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Individuals with dense breasts are at higher risk for breast 
cancer, as well as cancer masking by dense breast tissue, 

than individuals at otherwise similar risk who have less 
dense breasts (1,2). Breast density refers to fibroglandular 
tissue, which has both “fibrous” (stromal) and glandu-
lar (lobular and ductal) components (3). Fibroglandular 
tissue appears dense (white) on both two-dimensional 
digital mammography (DM) and digital breast tomo-
synthesis (DBT) images; adipose tissue appears darker 
(4). Breast density tends to decrease with age, having 
children, and tamoxifen use (an estrogen blocker), but 
increases with lower body mass index and hormonal re-
placement therapy (5–9).

The prevalence of mammographically dense breasts is 
approximately 43% in women aged 40–74 years in the 
United States (10). In addition to notification of mammo-
graphic density (11), supplemental screening with whole-
breast US or MRI can be considered in women with dense 
breasts due to the combination of masking of cancers by 
dense breast tissue and the increase in cancer risk with 
increasing breast density. These supplemental screening 
modalities offer higher sensitivity in women with dense 
breasts, but with the trade-off of increasing the number of 
false-positive findings (12,13).

Breast cancer most frequently arises from ductal and 
glandular elements of the breast. This article provides an 

overview of imaging markers of these structures. In DM 
and DBT, risk is measured through the amount and tex-
tural complexity of dense fibroglandular tissue. Breast US 
offers the ability to visualize the two components of fibro-
glandular tissue separately (stromal and glandular) and, 
thus, measure risk in terms of the relative proportion of 
glandular to stromal tissue. Breast MRI quantifies the dy-
namic enhancement of normal breast parenchyma, also an 
independent imaging marker. Similar to MRI, increased 
background parenchymal enhancement (BPE) levels at 
contrast-enhanced mammography (14,15) and back-
ground parenchymal uptake at molecular breast imaging 
(16) may be an indication of breast cancer risk and, thus, 
is important to report. However, as of November 2022, 
contrast-enhanced mammography and molecular breast 
imaging are not widely used and, hence, they are not in-
cluded in the current review.

DM and DBT

Mammographic Density
Early works in mammography assessed breast cancer risk 
with categorical measures, including the four patterns  
defined by Wolfe (17), the Tabár classification of five 
categories based on histopathologic-mammographic cor-
relations (18), and the six categories of percent density  
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ing risk. In the 5th edition (21), percent density was removed.  
Instead, the impact of breast density on obscuring or “masking” 
underlying cancer (degree of masking) is emphasized (Table 1). 
The classifications are as follows: (a) almost entirely fatty; (b) 
scattered areas of fibroglandular density; (c) heterogeneously 
dense, which may obscure detection of small masses; and (d) 
extremely dense, which lowers the sensitivity of mammography. 
An example of a breast that would be classified differently by the 
two editions is one with a high concentration of fibroglandular 
tissue in a single area (Fig 2) but less than 51% percent density. 
This breast would be classified as “category 2: scattered densities 
(approximately 25%–50% glandular)” according to the 4th edi-
tion. However, this breast would be categorized as “category C: 
heterogeneously dense, which may obscure detection of small 
masses” according to the 5th edition because the dense retroareo-
lar tissue could obscure lesions.

BI-RADS risk assessment is prone to interreader variability 
(22). Attempts have been made to standardize BI-RADS risk as-
sessment with deep learning (23). For example, Lehman et al (24) 
found that 90% of four-category classifications with DM using 
deep learning were accepted by the interpreting radiologist. Ad-
ditionally, 94% of binary (dense vs nondense) classifications were 
accepted by the radiologist; among discordant classifications, 
33% were downgraded from dense to nondense, whereas 67% 
were upgraded from nondense to dense. As noted in that work, 
results may have been impacted by changes in BI-RADS editions, 
with each edition offering a different perspective on breast cancer 
risk. The 4th edition emphasizes the role of percent density in 
breast cancer risk prediction, yet the 5th edition emphasizes the 
role of dense tissue in cancer masking (reducing sensitivity).

As an alternative to categorical measures of density, previous 
works have calculated area-based percent density (total dense 

proposed by Boyd et al (19). To standardize clinical image in-
terpretations, the American College of Radiology developed the 
Breast Imaging Reporting and Data System (BI-RADS) with 
four risk categories in DM and DBT based on breast density 
(Fig 1). The 4th edition (20) used percent density in assess-

Abbreviations
AUC = area under the receiver operating characteristic curve, BI-RADS =  
Breast Imaging Reporting and Data System, BPE = background  
parenchymal enhancement, DBT = digital breast tomosynthesis, DM = 
digital mammography, SM = synthetic mammography

Summary
Going beyond mammographic density, this article describes the range 
of imaging markers associated with breast cancer risk in digital mam-
mography, digital breast tomosynthesis, whole-breast US, and MRI.

Essentials
	■ Breast density assessed with digital mammography or digital breast 

tomosynthesis is an independent risk factor for developing breast 
cancer and is included in several risk-assessment models.

	■ Beyond mammographic density, the spatial arrangement of fibro-
glandular tissue can be assessed with radiomic features and deep 
learning, identifying complex parenchymal patterns associated 
with higher risk.

	■ While both stromal and glandular components of fibroglandular 
tissue appear bright or “dense” on mammograms, breast US allows 
the two components to be visualized separately in a manner that is 
not possible with mammography; a higher glandular component 
at screening breast US is associated with higher risk for breast 
cancer.

	■ On breast MRI scans, higher background parenchymal enhance-
ment of normal fibroglandular breast tissue is associated with a 
higher risk for breast cancer.

Figure 1:  Mediolateral oblique digital mammograms illustrating the four categories of visually assessed breast density according to the 5th edition 
of the Breast Imaging Reporting and Data System show (A) breast that is almost entirely fatty; (B) breast with scattered areas of fibroglandular 
density; (C) breast that is heterogeneously dense, which may obscure detection of small masses; and (D) breast that is extremely dense, which lowers 
the sensitivity of mammography. Of note, with increasing higher density, there is a higher risk of breast cancer.
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area relative to breast area). The reference standard software for 
this calculation is Cumulus (University of Toronto), which en-
ables manual segmentation of dense tissue. Attempts have been 
made to automate the calculation with deep learning (25–27), 
and similarity to manual segmentation of dense tissue has been 
demonstrated, for example, with Dice coefficients of 63% in 
Kallenberg et al (25) and 76% in Li et al (26). As of November 
2022, there are at least nine U.S. Food and Drug Administra-
tion–approved density assessment methods for DM, DBT, and 
synthetic mammography (SM) using artificial intelligence (28).

One application of area-based percent density is discriminat-
ing individuals at high risk from those at low risk. For example, 
Maghsoudi et  al (27) used multiple research and commercial 
density assessment methods to distinguish cases that developed 
cancer an average of 4.7 years after a negative or benign DM 
examination from controls. Areas under the receiver operating 
characteristic curve (AUCs) ranged from 0.557 to 0.619, similar 
to other works (25,29,30) analyzing area-based percent density. 
An AUC of 0.70 or greater is considered acceptable for predic-
tive modeling (31).

Breast density can also be assessed three-dimensionally by 
total dense volume (sum total of fibroglandular pixel volumes) 
and volumetric percent density (total dense volume relative to 
breast volume), for example, by using Quantra (Hologic) and 
Volpara (Volpara Health). To illustrate differences between these 
measures, four breasts with variations in total dense volume yet 
effectively equivalent volumetric percent density (approximately 
25%) are shown (Fig 3). Brandt et al (32) found that volumetric 
percent density at DM offered stronger association with breast 
cancer risk than total dense volume.

Augmenting Epidemiologically Based Models with Breast 
Density
Various works showed that augmenting epidemiologically based 
models with breast density improves AUC (33–35). Brentnall 

et  al (35) augmented the Gail and Tyrer-Cuzick models with 
radiologist visual assessment of area-based percent density, im-
proving the AUCs from 0.55 to 0.59 and from 0.57 to 0.61, 
respectively, for 10-year risk assessment.

As of November 2022, at least three risk-assessment models 
incorporate mammographic density (Table 2). For example, in 
the Tyrer-Cuzick model (version 8), mammographic density is 
typically measured in terms of volumetric percent density or 
BI-RADS density, as Brentnall et al concluded that total dense 
volume is a weaker predictor of risk than these two density 
measures (36). Adding breast density to the Tyrer-Cuzick model 
improved the accuracy of risk stratification for both women at 
high-risk (>8%, 10-year risk) and those at low-risk (<2%, 10-year 
risk). The percentage of patients considered high risk increased 
from 4.8% (without density) to 7.1% (BI-RADS density) and 
6.8% (volumetric percent density).

Assessing Breast Texture with Radiomic Features
Breast parenchymal complexity quantifying the spatial arrange-
ment of fibroglandular tissue is a separate measure of breast 
cancer risk. Parenchymal complexity can be assessed with  

Table 1: Categories of the American College of Radiology 
BI-RADS Assessment of Mammographic Breast Density

Edition and Category Breast Tissue Characteristics 
BI-RADS, 4th edition
  1 Almost entirely fatty (<25% glandular)
  2 Scattered densities (approximately 

25%–50% glandular)
  3 Heterogeneously dense (approximately 

51%–75% glandular)
  4 Extremely dense (>75% glandular)
BI-RADS, 5th edition
  A Almost entirely fatty
  B Scattered areas of fibroglandular density
  C Heterogeneously dense, which may 

obscure detection of small masses
  D Extremely dense, which lowers the 

sensitivity of mammography

Note.—The four BI-RADS categories are based on the percent 
density (4th edition) and the degree of masking (5th edition).  
BI-RADS = Breast Imaging Reporting and Data System.

