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Breast density is an independent risk factor for breast cancer. In digital mammography and digital breast tomosynthesis, breast den-
sity is assessed visually using the four-category scale developed by the American College of Radiology Breast Imaging Reporting and
Data System (5th edition as of November 2022). Epidemiologically based risk models, such as the Tyrer-Cuzick model (version 8),
demonstrate superior modeling performance when mammographic density is incorporated. Beyond just density, a separate mam-
mographic measure of breast cancer risk is parenchymal textural complexity. With advancements in radiomics and deep learning,
mammographic textural patterns can be assessed quantitatively and incorporated into risk models. Other supplemental screening
modalities, such as breast US and MRI, offer independent risk measures complementary to those derived from mammography.
Breast US allows the two components of fibroglandular tissue (stromal and glandular) to be visualized separately in a manner that
is not possible with mammography. A higher glandular component at screening breast US is associated with higher risk. With
MR, a higher background parenchymal enhancement of the fibroglandular tissue has also emerged as an imaging marker for risk
assessment. Imaging markers observed at mammography, US, and MRI are powerful tools in refining breast cancer risk prediction,

beyond mammographic density alone.

© RSNA, 2023

Individuals with dense breasts are at higher risk for breast
cancer, as well as cancer masking by dense breast tissue,
than individuals at otherwise similar risk who have less
dense breasts (1,2). Breast density refers to fibroglandular
tissue, which has both “fibrous” (stromal) and glandu-
lar (lobular and ductal) components (3). Fibroglandular
tissue appears dense (white) on both two-dimensional
digital mammography (DM) and digital breast tomo-
synthesis (DBT) images; adipose tissue appears darker
(4). Breast density tends to decrease with age, having
children, and tamoxifen use (an estrogen blocker), but
increases with lower body mass index and hormonal re-
placement therapy (5-9).

The prevalence of mammographically dense breasts is
approximately 43% in women aged 40-74 years in the
United States (10). In addition to notification of mammo-
graphic density (11), supplemental screening with whole-
breast US or MRI can be considered in women with dense
breasts due to the combination of masking of cancers by
dense breast tissue and the increase in cancer risk with
increasing breast density. These supplemental screening
modalities offer higher sensitivity in women with dense
breasts, but with the trade-off of increasing the number of
false-positive findings (12,13).

Breast cancer most frequently arises from ductal and
glandular elements of the breast. This article provides an

overview of imaging markers of these structures. In DM
and DBT, risk is measured through the amount and tex-
tural complexity of dense fibroglandular tissue. Breast US
offers the ability to visualize the two components of fibro-
glandular tissue separately (stromal and glandular) and,
thus, measure risk in terms of the relative proportion of
glandular to stromal tissue. Breast MRI quantifies the dy-
namic enhancement of normal breast parenchyma, also an
independent imaging marker. Similar to MRI, increased
background parenchymal enhancement (BPE) levels at
contrast-enhanced mammography (14,15) and back-
ground parenchymal uptake at molecular breast imaging
(16) may be an indication of breast cancer risk and, thus,
is important to report. However, as of November 2022,
contrast-enhanced mammography and molecular breast
imaging are not widely used and, hence, they are not in-
cluded in the current review.

DM and DBT

Mammographic Density

Early works in mammography assessed breast cancer risk
with categorical measures, including the four patterns
defined by Wolfe (17), the Tabdr classification of five
categories based on histopathologic-mammographic cor-
relations (18), and the six categories of percent density
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Abbreviations

AUC = area under the receiver operating characteristic curve, BI-RADS =
Breast Imaging Reporting and Data System, BPE = background
parenchymal enhancement, DBT = digital breast tomosynthesis, DM =
digital mammography, SM = synthetic mammography

Summary

Going beyond mammographic density, this article describes the range
of imaging markers associated with breast cancer risk in digital mam-
mography, digital breast tomosynthesis, whole-breast US, and MRI.

Essentials

m Breast density assessed with digital mammography or digital breast
tomosynthesis is an independent risk factor for developing breast
cancer and is included in several risk-assessment models.

» Beyond mammographic density, the spatial arrangement of fibro-
glandular tissue can be assessed with radiomic features and deep
learning, identifying complex parenchymal patterns associated

with higher risk.

m While both stromal and glandular components of fibroglandular
tissue appear bright or “dense” on mammograms, breast US allows
the two components to be visualized separately in a manner that is
not possible with mammography; a higher glandular component
at screening breast US is associated with higher risk for breast
cancer.

m On breast MRI scans, higher background parenchymal enhance-
ment of normal fibroglandular breast tissue is associated with a
higher risk for breast cancer.

proposed by Boyd et al (19). To standardize clinical image in-
terpretations, the American College of Radiology developed the
Breast Imaging Reporting and Data System (BI-RADS) with
four risk categories in DM and DBT based on breast density
(Fig 1). The 4th edition (20) used percent density in assess-

ing risk. In the 5th edition (21), percent density was removed.
Instead, the impact of breast density on obscuring or “masking”
underlying cancer (degree of masking) is emphasized (Table 1).
The classifications are as follows: (2) almost entirely fatty; (4)
scattered areas of fibroglandular density; (¢) heterogeneously
dense, which may obscure detection of small masses; and (<)
extremely dense, which lowers the sensitivity of mammography.
An example of a breast that would be classified differently by the
two editions is one with a high concentration of fibroglandular
tissue in a single area (Fig 2) but less than 51% percent density.
This breast would be classified as “category 2: scattered densities
(approximately 25%-50% glandular)” according to the 4th edi-
tion. However, this breast would be categorized as “category C:
heterogeneously dense, which may obscure detection of small
masses” according to the 5th edition because the dense retroareo-
lar tissue could obscure lesions.

BI-RADS risk assessment is prone to interreader variability
(22). Attempts have been made to standardize BI-RADS risk as-
sessment with deep learning (23). For example, Lehman et al (24)
found that 90% of four-category classifications with DM using
deep learning were accepted by the interpreting radiologist. Ad-
ditionally, 94% of binary (dense vs nondense) classifications were
accepted by the radiologist; among discordant classifications,
33% were downgraded from dense to nondense, whereas 67%
were upgraded from nondense to dense. As noted in that work,
results may have been impacted by changes in BI-RADS editions,
with each edition offering a different perspective on breast cancer
risk. The 4th edition emphasizes the role of percent density in
breast cancer risk prediction, yet the 5th edition emphasizes the
role of dense tissue in cancer masking (reducing sensitivity).

