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A B S T R A C T

To facilitate early detection of breast cancer, there is a need to develop risk prediction schemes that can prescribe 
personalized screening mammography regimens for women. In this study, we propose a new deep learning ar
chitecture called TRINet that implements time-decay attention to focus on recent mammographic screenings, as 
current models do not account for the relevance of newer images. We integrate radiomic features with an 
Attention-based Multiple Instance Learning (AMIL) framework to weigh and combine multiple views for better 
risk estimation. In addition, we introduce a continual learning approach with a new label assignment strategy 
based on bilateral asymmetry to make the model more adaptable to asymmetrical cancer indicators. Finally, we 
add a time-embedded additive hazard layer to perform dynamic, multi-year risk forecasting based on individ
ualized screening intervals. We used two public datasets, namely 8528 patients from the American EMBED 
dataset and 8723 patients from the Swedish CSAW dataset in our experiments. Evaluation results on the EMBED 
test set show that our approach performs comparably with state-of-the-art models, achieving AUC scores of 
0.851, 0.811, 0.796, 0.793, and 0.789 across 1-, 2-, to 5-year intervals, respectively. Our results underscore the 
importance of integrating temporal attention, radiomic features, time embeddings, bilateral asymmetry, and 
continual learning strategies, providing a more adaptive and precise tool for breast cancer risk prediction.

1. Introduction

There is a clear need to develop effective breast cancer screening 
protocols and individualized risk assessment models (Dadsetan et al., 
2022; Lee et al., 2023; Yala et al., 2021b; Yeoh et al., 2023). However, 
current screening protocols are generic, based on fixed schedules and 
broad risk categories (Ren et al., 2022). This can lead to over-screening, 
causing harm in the form of false positives, unnecessary anxiety, and 
overtreatment for those who have low cancer risk (Bond et al., 2013; 
Habib et al., 2021; Salz et al., 2010). Conversely, these fixed screening 
protocols could also lead to under-screening and missing early cancer 
signs in high-risk women, leading to cancers being detected too late.

In the United States, agencies including the American Cancer Society 
(Smith et al., 2019) and the American College of Physicians (Qaseem 

et al., 2007) have multiple recommendations on mammographic 
screening guidelines for women, including when to start screening and 
how often to get screened. What is common is that they all recommend 
screening with some frequency over a certain portion of a woman’s 
lifetime (Qaseem et al., 2007; Smith et al., 2019). Several risk models 
have been developed to assess risk in the general population. These 
include the Tyrer-Cuzick (Cuzick, 2004), Breast Cancer Surveillance 
Consortium (Tice et al., 2008, 2015), and Gail (Gail et al., 1989) models. 
These models incorporate demographic and clinical risk factors, such as 
age, family history of breast cancer, ethnicity, genetics, race, and 
mammographic breast density in their risk assessment. However, these 
clinically used models have only moderate performance in discrimi
nating cancer risk, achieving Area under the Receiver Operating Char
acteristic Curve (AUC) results below 70 % (Cuzick, 2004; Gail et al., 
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1989; Tice et al., 2008, 2015).
Image based risk assessment modelling is underutilized in current 

clinical practice although recent artificial intelligence (AI) studies report 
significantly-improved performance using mammography data (Arasu 
et al., 2023). Recent deep learning advances allow us to build risk 
assessment models that analyze mammograms directly and show sig
nificant improvements over conventional models (Dadsetan et al., 2022; 
Lee et al., 2023; Lotter et al., 2021; McKinney et al., 2020; Yala et al., 
2021b). These models use convolutional neural networks (CNNs) to 
learn patterns in images and outperform traditional models that use 
manually handcrafted features (Gastounioti et al., 2016; Tan et al., 
2019, 2016).

While these models demonstrate improvements over previous con
ventional methods, one of the biggest limitations of current models is 
that they are designed to analyze a single static mammogram, ignoring 
the temporal progression of mammographic changes across multiple 
screenings (Donnelly et al., 2024; Lotter et al., 2021; McKinney et al., 
2020; Tan et al., 2019; Yala et al., 2021b). As cancer is a dynamic 
process and structural changes in breast tissue progress gradually over 
time, sequential mammograms that capture these changes contain crit
ical information for identifying emerging cancer risks. Without incor
porating temporal data, current models may miss the subtle yet critical 
signs of risk progression, thus limiting their predictive ability. Several 
studies (Dadsetan et al., 2022; Lee et al., 2023; Yeoh et al., 2023) in the 
literature have included previous mammographic screenings in training 
their model.

Another drawback of current risk models is that although both 
parenchymal texture features and deep learning features have proved 
beneficial for risk assessment, only a few studies combine both radiomic 
and deep learning features in their models (Yeoh et al., 2023). The 
simplest way to combine both feature groups is to concatenate them in 
the fully-connected (FC) layer (Yeoh et al., 2023). However, examining 
more advanced, optimal methods (Bahdanau et al., 2014; Ilse et al., 
2018) is required to combine these features to maximally leverage both 
feature groups’ strengths and to synthesize new combinations of fea
tures for better model performance. Additionally, models that only 
utilize either the craniocaudal (CC) or mediolateral oblique (MLO) view 
(Arefan et al., 2019; Carneiro et al., 2015) to form a final risk prediction 
score are outperformed by models that incorporate both views. 
Conversely, we propose a new model that combines sequential radiomic 
and deep learning based image features from all four images of both 
views to generate a final comprehensive risk score for individual 
patients.

Furthermore, although implementing a personalized screening 
regime is highly recommended to avoid over-screening or under- 
screening of women, to date, none of the risk models incorporate this 
information into their models to better stratify women in a risk predic
tion scheme. We present a new time-interval embedding method for 
better risk classification in the feature space that can forecast the risk of 
cancer occurring in six months to five years. Incorporation of this new 
time-embedding method can help stratify women into personalized 
screening regimens to avoid over-screening in women who have a low 
short-term cancer risk and can thus come back later (for example, in 
three years) for their next screening and avoid under-screening women 
who have suspicious signs and thus have high short-term cancer risk and 
should come back earlier (for example, in six months) for their next 
screening.

Another issue that is present not just in risk prediction schemes but in 
AI schemes in the medical field is that the full capacity of current 
methods might be limited by their inability to continually learn (Liu 
et al., 2024; Wang et al., 2023). Current risk prediction models are only 
trained on a single dataset of a single demographic group, e.g., a 
Swedish (Yeoh et al., 2023), American (Yala et al., 2021b), or Asian (Tan 
et al., 2019) population. If a new dataset becomes available, it would be 
most unfortunate if the trained model suffers from catastrophic forget
ting and is unable to increase its knowledge through a continual learning 

method, given how challenging it is to obtain ethics clearances, etc., for 
any given dataset. To resolve this issue, we present a new method that 
enables a model to continually learn and increase its knowledge using a 
new dataset of a different population without catastrophically forgetting 
its previous knowledge of the primary dataset.

Additionally, bilateral asymmetry – differences in parenchymal tis
sue between left and right breasts – is a well-known risk factor, as 
cancers typically develop in only one breast over time (Tan et al., 2016; 
Zheng et al., 2012). However, many risk models, with the exception of a 
few (Donnelly et al., 2024; Tan et al., 2016; Yeoh et al., 2023), do not 
incorporate this measurement as indicators in their models. In this 
study, we propose a new approach to measuring bilateral asymmetry 
and incorporate it with our continual learning method to enhance our 
model’s performance. The results show that using our new approach, the 
model can continually learn on a new dataset and improve its perfor
mance without catastrophic forgetting of the previous dataset.

Thus, to overcome all these limitations, we present a Time-decay 
Radiomics Integrated Network (TRINet), which is a new deep learning 
cancer risk model with the following contributions: 

• We present a new Time-Decay (TD) attention mechanism for both 
Non-Local (Wang et al., 2018) and Fastformer (Wu et al., 2021) 
blocks. Although TD attention improves both Non-Local and Fast
former performances, its application on the Fastformer block yields 
better overall performance.

• We introduce a new Radiomics and Deep learning feature-based 
Multiple Instance Learning (RADMIL) method to integrate and 
combine deep learning and radiomic features effectively. RADMIL 
effectively integrates features from CC and MLO views of both left 
and right breasts in an interpretable and effective manner using 
attention mechanisms.

• We propose a new cancer forecast network that incorporates time- 
interval embeddings for risk prediction in six-month intervals (i.e., 
6 months to 5 years). In our new method, a time-embedded additive 
hazard layer is presented for risk prediction. The time embedding 
provides context to the risk model to forecast individualized 
screening intervals better.

• We present a new self-training method based on continual learning 
called Reinforced Self-Training (ReST) with Continual Learning 
(ReSTCL). ReSTCL enables our model to continually learn new 
knowledge on new datasets without catastrophically forgetting the 
primary dataset. To identify useful samples for finetuning from the 
secondary dataset, bilateral asymmetry features are computed, and 
the model is trained iteratively. Results show that new knowledge is 
gained on the secondary dataset of a different population without 
catastrophically forgetting previous knowledge of the primary 
dataset.

2. Related work

2.1. Multiple time-point risk prediction models

The development of breast cancer risk prediction for mammographic 
images has come a long way. The earlier methods were based on 
radiomic features including parenchymal texture (Anandarajah et al., 
2021; Tan et al., 2016) and mammographic density (Anandarajah et al., 
2021; Keller et al., 2012) based features. More recently, deep learning 
(Dadsetan et al., 2022; Lee et al., 2023; Yala et al., 2021b; Yeoh et al., 
2023; Zhu et al., 2021) features have been incorporated into newer 
models. However, the vast majority of existing methods do not incor
porate temporal information in the form of prior screening mammo
grams, with the exception of several methods (Dadsetan et al., 2022; 
Karaman et al., 2024; Lee et al., 2023; Yeoh et al., 2023).

Although one of the state-of-the-art methods, Mirai (Yala et al., 
2021b) is robust and generalizable in handling missing clinical risk 
factor information and maintains consistent predictions across different 
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mammography machines, it has a key limitation of using only single 
time-point mammograms for risk prediction. By ignoring longitudinal 
information, Mirai cannot capture temporal changes in breast tissue that 
can be critical to cancer risk progression, which is an issue that was 
acknowledged by the authors in their paper (Yala et al., 2021b). The 
authors acknowledge that a natural next step is to develop methods that 
utilize a patient’s full history of imaging, which we attempt to do in this 
study.

Longitudinal Mammogram Risk Prediction (LoMaR) (Karaman et al., 
2024) is a new deep-learning framework that builds on Mirai. LoMaR 
incorporates changes in mammograms over time to predict cancer risk. 
However, Lomar does not leverage attention mechanisms in its feature 
extraction procedure, which might hinder it from detecting subtle 
changes in the breasts over time.

LRP-NET (Dadsetan et al., 2022) models spatiotemporal changes in 
breast tissue across multiple sequential mammograms to capture lon
gitudinal changes for any given patient. This is achieved through 
capturing image features using a CNN encoder and modelling temporal 
changes with a Gated Recurrent Unit (GRU). The highest AUC result of 
67 % is reported for information obtained from four prior screening 
mammograms. However, LRP-NET does not incorporate radiomic fea
tures in its model, which can provide additional information to deep 
learning features. It also does not address short-term risk forecasting (e. 
g., 1-year or 2-year AUC) for the implementation of individualized 
screening regiments.

PRIME+ (Lee et al., 2023) incorporates multiple screening mam
mograms in its risk assessment and has a network architecture similar to 
Mirai’s. It includes a cross-attention mechanism in its transformer block, 
whereby queries are obtained from the current exam and keys and 
values from the prior exams. This allows PRIME+ to capture temporal 
changes in breast tissue, e.g., density changes and outperforms single 
time-point models. However, like Mirai and LRP-NET, PRIME+ does not 
incorporate radiomic features or continual learning methods for better 
performance.