Figure 2:  Mediolateral oblique screening digital mammogram in a 
56-year-old woman shows dense tissue in the anterior subareolar area of 
the breast (arrow). If assigned a Breast Imaging Reporting and Data Sys-
tem (BI-RADS) breast density based on the 4th edition, the percent density 
in the breast would be less than 51% and, therefore, would be considered 
category 2 or “scattered fibroglandular densities.” However, if classified 
according to the 5th Edition of BI-RADS for density, the dense tissue in the 
anterior breast could “mask” or obscure a lesion, causing a reduction in 
detection sensitivity. Based on the density definitions in the 5th Edition, this 
breast would be considered “heterogeneously dense, which may obscure 
detection of small masses.”
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high-throughput extraction of radiomic features (37), which 
can be visualized in DM with heat maps of the breast area; 
skewness (a gray-scale feature) and entropy (a co-occurrence 
feature) are examples (Fig 4) (38). Examples of breasts vary-
ing in terms of both density and complexity are illustrated in 
Figure 5 (39).

In some works (40,41), a single region of interest is used in 
radiomic feature extraction. Alternatively, multiple regions of in-
terest capture heterogeneities in breast texture. Sun et al (42) par-
titioned the breast into five subregions varying from the densest 
region to the whole breast. In assessing near-term risk (the risk 

of cancer at the next DM examination), the AUC in case-control 
classification was higher when extracting radiomic features from 
different subregions as opposed to the whole breast. Zheng et al 
(38) created a lattice of windows for radiomic feature extraction 
in DM, with cases defined by the contralateral image of a cancer-
positive mammogram. That work found case-control classification 
to be optimized with a 6.3 mm window size (the smallest con-
sidered); that is, AUCs of 0.59 (area-based percent density), 0.85 
(radiomics), and 0.86 (radiomics plus area-based percent density).

Another application of radiomics is discriminating BRCA1 
and BRCA2 variant carriers from controls (43–45). Clinically, 

Figure 3:  Mediolateral oblique digital mammograms in four different women show effectively equivalent volumetric percent density (approximately 25%) but broad 
variation in the total dense volumes, which range from 62 mL to 233 mL. Volume-based density measures include the total dense volume (sum total of all fibroglandular pixel 
volumes) and volumetric percent density.

Table 2: Risk Models That Include Breast Density in Risk Calculations

Model Input Variables Output Clinical Use
Tyrer-Cuzick (or IBIS model), 

version 8
Demographic and reproductive risk factors, 

first- and second-degree family history of 
breast and ovarian cancer, mammographic 
density (BI-RADS, Volpara, and/or 
visual analog scale), biopsy-confirmed 
benign breast disease, and breast cancer 
susceptibility genes (BRCA1 or BRCA2)

10-year and lifetime (to 
85 years of age) risk of 
developing breast cancer

Risk assessment for MRI 
screening (20% lifetime 
risk as threshold)

Breast Cancer Surveillance 
Consortium (BCSC),  
version 2

Age, race and ethnicity, first-degree family 
history of breast cancer, mammographic 
density (BI-RADS), and biopsy-confirmed 
benign breast disease

5-year and 10-year risk of 
developing invasive  
breast cancer

Risk assessment for use of 
chemoprevention (1.67% 
5-year risk as threshold)

Breast and Ovarian Analysis 
of Disease Incidence and 
Carrier Estimation Algorithm 
(BOADICEA), version 6

Demographic, lifestyle, and reproductive  
risk factors, first- and second-degree  
family history of breast and ovarian cancer, 
mammographic density (BI-RADS), 
polygenic risk scores, and breast and/or  
ovarian cancer susceptibility genes 
(BRCA1, BRCA2, PALB2, ATM, CHEK2, 
BARD1, RAD51C, and RAD51D)

5-year, 10-year, and  
lifetime (to 80 years of 
age) risk of developing 
breast and ovarian 
cancer; variant carrier 
probabilities

Risk assessment for genetic 
testing (10% likelihood 
of carrying a BRCA1 
or BRCA2 variant as 
threshold)

Note.—BI-RADS = Breast Imaging Reporting and Data System, IBIS = International Breast Cancer Intervention Study.
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this may prove important if a patient’s genetic history is un-
known. For example, Li et al (45) showed that radiomic features 
(AUC, 0.81) performed better than area-based percent density 
(AUC, 0.53) for discriminating BRCA1 and BRCA2 variant car-
riers from controls.

Deep Learning in Breast Cancer Risk Assessment
Recent advances in deep learning have allowed the computer to 
“learn” the features associated with breast cancer risk (23). Al-
though handcrafted radiomic features could potentially be more 
interpretable, the advantage of deep learning is that features pre-
dictive of risk do not need to be known a priori.

Various works (46–48) have shown that deep learning models 
are more predictive of risk than mammographic density alone; 
for example, Arefan et al (46) analyzed cancer cases and controls 
using negative or benign DM images from at least 1 year prior. In 
that study, the deep learning model with the highest AUC (0.73) 
performed better than area-based percent density (AUC, 0.54). 
Ha et al (48) used a convolutional neural network–based pixel-
wise risk model to identify women at high-risk by analyzing nega-
tive mammograms from at least 2 years prior to cancer (with con-
trols having at least a 2-year follow-up with negative findings). In 
pixel-wise heat maps, areas in red have features that overlap with 
patients who developed cancer, as opposed to normal areas in blue 
(Fig 6). Heat maps with substantially more red areas allow the 
patient at higher risk to be identified among two heterogeneously 
dense breasts (Fig 6A, 6B), as well as among breasts with scattered 
areas of fibroglandular density (Fig 6C, 6D), illustrating how risk 
is predicted in a manner separate from mammographic density.

Previous works have investigated deep learning to refine risk 
models in clinical use. For example, for 5-year risk assessment, 

Yala et al (49) evaluated the AUCs of a risk factor–based logistic 
regression model using traditional risk factors (AUC, 0.67), an 
image-only deep learning model for DM (AUC, 0.68), and a 
hybrid deep learning model combining traditional risk factors 
and DM images (AUC, 0.70). The hybrid deep learning model 
achieved a statistically significant gain in AUC over the Tyrer-
Cuzick version 8 model (AUC, 0.62). Additionally, AUCs ob-
tained with the Tyrer-Cuzick version 8 model differed by race 
and ethnicity (eg, 0.45 and 0.62 for African American and White 
women, respectively), yet AUCs obtained with the hybrid deep 
learning model were insensitive to race and ethnicity (0.71).

In a subsequent study, Yala et  al (50) developed Mirai, a 
mammography-based deep learning model, to assess 1- to 5-year 
risk at DM. In a test set consisting of patients who developed 
cancer within 5 years, 41.5% of patients were successfully identi-
fied as high risk with Mirai as opposed to 36.1% with the hybrid 
deep learning model and 22.9% with the Tyrer-Cuzick version 8 
model, illustrating how deep learning improves risk stratification 
over the Tyrer-Cuzick version 8 model.

Digital Breast Tomosynthesis
As of November 2022, DBT has become widespread for mam-
mography screening (51,52). DBT uses a reconstruction in com-
bination with a two-dimensional image, obtained either with DM 
or SM (53,54). Previous works compared DM, DBT, and SM in 
terms of density assessments. Tice et al (55) found no difference 
in BI-RADS density classifications at DM and DBT in data from 
2010 to 2017 (under the 4th and 5th editions of BI-RADS), and 
no difference in the strength of the association between mammo-
graphic density and invasive breast cancer. Haider et al (56) found 
that SM did not significantly change binary (dense vs nondense) 

Figure 4:  (A, B) Digital mammographic heat maps show radiomic feature calculations in the breast area; for example, skewness (A)  
(a gray-scale feature) and entropy (B) (a co-occurrence feature). (C) To capture heterogeneities in breast texture in the breast area (dashed 
yellow line), radiomic features can be calculated in multiple windows whereby each window (example in red, with the length of each side 
defined as W) is centered on a lattice point (blue circle) and green lines define the lattice grid, with the spacing between lattice points de-
fined as D. (Reprinted, with permission, from reference 38.)
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Figure 5:   Mediolateral oblique digital mammograms with negative findings at screening in women with (A) high density and high complexity, (B) high density and 
low complexity, (C) low density and high complexity, and (D) low density and low complexity. Breast density is associated with higher risk for developing breast cancer. 
In addition, breasts with more complex parenchymal patterns are at higher risk for breast cancer. These parenchymal patterns were assessed with handcrafted radiomic 
features to develop an overall complexity score. (Reprinted, with permission, from reference 39.)

Figure 6:  (A, B) Mammograms (left) of heterogeneously dense breasts are analyzed in terms of a convolutional neural network–based pixel-
wise risk model (right), which identifies the breast at higher risk for cancer (A) by having more substantial areas in red, corresponding to features that 
overlap with patients who developed breast cancer, as opposed to normal (blue) areas. (C, D) Similarly, among two breasts with scattered areas 
of fibroglandular density at mammography (left), the breast at higher risk for cancer (C) is identified by having more substantial red areas (right). (Re-
printed, with permission, from reference 48.)
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classifications compared with DM. Other works, however, found 
that use of DBT with SM downgraded BI-RADS density clas-
sifications (57–59); Aujero et al (58) and Zuckerman et al (59) 
suggested that this may be related to perceptual adaptation to SM.