As an alternative to categorical measures of density, previous
works have calculated area-based percent density (total dense

Figure 1:

Mediolateral oblique digital mammograms illustrating the four categories of visually assessed breast density according to the 5Sth edition
of the Breast Imaging Reporting and Data System show (A) breast that is almost entirely fatty; (B) breast with scattered areas of fibroglandular

density; (€) breast that is heterogeneously dense, which may obscure detection of small masses; and (D) breast that is extremely dense, which lowers

the sensitivity of mammography. Of note, with increasing higher density, there is a higher risk of breast cancer.
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Table 1: Categories of the American College of Radiology
BI-RADS Assessment of Mammographic Breast Density

Edition and Category ~ Breast Tissue Characteristics

BI-RADS, 4th edition

1 Almost entirely fatty (<25% glandular)

2 Scattered densities (approximately
25%-50% glandular)

3 Heterogeneously dense (approximately
51%-75% glandular)

4 Extremely dense (>75% glandular)

BI-RADS, 5th edition

A Almost entirely fatty

B Scattered areas of fibroglandular density

© Heterogeneously dense, which may

obscure detection of small masses
D Extremely dense, which lowers the
sensitivity of mammography

Note.—The four BI-RADS categories are based on the percent
density (4th edition) and the degree of masking (5th edition).
BI-RADS = Breast Imaging Reporting and Data System.

area relative to breast area). The reference standard software for
this calculation is Cumulus (University of Toronto), which en-
ables manual segmentation of dense tissue. Attempts have been
made to automate the calculation with deep learning (25-27),
and similarity to manual segmentation of dense tissue has been
demonstrated, for example, with Dice coeflicients of 63% in
Kallenberg et al (25) and 76% in Li et al (26). As of November
2022, there are at least nine U.S. Food and Drug Administra-
tion—approved density assessment methods for DM, DBT, and
synthetic mammography (SM) using artificial intelligence (28).

One application of area-based percent density is discriminat-
ing individuals at high risk from those at low risk. For example,
Maghsoudi et al (27) used multiple research and commercial
density assessment methods to distinguish cases that developed
cancer an average of 4.7 years after a negative or benign DM
examination from controls. Areas under the receiver operating
characteristic curve (AUCs) ranged from 0.557 to 0.619, similar
to other works (25,29,30) analyzing area-based percent density.
An AUC of 0.70 or greater is considered acceptable for predic-
tive modeling (31).

Breast density can also be assessed three-dimensionally by
total dense volume (sum total of fibroglandular pixel volumes)
and volumetric percent density (total dense volume relative to
breast volume), for example, by using Quantra (Hologic) and
Volpara (Volpara Health). To illustrate differences between these
measures, four breasts with variations in total dense volume yet
effectively equivalent volumetric percent density (approximately
25%) are shown (Fig 3). Brandt et al (32) found that volumetric
percent density at DM offered stronger association with breast
cancer risk than total dense volume.

Augmenting Epidemiologically Based Models with Breast
Density

Various works showed that augmenting epidemiologically based
models with breast density improves AUC (33-35). Brentnall
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Figure 2: Mediolateral oblique screening digital mammogram in a

56-year-old woman shows dense tissue in the anterior subareolar area of
the breast (arrow). If assigned a Breast Imaging Reporting and Data Sys-
tem (BI-RADS) breast density based on the 4th edition, the percent density
in the breast would be less than 51% and, therefore, would be considered
category 2 or “scattered fibroglandular densities.” However, if classified
according to the 5th Edifion of BI-RADS for density, the dense fissue in the
anterior breast could “mask” or obscure a lesion, causing a reduction in
detection sensitivity. Based on the density definitions in the 5th Edition, this
breast would be considered "heferogeneously dense, which may obscure
detection of small masses.”

et al (35) augmented the Gail and Tyrer-Cuzick models with
radiologist visual assessment of area-based percent density, im-
proving the AUCs from 0.55 to 0.59 and from 0.57 to 0.61,
respectively, for 10-year risk assessment.

As of November 2022, at least three risk-assessment models
incorporate mammographic density (Table 2). For example, in
the Tyrer-Cuzick model (version 8), mammographic density is
typically measured in terms of volumetric percent density or
BI-RADS density, as Brentnall et al concluded that total dense
volume is a weaker predictor of risk than these two density
measures (36). Adding breast density to the Tyrer-Cuzick model
improved the accuracy of risk stratification for both women at
high-risk (>8%), 10-year risk) and those at low-risk (<2%, 10-year
risk). The percentage of patients considered high risk increased
from 4.8% (without density) to 7.1% (BI-RADS density) and
6.8% (volumetric percent density).

Assessing Breast Texture with Radiomic Features

Breast parenchymal complexity quantifying the spatial arrange-
ment of fibroglandular tissue is a separate measure of breast
cancer risk. Parenchymal complexity can be assessed with
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Figure 3: Mediolateral oblique digital mammograms in four different women show effectively equivalent volumetric percent density (approximately 25%) but broad

variafion in the fotal dense volumes, which range from 62 mL to 233 mL. Volume-based density measures include the tofal dense volume (sum total of all fibroglandular pixel

volumes) and volumetric percent density.

Table 2: Risk Models That Include Breast Density in Risk Calculations

Breast Cancer Surveillance
Consortium (BCSC),
version 2

benign breast disease

Breast and Ovarian Analysis
of Disease Incidence and
Carrier Estimation Algorithm

(BOADICEA), version 6
ovarian cancer susceptibility genes

BARDI, RAD51C, and RAD51D)

Model Input Variables Output Clinical Use
Tyrer-Cuzick (or IBIS model), =~ Demographic and reproductive risk factors, 10-year and lifetime (to Risk assessment for MRI
version 8 first- and second-degree family history of 85 years of age) risk of screening (20% lifetime
breast and ovarian cancer, mammographic  developing breast cancer risk as threshold)

density (BI-RADS, Volpara, and/or
visual analog scale), biopsy-confirmed
benign breast disease, and breast cancer
susceptibility genes (BRCAI or BRCA2)
Age, race and ethnicity, first-degree family
history of breast cancer, mammographic

density (BI-RADS), and biopsy-confirmed

Demographic, lifestyle, and reproductive
risk factors, first- and second-degree
family history of breast and ovarian cancer,
mammographic density (BI-RADS),

polygenic risk scores, and breast and/or

(BRCAI, BRCA2, PALB2, ATM, CHEK?2,

5-year and 10-year risk of ~ Risk assessment for use of
chemoprevention (1.67%

5-year risk as threshold)

developing invasive
breast cancer

Risk assessment for genetic
testing (10% likelihood

5-year, 10-year, and
lifetime (to 80 years of

age) risk of developing of carrying a BRCAI
breast and ovarian or BRCA2 variant as
cancer; variant carrier threshold)

probabilities

Note.—BI-RADS = Breast Imaging Reporting and Data System, IBIS = International Breast Cancer Intervention Study.

high-throughput extraction of radiomic features (37), which
can be visualized in DM with heat maps of the breast area;
skewness (a gray-scale feature) and entropy (a co-occurrence
feature) are examples (Fig 4) (38). Examples of breasts vary-
ing in terms of both density and complexity are illustrated in
Figure 5 (39).

In some works (40,41), a single region of interest is used in
radiomic feature extraction. Alternatively, multiple regions of in-
terest capture heterogeneities in breast texture. Sun et al (42) par-
titioned the breast into five subregions varying from the densest
region to the whole breast. In assessing near-term risk (the risk

of cancer at the next DM examination), the AUC in case-control
classification was higher when extracting radiomic features from
different subregions as opposed to the whole breast. Zheng et al
(38) created a lattice of windows for radiomic feature extraction
in DM, with cases defined by the contralateral image of a cancer-
positive mammogram. That work found case-control classification
to be optimized with a 6.3 mm window size (the smallest con-
sidered); that is, AUCs of 0.59 (area-based percent density), 0.85
(radiomics), and 0.86 (radiomics plus area-based percent density).