2.2. Time-decay (TD) attention

Time-sensitive time-decay attention plays an important role across 
diverse domains, addressing the need for deep learning models to 
effectively adapt to temporal variations. Notably, in the field of Natural 
Language Processing (NLP), Receptance Weighted Key Value (RWKV) 
(Peng et al., 2023) presents an innovative approach to reconcile the 
trade-offs between computational efficiency and model performance in 
sequence processing. The authors introduce a novel model architecture, 
which combines the strengths of transformers and recurrent neural 
networks (RNNs). RWKV draws inspiration from the Attention Free 
Transformer (AFT) (Zhai et al., 2021) and introduces a channel-wise 
exponential time decay vector, to ensure proper decay characteristics. 
This is multiplied by the relative position and traced backward from the 
current time, facilitating the attention mechanism to focus more 
consciously on recent inputs. In another similar architecture, the 
Retentive Network (RETNET) (Sun et al., 2023) instead employs expo
nential decay within the causal mask, which combines with the 
query-key matrix through the dot product. RETNET introduces a 
retention mechanism for sequence modelling, supporting various 
computation paradigms such as parallel, recurrent, and chunk-wise 
recurrent representations.

A notable contribution in the medical field is GLIM-Net (Hu et al., 
2023), a Chronic Glaucoma Forecast Transformer, which introduces 
time positional encoding to learn temporal information from sequential 
fundus images. GLIM-Net achieves time-sensitive attention through a 
time-related matrix T, combined with the attention matrix through the 
Hadamard product to better enable the self-attention mechanism to 
handle irregularly sampled data. Another paper (Li et al., 2022) intro
duced two extensions to the standard Vision Transformer (ViT) 
(Dosovitskiy et al., 2021) for the task of lung cancer diagnosis from 

longitudinal computed tomography. The authors introduced 
continuous-time vector embeddings by constructing a relative time 
distance vector to incorporate linear time information into the trans
former, allowing the model to capture temporal dependencies between 
the images. Additionally, they proposed a time-aware ViT that learns 
through a flipped sigmoid function to scale self-attention weights at each 
head, addressing the challenge of decreasing information over irregu
larly sampled time intervals.

2.3. Radiomic features for breast cancer risk prediction

Radiomics (Lambin et al., 2012), the extraction and quantification of 
imaging biomarkers, is important to advance cancer risk prediction but 
is seldom leveraged for this purpose. By capturing quantitative infor
mation such as texture, shape, and intensity patterns from images, 
radiomics can uncover features that are not visible to the human eye.

Radiomics has been applied to predict breast cancer risk factors 
including molecular subtypes and recurrence risks. Ma et al. developed 
radiomics-based mammographic classifiers to differentiate between 
triple-negative (TN) and non-TN cancers as well as HER2-enriched and 
luminal breast cancers with an AUC of up to 86.5 % (Ma et al., 2019). 
Kontos et al. applied radiomics classifiers to identify mammographic 
parenchymal complexity phenotypes associated with cancer risk and 
reported an AUC of 84 % in their study (Kontos et al., 2019).

Deep-LIBRA (Maghsoudi et al., 2021) is an important artificial in
telligence (AI) method using radiomics for breast cancer risk assessment. 
This method combines CNNs for breast segmentation with a radiomic 
algorithm to differentiate dense and non-dense breast tissue. 
Deep-LIBRA quantifies breast percent density (PD), a well-established 
risk factor [15–18] for breast cancer. The study results show that 
Deep-LIBRA outperforms several state-of-the-art breast density assess
ment methods in case-control discrimination with an AUC of 61.2 %. 
While these results demonstrate the potential of combining deep 
learning and radiomics for risk prediction, the approach only focuses on 
breast density as a single biomarker and does not incorporate prior 
mammographic images in its risk assessment.

2.4. Continual learning

Continual learning (Wang et al., 2023), also known as incremental 
learning or lifelong learning, aims to acquire new knowledge in different 
environments, etc., without forgetting previous knowledge learned or 
experiencing catastrophic forgetting. To our knowledge, this method has 
not been examined yet in the breast cancer risk prediction field. 
Continual learning has been more widely explored in the medical image 
segmentation field. First, Liu et al. (2024) proposed a new universal and 
extensible language-vision model for organ segmentation and tumor 
detection from abdominal CT images. The authors’ continual learning 
method trains and adds a new multilayer perceptron for each new organ 
to their network architecture, to minimize disruption caused by the 
introduction of new classes on the old classes.

Ji et al. (2023) proposed a novel continual learning method that 
froze the encoder and decoder. Separable, trainable decoders were then 
incrementally added to continually learn new datasets, thus avoiding 
catastrophic forgetting of the previous dataset. Liu et al. (2022) pre
sented a light memory module to store prototypes of different organ 
categories, which are updated during the training process for multiple 
organ segmentation.

While all these methods present important contributions to cancer 
risk assessment models, there is a need to develop an integrated and 
comprehensive model that combines all unique and individual charac
teristics into an all-encompassing model. In the subsequent sections, we 
introduce our novel TRINet model, whose overall architecture is shown 
in Fig. 1, which implements TD attention, effectively integrates radiomic 
features and time-interval embeddings, and continually learns on new 
datasets for more accurate risk prediction.
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3. Materials and methods

3.1. Datasets

Two datasets were examined in this study, namely the Emory Breast 
Imaging Dataset (EMBED) and the Cohort of Screen-Aged Women 
(CSAW) datasets. All mammograms that were used in this study are two- 
dimensional (2D) full-field digital mammography (FFDM) images and 
were not 2D synthetic mammograms from digital breast tomosynthesis 
(DBT). Both invasive cancers and ductal carcinoma in situ (DCIS) can
cers are included as cases in both datasets (Dembrower et al., 2020; 
Jeong et al., 2023).

For both datasets, the following timepoints were used for cases and 
controls: For cases, the “current” timepoint is defined as the screening 
exam that led to the cancer diagnosis. For the “prior” timepoints, we 
applied a sliding window approach across longitudinal screening exams 
to generate all valid prior–current pairs within the 1 to 5-year interval. 
For controls, the “current” time point is the earliest screening exam that 
did not have screen-detected cancer, whereas the “prior” time point is 
the closest screening exam 1 to 5 years before that. This consistent time 
point pairing enables the model to learn from temporal changes in breast 
tissue. For patients with multiple prior exams, all current-prior combi
nations were used. This allows us to fully utilize longitudinal data and 
supports more robust modeling of temporal changes.

3.1.1. EMBED dataset
The EMBED dataset (Jeong et al., 2023) contains over 3.4 million 

images from 116,000 women including a balanced mix of African 
American and white patients. EMBED addresses the diversity and 
granularity gaps in breast imaging datasets. This dataset includes 
mammography images along with lesion-level annotations and longi
tudinal follow-up data. Demographic data, including age, race, and tis
sue density, are included in the dataset. The mammogram vendors that 
were assessed for EMBED are Hologic, GE, and Fujifilm. The controls 
within this dataset are women who had no diagnosis of breast cancer for 
at least three years following their latest/ “current” screening 
examination.

The EMBED dataset consists of sequential mammograms that can be 
used to train and validate machine learning models for recognizing 
changes in mammographic findings over time. This is crucial for risk 
prediction as models can be trained to recognize subtle changes that may 
indicate increasing risk over time and potentially allow for early inter
vention. The dataset’s racial diversity enables the development of risk 
models that work well across different demographics, addressing known 
biases in cancer screening and reducing disparities in early detection 
and outcomes. The dataset used in this study is the 20 % portion of the 
dataset that is “open” for research access, thus facilitating performance 
comparisons with other methods in the literature. Fig. 2 describes our 
procedure of filtering this dataset for the purpose of this study.

We have also tabulated the detailed demographics of the dataset in 
Table 1. From Table 1, we observe that using Student’s t-test, except for 
age, there is no significant difference (i.e., p < 0.05) among other 
characteristics between positive and negative case groups. The observed 
age differences are expected and reflect the established relationship 

Fig. 1. The proposed TRINet model uses a shared backbone encoder across all four images. The encoder incorporates a new time-decay attention that can capture 
changes in breast tissue structure over time while focusing on more recent screenings. The handcrafted radiomic features are the same as in (Yeoh et al., 2023) and 
are included in the model through our new Radiomics and Deep learning-based Multiple Instance Learning (RADMIL) architecture.

H.H. Yeoh et al.                                                                                                                                                                                                                                 Medical Image Analysis 107 (2026) 103829 

4 



between increasing age and cancer risk (Tan et al., 2016). While 
age-matching could remove this difference, we intentionally followed 
the approach used in prior state-of-the-art studies (Yala et al., 2022, 
2021b), which employ screening datasets that reflect real-world popu
lation distributions. This design allows the model to learn from natural 
variation in age and risk.

The selection criteria of cases and controls are given in the paper that 
describes the dataset (Jeong et al., 2023); we will provide a brief sum
mary here. Women aged 18 years or older with at least one available 
mammogram were included in the dataset. Exclusion criteria were any 
patient younger than 18 years old. Patients without three years of 
follow-up data were excluded from our dataset, along with patients with 
missing views (refer to Fig. 2).

EMBED is a very unique dataset in that it contains longitudinal data 
or screening mammograms of patients who eventually develop cancer. 
Patients in the dataset have multiple screenings over time, reflecting 
real-world scenarios where regular imaging is key to early detection and 
monitoring of disease progression. This dataset is particularly valuable 
for understanding how screening intervals and adherence impact out
comes and enable the optimization of personalized screening protocols. 
Fig. 3 shows the breakdown of the number of screenings for cancer 
patients in this dataset.

3.1.2. CSAW dataset
In this study, we utilize the same CSAW (Dembrower et al., 2020) 

dataset as in our previous work (Yeoh et al., 2023). This dataset, pre
viously described in detail in (Yeoh et al., 2023), comprises a 
population-based cohort of women aged 40–74 years old from the 
Stockholm region, Sweden, with FFDM images collected between 2008 
and 2016. For consistency and reproducibility, we applied the same data 
processing strategy used in (Yeoh et al., 2023), maintaining the control 
and case partitioning, along with the categorization of clinical risk 

factors. The proportion of cases and controls was also maintained for the 
training, validation, and testing sets. All images in this dataset were 
acquired on Hologic mammography equipment. For the controls within 
this dataset, 75 % had at least two years of follow-up time, and 25 % had 
less than two years of follow-up time. The 25 % were relatively evenly 
distributed between zero and two years of follow-up time, and they did 
not have screen-detected cancer.

In the CSAW dataset, women with a prior history of breast cancer or 
diagnosed at an age outside the screening range were excluded. Table 2
tabulates the demographic and LIBRA percent densities (Keller et al., 
2012) of the CSAW dataset, although the dataset is heavily censored and 
only contains publicly released information. From Table 2, we observe 
that there is only a significant difference for age (i.e., p < 0.01) between 
positive and negative case groups.

3.2. Time-decay (TD) attention

Traditional attention mechanisms weigh each pixel in spacetime 
equally, giving equal importance to each pixel’s position (Wang et al., 
2018). However, in a scenario where the individual image frame pro
gresses through time, the relevance of information changes over time, 
and an equally weighted attention mechanism may not suffice. To 
address this issue, we propose to incorporate the concept of time decay 
into the attention mechanism. Our aim is to leverage existing insights 
that earlier images carry less relevant information as compared with 
more recent ones. In line with this, attention mechanisms should 
selectively pay less attention to prior mammographic features and focus 
more on the most recent images. This emulates the diagnostic approach 
of radiologists who, while referencing prior mammograms, place greater 
emphasis on the most current images in making their final diagnosis 

Fig. 2. Dataset construction flowchart for the EMBED dataset used in 
this study.

