

Breast Density and Breast Cancer Risk: A Practical Review

Amy T. Wang, MD; Celine M. Vachon, PhD; Kathleen R. Brandt, MD; and Karthik Ghosh, MD

CME Activity

Target Audience: The target audience for Mayo Clinic Proceedings is primarily internal medicine physicians and other clinicians who wish to advance their current knowledge of clinical medicine and who wish to stay abreast of advances in medical research.

Statement of Need: General internists and primary care physicians must maintain an extensive knowledge base on a wide variety of topics covering all body systems as well as common and uncommon disorders. Mayo Clinic Proceedings aims to leverage the expertise of its authors to help physicians understand best practices in diagnosis and management of conditions encountered in the clinical setting.

Accreditation: Mayo Clinic College of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

Credit Statement: Mayo Clinic College of Medicine designates this journalbased CME activity for a maximum of 1.0 ANNA PRA Category I Credit(s). TM Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Learning Objectives: On completion of this article, you should be able to (1) define breast density and describe potential implications of density in clinical practice, (2) recognize breast density as both a masking factor and an independent risk factor for breast cancer, and (3) counsel patients with dense breasts.

Disclosures: As a provider accredited by ACCME, Mayo Clinic College of Medicine (Mayo School of Continuous Professional Development) must ensure balance, independence, objectivity, and scientific rigor in its educational activities. Course Director(s), Planning Committee members, Faculty, and all others who are in a position to control the content of this educational activity are required to disclose all relevant financial

relationships with any commercial interest related to the subject matter of the educational activity. Safeguards against commercial bias have been put in place. Faculty also will disclose any off-label and/or investigational use of pharmaceuticals or instruments discussed in their presentation. Disclosure of this information will be published in course materials so that those participants in the activity may formulate their own judgments regarding the presentation.

In their editorial and administrative roles, William L. Lanier, Jr, MD, Terry L. Jopke, Kimberly D. Sankey, and Nicki M. Smith, MPA, have control of the content of this program but have no relevant financial relationship(s) with industry.

The authors report no competing interests.

Method of Participation: In order to claim credit, participants must complete the following:

I. Read the activity

Complete the online CME Test and Evaluation. Participants must achieve a score of 80% on the CME Test. One retake is allowed.

Participants should locate the link to the activity desired at http://bit.ly/ Nzm7LD. On successful completion of the online test and evaluation, you can instantly download and print your certificate of credit.

Estimated Time: The estimated time to complete each article is approximately I hour.

Hardware/Software: PC or MAC with Internet access

Date of Release: 04/01/2014

Expiration Date: 03/31/2016 (Credit can no longer be offered after it has

passed the expiration date.)

Privacy Policy: http://www.mayoclinic.org/global/privacy.html

Questions? Contact dletcsupport@mayo.edu

Abstract

New legislation in several states requiring breast density notification in all mammogram reports has increased awareness of breast density. Estimates indicate that up to 50% of women undergoing mammography will have high breast density; thus, with increased attention and high prevalence of increased breast density, it is crucial that primary care clinicians understand the implications of dense breasts and are able to provide appropriate counseling. This review provides an overview of breast density, specifically by defining breast density, exploring the association between breast density and breast cancer risk, both from masking and as an independent risk factor, and reviewing supplemental screening options as part of a larger framework for counseling patients with dense breasts.

© 2014 Mayo Foundation for Medical Education and Research
Mayo Clin Proc. 2014;89(4):548-557

From the Division of General Internal Medicine, Department of Medicine (A.T.W., K.G.), Division of Epidemiology, Department of Health Sciences Research (C.M.V.), and Department of Radiology (K.R.B.), Mayo Clinic College of Medicine, Rochester, MN.

ver the past few years, breast density has gone from an obscure medical term to break room conversation, which is in part due to the increased media attention after the efforts of Nancy Cappello, who had received a diagnosis of breast cancer without knowing that her previous mammograms had reported dense breasts. In 2009, with Ms Cappello's advocacy, Connecticut became the first state to require that women who have

undergone mammography are informed of their breast density. A total of 14 states including Pennsylvania, Texas, California, and New York have followed suit, ¹ though the content of laws varies by state. Currently, a statement of breast density is required only in states with a breast density law. A federal bill requiring that every mammography report inform women of their breast density was re-introduced in Congress in October 2013.² The Food and Drug

Administration (FDA) is considering an amendment to the Mammography Quality Standards Act that would require breast density notification. With the increasing awareness of breast density by the public and medical community, it is essential that primary care professionals have a practical understanding of breast density and its implications for clinical practice.