Another application of radiomics is discriminating BRCAI
and BRCAZ2 variant carriers from controls (43—45). Clinically,

radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023
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C Lattice of Windows

Figure 4: (A, B) Digital mammographic heat maps show radiomic feature calculations in the breast areq; for example, skewness (A)

(a gray-scale feature) and entropy (B) (a co-occurrence feature). (€) To capture heterogeneities in breast texture in the breast area (dashed
yellow line), radiomic features can be calculated in multiple windows whereby each window (example in red, with the length of each side

defined as W is centered on a latfice point (blue circle) and green lines define the lattice grid, with the spacing between lattice points de-

fined as D. (Reprinted, with permission, from reference 38.)

this may prove important if a patients genetic history is un-
known. For example, Li et al (45) showed that radiomic features
(AUC, 0.81) performed better than area-based percent density
(AUC, 0.53) for discriminating BRCAI and BRCAZ2 variant car-

riers from controls.

Deep Learning in Breast Cancer Risk Assessment

Recent advances in deep learning have allowed the computer to
“learn” the features associated with breast cancer risk (23). Al-
though handcrafted radiomic features could potentially be more
interpretable, the advantage of deep learning is that features pre-
dictive of risk do not need to be known a priori.

Various works (46—48) have shown that deep learning models
are more predictive of risk than mammographic density alone;
for example, Arefan et al (46) analyzed cancer cases and controls
using negative or benign DM images from at least 1 year prior. In
that study, the deep learning model with the highest AUC (0.73)
performed better than area-based percent density (AUC, 0.54).
Ha et al (48) used a convolutional neural network—based pixel-
wise risk model to identify women at high-risk by analyzing nega-
tive mammograms from at least 2 years prior to cancer (with con-
trols having at least a 2-year follow-up with negative findings). In
pixel-wise heat maps, areas in red have features that overlap with
patients who developed cancer, as opposed to normal areas in blue
(Fig 6). Heat maps with substantially more red areas allow the
patient at higher risk to be identified among two heterogeneously
dense breasts (Fig 6A, 6B), as well as among breasts with scattered
areas of fibroglandular density (Fig 6C, 6D), illustrating how risk
is predicted in a manner separate from mammographic density.

Previous works have investigated deep learning to refine risk
models in clinical use. For example, for 5-year risk assessment,

Radiology: Volume 306: Number 3—March 2023 » radiology.rsna.org

Yala et al (49) evaluated the AUC:s of a risk factor—based logistic
regression model using traditional risk factors (AUC, 0.67), an
image-only deep learning model for DM (AUC, 0.68), and a
hybrid deep learning model combining traditional risk factors
and DM images (AUC, 0.70). The hybrid deep learning model
achieved a statistically significant gain in AUC over the Tyrer-
Cuzick version 8 model (AUC, 0.62). Additionally, AUCs ob-
tained with the Tyrer-Cuzick version 8 model differed by race
and ethnicity (eg, 0.45 and 0.62 for African American and White
women, respectively), yet AUCs obtained with the hybrid deep
learning model were insensitive to race and ethnicity (0.71).

In a subsequent study, Yala et al (50) developed Mirai, a
mammography-based deep learning model, to assess 1- to 5-year
risk at DM. In a test set consisting of patients who developed
cancer within 5 years, 41.5% of patients were successfully identi-
fied as high risk with Mirai as opposed to 36.1% with the hybrid
deep learning model and 22.9% with the Tyrer-Cuzick version 8
model, illustrating how deep learning improves risk stratification
over the Tyrer-Cuzick version 8 model.

Digital Breast Tomosynthesis

As of November 2022, DBT has become widespread for mam-
mography screening (51,52). DBT uses a reconstruction in com-
bination with a two-dimensional image, obtained either with DM
or SM (53,54). Previous works compared DM, DBT; and SM in
terms of density assessments. Tice et al (55) found no difference
in BI-RADS density classifications at DM and DBT in data from
2010 to 2017 (under the 4th and 5th editions of BI-RADS), and
no difference in the strength of the association between mammo-
graphic density and invasive breast cancer. Haider et al (56) found
that SM did not significantly change binary (dense vs nondense)
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Figure 5:  Mediolateral oblique digital mammograms with negative findings at screening in women with (A) high density and high complexity, (B) high density and

low complexity, (€) low density and high complexity, and (D) low density and low complexity. Breast density is associated with higher risk for developing breast cancer.
In addition, breasts with more complex parenchymal patterns are at higher risk for breast cancer. These parenchymal patterns were assessed with handcrafted radiomic

features to develop an overall complexity score. (Reprinted, with permission, from reference 39.)

Figure 6: (A, B) Mammograms (left) of heterogeneously dense breasts are analyzed in terms of a convolutional neural network-based pixel-

wise risk model (right), which identifies the breast at higher risk for cancer (A) by having more substantial areas in red, corresponding to features that
overlap with patients who developed breast cancer, as opposed to normal (blue) areas. (€, D) Similarly, among two breasts with scattered areas
of fibroglandular density at mammography (left), the breast at higher risk for cancer (€) is identified by having more substantial red areas (right). (Re-
printed, with permission, from reference 48.)

6 radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023
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Figure 7: Top: Classification of fissue composition at breast US according to the Breast Imaging Reporting and Data System, 5th edition. Repre-

sentative US images show (A) homogeneous background echotexture (fat), (B) homogeneous background echotexture (fibroglandular), and
(C) heterogeneous background echotexture. Bottom: Corresponding craniocaudal mammograms show (A) almost entirely fat, (B) exiremely dense,

and (€) heterogeneously dense or scattered fibroglandular fissue at mammography.

classifications compared with DM. Other works, however, found
that use of DBT with SM downgraded BI-RADS density clas-
sifications (57-59); Aujero et al (58) and Zuckerman et al (59)
suggested that this may be related to perceptual adaptation to SM.

Lotter et al (60) applied deep learning to detect cancers in
DBT based on the use of a maximum suspicion projection. Risk
modeling in DBT is still an open area of research. Given that deep
learning is already computationally intensive in DM, future appli-
cations in DBT are expected to be even more computationally de-
manding. At a typical DBT examination, 300 images may be pro-
duced while only four images are produced at DM. Deep learning
in DBT is also challenging due to the anisotropic voxels (differing
sizes in three directions) and variations in the compressed breast
thickness. Early studies suggested improved performance in DBT
risk prediction compared with DM data alone (60,61). Eriksson
et al (61,62) showed that combining deep learning features (den-
sity, calcifications, masses) with familial, demographic, lifestyle,
and polygenic risk scores achieved a higher AUC for a 2-year risk
model (DM = 0.73, DBT = 0.83) than the Tyrer-Cuzick version
8 model (AUC, 0.62).