Table 1 
Detailed demographics for the EMBED dataset. We employed a five-fold cross- 
validation method, whereby the training and validation dataset was divided into 
five subsets, ensuring each subset was used for both training and validation at 
different iterations. The test set remained independent and was unseen during 
training.

EMBED training 
and validation 
sets

p- 
value

EMBED testing 
set

p- 
value

Characteristics Controls Cases Controls Cases

All examinations 6528 575 ​ 1308 117 ​
Age ​ ​ 0.02 ​ ​ 0.02
<40 31 42 ​ 5 6 ​
40 - 50 1085 118 ​ 211 22 ​
50 – 60 1804 143 ​ 334 31 ​
60 - 70 1817 141 ​ 398 32 ​
70 - 80 1423 101 ​ 282 21 ​
80+ 368 30 ​ 78 5 ​
Tissue density ​ ​ 0.12 ​ ​ 0.09
Almost entirely 

fatty
702 40 ​ 140 7 ​

Scattered 
fibroglandular 
densities

2812 212 ​ 554 40 ​

Heterogeneously 
dense

2653 286 ​ 552 62 ​

Extremely dense 347 34 ​ 61 8 ​
Unknown 14 3 ​ 1 0 ​
Race ​ ​ 0.14 ​ ​ 0.12
African American 

or Black
2927 271 ​ 583 56 ​

American Indian 
or Alaskan 
Native

14 1 ​ 2 0 ​

Asian 366 33 ​ 65 6 ​
Caucasian or 

White
2828 247 ​ 585 51 ​

Native Hawaiian 60 4 ​ 12 1 ​
Other Races 333 19 ​ 61 3 ​
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(Hayward et al., 2016).
A strong assumption is made here, namely that the earlier images 

carry less information than more recent ones, as the “trend” of changes 
in the breast regions might be important. However, many methods in 
both the NLP field and the medical image processing field make the same 
assumption. For example, in the NLP field, two popular networks, RWKV 
(Peng et al., 2023) and RETNET (Sun et al., 2023), both implement 
attention as decaying exponentials to place less importance on earlier 
text. The same assumption is also made in the medical image processing 
field for glaucoma forecasting (Hu et al., 2023) and lung cancer diag
nosis from longitudinal computed tomography (Li et al., 2022). In the 
context of breast cancer risk prediction, the trend could be more 
important for recent images than previous images, which might justify 
this strong assumption. For example, hormone therapy for menopause is 
associated with an increase in mammographic breast density, which 
might increase cancer risk. Thus, for a woman who started hormone 
replacement therapy (HRT), her recent mammograms might be more 

relevant for risk assessment than her previous ones; namely, her 
screening mammograms when she resumed HRT might be more relevant 
for risk prediction. This also applies to lifestyle changes in a woman, e.g., 
alcohol consumption or other risk factors that might have a more recent 
effect on parenchymal breast density or texture of the breast.

The novelties in this section draw inspiration from the time-sensitive 
self-attention mechanism in (Hu et al., 2023) proposed for glaucoma 
forecasting using time interval data, and the RWKV (Peng et al., 2023), 
and RETNET (Sun et al., 2023) for large language models. We hereby 
propose a new time-decay attention for the Non-Local self-attention 
(Wang et al., 2018) and Spatial Channel Image Fastformer (SHIFT) 
blocks (Yeoh et al., 2023). A time-sensitive mechanism was proposed in 
(Hu et al., 2023) in a Transformer (Vaswani et al., 2017) architecture 
with Encoder-Decoder blocks; however, Transformers generally require 
an abundance of images to be trained efficiently, which might not be 
available in the medical imaging field (Dosovitskiy et al., 2021). 
Conversely, we propose new time-decay attention mechanisms in CNN 

Fig. 3. Breakdown of the number of screenings for cancer patients in the publicly released 20 % EMBED dataset subset used in this study.

Table 2 
Demographic and LIBRA percent densities (Keller et al., 2012) for the CSAW dataset. We employed a five-fold cross-validation method, whereby the training and 
validation dataset was divided into five subsets, ensuring each subset was used for both training and validation at different iterations. The test set remained inde
pendent and was unseen during training. This dataset is heavily censored and only contains publicly released information on age and LIBRA percent density.

CSAW Training and validation sets p-value CSAW Testing set p-value

Characteristics Controls Cases Controls Cases

All examinations 6279 695 ​ 1571 178 ​
Age ​ ​ <0.01 ​ ​ <0.01
40 - 55 3084 255 ​ 769 64 ​
55+ 3195 440 ​ 802 114 ​
LIBRA percent density ​ ​ 0.35628 ​ ​ 0.26982
Mean 24.29 24.48 ​ 24.07 26.35 ​
Min 0.67 1.55 ​ 0.97 1.67 ​
Max 96.55 94.52 ​ 94.75 72.95 ​
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architectures that generally require fewer images to train. Another 
advantage is that in CNN architectures, 3D convolution can be imple
mented to find useful information in the time dimension, e.g., in a 
sequence of yearly mammograms. By incorporating time decay into the 
attention mechanism, we aim to enhance the model’s ability to discern 
temporal patterns and direct its focus appropriately, ultimately 
improving its performance in tasks where recent information holds more 
significance than past observations.

To implement the time decay attention mechanism, a negative 
exponential decay is applied, similar to previous methods in NLP (Peng 
et al., 2023; Sun et al., 2023) and medical image processing (Hu et al., 
2023; Li et al., 2022; Yang et al., 2024). This method is reasonably well 
known for information decay in the literature. First, in NLP, the RWKV 
method proposes a channel-wise negative exponential decay in its 
attention mechanism (Peng et al., 2023). Another popular method, 
RETNET (Sun et al., 2023) combines causal masking and negative 
exponential decay along relative distance as one matrix within the 
causal mask.

In the medical image processing field, GLIM-Net (Hu et al., 2023) 
proposed a negative exponential decay by multiplying a time-related 
matrix with the attention mechanism so that their model pays less 
attention to fundus images acquired a long time ago. In (Li et al., 2022; 
Yang et al., 2024), the authors also incorporate a negative exponential 
decay for glaucoma forecasting and lung cancer diagnosis from longi
tudinal images. Both methods leverage the time distance between pre
sent and distant events to scale the attention scores using a negative 
exponential decay function.

3.2.1. Time-decay non-local (TD-NL) block
To implement time-decay attention, our proposed method builds 

upon the attention mechanisms of Non-Local networks (Wang et al., 
2018) and our previously-proposed SHIFT (Yeoh et al., 2023) block. In 
this subsection, we focus on formulating a new time-decay attention for 
non-local as displayed in Fig. 4; we will propose a similar definition for 
SHIFT in the next subsection. We first linearly transform our input 
X ∈ RC × n, where C represents the channel dimension and n denotes 
time × height × width, respectively, into query, key, and value matrices 
of Q, K, V ∈ RC × n. The formulation can be expressed as follows: 

Q = MQX, (1) 

K = MKX, (2) 

V = MVX, (3) 

where MQ, MK and MV are 1 × 1 convolutions. To incorporate a time 
interval vector, t, as an input into our modified attention block, Hada
mard product in the time dimension is used. For Non-Local self-atten
tion, the time-decay attention mechanism can thus be formally 
represented as follows: 

NL(Q,K,V, t) = softmax
(
Q̃

T
K̃
)
V, (4) 

Q̃ = Q ∗ t, (5) 

K̃ = K ∗ t, (6) 

t =
1

eAeBΔti,n
, (7) 

Δti,n =
min

(
Δti,n , T

)

T
(8) 

where A and B are fixed parameters and Δti,n is the time interval between 
images in the sequence, xi and the most recent image in the sequence, xn. 
As patients generally have follow-up screenings in a year’s time, we 
measure time intervals in months. Threshold T is used to clip the time 
interval, Δti,n. Following that, the resulting value is normalized by 
dividing it by T to normalize the range of Δti,n to be between 0 and 1. 
The threshold value T in the formula can be chosen arbitrarily; however, 
it is recommended to select a value that is not too high, as patients tend 
to come annually for their screening mammogram as typified in our 
dataset(s). The negative exponential in Eq. (7) is a monotonically 
decreasing function, which ensures less attention is given to “prior” 
mammograms that are further away in the time dimension from the 
“current” mammogram.

Our formulation and implementation for handling time attention 
differs from (Hu et al., 2023). First and foremost, we avoided the use of 
transformers, which typically demand a substantial amount of training 
samples. Unlike the transformer-based approaches to handle time 
attention, our method directly influences the query and key matrices 
through Hadamard product with the time interval vector. This direct 
integration of temporal information into the query and key matrices 
eliminates the need for constructing and learning a separate query-key 
interaction matrix with more trainable parameters, contributing to a 
more efficient and sample-efficient approach.

3.2.2. Time-decay shift (TD-SHIFT) block
In this subsection, we extend the time-decay attention to our SHIFT 

block proposed previously in (Yeoh et al., 2023), which is originally 
based on the Fastformer model (Wu et al., 2021). It is imperative to 
highlight the motivation for proposing TD-SHIFT as an improvement to 
Non-Local and SHIFT. In contrast to the quadratic complexity of TD-NL, 
TD-SHIFT has linear computational and memory complexity. This 
enhancement aims to address the computational challenges associated 
with TD-NL, ensuring improved performance and scalability in handling 
temporal focus. This is especially useful for risk prediction with multiple 
prior screening mammograms to predict cancer risk, as incorporating 
multiple prior mammograms increases the accuracy of risk prediction 

Fig. 4. Time-decay non-local (TD-NL) attention block. Fig. 5. Time-decay SHIFT (TD-SHIFT) attention block.
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but has high memory requirements. For our TD-SHIFT block depicted in 
Fig. 5, only the query is multiplied with the time interval vector, 
extending time-decay attention to the SHIFT block (Yeoh et al., 2023): 

SHIFT(Q,K,V, t) = k̃ ∗ V, (9) 

Q̃ = Q ∗ t, (10) 

α̃ = softmax(FCQ(Q̃)), (11) 

q̃ =
∑C

j=1
α̃Qj, (12) 

p = q̃ ∗ K, (13) 

β̃ = softmax(FCK(p)), (14) 

k̃ =
∑C

j=1
β̃Kj (15) 

where FCQ and FCK are the fully connected layers for attention weights, 
while q̃ and k̃ are the global query and key, respectively. The time in
terval vector, t only interacts with the query, Q through the Hadamard 
product. It is crucial to note that the time-decay attention is inherently 
incorporated in the transformation from query to key. This eliminates 
the necessity for an explicit Hadamard product of the time interval 
vector with the key, extending the original Fastformer implementation 
(Wu et al., 2021). Consequently, the subsequent attention weight cal
culations through FCQ and FCK for both global query and key encapsu
late the decaying attention to prior images.

3.2.3. Implementation details
We train both attention mechanisms by leveraging weights learned 

from a previously trained attention model (same architecture) to 
initialize the learning process. The training process for time-decay 
attention starts at a higher learning rate of 5e-4, facilitating rapid 
adaptation to new inputs. Subsequently, we use a lower learning rate of 
5e-5 to finetune the model. Experimental results, presented in the Results 
section, demonstrate the necessity of this approach. These steps are 
distinct from (Hu et al., 2023), but should achieve the same goal for the 
different architectures employed. For instance, (Hu et al., 2023) utilize 
six different learning rates throughout the training procedure. However, 
experimental results show that our method of using two different 
learning rates produces the highest results for our model.