MAMMOGRAPHIC BREAST DENSITY: DEFINITION AND TERMINOLOGY

Breast density refers to the mammographic appearance of the breast. Mammographic breast density reflects varying amounts of fat (dark areas on mammograms) and stromal and epithelial tissues (white areas on mammograms) in the breast. Breast density is measured as the absolute amount of dense or white areas in the breast (dense area) or a proportion of the mammogram that is composed of dense tissue (percent density). There are several tools to assess breast density. The most commonly used tool in clinical practice is the Breast Imaging Reporting and Data System (BI-RADS), which is used by radiologists at the time of mammography; it divides breast density into 4 categories as depicted in the Table and Figure 1. These categories are not to be confused with BI-RADS categories 0 to 6, which are used for standardized reporting of mammographic findings and follow-up recommendations.³ In some clinical centers, D1, D2, D3, and D4 classifications are used to represent the respective BI-RADS 1 to 4 density categories to minimize confusion with the BI-RADS 0 to 6 scale for mammographic findings. For simplicity, we use the D1 to D4 classification system in this article.

One of the density phrases or values may be present on the screening mammogram reports. Population-based data have revealed that approximately 10% of women have almost entirely fatty breasts (D1), 40% of women have scattered fibroglandular densities (D2), another 40% have heterogeneously dense breasts (D3), and 10% have extremely dense breasts (D4).^{4,5} Dense breasts are defined as either heterogeneously dense (D3) or extremely dense (D4). Thus, approximately 50% of the population undergoing mammography would be categorized as having dense breasts. The most common measure used in research is percent density, a semi-automated quantitative measure providing the ratio of dense tissue area to total


breast area and is calculated by a trained expert with a computer algorithm. Although widely used, these measures have limitations, including subjective assessment, 2-dimensional measure, and, for BI-RADS density, moderate interobserver agreement.^{7,8} Automated density measures including volumetric density are now being studied. 9-11 Two automated volumetric density measures for full field digital mammography are now commercially available: Volpara (Mātakina, Wellington, New Zealand) and Quantra (Hologic, Inc., Bedford, MA, USA). Although these commercial systems have established correlation with BI-RADS density categories, these have not been directly studied in relation to breast cancer risk, to date. 12,13

BREAST DENSITY: RELEVANCE IN CLINICAL PRACTICE

Masking of Breast Cancer

Increased breast density can make it more difficult to detect smaller cancers with mammography because cancers have the same X-ray attenuation as fibroglandular breast tissue 14-17 (Figure 2). As expected, the sensitivity of mammography decreases with increasing breast density. The sensitivity of mammography for women with almost entirely fatty breasts (D1) is 88% as compared with 82% for women with scattered fibroglandular densities (D2), 69% for women with heterogeneously dense breasts (D3), and 62% for women with extremely dense breasts (D4). 15,18 Boyd et al 14 found that compared with women with breast density of less than 10%, women with breast density of 75% or more were 17.8 (95% CI, 4.8-65.9) times more likely to have a breast cancer detected within 12 months of the last screening examination. This markedly increased risk of breast cancer within 12 months of a screening mammogram

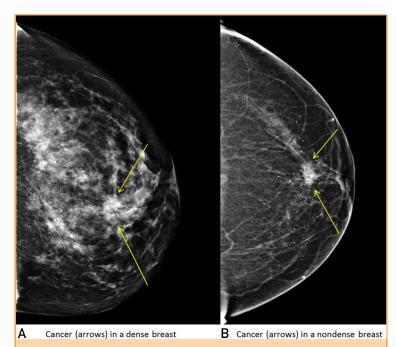
TABLE. BI-RADS Categories for Breast Density ³		
Density	Description	Glandular tissue
I (lowest density)	Almost entirely fat	<25%
2	Scattered fibroglandular densities	Approximately 25%-50%
3	Heterogeneously dense, which could obscure detection of small masses	Approximately 51%-75%
4 (highest density)	Extremely dense, which may lower the sensitivity of mammography	>75%
BI-RADS = Breast Imaging Reporting and Data System.		