Breast US

Tissue Composition at Breast US: BI-RADS Classification
Tissue composition at breast US is classified as homogeneous
background echotexture (fat), homogeneous background

Radiology: Volume 306: Number 3—March 2023 » radiology.rsna.org

echotexture (fibroglandular), and heterogeneous background
echotexture according to the BI-RADS, 5th edition (63). These
three categories correspond loosely to the four density descrip-
tors of mammography (Fig 7). Dense breasts on mammograms
usually fall within the homogeneous background echotexture
(fibroglandular category), defined as a thick layer of fibroglandu-
lar tissue beneath the subcutaneous fat layer, irrespective of the
internal echogenicity patterns within the fibroglandular tissue.

In several studies on US assessments of mammographic pa-
renchymal patterns or breast density, a significant correlation be-
tween mammographic and US assessments was found (64-66).
In a prospective study by Kim et al (67), assessments of breast
density using real-time US was in exact agreement with 86%
of mammograms when BI-RADS density categories were di-
chotomized into fatty (almost entirely fatty and scattered areas
of fibroglandular density) and dense (heterogeneously dense and
extremely dense).

Internal Echogenicity Patterns of Fibroglandular Tissue

The sonographic appearance of fibroglandular tissue may vary
between individuals and over time in the same individual (68).
Several studies have proposed methods for classifying internal
echogenicity patterns within the fibroglandular tissue. Hou
etal (69) classified sonographic parenchymal patterns into four
types (heterogeneous, ductal, mixed, and fibrous) based on the
different compositions of ducts, fibroglandular tissue, and fat
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Moderate

lobules. Lee et al (70) evaluated the proportions of isoechoic or
hypoechoic areas representing glandular tissue relative to hyper-
echoic areas representing fibrous stroma in the fibroglandular
tissue. The authors classified the amount of glandular tissue
component in the fibroglandular tissue as minimal, mild, mod-
erate, or marked (Fig 8). The glandular tissue component was
visually estimated after scanning the entire breast. Sonographic
glandular tissue component classification can be estimated more
easily in the large field of views of automated breast US (71,72).
The differences in the evaluation of the glandular tissue com-
ponent and BI-RADS tissue composition are summarized in

Table 3.

Internal Echogenicity Patterns and Breast Cancer Risk

The association of internal echogenicity patterns of fibroglan-
dular tissue with breast cancer risk is explained by the fact that
breast US can be used to distinguish between glandular and stro-
mal tissues in the fibroglandular tissue on the basis of their echo-
genicity in a manner that is not possible with mammography.
Breasts that appear similarly dense at mammography may show
a wide spectrum of patterns at breast US and histologic assess-

Figure 8: (A) Handheld breast US and
(B) automated breast US images show quali-
tative four-category classification of the glan-
dular tissue component in women with dense
breasts. When distribution of the glandular
tissue component in the breast is not uniform,
the dominant pattern seen in at least two quad-
rants, or in the area of densest fibroglandular
tissue, is subjectively defermined to be the
glandular fissue component.

Marked

ment, with predominantly hyperechoic fibrous tissue at one ex-
treme and abundant isoechoic or hypoechoic glandular tissue at
the other (Fig 9). The breast lobule or terminal duct lobular unit
is known to be the primary anatomic source of breast cancer, and
the progressive degrees of lobular involution are associated with
a reduced risk of developing breast cancer (73). Women with
dense breasts on mammograms have varying degrees of lobular
involution (74) and, therefore, may have different breast cancer
risk, which could be stratified by sonographic glandular tissue
component assessment. A previous study in 233 women showed
that a higher glandular tissue component at breast US is associ-
ated with less degree of lobular involution (70).

A recent retrospective study that included 541 women with
cytopathologic confirmation of cancer and 849 age-matched
women without cytopathologic confirmation of breast cancer
evaluated four types of sonographic parenchymal patterns (75).
The authors showed that the heterogeneous type (odds ratio,
3.97; P <.001) and fibrous type (odds ratio, 2.70; P < .001) were
associated with breast cancer. Another recent retrospective co-
hort study evaluated the association between the glandular tissue
component on breast US images and future breast cancer risk

radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023
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Table 3: Comparison of Tissue Composition and Glandular Tissue Component at Breast US

Component Tissue Composition (BI-RADS, 5th edition) Glandular Tissue Component

Definition Balance between the fibroglandular tissue and Proportion of the glandular tissue in the
fat, similar to mammographic density fibroglandular tissue

Classification Homogeneous background echotexture (fat), Four category (minimal, mild, moderate,
homogeneous background echotexture (fibroglandular), marked) or dichotomous (low, high)
or heterogeneous background echotexture

Observer variability Kappa value of 0.30 Average kappa, 0.41 for the four-category

(kappa of 0.30 for homogeneous, 0.19 for focally

heterogeneous, and 0.41 for diffusely heterogeneous

echotexture) (112)
Effect on US sensitivity
and specificity

echotexture

Association with breast Unknown as of November 2022

cancer risk

Detection of small and subtle lesions may be
confounded by heterogeneous background

classification and 0.52 for the dichotomous
classification (70)

A high glandular tissue component was
associated with a higher abnormal
interpretation rate than a low glandular tissue
component (20.1% vs 8.5%; P < .001) at
supplemental screening breast US (113)

Compared with a minimal or mild glandular
tissue component, a moderate or marked
glandular tissue component was associated
with a higher cancer risk (hazard ratio, 1.5;
P = .03) after adjusting for age and breast
density (70)

Note.—BI-RADS = Breast Imaging Reporting and Data System.

(70). Among the 8483 women with mammographically deter-
mined dense breasts who underwent supplemental US screening,
137 (1.6%) developed breast cancer during a median follow-up
time of 5.3 years. The incidence of breast cancer in women with
a high glandular component was significantly higher than in
women with a low glandular component (P =.01). In multivari-
able analysis, the baseline glandular tissue component was the
only factor associated with breast cancer risk (hazard ratio, 1.5;
P = .03) after adjusting for other risk factors, including age,
menopausal status, history of benign breast biopsy, family his-
tory of breast cancer, and breast density.

Future Directions for Breast Cancer Risk Assessment Using
Breast US

Internal echogenicity patterns of the fibroglandular tissue at
breast US have the potential for breast cancer risk assessment.
However, standardization of evaluation methods for this new
imaging marker is important prior to clinical implementation.
Further studies on quantification and deep learning models will
enhance robust and reproducible assessment. In addition, pro-
spective multicenter studies are needed to validate the associa-
tion between the glandular tissue component and breast cancer
risk. A prospective multinational cohort study to validate the as-
sociation of sonographic glandular tissue component and breast
cancer risk has been published (ClinicalTrials.gov registration

no. NCT05460975).
Breast MRI

MRI Overview

Breast MRI is the most sensitive imaging modality for detection
of breast cancer, including ductal carcinoma in situ and invasive
cancers (76). Breast MRI can also be used to evaluate features
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of normal breast tissue that can inform breast cancer risk assess-
ment. The amount of fibroglandular tissue assessed at MRI fol-
lows the same four categories as the BI-RADS 5th edition for
mammographic density: almost entirely fat, scattered fibroglan-
dular tissue, heterogeneous fibroglandular tissue, and extreme
fibroglandular tissue (77). Normal fibroglandular tissue enhances
after the administration of gadolinium-based contrast material
and is known as BPE. BPE levels are qualitatively assessed as
minimal, mild, moderate, or marked using the BI-RADS lexi-
con (Fig 10) or may be quantitively assessed using software. BPE
is an independent risk factor for the development of breast can-
cer, separate from mammographic density (78).