Lotter et  al (60) applied deep learning to detect cancers in 
DBT based on the use of a maximum suspicion projection. Risk 
modeling in DBT is still an open area of research. Given that deep 
learning is already computationally intensive in DM, future appli-
cations in DBT are expected to be even more computationally de-
manding. At a typical DBT examination, 300 images may be pro-
duced while only four images are produced at DM. Deep learning 
in DBT is also challenging due to the anisotropic voxels (differing 
sizes in three directions) and variations in the compressed breast 
thickness. Early studies suggested improved performance in DBT 
risk prediction compared with DM data alone (60,61). Eriksson 
et al (61,62) showed that combining deep learning features (den-
sity, calcifications, masses) with familial, demographic, lifestyle, 
and polygenic risk scores achieved a higher AUC for a 2-year risk 
model (DM = 0.73, DBT = 0.83) than the Tyrer-Cuzick version 
8 model (AUC, 0.62).

Breast US

Tissue Composition at Breast US: BI-RADS Classification
Tissue composition at breast US is classified as homogeneous 
background echotexture (fat), homogeneous background 

echotexture (fibroglandular), and heterogeneous background 
echotexture according to the BI-RADS, 5th edition (63). These 
three categories correspond loosely to the four density descrip-
tors of mammography (Fig 7). Dense breasts on mammograms 
usually fall within the homogeneous background echotexture 
(fibroglandular category), defined as a thick layer of fibroglandu-
lar tissue beneath the subcutaneous fat layer, irrespective of the 
internal echogenicity patterns within the fibroglandular tissue.

In several studies on US assessments of mammographic pa-
renchymal patterns or breast density, a significant correlation be-
tween mammographic and US assessments was found (64–66). 
In a prospective study by Kim et al (67), assessments of breast 
density using real-time US was in exact agreement with 86% 
of mammograms when BI-RADS density categories were di-
chotomized into fatty (almost entirely fatty and scattered areas 
of fibroglandular density) and dense (heterogeneously dense and 
extremely dense).

Internal Echogenicity Patterns of Fibroglandular Tissue
The sonographic appearance of fibroglandular tissue may vary 
between individuals and over time in the same individual (68). 
Several studies have proposed methods for classifying internal 
echogenicity patterns within the fibroglandular tissue. Hou 
et al (69) classified sonographic parenchymal patterns into four 
types (heterogeneous, ductal, mixed, and fibrous) based on the 
different compositions of ducts, fibroglandular tissue, and fat 

Figure 7:  Top: Classification of tissue composition at breast US according to the Breast Imaging Reporting and Data System, 5th edition. Repre-
sentative US images show (A) homogeneous background echotexture (fat), (B) homogeneous background echotexture (fibroglandular), and  
(C) heterogeneous background echotexture. Bottom: Corresponding craniocaudal mammograms show (A) almost entirely fat, (B) extremely dense, 
and (C) heterogeneously dense or scattered fibroglandular tissue at mammography.
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lobules. Lee et al (70) evaluated the proportions of isoechoic or 
hypoechoic areas representing glandular tissue relative to hyper-
echoic areas representing fibrous stroma in the fibroglandular 
tissue. The authors classified the amount of glandular tissue 
component in the fibroglandular tissue as minimal, mild, mod-
erate, or marked (Fig 8). The glandular tissue component was 
visually estimated after scanning the entire breast. Sonographic 
glandular tissue component classification can be estimated more 
easily in the large field of views of automated breast US (71,72). 
The differences in the evaluation of the glandular tissue com-
ponent and BI-RADS tissue composition are summarized in  
Table 3.

Internal Echogenicity Patterns and Breast Cancer Risk
The association of internal echogenicity patterns of fibroglan-
dular tissue with breast cancer risk is explained by the fact that 
breast US can be used to distinguish between glandular and stro-
mal tissues in the fibroglandular tissue on the basis of their echo-
genicity in a manner that is not possible with mammography. 
Breasts that appear similarly dense at mammography may show 
a wide spectrum of patterns at breast US and histologic assess-

ment, with predominantly hyperechoic fibrous tissue at one ex-
treme and abundant isoechoic or hypoechoic glandular tissue at 
the other (Fig 9). The breast lobule or terminal duct lobular unit 
is known to be the primary anatomic source of breast cancer, and 
the progressive degrees of lobular involution are associated with 
a reduced risk of developing breast cancer (73). Women with 
dense breasts on mammograms have varying degrees of lobular 
involution (74) and, therefore, may have different breast cancer 
risk, which could be stratified by sonographic glandular tissue 
component assessment. A previous study in 233 women showed 
that a higher glandular tissue component at breast US is associ-
ated with less degree of lobular involution (70).

A recent retrospective study that included 541 women with 
cytopathologic confirmation of cancer and 849 age-matched 
women without cytopathologic confirmation of breast cancer 
evaluated four types of sonographic parenchymal patterns (75). 
The authors showed that the heterogeneous type (odds ratio, 
3.97; P < .001) and fibrous type (odds ratio, 2.70; P < .001) were 
associated with breast cancer. Another recent retrospective co-
hort study evaluated the association between the glandular tissue 
component on breast US images and future breast cancer risk 

Figure 8:   (A) Handheld breast US and 
(B) automated breast US images show quali-
tative four-category classification of the glan-
dular tissue component in women with dense 
breasts. When distribution of the glandular 
tissue component in the breast is not uniform, 
the dominant pattern seen in at least two quad-
rants, or in the area of densest fibroglandular 
tissue, is subjectively determined to be the 
glandular tissue component.
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(70). Among the 8483 women with mammographically deter-
mined dense breasts who underwent supplemental US screening, 
137 (1.6%) developed breast cancer during a median follow-up 
time of 5.3 years. The incidence of breast cancer in women with 
a high glandular component was significantly higher than in 
women with a low glandular component (P = .01). In multivari-
able analysis, the baseline glandular tissue component was the 
only factor associated with breast cancer risk (hazard ratio, 1.5;  
P = .03) after adjusting for other risk factors, including age, 
menopausal status, history of benign breast biopsy, family his-
tory of breast cancer, and breast density.

Future Directions for Breast Cancer Risk Assessment Using 
Breast US
Internal echogenicity patterns of the fibroglandular tissue at 
breast US have the potential for breast cancer risk assessment. 
However, standardization of evaluation methods for this new 
imaging marker is important prior to clinical implementation. 
Further studies on quantification and deep learning models will 
enhance robust and reproducible assessment. In addition, pro-
spective multicenter studies are needed to validate the associa-
tion between the glandular tissue component and breast cancer 
risk. A prospective multinational cohort study to validate the as-
sociation of sonographic glandular tissue component and breast 
cancer risk has been published (ClinicalTrials.gov registration 
no. NCT05460975).

Breast MRI

MRI Overview
Breast MRI is the most sensitive imaging modality for detection 
of breast cancer, including ductal carcinoma in situ and invasive 
cancers (76). Breast MRI can also be used to evaluate features 

of normal breast tissue that can inform breast cancer risk assess-
ment. The amount of fibroglandular tissue assessed at MRI fol-
lows the same four categories as the BI-RADS 5th edition for 
mammographic density: almost entirely fat, scattered fibroglan-
dular tissue, heterogeneous fibroglandular tissue, and extreme  
fibroglandular tissue (77). Normal fibroglandular tissue enhances 
after the administration of gadolinium-based contrast material 
and is known as BPE. BPE levels are qualitatively assessed as 
minimal, mild, moderate, or marked using the BI-RADS lexi-
con (Fig 10) or may be quantitively assessed using software. BPE 
is an independent risk factor for the development of breast can-
cer, separate from mammographic density (78).

Biologic Underpinnings
The biologic underpinnings of BPE have not been fully eluci-
dated. Evidence suggests that BPE is related to endogenous and 
exogenous hormone levels; BPE varies with the phase of the 
menstrual cycle (79,80) and menopausal status (81), and BPE is 
reduced in women taking aromatase inhibitors and selective es-
trogen receptor modulators (82,83). Therefore, BPE likely par-
tially reflects the effect of hormonal stimulation on the glandular 
components of the breast, which itself is associated with a higher 
risk of breast cancer. It is theorized that a second additional 
component of BPE is likely to be proliferative tissue changes, 
such as atypia, which are also associated with a higher cancer 
risk (84). Whether the cause of BPE is hormonal or due to pro-
liferative change could be determined on the basis of whether 
BPE decreases after the cessation of hormonal stimulation, such 
as after menopause or after risk-reducing salpingo-oophorec-
tomy. In BRCA1 and BRCA2 variant carriers who underwent 
risk-reducing salpingo-oophorectomy (85,86), a lack of BPE 
suppression would suggest that the underlying cause of BPE 
is proliferative change, including atypia, rather than hormonal 

Table 3: Comparison of Tissue Composition and Glandular Tissue Component at Breast US

Component Tissue Composition (BI-RADS, 5th edition) Glandular Tissue Component
Definition Balance between the fibroglandular tissue and  

fat, similar to mammographic density
Proportion of the glandular tissue in the 

fibroglandular tissue
Classification Homogeneous background echotexture (fat), 

homogeneous background echotexture (fibroglandular), 
or heterogeneous background echotexture

Four category (minimal, mild, moderate, 
marked) or dichotomous (low, high)

Observer variability Kappa value of 0.30 
(kappa of 0.30 for homogeneous, 0.19 for focally 
heterogeneous, and 0.41 for diffusely heterogeneous 
echotexture) (112)

Average kappa, 0.41 for the four-category 
classification and 0.52 for the dichotomous 
classification (70)

Effect on US sensitivity  
and specificity

Detection of small and subtle lesions may be  
confounded by heterogeneous background  
echotexture

A high glandular tissue component was 
associated with a higher abnormal 
interpretation rate than a low glandular tissue 
component (20.1% vs 8.5%; P < .001) at 
supplemental screening breast US (113)

Association with breast  
cancer risk

Unknown as of November 2022 Compared with a minimal or mild glandular 
tissue component, a moderate or marked 
glandular tissue component was associated 
with a higher cancer risk (hazard ratio, 1.5; 
P = .03) after adjusting for age and breast 
density (70)

Note.—BI-RADS = Breast Imaging Reporting and Data System.
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stimulation. However, as 
discussed hereafter, stud-
ies show conflicting re-
sults as to whether these 
patients remain at higher 
risk for breast cancer. Ad-
ditionally, several studies 
have found similar odds 
ratios for BPE and risk 
in premenopausal and 
postmenopausal groups 
(87,88), suggesting that 
endogenous estrogen 
does not affect the levels 
of BPE that reflect risk. 
It is possible that BPE is 
due to different processes 
in premenopausal and 
postmenopausal women, 
and in those with high 
and average risk. The bio-
logic underpinnings of 
BPE and the relationship 
of BPE-associated risk 
to menopausal status for 
women at both average 
and high risk for breast 
cancer requires additional 
study.