FIGURE 1. Mediolateral oblique mammographic views depicting the 4 BI-RADS density categories: (A) almost entirely fat (BI-RADS I density); (B) scattered fibroglandular densities (BI-RADS 2 density); (C) heterogeneously dense (BI-RADS 3 density); (D) extremely dense (BI-RADS 4 density). BI-RADS = Breast Imaging Reporting and Data System.

showing no abnormalities is likely related to the effect of density masking breast cancers. Although masking of tumors by dense breasts is important, it is essential to recognize that the association between breast density and risk for breast cancer is more than just masking bias and cannot be explained by the reduced sensitivity of mammography alone. 19

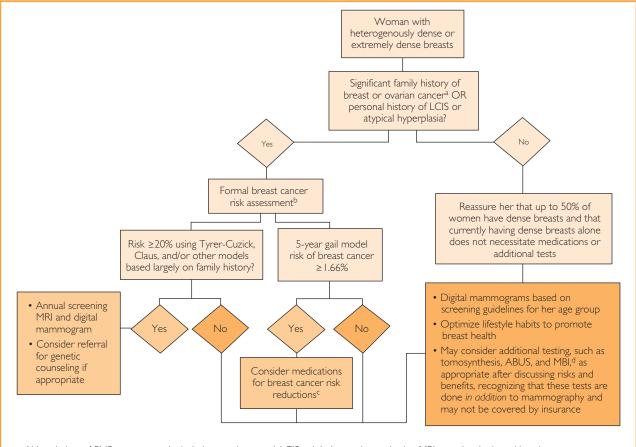
High Breast Density Increases Breast Cancer Risk

To eliminate the effect of masking, studies examined mammograms obtained many years before a breast cancer diagnosis. In 1 study, women with a breast density of greater than 75% (assessed on a screening mammogram at least 5 years earlier) had a 3.25-fold risk of breast cancer compared with women with breast density less than 5%.20 The consistent association between increased density and cancer risk across time emphasizes the potential for risk prediction. 14,21 Density has consistently been found to be a major risk factor for breast cancer in scores of studies regardless of age at mammography²² or ethnic background of the study population.^{20,23,24} Breast density is a stronger predictor for breast cancer than most known risk factors for breast cancer, including family history.²⁵ However, it is important to recognize that these estimates may be artificially high because investigators often compare the 10% of women with extremely dense breasts with the 10% of women with almost entirely fatty breasts.²⁶ When comparing women with dense breasts with women with scattered fibroglandular densities (D2), the relative risk is 1.2 to 1.5 for heterogeneously dense breasts (D3) and 2.1 to 2.3 for extremely dense breasts (D4). 14,21,24,27-29 Breast density has also been associated with an increased risk of local and locoregional recurrence of breast cancer but not distant metastasis or survival. 30,31 This finding is consistent with 2 recent large studies that found that breast density was not associated with increased breast cancer mortality or all-cause mortality rates^{32,33}; however, additional research is needed because of the limited studies on this topic.


Breast density decreases with advancing age; a large study found that 74% of women in their 40s had dense breasts (D3 or D4) as compared with 36% of women in their 70s.³⁴ One study of 1900 women aged 49 to 69 years found that breast density decreased by an average of 11% over a 10-year period.³⁵ Nevertheless, high breast density increases breast cancer risk across all age groups, but the association is strongest in premenopausal women and women receiving postmenopausal hormone therapy (HT).²² In postmenopausal women with the highest breast density, HT use was associated with a higher risk

of breast cancer than was no HT use (hazard ratio, 1.38; 95% CI, 1.25-1.50). Hormone therapy not only is associated with increased breast cancer risk among increased density categories but also increases breast density. The Women's Health Initiative study³⁶ found that HT users on a combination of estrogen and progestin had a 6% increase in mammographic breast density after 1 year compared with a 0.9% decrease in the placebo group. Similar to the relationship between breast density and age, breast density also decreases with increasing body mass index (BMI), though breast density and BMI are independent risk factors for breast cancer. ³⁷⁻³⁹

Breast Density as a Potential Surrogate Marker of Treatment Response


Breast density is a potential indicator of treatment response for certain types of breast cancer prevention and treatment. Tamoxifen is efficacious in both breast cancer treatment and prevention. and it has been suggested that some of its therapeutic effect may be mediated through reductions in breast density. In the primary prevention International Breast Cancer Intervention Study-1 trial, 46% of high-risk women randomized to tamoxifen experienced a more than 10% reduction in breast density compared with 25% of those taking placebo. Women treated with tamoxifen with more than 10% reduction in breast density experienced a 63% decrease in breast cancer risk compared with no change in risk in women in the placebo group and women treated with tamoxifen with no change in breast density. 40,41 Reductions in breast density have also been associated with a reduced risk of recurrence in patients with breast cancer treated with tamoxifen as adjuvant therapy. 42 A recent Swedish study with 15 years of follow-up found that women with breast cancer treated with tamoxifen as adjuvant therapy who experienced a reduction of more than 20% in breast density had a 50% reduced risk of breast cancer mortality compared with women treated with tamoxifen with no reduction in breast density. 43 Thus, breast density may be an important marker of response to tamoxifen therapy for chemoprevention and adjuvant therapy for breast cancer.