Biologic Underpinnings

The biologic underpinnings of BPE have not been fully eluci-
dated. Evidence suggests that BPE is related to endogenous and
exogenous hormone levels; BPE varies with the phase of the
menstrual cycle (79,80) and menopausal status (81), and BPE is
reduced in women taking aromatase inhibitors and selective es-
trogen receptor modulators (82,83). Therefore, BPE likely par-
tially reflects the effect of hormonal stimulation on the glandular
components of the breast, which itself is associated with a higher
risk of breast cancer. It is theorized that a second additional
component of BPE is likely to be proliferative tissue changes,
such as atypia, which are also associated with a higher cancer
risk (84). Whether the cause of BPE is hormonal or due to pro-
liferative change could be determined on the basis of whether
BPE decreases after the cessation of hormonal stimulation, such
as after menopause or after risk-reducing salpingo-oophorec-
tomy. In BRCAI and BRCA2 variant carriers who underwent
risk-reducing salpingo-oophorectomy (85,86), a lack of BPE
suppression would suggest that the underlying cause of BPE
is proliferative change, including atypia, rather than hormonal
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stimulation. However, as A
discussed hereafter, stud-
ies show conflicting re-
sults as to whether these
patients remain at higher
risk for breast cancer. Ad-
ditionally, several studies
have found similar odds
ratios for BPE and risk
in premenopausal and
postmenopausal  groups
(87,88), suggesting that
endogenous estrogen
does not affect the levels
of BPE that reflect risk.
It is possible that BPE is
due to different processes
in premenopausal and
postmenopausal women,

High GTC

and in those with high

and average risk. The bio- Stroma

logic underpinnings of

BPE and the relationship ~ Glandular

of BPE-associated risk tissue

to menopausal status for

women at both average

and high risk for breast

cancer requires additional

study. H&E stain
x200

BPE and Breast Cancer
Risk

‘The amount of fibroglan-
dular tissue is reflected in
mammographic  density
and is associated with
breast cancer risk. BPE
is independent of mam-
mographic density and
instead is associated with
higher tissue microvas-
cular density, expression
of wvascular endothelial
growth factor (89), and higher metabolic activity (79,87), repre-
senting an independent measure of tissue at risk. Women with
dense breasts but minimal BPE do not have elevated breast can-
cer risk (87), suggesting that BPE may be a more accurate pre-
dictor of risk than density alone.

The association between BPE and breast cancer risk was
first described in a case-control study of women at high risk,
finding that women with moderate or marked BPE had a 6.7
times higher odds ratio of developing cancer than women with
minimal or mild BPE (78). Additional single-institution, case-
control, retrospective cohort, and cross-sectional studies that
used BPE in breast MRI for risk assessment have yielded similar
findings with odds ratios ranging from 1.45 to 14.5 depending
on the patient population and BPE threshold (Table 4).

Complete involution
(replaced by stroma)

(e

Figure 9:  Specirum of sonographic and histologic appearance of dense breasts at mammography. (A) Craniocaudal mam-
mograms show extremely dense fibroglandular fissue in both cases. (B) Breast US images show predominately hyperechoic fibrous
tissue at one end (left] and abundant isoechoic or hypoechoic glandular tissue at the other end (right) of the spectrum. (€) Histologic
images (hematoxylin-eosin [H&E] stain; original magnification, x200) show the breast lobules are involuted and replaced by fibrous
stroma in the former case (left), whereas the lobular involution is minimal and the size and number of acini per lobule is large in the
latter case [right). GTC = glandular tissue component. (Reprinted, with permission, from reference 70.)

Since these early studies, meta-analyses (90,91) have cor-
roborated the findings regardless of study design, timing of BPE
measurement, and method of BPE assessment. Thompson et al
(90) evaluated 18 studies for a total of 1910 women with breast
cancer and 2541 control participants. In women at high risk,
they found that at least mild BPE was associated with breast
cancer with a 2.1 odds ratio. This odds ratio was reproduced
across multiple studies when those with unmatched controls
were excluded.

This has been further supported by a recent study notable due
to its large number of patients across multiple institutions and
for its retrospective cohort design. Arasu et al (87) demonstrated
a higher cancer risk with each higher level of BPE (hazard ratios:
1.8 for mild BPE, 2.42 for moderate BPE, and 3.41 for marked
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Figure 10: Qualitative background parenchymal enhancement (BPE) assessment according fo the Breast Imaging Reporting and Data System lexi-

con. Axial, subtracted, postcontrast, maximum intensity projection breast MRI scans show (A) minimal, (B) mild, (€) moderate, and (D) marked BPE in

four patients.

BPE). Additionally, they found BPE strongly predicted a future
diagnosis of invasive breast cancer rather than ductal carcinoma
in situ, supporting the use of BPE as a relevant imaging marker
for breast cancer.

BPE in Women with Elevated Risk

Most of the studies yielding an association of BPE with breast
cancer risk have been performed in a cross section of women at
high risk as this is the population for whom screening MRI is
indicated (79) (Fig 11). Studies of women with a personal his-
tory of breast cancer showed that in this group of women at high
risk, BPE is associated with a higher risk of developing a second
breast cancer or interval breast cancer (92,93). The significance
of BPE as a risk factor in women with genetic alterations may
be different than for other women at high risk. Studies have
shown that BRCAI and BRCAZ variant carriers have lower BPE
and less fibroglandular tissue than age-matched controls (94).
BPE has been shown to be reduced in BRCAI and BRCA2
variant carriers after risk-reducing salpingo-oophorectomy, sug-
gesting that the decreased BPE reflects the hormonal changes
from risk-reducing salpingo-oophorectomy, which in turn
decreases breast cancer risk (95). A higher BPE level prior to
risk-reducing salpingo-oophorectomy has been associated with
future breast cancer (85,96). However, the literature shows
mixed results regarding a change in BPE after risk-reducing
salpingo-oophorectomy. DeLeo et al (85) found that BRCAI and

Radiology: Volume 306: Number 3—March 2023 » radiology.rsna.org

BRCA2 variant carriers who did not have a reduction in BPE after
risk-reducing salpingo-oophorectomy had a higher risk of subse-
quent breast cancer, while Bermot et al (96) conversely found that
a greater reduction in BPE after risk-reducing salpingo-oophorec-
tomy was associated with a higher risk of breast cancer. Findings
of both groups suggest that BPE is a phenotypic imaging marker
to identify BRCAI and BRCAZ variant carriers who may be at
risk for developing breast cancer despite risk-reducing salpingo-
oophorectomy (85,96). However, whether the initial high BPE
level or the change in BPE after risk-reducing salpingo-oophorec-
tomy is the more contributory BPE measure predicting a higher
risk of breast cancer remains to be confirmed.