3.3. A new radiomics and deep learning feature based multiple instance 
learning (RADMIL) method

In existing literature, explainable methods to integrate radiomic 
features with deep learning features are lacking, and we recognize the 
need to advance beyond rudimentary approaches. Conventional 
methods combine radiomic features with deep learning features by 
concatenating them (Li et al., 2023; Yeoh et al., 2023). Our previous 
study and another recent study show that radiomic feature inclusion 
improves the deep learning network’s performance (Li et al., 2023; Yeoh 
et al., 2023); however, current approaches are rather rudimentary and 
not interpretable as to how radiomic features influence deep learning 
features and vice versa. Rather than treating radiomic features as con
ventional tabular or clinical data and concatenating them through an FC 
layer, we propose to consider them as features similar to deep learning 
features obtained from an encoder-like CNN. This shift in perspective 
lays the foundation for our proposed approach.

At the heart of this integration is Attention based Multiple Instance 
Learning (AMIL) (Ilse et al., 2018), which serves as the feature combi
nation method. The usage of AMIL not only enhances the model’s 

predictive capabilities but also improves the interpretability of the 
model, offering unique insights into each feature’s contribution for the 
risk assessment task. Let H be a bag of n number of features from either 
deep learning or radiomics; the formulation for AMIL is: 

z =
∑n

k=1

akhk, (16) 

ak =
exp(FC2(tanh(FC1(hk))))

∑n
j=1exp

(
FC2

(
tanh

(
FC1

(
hj
)))) , (17) 

where FC1 and FC2 are trainable parameters in the form of fully con
nected layers. AMIL pools the features in bag H through weighted 
averaging using the attention score a, calculated to produce a bag-level 
feature z. The compiled feature can then be used to make predictions 
through an output FC layer.

The attention score a, which sums to one, can be used to visualize the 
contribution of each feature. In the case of deep learning features, it can 
weigh the importance of the features coming from each CC or MLO view. 
Through training, the calculated attention scores facilitate the model in 
deciding which view contributes more to risk assessment. Importantly, 
AMIL also allows the model to weigh the importance of deep learning 
and radiomic features. In our approach, we froze the CNN encoder to 
preserve the learned weights, ensuring a robust feature embedding. 
However, it is important to note that the results presented here would be 
comparable if the encoder were replaced by another well-trained 
encoder.

Inspired by Wu et al. (2020), who evaluated several ways to combine 
information from different mammographic views in an exam using FC 
layers, we explored different combinations of feature combination and 
compared them to the conventional method of incorporating tabular 
data through concatenation before the FC layer. The configurations 
differ in how the features from all 4 views are aggregated to produce the 
final predictions. The different architectures to combine features from 
all views are displayed in Fig. 6 and are as follows: 

1. Default/Baseline: Radiomic features are integrated through an FC 
layer by concatenating with the deep learning features. Predictions 
are made from each view, and the final prediction is obtained by 
averaging the 4 risk scores.

2. Config A: Deep learning and radiomic features are combined 
through AMIL, creating a bag-level feature for each view. Predictions 
are made from each view, and the final prediction is obtained by 
averaging the 4 risk scores.

3. Config B: Both deep learning and radiomic features are first com
bined through an FC layer, forming merged features for each view. 
These features are then merged using AMIL, and predictions are 
made using the patient feature.

4. Config C: All features from all views are combined directly using 
AMIL, and predictions are made based on this combined feature.

5. Config D: Deep learning features are combined first through AMIL, 
and then the intermediate bag-level feature is merged with radiomic 
features through another AMIL. Predictions are made using the final 
bag-level feature.

6. Config E: Deep learning features are combined first through AMIL, 
and then the intermediate bag-level feature is merged with radiomic 
features mapped to a lower dimensional space through an FC layer. 
Predictions are made using the final bag-level feature.

3.3.1. Integration of lateral attention for improved risk assessment
As cancer usually develops in only one breast, having the ability to 

identify the cancer laterality should be beneficial for early detection. We 
hereby extend the initial AMIL configuration to account for cancer lat
erality, thus providing additional interpretability to the model.

Drawing insights from (Huang et al. (2023), we introduce an 
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additional attention score called lateral attention l, which is trained in a 
supervised manner. The lateral attention scores serve a different purpose 
from the softmax attention a in the previous section. Instead of uni
formly aggregating features from both breasts, the lateral attention is 
specifically designed to steer the attention mechanism to focus more on 
the affected breast. Incorporating lateral attention results in a modifi
cation of the original AMIL equation (i.e., Eq. (16)), as follows: 

z =
∑n

k=1
akhk, (18) 

a =
aklk

∑n
i aili

, (19) 

lk = σ(FCl2(tanh(FCl1(hk)))) , (20) 

Fig. 6. Different configurations of AMIL implemented through the attention weights, a examined in our network architecture. The Default configuration depicts the 
conventional method to combine radiomic (Rad) and deep learning (DL) features that does not incorporate AMIL.

H.H. Yeoh et al.                                                                                                                                                                                                                                 Medical Image Analysis 107 (2026) 103829 

9 



where FCl1 and FCl2 are trainable parameters for lateral attention and σ 
represents either the sigmoid or softmax function. With this formulation, 
the full lateral attention lk that ranges from 0–1 can be given to a rele
vant (e.g., cancer-affected) image, whereas the classifier will learn to 
allocate an attention of near 0 for an irrelevant (e.g., abnormal breast) 
image.

We utilized the cancer (left/right) laterality information of the his
topathological results from the datasets to construct both soft and hard 
training labels. Our experiments (see Results section) showed that 
Config E was the best architecture to aggregate deep learning and 
radiomic features; therefore, we extended Config E to incorporate lateral 
attention, as displayed in Fig. 7.

In our experiments, we found that simultaneously training both 
softmax attention a in AMIL and lateral attention l produced a perfor
mance drop, which could be due to task interference as the learning of 
one task inhibited that of the other. To circumvent this issue, we first 
trained our AMIL architecture without lateral attention. Following the 
successful training of AMIL, we utilized the learned weights as initiali
zation; by keeping the AMIL weights frozen, we exclusively trained the 
lateral attention component. This approach aimed to leverage the 
knowledge acquired by AMIL and prevented interference between the 
two components during training.

3.4. ReSTCL: reinforced self-training with continual learning

Recent advancements in machine learning have demonstrated the 
potential of self-training frameworks, such as Reinforced Self-Training 
(ReST) (Gulcehre et al., 2023) for improved classification perfor
mance. The ReST method and its variant with expectation-maximization 
(ReSTEM) (Singh et al., 2023) improve model performance using 
self-generated data. ReST leverages a combination of synthetic data and 

human-labeled data and refines the model through iterative finetuning.
Here, we propose a new ReST approach called ReSTCL that uses a 

continual learning (CL) (Wang et al., 2023) framework to further 
improve an existing risk model on a secondary dataset, which may come 
from a different population. Unlike (Singh et al., 2023; Xie et al., 2020), 
we don’t filter out samples based on a confidence threshold or a reward 
function. ReSTCL allows the model to incrementally adapt to new data 
from other populations without catastrophic forgetting or model per
formance degradation on the original population. The learning pro
cedure can be repeated as new datasets become available, enabling the 
model to continually learn whilst avoiding model collapse (Shumailov 
et al., 2023).

In the original ReST method (Gulcehre et al., 2023), the authors start 
off by training an initial model πθ(y|x) to map inputs x to outputs y on a 
given dataset of sequence pairs DP using the negative log likelihood loss, 
L(x,y; θ). A “grow” step creates a new dataset Dg, which augments the 

initial training dataset with synthetic data from the model: 

Dg =
{(

xi, yi)|
Ng
i=1 such that xi ∼ DP, yi ∼ πθ

(
y
⃒
⃒xi)

}
∪ DP (21) 

Subsequently, an “improve” step uses Dg to finetune the policy πθ. 
The authors first define a filtering function that includes only samples 
with rewards, R(x, y) higher than a certain threshold τ: 

F(x, y; τ) = 1R(x,y)>τ (22) 

Next, the authors finetune the current best policy typically trained 
with an offline reinforcement learning loss or the supervised learning 
loss L(x, y; θ) on the filtered data. To sum up, they use the following 
reward weighted loss J: 

J(θ) = E(x,y)∼Dg [F(x, y; τ)L(x, y; θ)] (23) 

When iterating over “improve” steps, the authors increase the 
filtering thresholds: τ1 < … < τN− 1 < τN. The expression for the gradient 
takes the following form:  

with θʹ being the parameters of the model from the last “grow” step, λ the 

Fig. 7. Integration of lateral attention with Config E of Fig. 6.

∇J(θ) = − Ex∼D
[
λEy∼πθ́ (y|x)[F(x, y; τ)∇logπθ(y|x)] + (1 − λ)Ey∼p(y|x)[F(x, y; τ)∇logπθ(y|x)]

]
(24) 
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proportion of data sampled from this model in Dg and a single step of 
growth. The authors state that the second term in (24) is a form of offline 
policy gradients that prevents πθ(y|x) to move too far from p(y|x), which 
could lead to model collapse (Shumailov et al., 2023).

However, there are several issues with the ReST model that we hope 
to address here: First, the reward function R(x, y) is not explicitly stated; 
the authors only state that they use reference-free reward models. Sec
ond, the authors’ claim that their model does not suffer from model 
collapse might not be entirely correct as the filtering function in Eqs. 
(22) and (23) applies to the grown dataset Dg, which is a combination of 
the primary dataset DP and the synthetic samples. In other words, the 
primary dataset DP gets reduced in subsequent training steps, which 
could lead to the model drifting further and further away from the initial 
training dataset, leading to model collapse. Third, the authors picked the 
filtering thresholds τi from a sequence of increasing values: [0.0, 0.7, 
0.8, 0.9, 0.95, 0.99]. These seem to be rather arbitrarily decided, and 
could there be a better way of filtering dataset samples that might 
improve classification performance?

To address these issues, we present our new ReSTCL method. In our 
application, the secondary dataset is the CSAW dataset that originates 
from a Swedish population. For each exam date, there is an assessment 
by a first radiologist, a second radiologist, and a consensus decision. In 
this case, the reward model and filtering function is clear, and is based 
on the radiologists’ consensus decision. For the American EMBED 
dataset, a semi-automated supervised machine learning pipeline and a 
hierarchical hybrid NLP system are used to extract pathologic diagnoses 
from free-text pathology reports. In a way, the filtering function of the 
CSAW dataset based on radiologists’ consensus might be somewhat 
analogous to Reinforcement learning from human feedback (RLHF) used 
to improve the quality of large language model’s (LLM) outputs by 
aligning them with human preferences.

To address the second issue of ReST, we propose a new approach for 
ReSTCL that enables continual learning of the model without slashing the 
original dataset DP, thus avoiding model collapse. To address the third 
issue, we filter new samples from the secondary dataset not by applying 
arbitrary thresholds, but by stratifying samples based on bilateral 
asymmetry characteristics related to cancer risk in the finetuning 

procedure. Given that the secondary dataset comes from a different 
population, we implemented a mixed-labeling strategy to assign either 
hard true labels or soft pseudo-labels to the samples. The choice between 
hard and soft labels is guided by the lateral attention scores assigned to 
each view by the model trained on the primary EMBED dataset. We 
determine the model’s confidence in a new sample by calculating the 
difference in attention scores between the left and right breasts. A case 
with a high difference in attention scores signifies strong confidence by 
the model; likewise, for a control with a low difference in attention 
scores. Since cancer typically develops in only one breast, cases typically 
demonstrate higher bilateral asymmetry between left and right breasts 
compared to controls. Thus, the difference in lateral attention score is 
formulated as: 

ΔA(x) = |A(xL) − A(xR)|

= |(A(xLCC)+ A(xLMLO)) − (A(xRCC)+ A(xRMLO))| (25) 

Thus, for the secondary CSAW dataset, a hard label is assigned if the 
lateral difference exceeds the 99th quantile Qcase

99 for cases. For controls, a 
hard label is assigned if the lateral difference is below the 1st quantile 
Qcontrol

1 . As the model has high confidence in these samples, it is more 
likely that its prediction aligns with the true label. Training on these 
confident samples with hard labels reinforces correct decision bound
aries, enhancing the overall accuracy of the model. In this way, the label 
assignment function Lab(x) is defined as: 

Lab(x) =

{
Hard label, if ΔA(x) ⊆ Qcase

99 ∪ Qcontrol
1

Soft pseudo label, if ΔA(x)¬⊂Qcase
99 ∪ Qcontrol

1
(26) 

This improvement is also achieved by retaining DP, which ensures 
that the model does not lose its ability to generalize to the original 
population while gaining insights from new data sources. We also first 
finetune on the secondary dataset, before going back to finetuning on 
our original dataset of the target population in each epoch during 
training. This alternating process ensures that the model learns from 
new data without experiencing catastrophic forgetting, preserving per
formance on the target population. Algorithm 1 outlines the full ReSTCL 

Algorithm 1 
ReSTCL algorithm. ReSTCL promotes continual learning using laterality based label assignments. The initial classifier is trained on the primary dataset. Then, ReSTCL 

iteratively applies finetuning on the secondary dataset and finetuning on the primary dataset in an alternating process to update the classifier.