Conversely, this finding has not been consistently found in studies of aromatase inhibitors (AIs). Multiple studies have examined the effect of AIs on breast density with largely negative

FIGURE 2. Craniocaudal mammographic views of a breast cancer in a BI-RADS 4 density breast (A) and a breast cancer in a BI-RADS 1 density breast (B).

results, 44-46 though 1 recent study of a cohort of Korean women with breast cancer found small reductions in breast density with AI use $(-3.1\%\pm6.3\%$ with either anastrozole or letrozole).⁴² However, women in this Korean cohort were younger and had a much higher baseline breast density than in other studies and more than 75% of the cohort received adjuvant chemotherapy, which may also cause breast density reduction through ablative effects on ovarian function in premenopausal women. 42,47 Other studies that found reductions in breast density with AI use did not have comparison groups, 48,49 which clouds the findings, because breast density is known to decrease with increasing age. Vachon et al⁴⁶ performed the largest study of AI use and breast density in postmenopausal patients with breast cancer receiving AIs as adjuvant therapy and found that 14% of women had a 55% or greater reduction in breast density, but this did not differ from reductions experienced over the same time period in age- and BMI-matched healthy postmenopausal women. It is important to note that this lack of breast density reduction with AI use does not purport lack of therapeutic efficacy; in fact, AIs have been found to be more effective than tamoxifen in reducing breast cancer recurrence in postmenopausal women.⁵⁰ In

Abbreviations: ABUS = automated whole-breast ultrasound; LCIS = lobular carcinoma in situ; MBI = molecular based imaging; MRI = magnetic resonance imaging.

FIGURE 3. Approach to a woman with dense breasts (clinical algorithm).

contrast to tamoxifen, AIs may not substantially affect breast density, and even if there are minor reductions in breast density with AI use, it is questionable whether breast density will be a useful marker in this context.

RECOMMENDATIONS FOR WOMEN WITH DENSE BREASTS

Counsel your patient regarding her risk factors for breast cancer and what risk reduction strategies she can undertake (Figure 3).

Discuss the mammographic breast density description on the mammogram report with your patient, if available, and inform her that up to 50% of women have dense breasts (D3 or D4). Consider sharing details of magnitude

of risk of breast cancer associated with dense breasts. The relative risk is 1.2 to 1.5 in women with heterogeneously dense breasts (D3) and 2.1 to 2.3 in women with extremely dense breasts (D4) as compared with women with scattered fibroglandular densities (D2). Explain that though there is a higher chance of missing a cancer on a mammogram in a woman with dense breasts than in a woman without dense breasts. mammography is still valuable and the test of choice for breast cancer screening for women ages 40 and older. Encourage her to be breast self-aware and to seek prompt medical attention if she detects a breast change, even if she has had a recent screening mammogram showing no abnormalities. If she is otherwise at average risk,

^a Significant family history includes a first-degree relative with breast or ovarian cancer, multiple relatives with breast or ovarian cancer on one side of the family, especially premenopausal or in male relatives.

^b Risk assessments should be done by clinicians with expertise in using breast cancer risk prediction models.

^c Breast cancer risk reduction medications include tamoxifen, raloxifene, and exemestane.

d MBI is not available at many centers. Currently there is little consensus as to when or which additional screening test should be used.

explain that high breast density alone does not automatically necessitate risk-reducing medications (eg, tamoxifen, raloxifene, and exemestane) or additional imaging. Additional screening options are available, but there is little consensus on when or which additional measures should be used; this requires a thorough discussion of risks and benefits (discussed below).

As you would do for any woman, assess her risk factors for breast cancer. Evaluate her family history of breast and ovarian cancer and any personal history of benign breast disease, including atypical hyperplasia and lobular carcinoma in situ, because these are also independent risk factors for breast cancer. If either of these is present, she may benefit from more formal breast cancer risk assessment by a clinician with expertise in using and interpreting models such as Claus and Tyrer-Cuzick as well as other models based on family history. Risk estimates using these models vary; therefore, the use of more than 1 model is recommended.⁵¹ Currently none of these risk models incorporate a density measure, but the models are under development. 52,53 If these models generate a lifetime risk of breast cancer of 20% or greater, the patient qualifies for annual screening magnetic resonance imaging (MRI) in addition to routine screening mammograms, according to American Cancer Society guidelines. 51 If family history is suggestive of a BRCA mutation, refer her for genetic counseling. If her lifetime risk is less than 20%, she should undergo routine screening mammography and counseling regarding the risk and benefits of potential additional imaging tests.