BPE in Women with Average Risk

The few studies evaluating women at average risk show mixed re-
sults. The meta-analysis by Thompson et al (90) showed no sig-
nificant association between BPE and breast cancer in the popu-
lation at average risk (Fig 12). A single-institution study of 540
women at average risk who received breast MRI for suspicious or
equivocal findings at conventional imaging or clinical suspicion of
cancer also showed no association between BPE and breast cancer
risk (97). However, the multi-institution study by Arasu et al (87)
showed that women at average lifetime risk (estimated by a 5-year
Breast Cancer Surveillance Consortium risk score of <1.67%)
with at least mild BPE had an elevated breast cancer risk (a 2.9
times hazard ratio) than those with minimal BPE. Paradoxically,
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Table 4: Overview of Studies Using BPE in Breast MRI for Risk Assessment

Study and Year Samples Indication for MRI BPE Threshold Findings

King et al (2011)  Retrospective matched 39 cancers, High-risk screening At least moderate Higher BPE associated
(78) 1:2 case control 116 controls BPE with cancer (OR, 6.7)

DeLeo et al Retrospective cohort 55 patients, BRCAIIBRCA2 Mean BPE before Higher BPE before and
(2015) (85) 9 cancers carriers treated with and after RRSO after RRSO associated

Albert et al

(2015) (114)

Cho etal (2015)

(115)

Dontchos et al

(2015) (110)

Telegrafo et al

(2016) (117)

Wu et al (2015)

(86)

Bennani-Baiti et al

(2016) (97)

Melsaether et al
(2017) (118)

Melsaether et al
(2017) (118)

Choi et al (2016)

(119)

Hu et al (2017)

(88)

Wu et al (2017)

(120)

Lam et al (2019)

(121)

Bermot et al

(2018) (96)

unmatched case-
Retrospective matched

1:1 case-control
Retrospective cross-

Retrospective cohort

Retrospective cross-

Retrospective matched
1:1 case-control

Retrospective cohort

Retrospective cohort

Retrospective matched
1:1 case-control

Retrospective matched
1:1 case-control

Retrospective matched
1:1 case control

Retrospective cohort

403 cancers,
72 controls

38 cancers,
39 controls

23 cancers,
23 controls
162 cancers,
224 controls

6 cancers,
44 controls

353 cancers,
187 benign

116 cancers,
116 controls

9 cancers,
83 negative

602 patients,
83 cancers

101 cancers,
101 negative,
101 benign

51 cancers,
51 controls

23 cancers,
23 controls

146 patients,
26 cancers

RRSO
Extent of disease and
high-risk screening

High-risk screening

High-risk screening

High-risk screening,

problem solving, and

extent of disease
BRCAI/BRCA2
variant carriers who
underwent RRSO
Problem solving and
extent of disease
Known breast
cancer and age-
matched controls
with screening or
diagnostic MRI
High-risk screening or
diagnostic MRI

Personal history of

breast cancer

Not reported

Controls with biopsy-

proven benign lesions

High-risk screening

BI-RADS categories
of BPE

BPE percentage

At least mild BPE

At least moderate

BPE

BPE above a threshold

At least moderate BPE

BPE at multiple time
points

At least mild BPE

At least moderate BPE

Automated ratio of

BPE to FGT

Automated BPE
percentage
Percent enhancement

for each voxel within

FGT

BRCA1/BRCA2 variant At least mild BPE at

carriers and women
at high risk who
underwent RRSO

pre-RRSO

examination, change

in BPE before and
after RRSO

with cancer

Lower BPE associated
with breast cancer
in postmenopausal
women

Higher mean BPE
associated with cancer

Higher BPE associated
with cancer (OR, 9.0)
Higher BPE associated

with cancer

Higher BPE after RRSO

associated with cancer

No association of BPE
with cancer

No association of BPE
with cancer

Higher BPE associated
with breast cancer
only for one reader
(OR, 7.67)

Higher BPE associated
with recurrence,
including early and
late recurrence (HR,
2.08)

Higher BPE associated
with cancer (OR, 2.6
in premenopausal
women; OR, 2.8
in postmenopausal
women)

Higher BPE associated
with cancer (OR, 3.5)

Higher BPE associated
with cancer

Higher BPE at pre-
RRSO examination
associated with cancer
(HR, 3.9); reduced
BPE at post-RRSO
MRI associated with
cancer (HR, 2.2)

Table 4 (continues)

12

radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023




Acciavatti and Lee et al

Table 4 (continued): Overview of Studies Using BPE in Breast MRI for Risk Assessment

(87) multicenter study 176 cancers and diagnostic

Sippo etal (2019) Retrospective cohort 73 cancers, 4613 High-risk screening
(123) examinations

without cancer

Vreemann et al Retrospective cohort 60 cancers, High-risk screening
(2019) (124) 1473 negative

Sahaetal (2019)  Retrospective matched 46 cancers, 87 High-risk screening
(105) 1:2 case-control controls

Watt et al (2020)  Retrospective
(125) matched 1:1
case-control,
multicenter study

835 cancers, 963 Not reported

controls

Niell et al (2021)  Retrospective matched 19 cancers, 76 High-risk screening

(103) 1:4 case-control controls
Kim etal (2021)  Retrospective 6603 Personal history of
(92) cohort examinations breast cancer
in 2809
women, 10

interval cancers
Lee et al (2022) Retrospective cohort 2668 women,
93) 109 cancers

Personal history of
breast cancer

Study and Year Study Design Samples Indication for MRI BPE Threshold Findings

Grimm et al Retrospective matched 61 cancers, High-risk screening At least mild BPE at Higher BPE associated
(2019) (122) 1:2 case-control 122 controls first time point with cancer (OR, 2.5)

Arasu etal (2019) Retrospective cohort, 4247 patients, High-risk screening At least mild BPE at Higher BPE associated

first time point

At least moderate

BPE

Automated BPE
percentages
Automated BPE

features, at least

mild BPE

At least mild and
at least moderate

BPE

At least mild BPE

At least moderate

BPE

At least mild BPE

Higher BPE associated

No association of BPE

Higher BPE associated

At least moderate BPE

Higher BPE associated

Higher BPE associated

Higher BPE associated

with cancer (HR: 1.8
for mild BPE, 2.42
for moderate BPE,
and 3.41 for marked
BPE) and greater for
invasive cancers than

DCIS

with breast cancer
(OR, 2.14 when
compared with
minimal and/or mild

BPE)
with cancer

with breast cancer
(OR, 2.44 for
readers; OR, 4.21 for

automated features)

associated with breast
cancer (OR ,1.49)

in premenopausal
women; at least

mild BPE associated
with breast cancer
(OR, 1.45) in
postmenopausal
women

with breast cancer

(OR, 3.0)

with interval cancer

(OR, 14.5)

with future second
breast cancer

(HR, 2.1)

OR = odds ratio, RRSO = risk-reducing salpingo-oophorectomy.