BPE and Breast Cancer 
Risk
The amount of fibroglan-
dular tissue is reflected in 
mammographic density 
and is associated with 
breast cancer risk. BPE 
is independent of mam-
mographic density and 
instead is associated with 
higher tissue microvas-
cular density, expression 
of vascular endothelial 
growth factor (89), and higher metabolic activity (79,87), repre-
senting an independent measure of tissue at risk. Women with 
dense breasts but minimal BPE do not have elevated breast can-
cer risk (87), suggesting that BPE may be a more accurate pre-
dictor of risk than density alone.

The association between BPE and breast cancer risk was 
first described in a case-control study of women at high risk, 
finding that women with moderate or marked BPE had a 6.7 
times higher odds ratio of developing cancer than women with 
minimal or mild BPE (78). Additional single-institution, case-
control, retrospective cohort, and cross-sectional studies that 
used BPE in breast MRI for risk assessment have yielded similar 
findings with odds ratios ranging from 1.45 to 14.5 depending 
on the patient population and BPE threshold (Table 4).

Since these early studies, meta-analyses (90,91) have cor-
roborated the findings regardless of study design, timing of BPE 
measurement, and method of BPE assessment. Thompson et al 
(90) evaluated 18 studies for a total of 1910 women with breast 
cancer and 2541 control participants. In women at high risk, 
they found that at least mild BPE was associated with breast 
cancer with a 2.1 odds ratio. This odds ratio was reproduced 
across multiple studies when those with unmatched controls 
were excluded.

This has been further supported by a recent study notable due 
to its large number of patients across multiple institutions and 
for its retrospective cohort design. Arasu et al (87) demonstrated 
a higher cancer risk with each higher level of BPE (hazard ratios: 
1.8 for mild BPE, 2.42 for moderate BPE, and 3.41 for marked 

Figure 9:  Spectrum of sonographic and histologic appearance of dense breasts at mammography. (A) Craniocaudal mam-
mograms show extremely dense fibroglandular tissue in both cases. (B) Breast US images show predominately hyperechoic fibrous 
tissue at one end (left) and abundant isoechoic or hypoechoic glandular tissue at the other end (right) of the spectrum. (C) Histologic 
images (hematoxylin-eosin [H&E] stain; original magnification, x200) show the breast lobules are involuted and replaced by fibrous 
stroma in the former case (left), whereas the lobular involution is minimal and the size and number of acini per lobule is large in the 
latter case (right). GTC = glandular tissue component. (Reprinted, with permission, from reference 70.)
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BPE). Additionally, they found BPE strongly predicted a future 
diagnosis of invasive breast cancer rather than ductal carcinoma 
in situ, supporting the use of BPE as a relevant imaging marker 
for breast cancer.

BPE in Women with Elevated Risk
Most of the studies yielding an association of BPE with breast 
cancer risk have been performed in a cross section of women at 
high risk as this is the population for whom screening MRI is 
indicated (79) (Fig 11). Studies of women with a personal his-
tory of breast cancer showed that in this group of women at high 
risk, BPE is associated with a higher risk of developing a second 
breast cancer or interval breast cancer (92,93). The significance 
of BPE as a risk factor in women with genetic alterations may 
be different than for other women at high risk. Studies have 
shown that BRCA1 and BRCA2 variant carriers have lower BPE 
and less fibroglandular tissue than age-matched controls (94).  
BPE has been shown to be reduced in BRCA1 and BRCA2  
variant carriers after risk-reducing salpingo-oophorectomy, sug-
gesting that the decreased BPE reflects the hormonal changes 
from risk-reducing salpingo-oophorectomy, which in turn 
decreases breast cancer risk (95). A higher BPE level prior to 
risk-reducing salpingo-oophorectomy has been associated with 
future breast cancer (85,96). However, the literature shows 
mixed results regarding a change in BPE after risk-reducing 
salpingo-oophorectomy. DeLeo et al (85) found that BRCA1 and 

BRCA2 variant carriers who did not have a reduction in BPE after 
risk-reducing salpingo-oophorectomy had a higher risk of subse-
quent breast cancer, while Bermot et al (96) conversely found that 
a greater reduction in BPE after risk-reducing salpingo-oophorec-
tomy was associated with a higher risk of breast cancer. Findings 
of both groups suggest that BPE is a phenotypic imaging marker 
to identify BRCA1 and BRCA2 variant carriers who may be at 
risk for developing breast cancer despite risk-reducing salpingo-
oophorectomy (85,96). However, whether the initial high BPE 
level or the change in BPE after risk-reducing salpingo-oophorec-
tomy is the more contributory BPE measure predicting a higher 
risk of breast cancer remains to be confirmed.

BPE in Women with Average Risk
The few studies evaluating women at average risk show mixed re-
sults. The meta-analysis by Thompson et al (90) showed no sig-
nificant association between BPE and breast cancer in the popu-
lation at average risk (Fig 12). A single-institution study of 540 
women at average risk who received breast MRI for suspicious or 
equivocal findings at conventional imaging or clinical suspicion of 
cancer also showed no association between BPE and breast cancer 
risk (97). However, the multi-institution study by Arasu et al (87) 
showed that women at average lifetime risk (estimated by a 5-year 
Breast Cancer Surveillance Consortium risk score of <1.67%) 
with at least mild BPE had an elevated breast cancer risk (a 2.9 
times hazard ratio) than those with minimal BPE. Paradoxically, 

Figure 10:  Qualitative background parenchymal enhancement (BPE) assessment according to the Breast Imaging Reporting and Data System lexi-
con. Axial, subtracted, postcontrast, maximum intensity projection breast MRI scans show (A) minimal, (B) mild, (C) moderate, and (D) marked BPE in 
four patients.
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Table 4: Overview of Studies Using BPE in Breast MRI for Risk Assessment

Study and Year Study Design Samples Indication for MRI BPE Threshold Findings
King et al (2011) 

(78)
Retrospective matched 

1:2 case control
39 cancers,  

116 controls
High-risk screening At least moderate  

BPE
Higher BPE associated 

with cancer (OR, 6.7)
DeLeo et al  

(2015) (85)
Retrospective cohort 55 patients,  

9 cancers
BRCA1/BRCA2  

carriers treated with 
RRSO

Mean BPE before  
and after RRSO

Higher BPE before and 
after RRSO associated 
with cancer

Albert et al  
(2015) (114)

Retrospective 
unmatched  
case-control

403 cancers,  
72 controls

Extent of disease and 
high-risk screening

BI-RADS categories  
of BPE

Lower BPE associated 
with breast cancer 
in postmenopausal 
women

Cho et al (2015) 
(115)

Retrospective 
unmatched case-
control

38 cancers,  
39 controls

High-risk screening BPE percentage Higher mean BPE 
associated with cancer

Dontchos et al 
(2015) (116)

Retrospective matched 
1:1 case-control

23 cancers,  
23 controls

High-risk screening At least mild BPE Higher BPE associated 
with cancer (OR, 9.0)

Telegrafo et al 
(2016) (117)

Retrospective cross-
sectional

162 cancers,  
224 controls

High-risk screening, 
problem solving, and 
extent of disease

At least moderate  
BPE

Higher BPE associated 
with cancer

Wu et al (2015) 
(86)

Retrospective cohort 6 cancers,  
44 controls

BRCA1/BRCA2 
variant carriers who 
underwent RRSO

BPE above a threshold Higher BPE after RRSO 
associated with cancer

Bennani-Baiti et al 
(2016) (97)

Retrospective cross-
sectional

353 cancers,  
187 benign

Problem solving and 
extent of disease

At least moderate BPE No association of BPE 
with cancer

Melsaether et al 
(2017) (118)

Retrospective matched 
1:1 case-control

116 cancers,  
116 controls

Known breast 
cancer and age-
matched controls 
with screening or 
diagnostic MRI

BPE at multiple time 
points

No association of BPE 
with cancer

Melsaether et al 
(2017) (118)

Retrospective cohort 9 cancers,  
83 negative

High-risk screening or 
diagnostic MRI

At least mild BPE Higher BPE associated 
with breast cancer 
only for one reader 
(OR, 7.67)

Choi et al (2016) 
(119)