Optimize the patient's modifiable risk factors: encourage all women to exercise regularly and maintain a healthy weight. Make informed choices regarding the use of postmenopausal HT and limit alcohol intake to no more than 1 drink per day, because these factors are independently associated with both breast density and breast cancer. ^{22,37,54,55} One alcoholic drink (0.6 ounces of pure alcohol) is equivalent to 12 oz of regular beer, 8 oz of malt liquor, 5 oz of wine, and 1.5 oz of 80-proof distilled spirits or liquor (eg, vodka, whiskey, rum, and liqueurs). ⁵⁶

Ensure That Your Patient Is Undergoing Digital Mammography

In women with dense breasts, digital mammography has been reported to be significantly more accurate than film mammography (sensitivity

of 70% with digital mammography compared with 55% with film mammography). The is therefore preferable that women with dense breasts undergo digital rather than film screen mammography. Most current mammography centers use digital mammography.

Be Familiar With Additional Screening Measures That May Be Considered for Women With Dense Breasts

Several imaging tools that are not limited by breast density are being investigated as supplemental tests, in addition to mammography, for breast cancer screening in women with dense breasts. These tools include tests that assess anatomical information such as tomosynthesis and whole-breast ultrasound (US) and those that assess functional differences in tissue such as MRI and molecular breast imaging (MBI).

Breast tomosynthesis, or 3-dimensional (3D) mammography, uses multiple low-dose digital images of the breast and a computer algorithm to reconstruct thin slices that cover the entire breast, similar to a computed tomography scan. With tomosynthesis, overlapping dense tissue is less likely to obscure or simulate a meaningful finding. Tomosynthesis detects an additional 0.5 to 2.5 cancers per 1000 examinations and reduces the screening recall rate for noncancerous findings by 40% to 60% in women with dense breasts when performed in conjunction with standard 2D mammography. 58,59 A potential limitation of current screening tomosynthesis is that it is performed in conjunction with a standard 2D mammography and, although still under the FDA-approved dose, doubles the radiation exposure. However, a new technology has recently been approved by the FDA that allows synthesis of the 2D mammogram from the 3D (tomosynthesis) data set, thus decreasing the radiation dose for both sets of images to that of a standard 2D mammogram. 60,61 This new technology appears promising, but how it performs in clinical practice is yet to be determined. Cost is another limitation of tomosynthesis because multiple factors make it more expensive than standard mammography, including cost of the machine, increased reading time by radiologists, costlier viewing workstations, and increased image storage cost. It is anticipated that at least some of the additional cost will be offset by cost savings in the reduction of screening recalls.⁶² Practices that offer screening tomosynthesis do

so at no, or minimal, additional cost to the patient.

Whole-breast US has gained popularity as an adjunctive screening test for women with dense breasts because it is noninvasive, widely available, relatively inexpensive and does not involve radiation exposure. By assessing the addition of whole-breast US to mammography in high-risk patients with dense breasts (of which >50% had a history of breast cancer), an additional 4.2 cancers were detected per 1000 women screened. 63,64 This result is similar to published data collected after the enactment of Connecticut's breast density law, which found 3.2 additional cancers per 1000 women with dense breasts. 65,66 The major limitation with US is low specificity. There is considerable overlap in the appearance of cancers and benign breast lesions detected by US. Approximately 5% of women undergoing whole-breast US should expect to have a biopsy, with a cancer yield of 8.9%.63 This result is compared with a 1% to 1.5% biopsy rate for screening mammography, with a cancer yield of 3 to 6 per 1000 screening mammograms. 67 The newest US technology is automated wholebreast ultrasonography (ABUS), in which the US transducer is placed on the breast by a technologist and the images are acquired automatically and then stored for later interpretation. Abnormal findings obtained on an ABUS examination require the patient to be recalled for a standard US examination. There is little published data on ABUS, but preliminary studies have found an increase in breast cancer detection and decreased specificity when added to mammography as compared with mammography alone. 68

Magnetic resonance imaging has the highest sensitivity for detecting breast cancer. A study using breast MRI in women at the highest risk of breast cancer (BRCA1 and BRCA2 mutation carriers) has reported up to 30 additional cancers detected per 1000 screening examinations.⁶⁹ Cancer detection in other high-risk populations ranges around 18 additional cancers detected per 1000 screening examinations.⁶⁴ Like US, specificity is also a limitation of breast MRI. Ten to 20% of those undergoing screening MRI will be recommended for further work-up; approximately 8% will undergo a biopsy, of which the cancer yield is approximately 20%.64 Magnetic resonance imaging is also expensive and requires an intravenous injection of gadolinium. Screening MRI is currently recommended by the American Cancer Society as an adjunct to mammography for women who are at high risk for breast cancer, specifically women who have BRCA mutations, are untested first-degree relatives of BRCA carriers, or have greater than 20% estimated lifetime risk of breast cancer using one of the risk prediction models that are based on family history.⁵¹ Gadolinium is excreted by the kidneys and contraindicated in pregnant women and those with compromised renal function. It is considered safe for women to continue breast-feeding after gadolinium because less than 0.01% of the systemic dose is expected to be absorbed by the infant from breast milk; women who remain concerned can make an informed decision to express and discard milk for 24 hours. 10

