literature (Dadsetan et al., 2022; Lee
et al., 2023; Yeoh et al., 2023) have incorporated prior mammograms in
their risk models. However, as cancer develops over time, it is important
to monitor its progression. We have presented new advanced attention
mechanisms that focus on time-decay (TD) attention. The TD attention
prioritizes information from more recent screenings when extracting
features from sequential mammograms compared to previous screen-
ings. Our findings highlight the critical role that incorporating
time-sensitive information considerably enhances the effectiveness of
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NL and SHIFT attention mechanisms. Models equipped with TD atten-
tion consistently outperform their vanilla counterparts, demonstrating
that embedding temporal information strengthens the model’s ability to
identify patterns relevant to cancer risk across various time intervals.

Another limitation of current models is that although implementing
a personalized screening regimen is highly recommended, to our
knowledge, none of the risk models incorporate this information into
their models to better stratify women in a risk prediction scheme.
Although Yala et al. (2022) proposed the Tempo-Mirai reinforcement
learning-based method to recommend personalized screening intervals,
training neural network reinforcement learning methods is challenging
(Ding and Dong, 2020), and might be unnecessary for a fixed
time-interval screening paradigm. We introduced a novel modification:
a time embedding layer within the additive hazard layer model. This
time embedding layer adds a temporal sensitivity, which allows the
model to account for the timing of previous screenings when predicting
future risk. Our approach optimizes the risk scoring mechanism by
embedding temporal information directly into the risk model enabling
the additive hazard layer to adjust risk assessments in a nuanced manner
based on screening intervals.

As cancer usually develops in only one breast, methods that detect
bilateral asymmetry over time have been investigated for short-term risk
prediction (Tan et al., 2016; Zheng et al., 2012). However, not many
recent models (Donnelly et al., 2024; Tan et al., 2016; Yeoh et al., 2023)
incorporate this information even though it has proven useful for risk
assessment. In this study, we incorporated lateral attention into RADMIL
to direct the model to focus on which side of the breast would potentially
develop cancer over time. While the uniform attention in AMIL allocates
equal attention to each view based on their overall contribution to
cancer risk, lateral attention, trained through supervised learning, is
fine-tuned to detect and highlight signs of cancer development in one
breast side versus the other.

Fifth, current risk prediction models are only trained on a single
demographic population, e.g., a Swedish (Yeoh et al., 2023), American
(Yala et al., 2021), or Asian (Tan et al., 2019) population. We hereby
present a new method, called ReST that enables a model to continually
learn on a new dataset of a different (Swedish) population without
catastrophically forgetting its previous knowledge of the primary
American dataset. In ReST®Y, we explored a label assignment strategy
rooted in bilateral asymmetry detection, aiming to enhance the model’s
continual learning process by harnessing asymmetrical features between
left and right breast views. This method adaptively refines its predictive
accuracy through label reassignment based on laterality—allowing it to
better capture risk factors that manifest as asymmetrical differences
between breast sides. ReST® can be generalized to other applications,
and its usage is not just limited to risk prediction.

In conclusion, we developed a new temporally sensitive model for
cancer risk prediction that incorporates time-decay attention mecha-
nisms and integrates radiomic features through a novel architecture that
uses attention-based multiple instance learning called RADMIL.
Furthermore, our model’s innovative use of a time-embedded additive
hazard layer, and a new self-training method using asymmetry-based
label assignment for continual learning contributes valuable frame-
works for improving risk assessment based methods in the literature. A
downside of our model is that we were only able to test it on two public
datasets of American (EMBED) and Swedish (CSAW) populations, which
may limit generalizability, highlighting the need for broader clinical
testing and validation on more diverse patient datasets in the future.
However, the results still demonstrate that our new model incorporating
these innovative methods improves cancer risk assessment, is compa-
rable with SOTA methods, and promotes new approaches for personal-
ized medicine and screening regimens in individual women.
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