Retrospective cohort 602 patients,  
83 cancers

Personal history of 
breast cancer

At least moderate BPE Higher BPE associated 
with recurrence, 
including early and 
late recurrence (HR, 
2.08)

Hu et al (2017)  
(88)

Retrospective matched 
1:1 case-control

101 cancers,  
101 negative, 
101 benign

Not reported Automated ratio of  
BPE to FGT

Higher BPE associated 
with cancer (OR, 2.6 
in premenopausal 
women; OR, 2.8 
in postmenopausal 
women)

Wu et al (2017) 
(120)

Retrospective matched 
1:1 case-control

51 cancers,  
51 controls

Controls with biopsy-
proven benign lesions

Automated BPE 
percentage

Higher BPE associated 
with cancer (OR, 3.5)

Lam et al (2019) 
(121)

Retrospective matched 
1:1 case control

23 cancers,  
23 controls

High-risk screening Percent enhancement 
for each voxel within 
FGT

Higher BPE associated 
with cancer

Bermot et al  
(2018) (96)

Retrospective cohort 146 patients,  
26 cancers

BRCA1/BRCA2 variant 
carriers and women 
at high risk who 
underwent RRSO

At least mild BPE at  
pre-RRSO 
examination, change 
in BPE before and 
after RRSO

Higher BPE at pre-
RRSO examination 
associated with cancer 
(HR, 3.9); reduced 
BPE at post-RRSO 
MRI associated with 
cancer (HR, 2.2)

Table 4 (continues)



Acciavatti and Lee et al

Radiology: Volume 306: Number 3—March 2023  ■  radiology.rsna.org	 13

Study and Year Study Design Samples Indication for MRI BPE Threshold Findings
Grimm et al  

(2019) (122)
Retrospective matched 

1:2 case-control
61 cancers,  

122 controls
High-risk screening At least mild BPE at  

first time point
Higher BPE associated 

with cancer (OR, 2.5)
Arasu et al (2019) 

(87)
Retrospective cohort, 

multicenter study
4247 patients,  

176 cancers
High-risk screening  

and diagnostic
At least mild BPE at  

first time point
Higher BPE associated 

with cancer (HR: 1.8 
for mild BPE, 2.42 
for moderate BPE, 
and 3.41 for marked 
BPE) and greater for 
invasive cancers than 
DCIS

Sippo et al (2019) 
(123)

Retrospective cohort 73 cancers, 4613 
examinations 
without cancer

High-risk screening At least moderate  
BPE

Higher BPE associated 
with breast cancer 
(OR, 2.14 when 
compared with 
minimal and/or mild 
BPE)

Vreemann et al 
(2019) (124)

Retrospective cohort 60 cancers,  
1473 negative

High-risk screening Automated BPE 
percentages

No association of BPE 
with cancer

Saha et al (2019) 
(105)

Retrospective matched 
1:2 case-control

46 cancers, 87 
controls

High-risk screening Automated BPE 
features, at least  
mild BPE

Higher BPE associated 
with breast cancer 
(OR, 2.44 for 
readers; OR, 4.21 for 
automated features)

Watt et al (2020) 
(125)

Retrospective  
matched 1:1  
case-control, 
multicenter study

835 cancers, 963 
controls

Not reported At least mild and  
at least moderate  
BPE

At least moderate BPE 
associated with breast 
cancer (OR ,1.49) 
in premenopausal 
women; at least 
mild BPE associated 
with breast cancer 
(OR, 1.45) in 
postmenopausal 
women

Niell et al (2021) 
(103)

Retrospective matched 
1:4 case-control

19 cancers, 76 
controls

High-risk screening At least mild BPE Higher BPE associated 
with breast cancer 
(OR, 3.0)

Kim et al (2021) 
(92)

Retrospective  
cohort

6603  
examinations  
in 2809  
women, 10 
interval cancers

Personal history of 
breast cancer

At least moderate  
BPE

Higher BPE associated 
with interval cancer 
(OR, 14.5)

Lee et al (2022)  
(93)

Retrospective cohort 2668 women,  
109 cancers

Personal history of 
breast cancer

At least mild BPE Higher BPE associated 
with future second 
breast cancer  
(HR, 2.1)

Note.—BPE = background parenchymal enhancement, DCIS = ductal carcinoma in situ, FGT = fibroglandular tissue, HR = hazard ratio, 
OR = odds ratio, RRSO = risk-reducing salpingo-oophorectomy.

Table 4 (continued): Overview of Studies Using BPE in Breast MRI for Risk Assessment

this same study found that although higher BPE was associated 
with a higher risk of breast cancer in women with a history of a 
first-degree relative with breast cancer, this association did not hold 
in women without a family history. Thompson et al (90) have sug-
gested that BPE may indicate a healthy breast tissue phenomenon 
in women at average risk, while breast tissue in high-risk patients 
is biologically different than normal breast tissue. Given the grow-

ing acceptance of abbreviated MRI to expand MRI screening for 
women at average and intermediate risk, the significance of BPE 
in these groups requires additional study.

Future Directions in MRI
There is wide variability in the MRI sequences and quantita-
tive methods used for BPE assessment (98). In addition, there 
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Figure 11:  Images in a 46-year-old woman at high risk for breast cancer due to strong family history (calculated lifetime risk of 
33%). Screening MRI demonstrated extreme fibroglandular tissue. (A) Axial, subtracted, postcontrast maximum intensity projection 
MRI scan shows moderate background parenchymal enhancement (BPE) and a mass in the left axillary tail (circle). (B) Postcontrast, 
T1-weighted subtracted axial MRI scan with the section centered at the level of the left breast mass shows the enhancing irregular 
mass (arrow) that was subsequently biopsied yielding moderately differentiated carcinoma with mixed ductal and lobular features. 
A higher BPE level has been associated with risk of breast cancer in women at high risk.

Figure 12:  Images in a 34-year-old woman without family history of breast cancer with newly diagnosed left breast cancer manifesting as a 
palpable lump. MRI performed for extent of disease demonstrates heterogeneous fibroglandular tissue. (A) Axial, subtracted, postcontrast maximum 
intensity projection MRI scan shows minimal background parenchymal enhancement (BPE) and a mass in the left lateral breast (arrow). (B) Postcon-
trast, T1-weighted subtracted axial MRI scan with the section centered at the level of the left breast mass shows the enhancing irregular mass (arrow) 
that was subsequently biopsied yielding poorly differentiated invasive ductal carcinoma. Studies show mixed results regarding the association be-
tween BPE and breast cancer in patients at average risk (ie, without family history of breast cancer or known deleterious genetic alteration).

is significant interest in providing supplemental screening to 
women at otherwise average risk but who have dense breasts by 
using abbreviated, or “fast,” breast MRI where only limited post-
contrast imaging is performed to improve cost-effectiveness and 
maintain sensitivity of cancer detection (99–102). In the future, 
risk prediction models will likely incorporate BPE as a quantita-
tive imaging marker to provide more refined individualized re-
sults (103). The change in BPE after risk-reducing interventions, 
such as bilateral salpingo-oophorectomy or tamoxifen use, may 
also be incorporated into models quantifying the degree of risk 
reduction to personalize a patient’s preventive strategy.

Development of generalizable risk prediction models will 
first require standardization of quantitative BPE. Deep learning 
models will likely become valuable tools in providing automated, 

accurate, and reproducible BPE assessments (104,105). Deep 
learning models may also be trained on contrast-enhanced MRI 
scans and incorporate all the information present in the image, 
beyond BPE information alone, to refine risk prediction (106).

BPE is also being studied as a prognostic and predictive imag-
ing marker in women diagnosed with breast cancer because BPE 
has been associated with tumor type (107), response to neoadju-
vant therapy (108), and recurrence-free survival (109).

Future Directions and Clinical Implementation
Beyond the use of mammographic density alone to identify women 
at high risk for breast cancer, the goal of the imaging markers de-
scribed in this article is to develop personalized screening strat-
egies for breast imaging. As of November 2022, there continue 

to be hurdles to wide-
spread implementation 
of these imaging markers, 
such as image-based deep 
learning (49,50), despite 
promising results over 
traditional risk models. 
These hurdles include the 
need for validation and 
prospective trials across 
diverse populations and 
sites (110,111), as well as 
the need for standardiza-
tion of risk assessment and 
reporting.

Conclusion
Herein, we describe a 
range of imaging markers 
associated with breast can-
cer risk, with the ultimate 
goal of enabling personal-
ized screening strategies.



Acciavatti and Lee et al

Radiology: Volume 306: Number 3—March 2023  ■  radiology.rsna.org	 15

Disclosures of conflicts of interest: R.J.A. Grants from the Breast Cancer Al-
liance, Burroughs Wellcome Fund, U.S. Department of Defense Breast Cancer 
Research Program, and National Institutes of Health (NIH); patents planned, 
issued, or pending. S.H.L. No relevant relationships. B.R. No relevant relation-
ships. L.M. Editor, Radiology; grants from Siemens Healthcare, Gordon and 
Betty Moore Foundation, Mary Kay Foundation, and Google; personal fees, 
Lunit Insight, iCAD advisory board, Guerbet; meeting and travel expenses, 
British Society of Breast Radiology and European Society of Breast Imaging. 
E.F.C. Grants or contracts from iCAD, Hologic, and OM1; payment or hono-
raria from MedScape and Aunt Minnie; lecture travel support from the RSNA 
for European Congress of Radiology 2022; advisory board, iCAD and Hologic; 
current board member, Society of Breast Imaging. D.K. Grants from NIH; in-
stitutional research agreement with iCAD; patents planned, issued, or pending. 
W.K.M. Institutional research grant from Bayer.