Molecular breast imaging is a promising screening tool because it identifies functional differences in tumor and normal breast tissue. Screening MBI systems use dual-headed, highresolution, CZT gamma detectors to image the breast after an intravenous injection of sestamibi, a radiotracer with preferential uptake in highly proliferating cells.⁷¹ There are commercially available lower-resolution, single-detector systems, sometimes also referred to as MBI or breast-specific gamma imaging, that are not appropriate for screening. In a study of 936 asymptomatic women with dense breasts and at least one additional breast cancer risk factor, the use of a dose of 20 mCi of technetium-99m sestamibi in dual-headed, high-resolution MBI with mammography detected an additional 7.5 cancers per 1000 examinations as compared with mammography alone.⁷¹ Similar, but unpublished, results have been reported at lower radiation doses of 8 mCi of technetium-99m sestamibi, 72 which is less radiation exposure than annual background radiation. Molecular breast imaging may have higher specificity than do other supplemental screening tests; Rhodes et al⁷¹ report a biopsy rate of 3% with a cancer yield of 28% in dense breasts. However, MBI is not yet widely available and requires a radiotracer injection; MBI-guided biopsy systems are still in the development phase.

Although tomosynthesis, whole-breast US, MRI, and MBI are screening options that may be considered in addition to mammography for women with dense breasts, patients must be informed of the potential risks of additional

testing. ^{63,64,71} Finding a false-positive result can lead to further testing including biopsies, increased patient anxiety, inconvenience, and additional cost. Many of these tests are not currently covered by insurance and may result in out-of-pocket cost to the patient. Furthermore, it is important to recognize that this is a rapidly evolving field and consensus on which additional modality is best has not yet been reached. Patients also need to be informed that the long-term effect on morbidity and mortality related to these supplemental screening tests is unclear.

CONCLUSION

As increasing legislation mandates that women be informed of their breast density as part of their mammography results, clinicians will be contacted with questions regarding breast density and supplemental screening examinations in addition to mammography. Thus, clinicians need to be aware of the clinical implications of breast density, including both the masking effect and the increased breast cancer risk. Familiarity with additional screening measures is also necessary to enable a discussion of risks and benefits of these modalities with an individual patient. The future of breast cancer risk prediction is bright, with the development of risk prediction models incorporating new breast density measures and discoveries of more than 75 common genetic loci associated with breast cancer risk. 73 These advances will help women and their clinicians tailor breast cancer screening strategies on the basis of an individual woman's risk, values, and preferences while also accounting for cost, potential harms, and patient-important outcomes.

Abbreviations and Acronyms: 3D = 3-dimensional; ABUS = automated whole-breast ultrasonography; AI = aromatase inhibitor; BI-RADS = Breast Imaging Reporting and Data System; BMI = body mass index; HT = hormone therapy; MBI = molecular breast imaging; MRI = magnetic resonance imaging; US = ultrasound

Correspondence: Address to Karthik Ghosh, MD, Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (ghosh.karthik@mayo.edu).

REFERENCES

- Grady D. Laws add dimension, and questions, to breast cancer screening. New York Times. October 25, 2012:A1.
- 2. Breast Density and Mammography Reporting Act of 2011; 2011.