Input:
• Primary Dataset DP: Original dataset from the target population, with labeled samples.
• Secondary Dataset Ds: New dataset from a different population, with labeled samples.
• Batch Sizes BP, Bs: Batch sizes for primary and secondary datasets.
• E: Number of epochs.
• Ls: Loss on secondary dataset.
• Lp: Loss on primary dataset.

Initialize:
• Set thresholds for label assignment: case threshold Qcase

99 and control threshold Qcontrol
1 .

• Train πθ on DP using loss LP

for e = 1 to E do:
// Fine-tune on secondary dataset
for mini batch Bs from Ds do:

for each sample in Bs do:
Compute lateral difference: ΔA(x) = |A(xL) − A(xR)|

if ΔA(x) ⊆ Qcase
99 ∪ Qcontrol

1 :
Assign hard label

else:
Assign soft pseudo-label

end
end
Compute loss Ls & Update model parameters

end
// Fine-tune on primary dataset
for mini batch BP from DP do:

Compute loss LP & Update model parameters
end

end
Output: Classifier πθ
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algorithm.

3.5. Cancer forecast network with time-interval embeddings

Developing risk forecast models that empower radiologists to 
recommend personalized screening programs would optimize resource 
allocation, reduce radiation accumulation in a woman’s body, and help 
implement preventative measures for early cancer detection. By 
leveraging deep learning techniques and incorporating various risk 
factors, these models can provide a dynamic assessment of an in
dividual’s likelihood of developing cancer throughout a period. This 
approach helps to stratify high-risk patients from low-risk individuals 
and facilitate early intervention.

The additive hazard layer introduced in (Yala et al., 2021b) aims to 
predict cancer risk by utilizing mammographic features and traditional 
risk factors. The hazard layer predicts a patient’s risk for each year over 
the next 5 years by first predicting a baseline risk using a small linear 
layer, B(x). This baseline risk is the cancer risk of the individual in the 
current year, which is the standard risk score of other risk models in the 
literature. The additive hazard layer subsequently calculates a marginal 
hazard for each year separately using individual networks, each imple
mented as a linear layer followed by a ReLU activation function denoted 
as Hi(x). The overall risk at year T is obtained by summing the baseline 
risk and the marginal hazards up to that particular year (i.e., year 1 to 5 
for a 5-year forecasting model) (Yala et al., 2021b), as follows: 

P
(
Tcancer = T | x) = B(x) +

∑T

i
Hi(x) (27) 

The additive property of the hazard layer ensures that a patient’s risk 
in two years’ time is always higher than their risk in the first year while 
offering a clear visual representation of risk trajectories, aiding in timely 
clinical interventions. Cancer patients will have risk scores that escalate 
significantly over time as compared to control patients who maintain a 
steady, low-risk profile.

By building upon the additive hazard layer, we propose a new 
method incorporating an embedding layer to use time intervals between 
patients’ previous and current mammographic screenings for improved 
predictive accuracy. Adding this time-interval embedding helps the 
model adjust the risk scores more precisely by adding a temporal 
dimension for better risk prediction or classification in the feature space. 
The time-interval input embedding ranges from 0 to 10, representing 
six-month intervals up to 5 years (i.e., 0 represents cancer occurrence in 
0 years; 1 represents cancer occurring in 6 months’ time; 2 represents 
cancer occurring in 1 years’ time, etc.). A similar idea was first presented 
in (Hu et al., 2023) for a glaucoma forecast network. However, in that 
paper (Hu et al., 2023), the authors input the time interval as a token 
into a transformer network. As glaucoma screening intervals are not 
fixed, unlike breast cancer screening paradigms, which typically occur 
at regular intervals (i.e., 6 months, 1 year, or 2 years), the authors 
included the time interval as an additional token to the input of an 
image-based encoder. However, many issues with tokenization, 
including multi-modality tokenization (Spathis and Kawsar, 2024) have 
led researchers to try to eliminate this process altogether (Yu et al., 
2023). Our method of incorporating a time-interval embedding is 
similar to providing the risk model labels or context in a conditional 
generative adversarial network (CGAN) (Mirza and Osindero, 2014), to 
help the model forecast individualized screening intervals better.

To the best of our knowledge, the inclusion of time-interval em
beddings has not been examined yet in the literature (Arefan et al., 2019; 
Dadsetan et al., 2022; Lee et al., 2023; Yala et al., 2021b), which could 
be crucial information to guide the risk model towards better prediction 
in the feature space. Yala et al. (2022) proposed the Tempo-Mirai 
reinforcement learning-based method to recommend personalized 
screening intervals. However, training neural network reinforcement 
learning methods is challenging (Ding and Dong, 2020) due to sample 

efficiency issues, training stability, etc., which might be unnecessary for 
a fixed time-interval screening paradigm. Furthermore, our approach is 
simple, enabling radiologists to recommend screening recommendations 
based on the operating points along the ROC curves for each time in
terval (6 months, 1 year, 1.5 years, etc.). The formulation for the new 
additive layer incorporating time-interval embeddings is thus: 

P
(
Tcancer = T | x) = B(x) +

∑T

i
Hi(x+ e(t)) (28) 

where e(t) represents the embedding features of time interval, t between 
screenings and T is the time of cancer diagnosis. We incorporate this new 
additive layer into our lateral-attentive AMIL based method as depicted 
in Fig. 8. The x input in the additive layer represents the aggregated deep 
learning features from all four views with the radiomic features. The 
additive layer can thus be fully expressed as follows: 

P
(
Tcancer = T | m, r) = B(AMIL(m, r)) +

∑T

i
Hi(AMIL(m, r)+ e(t)) (29) 

where m represents deep learning features obtained from the CNN 
encoder and r represents the extracted radiomic features. AMIL repre
sents our lateral-attentive AMIL based method presented in the previous 
section.

Our new method is not just constrained to predicting future cancer 
risk of screening mammograms; it can be used in any forecasting 

Fig. 8. Additive hazard layer with time-interval screening embeddings. The 
deep learning features m are combined with radiomic features r by our lateral- 
attentive AMIL based method. Then, the resulting feature embedding x is added 
with the screening time-interval t embedding, to form an additive hazard for 
future cancer risk prediction.
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network that implements screening at regular time intervals. Namely, 
the time-interval embedding can be incorporated for any risk model that 
involves screening at regular intervals – in our study, 6-month intervals 
were applicable, but the method can also be used for risk prediction of 
annual lung cancer screening in computed tomography (CT) scans, for 
example.

3.6. Experimental setup and classification methodology

3.6.1. Preprocessing
We maintained the same preprocessing steps as in our previous work 

(Yeoh et al., 2023). First, we used Otsu’s thresholding to segment the 
images, removing background regions and irrelevant labels. All images 
in the dataset were originally 3328 × 2560 pixels and were resized to 
256 × 256 pixels for model input. This resizing was necessary to 
maintain computational feasibility and memory constraints while 
training the deep learning models. Despite the reduction in resolution, 
our results demonstrate that the model still effectively learns discrimi
native features for breast cancer risk assessment. It is worth noting that 
this approach is not unique to our work. Downsizing of mammograms to 
an even lower resolution of 224 × 224 compared to 256 × 256 used in 
our study has also been applied in similar studies that utilize single and 
sequential screening mammograms, e.g., (Arefan et al., 2019; Dadsetan 
et al., 2022). Given the high resolution of the mammograms and the 
computational costs of our methodology, we scaled the image resolution 
to a value that is a trade-off between 224 × 224 and a higher resolution 
to handle the memory issue and still capture the information in the 
mammograms, namely 256 × 256 pixels. This enabled us to overcome 
memory constraints when training and testing our models. While the 
AUC results of our model are better than the corresponding results in 
(Arefan et al., 2019; Dadsetan et al., 2022) that utilized a 224 × 224 
resolution, we acknowledge that direct comparisons cannot be made due 
to the different datasets used in both studies.

We added prior screening images by stacking the processed mam
mograms in chronological order, with each screening as a separate time 
point in a video-like sequence. We also normalized each image to have 
zero mean and unit variance by calculating the mean and standard de
viation within each cross-validation fold’s training subset. To introduce 
regularization and prevent overfitting, we applied random augmenta
tions during training, including horizontal and vertical flips with a 0.5 
probability.

3.6.2. Implementation details
We used the Adam (Kingma and Ba, 2015) optimizer to train our 

model with the default parameters of β1 = 0.9, β2 = 0.999 and ϵ = 1e− 8. 
The learning rate was set to 1e− 4 with a batch size of 12.

During continual learning with label assignment, the vanilla SGD 
(Ruder, 2016) optimizer was used instead for finetuning the model, with 
a significantly reduced learning rate of 1e− 7. This switch from the Adam 
optimizer to vanilla SGD was chosen to facilitate more stable, incre
mental updates during the continual learning phase, which was critical 
for preserving previously learned knowledge while integrating new in
formation without overfitting.

Our entire code, including CNN architecture and analysis scripts, is 
implemented in Python (v3.8.5) using Scikit-learn (v1.0.2), Matplotlib 
(v3.5.1) and PyTorch (v1.10.1). We implemented our TRINet model on 2 
RTX 2080 Ti GPUs, each with 12 GB of memory.

3.6.3. Performance metrics
We calculated the 1-year to 5-year Area Under the receiver operating 

Curve (AUC) using the same approach as in (Yala et al., 2021b). For 
example, to compute the 3-year AUC, we considered as positive cases 
that had a cancer diagnosis within 3 years of a previous year’s 
mammogram. We computed the 1-year, 2-year to 5-year AUC in the 
same way as per the ground truth labels in the dataset.

All results are tabulated in the Results section. We also utilized 
bootstrapping methods to obtain the 95 % confidence intervals (CI) for 
all the AUC values. To assess significant differences between two AUC 
values, we used DeLong’s test (DeLong et al., 1988) as implemented in 
the pROC package in R (Robin et al., 2011) at a predefined p < 0.05 for 
significance. We plotted ROC curves for the 1-year to 5-year prediction 
results to measure the true positive rates versus the false positive rates 
for each prediction category. We also computed the Concordance index 
or C-index (Uno et al., 2011), which represents a generalized AUC result 
across all time points. We also performed ablation studies of each nov
elty introduced in the Methods section to demonstrate the improvement 
brought about by each new addition to the model.

4. Results

4.1. Time-decay attention

Table 3 presents the results of different attention mechanisms inte
grated into our CNN encoder and their time-decay counterparts. As 
shown in our previous work (Yeoh et al., 2023), the inclusion of atten
tion mechanisms into the deep learning model can greatly improve risk 
prediction performance. The results in Table 3 demonstrate the benefits 
of including information in the time dimension in both Non-Local and 
SHIFT attention mechanisms. A time-sensitive self-attention mechanism 
in (Hu et al., 2023) called GLIM is also compared using Non-Local as the 
baseline method.