Note.—BPE = background parenchymal enhancement, DCIS = ductal carcinoma in situ, FGT = fibroglandular tissue, HR = hazard ratio,

this same study found that although higher BPE was associated
with a higher risk of breast cancer in women with a history of a
first-degree relative with breast cancer, this association did not hold
in women without a family history. Thompson et al (90) have sug-
gested that BPE may indicate a healthy breast tissue phenomenon
in women at average risk, while breast tissue in high-risk patients
is biologically different than normal breast tissue. Given the grow-
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Future Directions in MRI
There is wide variability in the MRI sequences and quantita-
tive methods used for BPE assessment (98). In addition, there

ing acceptance of abbreviated MRI to expand MRI screening for
women at average and intermediate risk, the significance of BPE
in these groups requires additional study.
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is significant interest in providing supplemental screening to
women at otherwise average risk but who have dense breasts by
using abbreviated, or “fast,” breast MRI where only limited post-
contrast imaging is performed to improve cost-effectiveness and
maintain sensitivity of cancer detection (99-102). In the future,
risk prediction models will likely incorporate BPE as a quantita-
tive imaging marker to provide more refined individualized re-
sults (103). The change in BPE after risk-reducing interventions,
such as bilateral salpingo-oophorectomy or tamoxifen use, may
also be incorporated into models quantifying the degree of risk
reduction to personalize a patient’s preventive strategy.
Development of generalizable risk prediction models will
first require standardization of quantitative BPE. Deep learning
models will likely become valuable tools in providing automated,

(&)
h

Figure 11:

Images in a 46-year-old woman at high risk for breast cancer due 1o strong family history (calculated lifetime risk of
33%). Screening MRI demonstrated exireme fibroglandular fissue. (A) Axial, subtracted, postcontrast maximum intensity projection
MRI scan shows moderate background parenchymal enhancement (BPE) and a mass in the left axillary tail {circle). (B) Posicontrast,

accurate, and reproducible BPE assessments (104,105). Deep
learning models may also be trained on contrast-enhanced MRI
scans and incorporate all the information present in the image,
beyond BPE information alone, to refine risk prediction (106).

BPE is also being studied as a prognostic and predictive imag-
ing marker in women diagnosed with breast cancer because BPE
has been associated with tumor type (107), response to neoadju-
vant therapy (108), and recurrence-free survival (109).

Future Directions and Clinical Implementation

Beyond the use of mammographic density alone to identify women
at high risk for breast cancer, the goal of the imaging markers de-
scribed in this article is to develop personalized screening strat-
egies for breast imaging. As of November 2022, there continue
to be hurdles to wide-
spread

of these imaging markers,

implementation

such as image-based deep
learning (49,50), despite
promising results over
traditional risk models.
These hurdles include the
need for validation and
prospective trials across
diverse populations and
sites (110,111), as well as
the need for standardiza-
tion of risk assessment and
reporting.

Conclusion

Herein, we describe a
range of imaging markers
associated with breast can-

T1-weighted subtracted axial MRI scan with the sectfion centered at the level of the left breast mass shows the enhancing irregular

mass (arrow) that was subsequently biopsied yielding moderately differentiated carcinoma with mixed ductal and lobular features.
A higher BPE level has been associated with risk of breast cancer in women at high risk.

cer risk, with the ultimate
goal of enabling personal-
ized screening strategies.

Figure 12:

Images in a 34-year-old woman without family history of breast cancer with newly diagnosed left breast cancer manifesting as a
palpable lump. MRI performed for extent of disease demonstrates heterogeneous fibroglandular fissue. (A) Axial, subtracted, postcontrast maximum

intensity projection MRI scan shows minimal background parenchymal enhancement (BPE) and a mass in the left lateral breast (arrow). (B) Postcon-

trast, T1-weighted subtracted axial MRI scan with the section centered at the level of the left breast mass shows the enhancing iregular mass (arrow)

that was subsequently biopsied yielding poorly differentiated invasive ductal carcinoma. Studies show mixed results regarding the association be-

tween BPE and breast cancer in patients at average risk (ie, without family history of breast cancer or known deleterious genetic alteration).

14

radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023



Disclosures of conflicts of interest: R.J.A. Grants from the Breast Cancer Al-
liance, Burroughs Wellcome Fund, U.S. Department of Defense Breast Cancer
Research Program, and National Institutes of Health (NIH); patents planned,
issued, or pending. S.H.L. No relevant relationships. B.R. No relevant relation-
ships. L.M. Editor, Radiology; grants from Siemens Healthcare, Gordon and
Betty Moore Foundation, Mary Kay Foundation, and Google; personal fees,
Lunit Insight, iCAD advisory board, Guerbet; meeting and travel expenses,
British Society of Breast Radiology and European Society of Breast Imaging.
E.E.C. Grants or contracts from iCAD, Hologic, and OM1; payment or hono-
raria from MedScape and Aunt Minnie; lecture travel support from the RSNA
for European Congress of Radiology 2022; advisory board, iCAD and Hologic;
current board member, Society of Breast Imaging. D.K. Grants from NIH; in-
stitutional research agreement with iCAD; patents planned, issued, or pending.
W.K.M. Institutional research grant from Bayer.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Vachon CM, van Gils CH, Sellers TA, et al. Mammographic density, breast
cancer risk and risk prediction. Breast Cancer Res 2007;9(6):217.

Holland K, van Gils CH, Mann RM, Karssemeijer N. Quantification of
masking risk in screening mammography with volumetric breast density

maps. Breast Cancer Res Treat 2017;162(3):541-548.

. Sherratt MJ, McConnell JC, Streuli CH. Raised mammographic den-

sity: causative mechanisms and biological consequences. Breast Cancer Res
2016;18(1):45.

. Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast

tissues. Phys Med Biol 1987;32(6):675-695.

. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mam-

mographic density and age: implications for breast cancer screening. AJR Am
J Roentgenol 2012;198(3):W292-W295.

. Boyd NE Martin L], Sun L, et al. Body size, mammographic density, and

breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006;15(11):2086—
2092.

. Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G.

Postmenopausal hormone therapy and change in mammographic density. J

Natl Cancer Inst 2003;95(1):30-37.

. Cuzick ], Warwick ], Pinney E, Warren RML, Duffy SW. Tamoxifen and breast

density in women at increased risk of breast cancer. ] Natl Cancer Inst
2004;96(8):621-628.

. Grove ]S, Goodman M]J, Gilbert FI Jr, Mi MP. Factors associated with mam-

mographic pattern. Br ] Radiol 1985;58(685):21-25.

Sprague BL, Gangnon RE, Burt V, et al. Prevalence of mammographically
dense breasts in the United States. ] Natl Cancer Inst 2014;106(10):dju255.
Dehkordy SE, Carlos RC. Dense Breast Legislation in the United States: State
of the States. ] Am Coll Radiol 2016;13(11S):R53-R57. [Published correc-
tion appears in ] Am Coll Radiol 2018;15(10):1522.]

Berg WA, Blume JD, Cormack JB, et al; ACRIN 6666 Investigators. Com-
bined screening with ultrasound and mammography vs mammography
alone in women at elevated risk of breast cancer. JAMA 2008;299(18):
2151-2163.