References
	 1.	 Vachon CM, van Gils CH, Sellers TA, et al. Mammographic density, breast 

cancer risk and risk prediction. Breast Cancer Res 2007;9(6):217.
	 2.	 Holland K, van Gils CH, Mann RM, Karssemeijer N. Quantification of 

masking risk in screening mammography with volumetric breast density 
maps. Breast Cancer Res Treat 2017;162(3):541–548.

	 3.	 Sherratt MJ, McConnell JC, Streuli CH. Raised mammographic den-
sity: causative mechanisms and biological consequences. Breast Cancer Res 
2016;18(1):45.

	 4.	 Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast 
tissues. Phys Med Biol 1987;32(6):675–695.

	 5.	 Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mam-
mographic density and age: implications for breast cancer screening. AJR Am 
J Roentgenol 2012;198(3):W292–W295.

	 6.	 Boyd NF, Martin LJ, Sun L, et al. Body size, mammographic density, and 
breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006;15(11):2086–
2092.

	 7.	 Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G. 
Postmenopausal hormone therapy and change in mammographic density. J 
Natl Cancer Inst 2003;95(1):30–37.

	 8.	 Cuzick J, Warwick J, Pinney E, Warren RML, Duffy SW. Tamoxifen and breast  
density in women at increased risk of breast cancer. J Natl Cancer Inst 
2004;96(8):621–628.

	 9.	 Grove JS, Goodman MJ, Gilbert FI Jr, Mi MP. Factors associated with mam-
mographic pattern. Br J Radiol 1985;58(685):21–25.

	10.	 Sprague BL, Gangnon RE, Burt V, et al. Prevalence of mammographically 
dense breasts in the United States. J Natl Cancer Inst 2014;106(10):dju255.

	11.	 Dehkordy SF, Carlos RC. Dense Breast Legislation in the United States: State 
of the States. J Am Coll Radiol 2016;13(11S):R53–R57. [Published correc-
tion appears in J Am Coll Radiol 2018;15(10):1522.]

	12.	 Berg WA, Blume JD, Cormack JB, et al; ACRIN 6666 Investigators. Com-
bined screening with ultrasound and mammography vs mammography 
alone in women at elevated risk of breast cancer. JAMA 2008;299(18): 
2151–2163.

	13.	 Bakker MF, de Lange SV, Pijnappel RM, et al; DENSE Trial Study Group. 
Supplemental MRI Screening for Women with Extremely Dense Breast Tis-
sue. N Engl J Med 2019;381(22):2091–2102.

	14.	 Karimi Z, Phillips J, Slanetz P, et  al. Factors Associated With Background 
Parenchymal Enhancement on Contrast-Enhanced Mammography. AJR Am 
J Roentgenol 2021;216(2):340–348.

	15.	 Sorin V, Yagil Y, Shalmon A, et al. Background Parenchymal Enhancement at 
Contrast-Enhanced Spectral Mammography (CESM) as a Breast Cancer Risk 
Factor. Acad Radiol 2020;27(9):1234–1240.

	16.	 Hruska CB, Geske JR, Conners AL, et al. Background Parenchymal Uptake 
on Molecular Breast Imaging and Breast Cancer Risk: A Cohort Study. AJR 
Am J Roentgenol 2021;216(5):1193–1204.

	17.	 Wolfe JN. Breast patterns as an index of risk for developing breast cancer. AJR 
Am J Roentgenol 1976;126(6):1130–1137.

	18.	 Gram IT, Funkhouser E, Tabár L. The Tabár classification of mammographic 
parenchymal patterns. Eur J Radiol 1997;24(2):131–136.

	19.	 Boyd NF, Jensen HM, Cooke G, Han HL. Relationship between mam-
mographic and histological risk factors for breast cancer. J Natl Cancer Inst 
1992;84(15):1170–1179.

	20.	 D’Orsi CJ, Bassett LW, Berg WA, Feig SA, Jackson V, Kopans D. Breast Imag-
ing Reporting and Data System: ACR BI-RADS Mammography. American 
College of Radiology; 2003.

	21.	 Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS Mammography. In: 
ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. American 
College of Radiology; 2013.

	22.	 Sprague BL, Conant EF, Onega T, et  al; PROSPR Consortium. Varia-
tion in Mammographic Breast Density Assessments Among Radiologists 

in Clinical Practice: A Multicenter Observational Study. Ann Intern Med 
2016;165(7):457–464.

	23.	 Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial in-
telligence in mammographic phenotyping of breast cancer risk: a narrative 
review. Breast Cancer Res 2022;24(1):14.

	24.	 Lehman CD, Yala A, Schuster T, et  al. Mammographic Breast Density 
Assessment Using Deep Learning: Clinical Implementation. Radiology 
2019;290(1):52–58.

	25.	 Kallenberg M, Petersen K, Nielsen M, et  al. Unsupervised Deep Learning 
Applied to Breast Density Segmentation and Mammographic Risk Scoring. 
IEEE Trans Med Imaging 2016;35(5):1322–1331.

	26.	 Li S, Wei J, Chan HP, et al. Computer-aided assessment of breast density: 
comparison of supervised deep learning and feature-based statistical learning. 
Phys Med Biol 2018;63(2):025005.

	27.	 Haji Maghsoudi O, Gastounioti A, Scott C, et  al. Deep-LIBRA: An arti-
ficial-intelligence method for robust quantification of breast density with 
independent validation in breast cancer risk assessment. Med Image Anal 
2021;73:102138.

	28.	 Lamb LR, Lehman CD, Gastounioti A, Conant EF, Bahl M. Artificial Intel-
ligence (AI) for Screening Mammography, From the AJR Special Series on AI 
Applications. AJR Am J Roentgenol 2022;219(3):369–380.

	29.	 Li J, Szekely L, Eriksson L, et al. High-throughput mammographic-density 
measurement: a tool for risk prediction of breast cancer. Breast Cancer Res 
2012;14(4):R114.

	30.	 Nickson C, Arzhaeva Y, Aitken Z, et al. AutoDensity: an automated method 
to measure mammographic breast density that predicts breast cancer risk and 
screening outcomes. Breast Cancer Res 2013;15(5):R80.

	31.	 Mandrekar JN. Receiver operating characteristic curve in diagnostic test as-
sessment. J Thorac Oncol 2010;5(9):1315–1316.

	32.	 Brandt KR, Scott CG, Ma L, et al. Comparison of Clinical and Automated 
Breast Density Measurements: Implications for Risk Prediction and Supple-
mental Screening. Radiology 2016;279(3):710–719.

	33.	 Warwick J, Birke H, Stone J, et al. Mammographic breast density refines Tyrer-
Cuzick estimates of breast cancer risk in high-risk women: findings from the  
placebo arm of the International Breast Cancer Intervention Study I. Breast 
Cancer Res 2014;16(5):451.

	34.	 Keller BM, Chen J, Daye D, Conant EF, Kontos D. Preliminary evaluation of 
the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) 
software tool: comparison of fully automated area and volumetric density 
measures in a case-control study with digital mammography. Breast Cancer 
Res 2015;17(1):117.

	35.	 Brentnall AR, Harkness EF, Astley SM, et al. Mammographic density adds 
accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a 
prospective UK screening cohort. Breast Cancer Res 2015;17(1):147.

	36.	 Brentnall AR, Cohn WF, Knaus WA, Yaffe MJ, Cuzick J, Harvey JA. A Case-
Control Study to Add Volumetric or Clinical Mammographic Density into 
the Tyrer-Cuzick Breast Cancer Risk Model. J Breast Imaging 2019;1(2):99–
106.

	37.	 Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the  
advancing role of parenchymal texture analysis in breast cancer risk assess-
ment. Breast Cancer Res 2016;18(1):91.

	38.	 Zheng Y, Keller BM, Ray S, et  al. Parenchymal texture analysis in digital 
mammography: A fully automated pipeline for breast cancer risk assessment. 
Med Phys 2015;42(7):4149–4160.

	39.	 Kontos D, Winham SJ, Oustimov A, et al. Radiomic Phenotypes of Mam-
mographic Parenchymal Complexity: Toward Augmenting Breast Density in 
Breast Cancer Risk Assessment. Radiology 2019;290(1):41–49.

	40.	 Manduca A, Carston MJ, Heine JJ, et  al. Texture features from mammo-
graphic images and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 
2009;18(3):837–845.

	41.	 Wei J, Chan HP, Wu YT, et al. Association of computerized mammographic 
parenchymal pattern measure with breast cancer risk: a pilot case-control 
study. Radiology 2011;260(1):42–49.

	42.	 Sun W, Tseng TLB, Qian W, et al. Using multiscale texture and density fea-
tures for near-term breast cancer risk analysis. Med Phys 2015;42(6):2853–
2862.

	43.	 Huo Z, Giger ML, Olopade OI, et  al. Computerized analysis of digitized 
mammograms of BRCA1 and BRCA2 gene mutation carriers. Radiology 
2002;225(2):519–526.

	44.	 Gierach GL, Li H, Loud JT, et al. Relationships between computer-extracted 
mammographic texture pattern features and BRCA1/2 mutation status: a 
cross-sectional study. Breast Cancer Res 2014;16(4):424.

	45.	 Li H, Giger ML, Lan L, Janardanan J, Sennett CA. Comparative analysis 
of image-based phenotypes of mammographic density and parenchymal pat-
terns in distinguishing between BRCA1/2 cases, unilateral cancer cases, and 
controls. J Med Imaging (Bellingham) 2014;1(3):031009.