Specifically, we observe that the introduction of time-decay 

Table 4 
AUC results with 95 % CIs of training different time-decay attention mechanisms using different finetuning learning rates.

Attention Model Learning Rates 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

NL+T [1e-5] 0.813 (0.774- 0.855) 0.782 (0.744- 0.825) 0.772 (0.733–0.81) 0.756 (0.717- 0.795) 0.757 (0.718–0.795)
[5e-4, 5e-5] 0.821 (0.782- 0.864) 0.784 (0.743- 0.831) 0.765 (0.727- 0.805) 0.757 (0.718- 0.797) 0.756 (0.717- 0.796)

SHIFT + T [1e-5] 0.816 (0.776- 0.86) 0.778 (0.736–0.82) 0.759 (0.713- 0.799) 0.743 (0.699- 0.785) 0.741 (0.701- 0.786)
[5e-4, 5e-5] 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)

Table 3 
Summary of AUC results with 95 % confidence intervals (CIs) for GLIM (Hu et al., 2023), Non-Local networks, SHIFT, and their respective time-decay variants. An 
attention block version of GLIM is used as a comparison. The “+ T” here denotes the time-decay variants.

Attention Model 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

Baseline 0.789 (0.746- 0.835) 0.756 (0.713- 0.799) 0.747 (0.704- 0.787) 0.737 (0.696- 0.780) 0.739 (0.697- 0.777)
NL 0.805 (0.763–0.847) 0.775 (0.730- 0.817) 0.765 (0.724- 0.808) 0.752 (0.713- 0.795) 0.753 (0.713–0.794)
NL + T 0.821 (0.782- 0.864) 0.784 (0.743- 0.831) 0.765 (0.727- 0.805) 0.757 (0.718- 0.797) 0.756 (0.717- 0.796)
GLIM (Hu et al., 2023) 0.813 (0.774–0.855) 0.783 (0.742- 0.827) 0.772 (0.733- 0.811) 0.757 (0.718- 0.798) 0.757 (0.719- 0.798)
SHIFT 0.81 (0.769- 0.852) 0.777 (0.737- 0.819) 0.771 (0.735- 0.816) 0.755 (0.716- 0.797) 0.754 (0.717- 0.796)
SHIFT + T 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)
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attention between screenings contributes to improved model perfor
mance across almost all metrics for both Non-Local and SHIFT attention. 
We observe the highest performance improvement in 1- and 2-year 
AUCs, possibly attributed to more information present in recent 
screenings as opposed to previous screenings for recent years’ cancer 
prediction. Both time-decay versions of Non-Local and SHIFT attention 
mechanisms outperform GLIM. We attribute this to our approach of 
performing the Hadamard product directly on the query and key vectors 
with the time vector. This direct scaling of the query and key vectors by 
the time vector enhances the temporal sensitivity of the attention 
mechanism more effectively than applying the time matrix to the query- 
key product performed in GLIM.

The results in Table 4 show that models trained with the two-step 
learning rate strategy consistently outperform those trained with a sin
gle learning rate of 1e− 5. For instance, Non-Local trained with the two- 
step learning rate achieves a 1-year AUC of 0.821 compared to 0.813 
with a single learning rate. Similarly, SHIFT achieves a 1-year AUC of 
0.825 with the two-step strategy versus 0.816 with a single learning rate. 
These AUC improvements reinforce the necessity of the two-step strat
egy to handle the domain shift for the new time vector inputs, which 
imitates the training approach from (Hu et al., 2023). Namely, the 
training process for time-decay attention starts at a higher learning rate 
of 5e-4, for rapid adaption to the new inputs. A lower learning rate of 5e-5 

is subsequently used to finetune our model in the two-step training 
method. Although (Hu et al., 2023) employ 6 different learning rates in 
their training procedure, our experimental results show that 2 different 
learning rates are sufficient to produce good results.

To effectively apply time-decay attention, the model requires pre
trained weights from a previously trained attention model as an initial 
starting point. For example, we first train a model with Non-Local 
attention, then we use this trained model to finetune a time-decay 
attention model. Table 5 highlights the impact of initializing time- 
decay attention mechanisms with weights from previously trained 
attention models. We observe that the performance of the time-decay 
models is better across all performance metrics with initialized 
weights for both Non-Local and SHIFT. Moreover, the performance of 
the time-decay models without pre-trained weights is even worse than 
the baseline Non-Local and SHIFT models in Table 3. For instance, the 

time-decay Non-Local model without pre-trained weights achieves a 1- 
year AUC of 0.746, which is significantly lower than 0.805 achieved 
by the baseline Non-Local model. This degradation in performance can 
be attributed to the time vector obfuscating the training process, hin
dering the model’s ability to converge without a good initial set of 
attention weights.

To find the optimal values for parameters A, B and threshold T in the 
time-decay attention (Eqs. (7) and 8), we performed a hyperparameter 
sweep of possible values, similar to (Hu et al., 2023). The results of the 
different hyperparameter values are tabulated in Tables 6, 7, and 8. 
From Tables 6 and 7, we observe that the best performance was achieved 
with A = 2.0 and B = 0.1, whereby the model maintained high AUC 
scores across all performance metrics, reflecting an effective balance in 
how past data influences predictions at these parameter values. Lower 
values of A and B led to insufficient attention decay, under-prioritizing 
recent data, while higher values caused excessive decay, leading to the 
underutilization of valuable historical information.

Table 8 tabulates the effects of different threshold values, T, used in 
the time-decay attention. Time-decay attention performs best at T = 60 
(i.e., 5 years). Performance deterioration occurs for other values of T, 
especially for higher values of T, namely T = 66 and 72, which confirms 
our initial hypothesis that T should not be too big as patients in this 
dataset tend to come annually for their screening mammogram.

4.2. Radiomics integration with RADMIL

A results summary of integrating radiomic features using different 
RADMIL configurations is tabulated in Table 9. From the results of 
Config C with and without radiomic feature inclusion in Table 9, we 
make two important observations: First, we observe that radiomic 
feature inclusion using our new attention based RADMIL method im
proves model performance. Similar performance improvements were 
observed for other configurations. Second, we observe the importance of 
using attention to aggregate features from all four images as each image 
contributes uniquely to risk prediction.

The lower results of Configs A and B show that combining radiomic 
features early with their corresponding deep learning features does not 
yield significant improvements in the baseline result. We conclude that 

Table 5 
AUC results with 95 % CIs of training different time-decay attention mechanisms using initialized weights from previously trained attention models.

Attention Model Initialized Weights 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

NL+T – 0.746 (0.7- 0.795) 0.729 (0.686- 0.773) 0.722 (0.681- 0.766) 0.706 (0.662- 0.749) 0.708 (0.667- 0.75)
✓ 0.821 (0.782- 0.864) 0.784 (0.743- 0.831) 0.765 (0.727- 0.805) 0.757 (0.718- 0.797) 0.756 (0.717- 0.796)

SHIFT + T – 0.793 (0.75- 0.836) 0.755 (0.716- 0.8) 0.739 (0.696- 0.783) 0.730 (0.691- 0.772) 0.728 (0.69- 0.77)
✓ 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)

Table 6 
AUC results with 95 % CIs for different values of A with a fixed value of B = 0.1 and threshold, T = 60 for SHIFT+T attention.

A 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

1.6 0.813 (0.773–0.858) 0.780 (0.738–0.825) 0.769 (0.731–0.811) 0.763 (0.725–0.8) 0.763 (0.726- 0.803)
1.8 0.818 (0.776- 0.864) 0.781 (0.737–0.827) 0.762 (0.717–0.804) 0.747 (0.704–0.788) 0.743 (0.702- 0.785)
2 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)
2.2 0.817 (0.777–0.857) 0.785 (0.745–0.826) 0.773 (0.736–0.81) 0.762 (0.726–0.803) 0.760 (0.725–0.8)
2.4 0.816 (0.772–0.859) 0.782 (0.741–0.825) 0.765 (0.723–0.811) 0.748 (0.71–0.789) 0.746 (0.708–0.791)

Table 7 
AUC results with 95 % CIs for different values of B with a fixed value of A = 2.0 and threshold, T = 60 for SHIFT+T attention.

B 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

0.01 0.812 (0.772–0.857) 0.775 (0.736–0.822) 0.758 (0.718–0.802) 0.744 (0.702–0.784) 0.743 (0.704–0.786)
0.05 0.803 (0.764–0.843) 0.778 (0.734–0.821) 0.770 (0.731–0.814) 0.760 (0.723–0.798) 0.757 (0.724–0.796)
0.1 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)
0.5 0.811 (0.773–0.851) 0.776 (0.737–0.82) 0.754 (0.711–0.798) 0.741(0.701–0.788) 0.739 (0.699–0.781)
1 0.791 (0.748–0.838) 0.758 (0.714–0.802) 0.745 (0.699–0.787) 0.732 (0.692–0.775) 0.730 (0.687–0.771)
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the best RADMIL methods first aggregate the features from deep 
learning and radiomics individually. The aggregated result should be 
combined subsequently using another AMIL mechanism as implemented 
in Configs E and D. The highest results were obtained with Config E, 
which combined radiomic features with an FC layer and deep learning 
features with AMIL, followed by combining both results with another 
AMIL mechanism.

In Config E, aggregating the radiomic features using an FC layer 
might have produced a better result, as the connection weights in the FC 
layer can assign relevant importance to the radiomic features from each 
of the four views. Assigning differing weights to the different views 
enables the model to determine which views are more important than 
others instead of assigning equal importance to all four views, as 
implemented in Config D. This is the only difference in the architectures 
of Configs D and E, and demonstrates the importance of the FC layer to 
combine radiomic features extracted from different views.

Table 10 tabulates various methods of combining additional features 
into the deep learning model using (i) a conventional FC layer, (ii) 
RADMIL, and (iii) RADMIL combined with lateral attention. The results 
demonstrate that our RADMIL method, both with and without the 
addition of lateral attention, consistently outperforms other methods. 
Despite the relatively small gains from lateral attention, its inclusion 
consistently outperforms RADMIL alone on 4 out of 5 metrics suggesting 
underlying benefits in its inclusion to enhance the model’s feature rep
resentation capabilities. This is because the lateral attention can learn to 
focus on cancer-affected breasts while paying less attention to normal 
breasts for better model performance. The lateral attention is also useful 
in determining bilateral asymmetry as we will observe in the Continual 
Learning results in the next section (Section 4.3).

The results in this section illustrate that while simpler methods like 
concatenating additional features through a conventional FC layer can 
offer decent performance, more sophisticated approaches like AMIL 
significantly enhance prediction accuracy. This is because AMIL and 
lateral-based attention can help to direct more attention to relevant 
views or deep learning/radiomic features for better risk prediction, 
validating the importance of advanced integration techniques in deep 
learning models. AMIL and lateral-based attention also enhance the 

explainability of the different network architectures used instead of 
conventional feature concatenation using the FC layer.

4.3. Continual learning with ReSTCL

Table 11 tabulates the results of utilizing CSAW as a secondary 
dataset for continual learning. The baseline result in the table reflects 
the performance of the model using a modified ReST and ReSTEM 

approach of finetuning on both CSAW and EMBED datasets. The reward 
function in ReST is replaced with a confidence threshold similar to the 
paper (Gulcehre et al., 2023). The ReST and ReSTEM finetuning results 
are lower than the two ReSTCL methods, indicating that the inclusion of 
an additional dataset using our new approach can benefit an existing 
model even though the new dataset’s population is considerably 
different from the original dataset’s population.