- American College of Radiology. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS). 4th ed. Reston, VA: American College of Radiology; 2003.
- BCSC Data Explorer. NCI-funded Breast Cancer Surveillance Consortium (HHSN261201100031C). Downloaded on 11 November 2013 from the Breast Cancer Surveillance Consortium website, http://breastscreening.cancer.gov/. Accessed November 11, 2013.
- Sickles EA. The use of breast imaging to screen women at high risk for cancer. Radiol Clin North Am. 2010;48(5):859-878.
- Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative analysis of mammographic densities. *Phys Med Biol.* 1994; 39(10):1629-1638.
- Kerlikowske K, Grady D, Barclay J, et al. Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data System. J Natl Cancer Inst. 1998;90(23):1801-1809.
- Ciatto S, Houssami N, Apruzzese A, et al. Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast. 2005;14(4):269-275.
- Heine JJ, Scott CG, Sellers TA, et al. A novel automated mammographic density measure and breast cancer risk [published correction appears in J Natl Cancer Inst. 2012;104(21): 1687-1690]. J Natl Cancer Inst. 2012;104(13):1028-1037.
- Li J, Szekely L, Eriksson L, et al. High-throughput mammographicdensity measurement: a tool for risk prediction of breast cancer. Breast Cancer Res. 2012;14(4):R114.
- Shepherd JA, Kerlikowske K, Ma L, et al. Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1473-1482.
- Skippage P, Wilkinson L, Allen S, Roche N, Dowsett M, A'Hern R. Correlation of age and HRT use with breast density as assessed by Quantra. Breast J. 2013;19(1):79-86.
- Ciatto S, Bernardi D, Calabrese M, et al. A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification. Breast. 2012;21(4):503-506.
- Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007; 356(3):227-236.
- 15. Camey PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography [published correction appears in *Ann Intem Med.* 2003;138(9): 771]. *Ann Intern Med.* 2003;138(3):168-175.
- Harvey JA, Bovbjerg VE. Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology. 2004;230(1):29-41.
- Mandelson MT, Oestreicher N, Porter PL, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000; 92(13):1081-1087.
- **18.** Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. *Radiology*. 2002;225(1): 165-175
- Vachon CM, van Gils CH, Sellers TA, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007;9(6):217.
- McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159-1169.
- 21. Byrne C, Schairer C, Wolfe J, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995;87(21):1622-1629.
- Kerlikowske K, Cook AJ, Buist DS, et al. Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. *J Clin Oncol.* 2010;28(24):3830-3837.
- 23. Maskarinec G, Pagano I, Chen Z, Nagata C, Gram IT. Ethnic and geographic differences in mammographic density and their

- association with breast cancer incidence. Breast Cancer Res Treat. 2007;104(1):47-56.
- Ursin G, Ma H, Wu AH, et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomarkers Prev. 2003;12(4):332-338.
- Santen RJ, Boyd NF, Chlebowski RT, et al; Breast Cancer Prevention Collaborative Group. Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr Relat Cancer. 2007;14(2):169-187.
- Price ER, Hargreaves J, Lipson JA, et al. The California Breast Density Information Group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology. 2013;269(3):887-892.
- Boyd NF, Byng JW, Jong RA, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87(9):670-675.
- Vacek PM, Geller BM. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev. 2004;13(5):715-722.
- Bertrand KA, Tamimi RM, Scott CG, et al. Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res. 2013;15(6):R104.
- Eriksson L, Czene K, Rosenberg L, Humphreys K, Hall P. Possible influence of mammographic density on local and locoregional recurrence of breast cancer. Breast Cancer Res. 2013;15(4):R56.
- Park CC, Rembert J, Chew K, Moore D, Kerlikowske K. High mammographic breast density is independent predictor of local but not distant recurrence after lumpectomy and radiotherapy for invasive breast cancer. Int J Radiat Oncol Biol Phys. 2009; 73(1):75-79.
- Gierach GL, Ichikawa L, Kerlikowske K, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104(16):1218-1227.
- Zhang S, Ivy JS, Diehl KM, Yankaskas BC. The association of breast density with breast cancer mortality in African American and white women screened in community practice. Breast Cancer Res Treat. 2013;137(1):273-283.
- Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol. 2012;198(3):W292-W295.
- Lokate M, Stellato RK, Veldhuis WB, Peeters PH, van Gils CH. Age-related changes in mammographic density and breast cancer risk. Am J Epidemiol. 2013;178(1):101-109.
- McTiernan A, Martin CF, Peck JD, et al; Women's Health Initiative Mammogram Density Study Investigators. Estrogen-plus-progestin use and mammographic density in postmenopausal women: Women's Health Initiative randomized trial. J Natl Cancer Inst. 2005;97(18):1366-1376.
- Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000;11(7):653-662.
- Boyd NF, Lockwood GA, Byng JW, Little LE, Yaffe MJ, Tritchler DL. The relationship of anthropometric measures to radiological features of the breast in premenopausal women. Br J Cancer. 1998;78(9):1233-1238.
- Boyd NF, Martin LJ, Sun L, et al. Body size, mammographic density, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2086-2092.
- Cuzick J, Warwick J, Pinney E, et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst. 2011;103(9):744-752.
- Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW. Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst. 2004;96(8):621-628.
- Kim J, Han W, Moon HG, et al. Breast density change as a predictive surrogate for response to adjuvant endocrine therapy in