Beyond Breast Density: Risk Measures for Breast Cancer in Multiple Imaging Modalities

16	 radiology.rsna.org  ■  Radiology: Volume 306: Number 3—March 2023

	46.	 Arefan D, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep 
learning modeling using normal mammograms for predicting breast cancer 
risk. Med Phys 2020;47(1):110–118.

	47.	 Dembrower K, Liu Y, Azizpour H, et al. Comparison of a Deep Learning Risk 
Score and Standard Mammographic Density Score for Breast Cancer Risk 
Prediction. Radiology 2020;294(2):265–272.

	48.	 Ha R, Chang P, Karcich J, et al. Convolutional Neural Network Based Breast 
Cancer Risk Stratification Using a Mammographic Dataset. Acad Radiol 
2019;26(4):544–549.

	49.	 Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A Deep Learning Mam-
mography-based Model for Improved Breast Cancer Risk Prediction. Radiol-
ogy 2019;292(1):60–66.

	50.	 Yala A, Mikhael PG, Strand F, et  al. Toward robust mammography-based 
models for breast cancer risk. Sci Transl Med 2021;13(578):eaba4373.

	51.	 Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition 
process. Med Phys 2013;40(1):014301.

	52.	 Sechopoulos I. A review of breast tomosynthesis. Part II. Image recon-
struction, processing and analysis, and advanced applications. Med Phys 
2013;40(1):014302.

	53.	 Ratanaprasatporn L, Chikarmane SA, Giess CS. Strengths and Weaknesses 
of Synthetic Mammography in Screening. RadioGraphics 2017;37(7):1913–
1927.

	54.	 Alabousi M, Wadera A, Kashif Al-Ghita M, et  al. Performance of Digital 
Breast Tomosynthesis, Synthetic Mammography, and Digital Mammography 
in Breast Cancer Screening: A Systematic Review and Meta-Analysis. J Natl 
Cancer Inst 2021;113(6):680–690.

	55.	 Tice JA, Gard CC, Miglioretti DL, et al. Comparing Mammographic Den-
sity Assessed by Digital Breast Tomosynthesis or Digital Mammography: The 
Breast Cancer Surveillance Consortium. Radiology 2022;302(2):286–292.

	56.	 Haider I, Morgan M, McGow A, et al. Comparison of Breast Density Be-
tween Synthesized Versus Standard Digital Mammography. J Am Coll Radiol 
2018;15(10):1430–1436.

	57.	 Gastounioti A, McCarthy AM, Pantalone L, Synnestvedt M, Kontos D, 
Conant EF. Effect of Mammographic Screening Modality on Breast Density 
Assessment: Digital Mammography versus Digital Breast Tomosynthesis. Ra-
diology 2019;291(2):320–327.

	58.	 Aujero MP, Gavenonis SC, Benjamin R, Zhang Z, Holt JS. Clinical Per-
formance of Synthesized Two-dimensional Mammography Combined with 
Tomosynthesis in a Large Screening Population. Radiology 2017;283(1): 
70–76.

	59.	 Zuckerman SP, Conant EF, Keller BM, et al. Implementation of Synthesized 
Two-dimensional Mammography in a Population-based Digital Breast Tomo-
synthesis Screening Program. Radiology 2016;281(3):730–736.

	60.	 Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mam-
mography and digital breast tomosynthesis using an annotation-efficient deep 
learning approach. Nat Med 2021;27(2):244–249.

	61.	 Eriksson M, Destounis S, Czene K, et  al. A risk model for digital breast  
tomosynthesis to predict breast cancer and guide clinical care. Sci Transl Med 
2022;14(644):eabn3971.

	62.	 Eriksson M, Czene K, Strand F, et  al. Identification of Women at High 
Risk of Breast Cancer Who Need Supplemental Screening. Radiology 
2020;297(2):327–333.

	63.	 Mendelson EB, Böhm-Vélez M, Berg WA, et al. ACR BI-RADS Ultrasound. 
In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Ameri-
can College of Radiology; 2013.

	64.	 Blend R, Rideout DF, Kaizer L, Shannon P, Tudor-Roberts B, Boyd NF. Pa-
renchymal patterns of the breast defined by real time ultrasound. Eur J Cancer 
Prev 1995;4(4):293–298.

	65.	 Rubin CS, Kurtz AB, Goldberg BB, Feig S, Cole-Beuglet C. Ultrasonic 
mammographic parenchymal patterns: a preliminary report. Radiology 
1979;130(2):515–517.

	66.	 Glide-Hurst CK, Duric N, Littrup P. Volumetric breast density evaluation 
from ultrasound tomography images. Medical physics 2008;35(9):3988–
3997.

	67.	 Kim WH, Moon WK, Kim SJ, et al. Ultrasonographic assessment of breast 
density. Breast Cancer Res Treat 2013;138(3):851–859.

	68.	 Izumori A, Horii R, Akiyama F, Iwase T. Proposal of a novel method for ob-
serving the breast by high-resolution ultrasound imaging: understanding the 
normal breast structure and its application in an observational method for 
detecting deviations. Breast Cancer 2013;20(1):83–91.

	69.	 Hou XY, Niu HY, Huang XL, Gao Y. Correlation of Breast Ultrasound Clas-
sifications with Breast Cancer in Chinese Women. Ultrasound Med Biol 
2016;42(11):2616–2621.

	70.	 Lee SH, Ryu HS, Jang MJ, et al. Glandular Tissue Component and Breast 
Cancer Risk in Mammographically Dense Breasts at Screening Breast US. 
Radiology 2021;301(1):57–65.

	71.	 Kim SH, Kim HH, Moon WK. Automated Breast Ultrasound Screening for 
Dense Breasts. Korean J Radiol 2020;21(1):15–24.

	72.	 Chang RF, Hou YL, Lo CM, et al. Quantitative analysis of breast echotexture 
patterns in automated breast ultrasound images. Med Phys 2015;42(8):4566–
4578.

	73.	 McKian KP, Reynolds CA, Visscher DW, et  al. Novel breast tissue feature 
strongly associated with risk of breast cancer. J Clin Oncol 2009;27(35):5893–
5898.

	74.	 Ghosh K, Hartmann LC, Reynolds C, et al. Association between mammo-
graphic density and age-related lobular involution of the breast. J Clin Oncol 
2010;28(13):2207–2212.

	75.	 Bao Z, Zhao Y, Chen S, et al. Evidence and assessment of parenchymal pat-
terns of ultrasonography for breast cancer detection among Chinese women: 
a cross-sectional study. BMC Med Imaging 2021;21(1):152.

	76.	 Sung JS, Stamler S, Brooks J, et  al. Breast Cancers Detected at Screening 
MR Imaging and Mammography in Patients at High Risk: Method of De-
tection Reflects Tumor Histopathologic Results. Radiology 2016;280(3): 
716–722.

	77.	 Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS Magnetic Reso-
nance Imaging. In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data 
System. American College of Radiology; 2013.

	78.	 King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Back-
ground parenchymal enhancement at breast MR imaging and breast cancer 
risk. Radiology 2011;260(1):50–60.

	79.	 Liao GJ, Henze Bancroft LC, Strigel RM, et al. Background parenchymal en-
hancement on breast MRI: A comprehensive review. J Magn Reson Imaging 
2020;51(1):43–61.

	80.	 Jung Y, Jeong SK, Kang DK, Moon Y, Kim TH. Quantitative analysis of 
background parenchymal enhancement in whole breast on MRI: Influence 
of menstrual cycle and comparison with a qualitative analysis. Eur J Radiol 
2018;103:84–89.

	81.	 King V, Gu Y, Kaplan JB, Brooks JD, Pike MC, Morris EA. Impact of meno-
pausal status on background parenchymal enhancement and fibroglandular 
tissue on breast MRI. Eur Radiol 2012;22(12):2641–2647.

	82.	 King V, Goldfarb SB, Brooks JD, et al. Effect of aromatase inhibitors on back-
ground parenchymal enhancement and amount of fibroglandular tissue at 
breast MR imaging. Radiology 2012;264(3):670–678.

	83.	 King V, Kaplan J, Pike MC, et al. Impact of tamoxifen on amount of fibro-
glandular tissue, background parenchymal enhancement, and cysts on breast 
magnetic resonance imaging. Breast J 2012;18(6):527–534.

	84.	 Kuhl CK. Predict, Then Act: Moving Toward Tailored Prevention. J Clin On-
col 2019;37(12):943–945.

	85.	 DeLeo MJ 3rd, Domchek SM, Kontos D, Conant E, Chen J, Weinstein S. 
Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1 
and BRCA2 mutation carriers before and immediately after risk-reducing sal-
pingo-oophorectomy. AJR Am J Roentgenol 2015;204(3):669–673.

	86.	 Wu S, Weinstein SP, DeLeo MJ 3rd, et al. Quantitative assessment of back-
ground parenchymal enhancement in breast MRI predicts response to risk-
reducing salpingo-oophorectomy: preliminary evaluation in a cohort of 
BRCA1/2 mutation carriers. Breast Cancer Res 2015;17(1):67. [Published 
correction appears in Breast Cancer Res 2015;17:144.]

	87.	 Arasu VA, Miglioretti DL, Sprague BL, et al. Population-Based Assessment 
of the Association Between Magnetic Resonance Imaging Background Paren-
chymal Enhancement and Future Primary Breast Cancer Risk. J Clin Oncol 
2019;37(12):954–963.

	88.	 Hu X, Jiang L, Li Q, Gu Y. Quantitative assessment of background paren-
chymal enhancement in breast magnetic resonance images predicts the risk of 
breast cancer. Oncotarget 2017;8(6):10620–10627.