The results also show that our method of label assignment based on 
lateral attention improves the finetuning procedure. The improvements 
suggest that reassigning labels with a focus on laterality helps our model 
better capture bilateral asymmetry in the data, which is important for 
risk assessment, confirming the results in Table 10. The second iteration 
of label assignment maintains the improvements observed after the first 
iteration, confirming the stability of the approach. Only a slight 
improvement is observed in the 2-year AUC result after the second 
iteration of ReSTCL, which indicates that the model has reached a 
plateau in performance after this iteration. This is also why we stopped 
the iterations after the second step; subsequent iterations also indicated 
that model performance did not improve after two iterations, and had 
plateaued at the second step.

4.4. Cancer forecast prediction with time-interval embeddings

Using the additive hazard layer from (Yala et al., 2021b), we can 
forecast a patient’s probability of developing breast cancer in 1 to 5 
years’ time, as an ever-increasing risk progression. This is notably 
different from the previous models that generate a single risk score, 
which is then used to compute all five 1- to 5-year AUC scores (Yeoh 
et al., 2023). Table 12 tabulates the results of augmenting the output 

Table 9 
AUC results with 95 % CIs for the integration of radiomic features with deep learning features using different configurations of RADMIL.

RADMIL Configuration 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

A 0.832 (0.784–0.881) 0.788 (0.738–0.84) 0.779 (0.733–0.833) 0.775 (0.731–0.822) 0.772 (0.726–0.822)
B 0.834 (0.793–0.88) 0.795 (0.748–0.844) 0.790 (0.746–0.834) 0.787 (0.748–0.829) 0.786 (0.746–0.827)
C 0.847 (0.802–0.895) 0.804 (0.757–0.853) 0.791 (0.743–0.84) 0.787 (0.745–0.831) 0.784 (0.74–0.83)
C (no radiomics) 0.845 (0.798–0.893) 0.800 (0.751–0.849) 0.788 (0.743–0.838) 0.786 (0.742–0.831) 0.783 (0.74–0.83)
D 0.850 (0.8–0.901) 0.804 (0.752–0.856) 0.793 (0.746–0.843) 0.790 (0.745–0.833) 0.787 (0.744–0.836)
E 0.852 (0.808–0.901) 0.807 (0.756–0.859) 0.795 (0.751–0.842) 0.791 (0.747–0.837) 0.788 (0.746–0.833)

Table 10 
AUC results with 95 % CIs for the integration of radiomic features using different combination methods. Configuration E of RADMIL is used here as it produces the 
highest results in Table 9.

Feature Combination Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

FC 0.833 (0.789–0.877) 0.794 (0.745–0.846) 0.791 (0.745–0.839) 0.788 (0.748–0.831) 0.786 (0.744–0.831)
RADMIL 0.852 (0.808–0.901) 0.807 (0.756–0.859) 0.795 (0.751–0.842) 0.791 (0.747–0.837) 0.788 (0.746–0.833)
RADMIL + Lat 0.851 (0.806–0.904) 0.811 (0.764–0.862) 0.796 (0.751–0.839) 0.793 (0.751–0.84) 0.789 (0.743–0.831)

Table 8 
AUC results with 95 % CIs for different values of threshold, T with a fixed value of A = 2.0 and B = 0.1 for SHIFT+T attention.

T 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

48 0.819 (0.781–0.857) 0.786 (0.748–0.832) 0.768 (0.741–0.82) 0.754 (0.731–0.805) 0.750 (0.728–0.803)
54 0.823 (0.781–0.863) 0.783 (0.749–0.832) 0.764 (0.738–0.816) 0.748 (0.725–0.805) 0.744 (0.729–0.803)
60 0.825 (0.783–0.867) 0.784 (0.742–0.829) 0.771 (0.729- 0.816) 0.764 (0.725–0.805) 0.76 (0.721–0.8)
66 0.818 (0.779–0.866) 0.777 (0.733–0.822) 0.756 (0.715–0.799) 0.743 (0.701–0.787) 0.740 (0.697–0.782)
72 0.808 (0.771–0.854) 0.779 (0.739–0.819) 0.766 (0.729–0.806) 0.752 (0.709–0.792) 0.752 (0.714–0.792)
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layer of our model with a time-interval embedding and an additive 
hazard layer.

In Table 12, the introduction of a time-interval embedding into the 
additive hazard layer improves most of the metrics, namely, the 1 to 3- 
year AUC results. In the EMBED dataset, there is a much higher number 
of patients with only 1 to 3 consecutive screenings compared to 4 and 5 
total screenings (please refer to Fig. 3); thus, the 1 to 3-year AUC results 
might be a more accurate reflection of the results in Table 12.

Implementing the additive hazard layer is advantageous as it ensures 
that a patient’s risk at a later time, for example, in three years, is always 
higher than her risk in a more recent time, for example, in two years. 
Intuitively, this makes sense and is also the reason why the additive 
hazard layer is implemented in the current state-of-the-art Mirai model 
(Yala et al., 2021b). In our model, we introduce the time-interval 
embedding into the additive hazard layer to provide context to the 
risk model for better risk forecasting similar to labels provided in CGAN. 
The results show that the time-interval embeddings assist the model to 
predict risk better, especially for short-term risk prediction.

Table 13 tabulates the results of incorporating all the new modifi
cations to our model. The results show that the final model that com
bines the SHIFT + T attention mechanism, RADMIL + Laterality, 
Additive Hazard + Time Embedding, and ReSTCL produces the best 
overall AUC results. The final ReSTCL model (in the last row of Table 13) 
that incorporates all modifications produces significantly better results 
using DeLong’s test (DeLong et al., 1988) as implemented in the pROC 
package in R with p-values of < 0.05 for all years when compared to the 
baseline method and all other methods, except Additive Hazard + Time 
Embedding for 1-year AUC to 3-year AUC. ReSTCL also significantly 
outperforms Additive Hazard + Time Embedding for 4-year AUC and 
5-year AUC.

Finally, we plotted the ROC curves for 1 to 5-year AUC results in 
Fig. 9, comparing the baseline model, all models with the time-decay 

attention blocks, and RADMIL plus laterality. We have also included 
the results of the final TRINet model that combines all modifications, the 
risk progression model (i.e., additive hazard layer with time embed
ding), and the Mirai model (Yala et al., 2021b). Again, the ablation 
studies show that the TRINet model that combines all modifications 
performs comparably with state-of-the-art methods in the literature, 
thus justifying the novelties that have been introduced in the model.

4.5. CNN encoder ablation study

The results in Table 14 tabulate the ablation study on various base
line CNN encoders’ performance in predicting cancer risk. We per
formed the ablation study on the most popular CNN models, namely 
AlexNet, VGG16, and ResNet18. We have denoted the models with all 
proposed modifications with asterisks in Table 14. The models with all 
modifications added refer to the inclusion of all the new components 
presented in the Methods section, including TD-SHIFT, RADMIL (Config 
E), laterality, additive hazard layer and time embedding, RESTCL, etc. to 
the baseline methods in question.

From Table 14, we observe increases across all five AUCs demon
strating that our proposed modifications significantly enhance the pre
dictive power of all models. Resnet18 performs best among all encoders. 
This is not surprising as, notably, the state-of-the-art risk prediction 
method, Mirai (Yala et al., 2021b) also utilizes ResNet18 as its CNN 
encoder, leveraging its strong feature extraction capabilities and resid
ual connections to enhance risk prediction.

4.6. Comparisons with state-of-the-art (SOTA) methods

In this section, we compare our new TRINet model with SOTA 
methods in the literature and tabulate the results in Table 15. We can 
observe that TRINet performs comparably with other SOTA methods in 

Table 11 
AUC results with 95 % CIs for continual learning using the CSAW dataset as a secondary dataset for the original ReST method, ReSTCL and ReSTEM.

Learning Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

ReST (Threshold: 0.7) 0.846 0.808 0.796 0.793 0.790
ReST (Threshold: 0.35) 0.853 0.812 0.797 0.792 0.789
ReSTEM (finetuning on EMBED and CSAW) 0.8537 (0.811–0.903) 0.8132 (0.766–0.865) 0.8007 (0.758–0.847) 0.7965 (0.759–0.84) 0.7929 (0.751–0.834)
ReSTCL: (1st Iteration) 0.8549 (0.815–0.904) 0.8139 (0.769–0.863) 0.8014 (0.759–0.851) 0.7971 (0.754–0.841) 0.7934 (0.752–0.838)
ReSTCL: (2nd Iteration) 0.8549 (0.808–0.901) 0.8140 (0.768–0.862) 0.8014 (0.757–0.848) 0.7970 (0.756–0.84) 0.7934 (0.752–0.837)

Table 12 
AUC results with 95 % CIs of risk prediction using an additive hazard layer and additive hazard layer combined with time embeddings.

Forecast Prediction Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

Additive Hazard (Yala et al., 2021b) 0.857 (0.821–0.895) 0.814 (0.776–0.853) 0.796 (0.759–0.838) 0.783 (0.744–0.821) 0.780 (0.744–0.817)
Additive Hazard + Time Embedding 0.865 (0.836–0.915) 0.817 (0.785–0.87) 0.802 (0.763–0.846) 0.779 (0.74–0.82) 0.778 (0.737–0.819)

Table 13 
Ablation study results compilation of incorporating new modifications/additions to our model. The p-values were computed using DeLong’s test as implemented in the 
pROC package in R, with the ReSTCL: (1st Iteration) model as the referent. Each row corresponds to the final version of an earlier introduced model configuration/ 
method.

Method 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

Baseline 0.789 (0.746- 0.835) (p <
0.01)

0.756 (0.713- 0.799) (p <
0.01)

0.747 (0.704- 0.787) (p =
0.01)

0.737 (0.696- 0.780) (p =
0.02)

0.739 (0.697- 0.777) (p =
0.02)

SHIFT + T 0.825 (0.783–0.867) (p <
0.01)

0.784 (0.742–0.829) (p <
0.01)

0.771 (0.729- 0.816) (p <
0.01)

0.764 (0.725–0.805) (p <
0.01)

0.76 (0.721–0.8) (p <
0.01)

RADMIL (E) 0.852 (0.808–0.901) (p <
0.01)

0.807 (0.756–0.859) (p <
0.01)

0.795 (0.751–0.842) (p <
0.01)

0.791 (0.747–0.837) (p <
0.01)

0.788 (0.746–0.833) (p =
0.01)

RADMIL (E) +
Lat

0.851 (0.806–0.904) (p <
0.01)

0.811 (0.764–0.862) (p <
0.01)

0.796 (0.751–0.839) (p <
0.01)

0.793 (0.751–0.84) (p <
0.01)

0.789 (0.743–0.831) (p <
0.01)

Additive Hazard + Time 
Embedding

0.865 (0.836–0.915) (p <
0.01)

0.817 (0.785–0.87) (p <
0.01)

0.802 (0.763–0.846) (p <
0.01)

0.779 (0.74–0.82) (p =
0.02)

0.778 (0.737–0.819) (p =
0.04)

ReSTCL: (1st Iteration) 0.8549 (0.815–0.904) 
(referent)

0.8139 (0.769–0.863) 
(referent)

0.8014 (0.759–0.851) 
(referent)

0.7971 (0.754–0.841) 
(referent)

0.7934 (0.752- 
0.838) (referent)
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terms of C-index and 1 to 5-year AUC results. We reimplemented the 
SOTA Mirai (Yala et al., 2021b) and Lomar methods and evaluated them 
on the same EMBED dataset split in our study. Specifically, the test set 
from our dataset, as described in Section 3.1.1, was used for both our 
method and the reimplemented SOTA methods for direct comparisons. 
This is because the reported results of Mirai from (Donnelly et al., 2024) 
are of a different experimental setup and dataset split of EMBED and 
may include different cohort selection, preprocessing pipelines and 
sample distributions. While we include these results for reference, they 
are not directly comparable to the results in this study, and direct per
formance comparisons should be made with the Lomar and reimple
mented Mirai methods in the third and fourth rows of the table.