- hormone receptor positive breast cancer. *Breast Cancer Res.* 2012;14(4):R102.
- 43. Li J, Humphreys K, Eriksson L, Edgren G, Czene K, Hall P. Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol. 2013; 31(18):2249-2256.
- 44. Cigler T, Tu D, Yaffe MJ, et al. A randomized, placebocontrolled trial (NCIC CTG MAPI) examining the effects of letrozole on mammographic breast density and other end organs in postmenopausal women. Breast Cancer Res Treat. 2010;120(2):427-435.
- Vachon CM, Ingle JN, Suman VJ, et al. Pilot study of the impact of letrozole vs. placebo on breast density in women completing 5 years of tamoxifen. Breast. 2007;16(2):204-210.
- Vachon CM, Suman VJ, Brandt KR, et al. Mammographic breast density response to aromatase inhibition. *Clin Cancer Res.* 2013; 19(8):2144-2153.
- Kelemen LE, Pankratz VS, Sellers TA, et al. Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study. Am J Epidemiol. 2008;167(9):1027-1036.
- Prowell TM, Blackford AL, Byrne C, et al. Changes in breast density and circulating estrogens in postmenopausal women receiving adjuvant anastrozole. Cancer Prev Res (Phila). 2011; 4(12):1993-2001.
- Smith J, Dilawari A, Ursin G, et al. A pilot study of letrozole for one year in women at enhanced risk of developing breast cancer: effects on mammographic density. *Anticancer Res.* 2012; 32(4):1327-1331.
- Dowsett M, Cuzick J, Ingle J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28(3):509-518.
- 51. Saslow D, Boetes C, Burke W, et al; American Cancer Society Breast Cancer Advisory Group. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75-89.
- 52. Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. *Ann Intern Med.* 2008;148(5):337-347.
- Barlow WE, White E, Ballard-Barbash R, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst. 2006;98(17):1204-1214.
- Smith-Warner SA, Spiegelman D, Yaun SS, et al. Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA. 1998;279(7):535-540.
- Chlebowski RT, Anderson GL, Gass M, et al; WHI Investigators. Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA. 2010;304(15): 1684-1697
- **56.** Centers for Disease Control and Prevention. Fact Sheets—Alcohol Use and Health. Atlanta, GA: Centers for Disease Control and Prevention; October 1, 2012.
- Pisano ED, Gatsonis C, Hendrick E, et al. Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group. Diagnostic performance of digital versus film mammography for breast-cancer screening [published correction appears in N Engl J Med. 2006;355(17):1840]. N Engl J Med. 2005;353(17): 1773-1783.
- Ciatto S, Houssami N, Bemardi D, et al. Integration of 3D digital mammography with tomosynthesis for population breastcancer screening (STORM): a prospective comparison study. *Lancet Oncol.* 2013;14(7):583-589.
- Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. *Radiology*. 2013;269(3):694-700.
- Gur D, Zuley ML, Anello MI, et al. Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically

- reconstructed projection images: an observer performance study. *Acad Radiol.* 2012;19(2):166-171.
- Selenia Dimensions 3D System P080003/S001. US Food and Drug Administration website. http://www.accessdata.fda.gov/ scripts/cdrh/cfdocs/cftopic/pma/pma.cfm?num=p080003s001. Accessed October 30, 2013.
- Technology assessment No. 9: digital breast tomosynthesis. Obstet Gynecol. 2013;121(6):1415-1417.
- 63. Berg WA, Blume JD, Cormack JB, et al; ACRIN 6666 Investigators. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer [published correction appears in JAMA. 2010;303(15): 1482]. JAMA. 2008;299(18):2151-2163.
- 64. Berg WA, Zhang Z, Lehrer D, et al; ACRIN 6666 Investigators. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012; 307(13):1394-1404.
- Weigert J, Steenbergen S. The Connecticut experiment: the role of ultrasound in the screening of women with dense breasts. Breast J. 2012;18(6):517-522.
- 66. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09-41. Radiology. 2012;265(1):59-69.

- Sickles EA, Wolverton DE, Dee KE. Performance parameters for screening and diagnostic mammography: specialist and general radiologists. *Radiology*. 2002;224(3):861-869.
- Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol. 2010;20(3):734-742.
- Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292(11):1317-1325.
- American College of Radiology. ACR Manual on Contrast Media.
 9th ed. Reston, VA: American College of Radiology; 2013:97-98.
- Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O'Connor MK. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. *Radiology*. 2011;258(1):106-118.
- 72. Rhodes DJ, Hruska CB, Conners AL, Maxwell RW, Tortorelli CL, O'Connor MK. Low-dose molecular breast imaging with Tc-99m sestamibi for screening in women with mammographically dense breasts: interim analysis. Paper presented at: Radiological Society of North America 2012 Scientific Assembly and Annual Meeting; November 2012; Chicago, IL.
- Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353-361:361e1-e2.