	89.	 Sung JS, Corben AD, Brooks JD, et  al. Histopathologic characteristics of 
background parenchymal enhancement (BPE) on breast MRI. Breast Cancer 
Res Treat 2018;172(2):487–496.

	90.	 Thompson CM, Mallawaarachchi I, Dwivedi DK, et al. The Association of 
Background Parenchymal Enhancement at Breast MRI with Breast Cancer: A 
Systematic Review and Meta-Analysis. Radiology 2019;292(3):552–561.

	91.	 Hu N, Zhao J, Li Y, et al. Breast cancer and background parenchymal en-
hancement at breast magnetic resonance imaging: a meta-analysis. BMC Med 
Imaging 2021;21(1):32.

	92.	 Kim GR, Cho N, Kim SY, Han W, Moon WK. Interval Cancers after Nega-
tive Supplemental Screening Breast MRI Results in Women with a Personal 
History of Breast Cancer. Radiology 2021;300(2):314–323.

	93.	 Lee SH, Jang MJ, Yoen H, et al. Background Parenchymal Enhancement at 
Postoperative Surveillance Breast MRI: Association with Future Second Breast 
Cancer Risk. Radiology 2022. 10.1148/radiol.220440. Published online Au-
gust 30, 2022.

	94.	 Grubstein A, Rapson Y, Benzaquen O, et al. Comparison of background pa-
renchymal enhancement and fibroglandular density at breast magnetic reso-



Acciavatti and Lee et al

Radiology: Volume 306: Number 3—March 2023  ■  radiology.rsna.org	 17

nance imaging between BRCA gene mutation carriers and non-carriers. Clin 
Imaging 2018;51:347–351.

	95.	 Price ER, Brooks JD, Watson EJ, Brennan SB, Comen EA, Morris EA. The  
impact of bilateral salpingo-oophorectomy on breast MRI background paren-
chymal enhancement and fibroglandular tissue. Eur Radiol 2014;24(1):162–
168.

	96.	 Bermot C, Saint-Martin C, Malhaire C, et al. Background parenchymal en-
hancement and fibroglandular tissue on breast MRI in women with high ge-
netic risk: Are changes before and after risk-reducing salpingo-oophorectomy 
associated with breast cancer risk? Eur J Radiol 2018;109:171–177.

	97.	 Bennani-Baiti B, Dietzel M, Baltzer PA. MRI Background Parenchymal 
Enhancement Is Not Associated with Breast Cancer. PLoS One 2016;11 
(7):e0158573 [Published correction appears in PLoS One 2016;11(9) 
:e0162936.].

	98.	 Bignotti B, Signori A, Valdora F, et  al. Evaluation of background paren-
chymal enhancement on breast MRI: a systematic review. Br J Radiol 
2017;90(1070):20160542.

	99.	 Kuhl C, Weigel S, Schrading S, et al. Prospective multicenter cohort study to 
refine management recommendations for women at elevated familial risk of 
breast cancer: the EVA trial. J Clin Oncol 2010;28(9):1450–1457.

	100.	Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Ab-
breviated breast magnetic resonance imaging (MRI): first postcontrast sub-
tracted images and maximum-intensity projection-a novel approach to breast 
cancer screening with MRI. J Clin Oncol 2014;32(22):2304–2310.

	101.	Weinstein SP, Korhonen K, Cirelli C, et al. Abbreviated Breast Magnetic Res-
onance Imaging for Supplemental Screening of Women With Dense Breasts 
and Average Risk. J Clin Oncol 2020;38(33):3874–3882.

	102.	Comstock CE, Gatsonis C, Newstead GM, et al. Comparison of Abbrevi-
ated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detec-
tion Among Women With Dense Breasts Undergoing Screening. JAMA 
2020;323(8):746–756.

	103.	Niell BL, Abdalah M, Stringfield O, et al. Quantitative Measures of Back-
ground Parenchymal Enhancement Predict Breast Cancer Risk. AJR Am J 
Roentgenol 2021;217(1):64–75.

	104.	Eskreis-Winkler S, Sutton EJ, D’Alessio D, et al. Breast MRI Background Pa-
renchymal Enhancement Categorization Using Deep Learning: Outperform-
ing the Radiologist. J Magn Reson Imaging 2022;56(4):1068–1076.

	105.	Saha A, Grimm LJ, Ghate SV, et al. Machine learning-based prediction of 
future breast cancer using algorithmically measured background paren-
chymal enhancement on high-risk screening MRI. J Magn Reson Imaging 
2019;50(2):456–464.

	106.	Portnoi T, Yala A, Schuster T, et  al. Deep Learning Model to Assess Can-
cer Risk on the Basis of a Breast MR Image Alone. AJR Am J Roentgenol 
2019;213(1):227–233.

	107.	Li J, Mo Y, He B, et al. Association between MRI background parenchymal 
enhancement and lymphovascular invasion and estrogen receptor status in 
invasive breast cancer. Br J Radiol 2019;92(1103):20190417.

	108.	Onishi N, Li W, Newitt DC, et al. Breast MRI during Neoadjuvant Che-
motherapy: Lack of Background Parenchymal Enhancement Suppression and 
Inferior Treatment Response. Radiology 2021;301(2):295–308.

	109.	Lim Y, Ko ES, Han BK, et al. Background parenchymal enhancement on 
breast MRI: association with recurrence-free survival in patients with newly 
diagnosed invasive breast cancer. Breast Cancer Res Treat 2017;163(3):573–
586.

	110.	Yala A, Mikhael PG, Strand F, et al. Multi-Institutional Validation of a Mam-
mography-Based Breast Cancer Risk Model. J Clin Oncol 2022;40(16):1732–
1740.

	111.	Eriksson M, Conant EF, Kontos D, Hall P. Risk Assessment in Population-
Based Breast Cancer Screening. J Clin Oncol 2022;40(20):2279–2280.

	112.	Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of 
physician-performed whole-breast US: lesion detection and characterization. 
Radiology 2006;241(2):355–365.

	113.	Lee SH, Yi A, Chang JM, Cho N, Moon WK, Kim SY. Background Echotex-
ture on Breast Ultrasound: Impact on Diagnostic Performance of Supplemental 
Screening in Women with Negative Mammography (SSE01-04). 103rd Sci-
entific Assembly and Annual Meeting, Radiological Society of North America;  
McCormick Place, Chicago, 2017 (RSNA Conference Abstract). https://
rsna2017.rsna.org/program/.

	114.	Albert M, Schnabel F, Chun J, et  al. The relationship of breast density in 
mammography and magnetic resonance imaging in high-risk women and 
women with breast cancer. Clin Imaging 2015;39(6):987–992.

	115.	Cho GY, Moy L, Kim SG, et al. Comparison of contrast enhancement and 
diffusion-weighted magnetic resonance imaging in healthy and cancerous 
breast tissue. Eur J Radiol 2015;84(10):1888–1893.

	116.	Dontchos BN, Rahbar H, Partridge SC, et al. Are Qualitative Assessments of 
Background Parenchymal Enhancement, Amount of Fibroglandular Tissue 
on MR Images, and Mammographic Density Associated with Breast Cancer 
Risk? Radiology 2015;276(2):371–380.

	117.	Telegrafo M, Rella L, Stabile Ianora AA, Angelelli G, Moschetta M. Breast MRI 
background parenchymal enhancement (BPE) correlates with the risk of breast  
cancer. Magn Reson Imaging 2016;34(2):173–176.

	118.	Melsaether A, Pujara AC, Elias K, et al. Background parenchymal enhance-
ment over exam time in patients with and without breast cancer. J Magn Re-
son Imaging 2017;45(1):74–83.

	119.	Choi EJ, Choi H, Choi SA, Youk JH. Dynamic contrast-enhanced breast 
magnetic resonance imaging for the prediction of early and late recurrences in 
breast cancer. Medicine (Baltimore) 2016;95(48):e5330.

	120.	Wu S, Zuley ML, Berg WA, et al. DCE-MRI Background Parenchymal En-
hancement Quantified from an Early versus Delayed Post-contrast Sequence: 
Association with Breast Cancer Presence. Sci Rep 2017;7(1):2115.

	121.	Lam DL, Hippe DS, Kitsch AE, Partridge SC, Rahbar H. Assessment of 
Quantitative Magnetic Resonance Imaging Background Parenchymal En-
hancement Parameters to Improve Determination of Individual Breast Can-
cer Risk. J Comput Assist Tomogr 2019;43(1):85–92.

	122.	Grimm LJ, Saha A, Ghate SV, et al. Relationship between Background Paren-
chymal Enhancement on High-risk Screening MRI and Future Breast Cancer 
Risk. Acad Radiol 2019;26(1):69–75.

	123.	Sippo DA, Rutledge GM, Burk KS, et al. Effect of Background Parenchy-
mal Enhancement on Cancer Risk Across Different High-Risk Patient 
Populations Undergoing Screening Breast MRI. AJR Am J Roentgenol 
2019;212(6):1412–1418.

	124.	Vreemann S, Dalmis MU, Bult P, et al. Amount of fibroglandular tissue FGT 
and background parenchymal enhancement BPE in relation to breast cancer 
risk and false positives in a breast MRI screening program : A retrospective 
cohort study. Eur Radiol 2019;29(9):4678–4690.

	125.	Watt GP, Sung J, Morris EA, et al. Association of breast cancer with MRI 
background parenchymal enhancement: the IMAGINE case-control study. 
Breast Cancer Res 2020;22(1):138.