From Table 15, we observe that TRINet has C-index and AUC results 
across all 1- to 5-year AUC scores, which are comparable with other 

SOTA methods. TRINet has significantly higher 2-year to 5-year AUC 
results than Lomar, with p values of < 0.007, < 0.002, < 0.0001, and <
0.0001, respectively. TRINet did not have a significantly higher 1-year 
AUC result than Lomar, although the obtained p value was just 
slightly above the 5 % significance level (p = 0.058). TRINet also had 
significantly higher 1-year and 2-year AUC results than Mirai, with p 
values of < 0.0007 and 0.040, respectively. TRINet did not have 
significantly higher 3-year to 5-year AUC results than Mirai, although 
the obtained p values were relatively low, i.e., 0.16, 0.31, and 0.42, 
respectively. The C-index of TRINet was also higher at 0.78 (0.74 to 
0.82) than Mirai 0.75 (0.72 to 0.79) and Lomar 0.71 (0.66 to 0.76). The 
results show that TRINet performs comparably with other methods in 
the literature in the cancer risk prediction task.

Fig. 9. ROC curves of ablation study results corresponding to 1 to 5-year AUC categories.
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5. Discussion and conclusions

We developed a new risk prediction model that incorporates unique 
characteristics to address current limitations in existing risk prediction 

models. Current clinical risk prediction models based on statistical data, 
including Tyrer-Cuzick (Cuzick, 2004) and Gail (Gail et al., 1989), are 
population-based models with modest discriminatory performance at 
the individual level. In the last decade, new risk models that assess risk 

Fig. 9. (continued).

Table 14 
AUC results with 95 % CIs of different baseline CNN encoders used in our risk model.

1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

AlexNet 0.691 (0.638–0.746) 0.674(0.623–0.728) 0.678 
(0.626–0.725)

0.671 (0.623–0.717) 0.675 (0.628–0.723)

AlexNet* 0.741 (0.697–0.786) 0.709 (0.663–0.757) 0.708 (0.663–0.75) 0.695 (0.649–0.739) 0.697 (0.654–0.743)
VGG16 0.706 (0.663–0.754) 0.689 (0.642–0.735) 0.687 (0.647–0.729) 0.676 (0.633–0.716) 0.680 (0.638–0.719)
VGG16* 0.753 (0.709–0.798) 0.739 (0.697–0.781) 0.736 (0.695–0.776) 0.725 (0.688–0.763) 0.724 (0.687–0.762)
Resnet18 0.789 (0.746- 0.835) 0.756 (0.713- 0.799) 0.747 (0.704- 0.787) 0.737 (0.696- 0.780) 0.739 (0.697- 0.777)
Resnet18* 0.851 (0.806–0.904) 0.811 (0.764–0.862) 0.796 (0.751–0.839) 0.793 (0.751–0.84) 0.789 (0.743–0.831)

* Modifications added.

Table 15 
Comparison of AUC results with 95 % CIs and C-indices of our proposed method and other SOTA methods. We reimplemented the SOTA Mirai and Lomar methods and 
evaluated them on the same EMBED dataset split as our method. We also report results of Mirai and its variation, AsymMirai, from their original studies. While our 
reimplementation ensures a fair or direct comparison, the reported results from the original studies are based on a different dataset or EMBED dataset split, which may 
involve variations in preprocessing, cohort selection, or test set composition.

Method C-index 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC

Mirai (Yala et al., 2021a) (Reported) 0.77 (0.75–0.79) 0.83 (0.81–0.86) 0.79 (0.77–0.82) 0.77 (0.75–0.80) 0.77 (0.75–0.79) 0.76 (0.74–0.79)
AsymMirai (Donnelly et al., 2024) 

(Reported)
Not reported 0.79 (0.73- 0.85) 0.69 (0.65–0.73) 0.68 (0.65- 0.71) 0.67 (0.64- 0.70) 0.66 (0.63- 0.69)

Lomar (Karaman et al., 2024) 0.708 (0.659 - 
0.757)

0.836 
(0.778–0.895)

0.768 
(0.713–0.826)

0.746 
(0.692–0.802)

0.725 (0.67–0.784) 0.715 
(0.662–0.771)

Mirai (Yala et al., 2021b) 
(Reimplemented)

0.751 (0.715 - 
0.788)

0.804 
(0.761–0.852)

0.794 
(0.756–0.837)

0.798 
(0.759–0.838)

0.786 
(0.749–0.827)

0.787 
(0.746–0.824)

TRINet 0.780 (0.741 - 
0.818)

0.8549 
(0.815–0.904)

0.8139 
(0.769–0.863)

0.8014 
(0.759–0.851)

0.7971 
(0.754–0.841)

0.7934 
(0.752–0.838)
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from screening mammograms have been developed that produce higher 
AUC results than these conventional models (Tan et al., 2016; Yala et al., 
2021b).

The new models that assess risk from screening mammograms can 
generally be divided into two groups: 1) Earlier models based on 
radiomic, texture, and mammographic density-based features 
(Gastounioti et al., 2016; Tan et al., 2016); 2) Later models trained on 
deep learning-based features (Dadsetan et al., 2022; Karaman et al., 
2024; Yala et al., 2021b). The earlier texture and mammographic den
sity models had better discriminatory power than the conventional 
statistical risk models with reported AUC results of around 70 % or 
higher (Gastounioti et al., 2016). The more recent deep learning models 
have produced models with even better discriminatory capacity with 
reported AUC results of around 80 % or higher (Karaman et al., 2024; 
Yala et al., 2021b). The performance improvements observed with deep 
learning models demonstrate their potential in this field. It would be 
highly beneficial if new, more accurate deep learning-based models 
could be developed that improve the discriminatory power of current 
models.

More recently, deep learning models that predict short and long-term 
risk prediction have emerged (Karaman et al., 2024; Yala et al., 2021b). 
These models are very useful as they can be used effectively to predict 
the individualized risk of cancer occurring in a woman in 1 to 5 years’ 
time. In doing so, personalized screening regimens can be prescribed to 
individual women based on features extracted from their recent 
screening mammograms. Unlike previous statistical-based models that 
predict the lifetime risk of developing breast cancer, these models are 
based on mammographic features that can vary over time due to lifestyle 
changes, such as alcohol consumption, HRT, etc., and are thus more 
accurate in predicting short and long-term risks of developing cancer. 
These models are also very useful as individualized screening programs 
can prevent both over-screening and under-screening of women – If a 
woman undergoes screening more frequently than required, this will 
result in the accumulation of unnecessary radiation exposure in her 
body. Conversely, if she has a high short-term risk of developing cancer, 
she should go earlier for her mammogram so that the cancer can be 
detected and treated early.

This study builds upon the previously mentioned studies and at
tempts to address the limitations of those works. First, although both 
groups of parenchymal texture and deep learning-based methods have 
demonstrated performance improvements individually, few methods 
have combined both feature groups to develop a comprehensive risk 
model (Yeoh et al., 2023). Furthermore, the previous work uses con
ventional methods of integrating both feature groups through concate
nation at the FC layer only; what is required is more sophisticated and 
explainable methods of combining both feature groups. Our work 
highlights the potential of the new RADMIL method for integrating 
radiomic with deep learning-based features, proving essential for model 
prediction enhancement. Using RADMIL, the relative importance of 
each view can be weighed and aggregated appropriately. Convention
ally, the CC view is more informative for computerized methods, 
whereas MLO is more useful for radiologists; thus, different views pro
vide differing information (Arefan et al., 2019; Mohamed et al., 2017; 
Tan et al., 2015). RADMIL helps the network focus on relevant views to 
more accurately predict risk. Instead of focusing on one particular view, 
the model can decide on its own, through backpropagation training, 
useful views that provide relevant information for risk prediction.

Second, several studies in the literature (Dadsetan et al., 2022; Lee 
et al., 2023; Yeoh et al., 2023) have incorporated prior mammograms in 
their risk models. However, as cancer develops over time, it is important 
to monitor its progression. We have presented new advanced attention 
mechanisms that focus on time-decay (TD) attention. The TD attention 
prioritizes information from more recent screenings when extracting 
features from sequential mammograms compared to previous screen
ings. Our findings highlight the critical role that incorporating 
time-sensitive information considerably enhances the effectiveness of 

NL and SHIFT attention mechanisms. Models equipped with TD atten
tion consistently outperform their vanilla counterparts, demonstrating 
that embedding temporal information strengthens the model’s ability to 
identify patterns relevant to cancer risk across various time intervals.

Another limitation of current models is that although implementing 
a personalized screening regimen is highly recommended, to our 
knowledge, none of the risk models incorporate this information into 
their models to better stratify women in a risk prediction scheme. 
Although Yala et al. (2022) proposed the Tempo-Mirai reinforcement 
learning-based method to recommend personalized screening intervals, 
training neural network reinforcement learning methods is challenging 
(Ding and Dong, 2020), and might be unnecessary for a fixed 
time-interval screening paradigm. We introduced a novel modification: 
a time embedding layer within the additive hazard layer model. This 
time embedding layer adds a temporal sensitivity, which allows the 
model to account for the timing of previous screenings when predicting 
future risk. Our approach optimizes the risk scoring mechanism by 
embedding temporal information directly into the risk model enabling 
the additive hazard layer to adjust risk assessments in a nuanced manner 
based on screening intervals.

As cancer usually develops in only one breast, methods that detect 
bilateral asymmetry over time have been investigated for short-term risk 
prediction (Tan et al., 2016; Zheng et al., 2012). However, not many 
recent models (Donnelly et al., 2024; Tan et al., 2016; Yeoh et al., 2023) 
incorporate this information even though it has proven useful for risk 
assessment. In this study, we incorporated lateral attention into RADMIL 
to direct the model to focus on which side of the breast would potentially 
develop cancer over time. While the uniform attention in AMIL allocates 
equal attention to each view based on their overall contribution to 
cancer risk, lateral attention, trained through supervised learning, is 
fine-tuned to detect and highlight signs of cancer development in one 
breast side versus the other.

Fifth, current risk prediction models are only trained on a single 
demographic population, e.g., a Swedish (Yeoh et al., 2023), American 
(Yala et al., 2021), or Asian (Tan et al., 2019) population. We hereby 
present a new method, called ReSTCL that enables a model to continually 
learn on a new dataset of a different (Swedish) population without 
catastrophically forgetting its previous knowledge of the primary 
American dataset. In ReSTCL, we explored a label assignment strategy 
rooted in bilateral asymmetry detection, aiming to enhance the model’s 
continual learning process by harnessing asymmetrical features between 
left and right breast views. This method adaptively refines its predictive 
accuracy through label reassignment based on laterality—allowing it to 
better capture risk factors that manifest as asymmetrical differences 
between breast sides. ReSTCL can be generalized to other applications, 
and its usage is not just limited to risk prediction.

In conclusion, we developed a new temporally sensitive model for 
cancer risk prediction that incorporates time-decay attention mecha
nisms and integrates radiomic features through a novel architecture that 
uses attention-based multiple instance learning called RADMIL. 
Furthermore, our model’s innovative use of a time-embedded additive 
hazard layer, and a new self-training method using asymmetry-based 
label assignment for continual learning contributes valuable frame
works for improving risk assessment based methods in the literature. A 
downside of our model is that we were only able to test it on two public 
datasets of American (EMBED) and Swedish (CSAW) populations, which 
may limit generalizability, highlighting the need for broader clinical 
testing and validation on more diverse patient datasets in the future. 
However, the results still demonstrate that our new model incorporating 
these innovative methods improves cancer risk assessment, is compa
rable with SOTA methods, and promotes new approaches for personal
ized medicine and screening regimens in individual women.
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