Bakker ME de Lange SV, Pijnappel RM, et al; DENSE Trial Study Group.
Supplemental MRI Screening for Women with Extremely Dense Breast Tis-
sue. N Engl ] Med 2019;381(22):2091-2102.

Karimi Z, Phillips J, Slanetz B, et al. Factors Associated With Background
Parenchymal Enhancement on Contrast-Enhanced Mammography. AJR Am
J Roentgenol 2021;216(2):340-348.

Sorin V, Yagil Y, Shalmon A, et al. Background Parenchymal Enhancement at
Contrast-Enhanced Spectral Mammography (CESM) as a Breast Cancer Risk
Factor. Acad Radiol 2020;27(9):1234—1240.

Hruska CB, Geske JR, Conners AL, et al. Background Parenchymal Uptake
on Molecular Breast Imaging and Breast Cancer Risk: A Cohort Study. AJR
Am ] Roentgenol 2021;216(5):1193-1204.

Wolfe JN. Breast patterns as an index of risk for developing breast cancer. AJR
Am ] Roentgenol 1976;126(6):1130-1137.

Gram IT, Funkhouser E, Tabdr L. The Tabdr classification of mammographic
parenchymal patterns. Eur ] Radiol 1997;24(2):131-136.

Boyd NE Jensen HM, Cooke G, Han HL. Relationship between mam-
mographic and histological risk factors for breast cancer. ] Natl Cancer Inst
1992;84(15):1170-1179.

D’Orsi CJ, Bassett LW, Berg WA, Feig SA, Jackson V, Kopans D. Breast Imag-
ing Reporting and Data System: ACR BI-RADS Mammography. American
College of Radiology; 2003.

Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS Mammography. In:
ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. American
College of Radiology; 2013.

Sprague BL, Conant EE Onega T, et al; PROSPR Consortium. Varia-
tion in Mammographic Breast Density Assessments Among Radiologists

Radiology: Volume 306: Number 3—March 2023 » radiology.rsna.org

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Acciavatti and Lee et al

in Clinical Practice: A Multicenter Observational Study. Ann Intern Med
2016;165(7):457-464.

Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial in-
telligence in mammographic phenotyping of breast cancer risk: a narrative
review. Breast Cancer Res 2022;24(1):14.

Lehman CD, Yala A, Schuster T, et al. Mammographic Breast Density
Assessment Using Deep Learning: Clinical Implementation. Radiology
2019;290(1):52-58.

Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised Deep Learning
Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging 2016;35(5):1322-1331.

Li S, Wei J, Chan HP et al. Computer-aided assessment of breast density:
comparison of supervised deep learning and feature-based statistical learning.
Phys Med Biol 2018;63(2):025005.

Haji Maghsoudi O, Gastounioti A, Scott C, et al. Deep-LIBRA: An arti-
ficial-intelligence method for robust quantification of breast density with
independent validation in breast cancer risk assessment. Med Image Anal
2021;73:102138.

Lamb LR, Lehman CD, Gastounioti A, Conant EF, Bahl M. Artificial Intel-
ligence (A) for Screening Mammography, From the A/R Special Series on Al
Applications. AJR Am ] Roentgenol 2022;219(3):369-380.

Li J, Szekely L, Eriksson L, et al. High-throughput mammographic-density
measurement: a tool for risk prediction of breast cancer. Breast Cancer Res
2012;14(4):R114.

Nickson C, Arzhaeva Y, Aitken Z, et al. AutoDensity: an automated method
to measure mammographic breast density that predicts breast cancer risk and
screening outcomes. Breast Cancer Res 2013;15(5):R80.

. Mandrekar JN. Receiver operating characteristic curve in diagnostic test as-

sessment. ] Thorac Oncol 2010;5(9):1315-1316.

Brandt KR, Scott CG, Ma L, et al. Comparison of Clinical and Automated
Breast Density Measurements: Implications for Risk Prediction and Supple-
mental Screening. Radiology 2016;279(3):710-719.

Warwick J, Birke H, Stone ], etal. Mammographic breast density refines Tyrer-
Cuzick estimates of breast cancer risk in high-risk women: findings from the
placebo arm of the International Breast Cancer Intervention Study I. Breast
Cancer Res 2014;16(5):451.

Keller BM, Chen ], Daye D, Conant EE Kontos D. Preliminary evaluation of
the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA)
software tool: comparison of fully automated area and volumetric density
measures in a case-control study with digital mammography. Breast Cancer
Res 2015;17(1):117.

Brentnall AR, Harkness EE Astley SM, et al. Mammographic density adds
accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a
prospective UK screening cohort. Breast Cancer Res 2015;17(1):147.
Brentnall AR, Cohn WE Knaus WA, Yaffe MJ, Cuzick ], Harvey JA. A Case-
Control Study to Add Volumetric or Clinical Mammographic Density into
the Tyrer-Cuzick Breast Cancer Risk Model. ] Breast Imaging 2019;1(2):99—
106.

Gastounioti A, Conant EE, Kontos D. Beyond breast density: a review on the
advancing role of parenchymal texture analysis in breast cancer risk assess-
ment. Breast Cancer Res 2016;18(1):91.

Zheng Y, Keller BM, Ray S, et al. Parenchymal texture analysis in digital
mammography: A fully automated pipeline for breast cancer risk assessment.
Med Phys 2015;42(7):4149-4160.

Kontos D, Winham SJ, Oustimov A, et al. Radiomic Phenotypes of Mam-
mographic Parenchymal Complexity: Toward Augmenting Breast Density in
Breast Cancer Risk Assessment. Radiology 2019;290(1):41-49.

Manduca A, Carston MJ, Heine JJ, et al. Texture features from mammo-
graphic images and risk of breast cancer. Cancer Epidemiol Biomarkers Prev
2009;18(3):837-845.

Wei J, Chan HP, Wu YT, et al. Association of computerized mammographic
parenchymal pattern measure with breast cancer risk: a pilot case-control
study. Radiology 2011;260(1):42-49.

Sun W, Tseng TLB, Qian W, et al. Using multiscale texture and density fea-
tures for near-term breast cancer risk analysis. Med Phys 2015;42(6):2853—
2862.

Huo Z, Giger ML, Olopade O, et al. Computerized analysis of digitized
mammograms of BRCAI and BRCA2 gene mutation carriers. Radiology
2002;225(2):519-526.

Gierach GL, Li H, Loud JT, et al. Relationships between computer-extracted
mammographic texture pattern features and BRCA1/2 mutation status: a
cross-sectional study. Breast Cancer Res 2014;16(4):424.

Li H, Giger ML, Lan L, Janardanan J, Sennett CA. Comparative analysis
of image-based phenotypes of mammographic density and parenchymal pat-
terns in distinguishing between BRCA1/2 cases, unilateral cancer cases, and

controls. ] Med Imaging (Bellingham) 2014;1(3):031009.



Beyond Breast Density: Risk Measures for Breast Cancer in Multiple Imaging Modalities

46.

47.

48.

49.

50.
S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l1.

62.

63.

64.

65.

60.

67.

68.

69.

70.

16

Arefan D, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep
learning modeling using normal mammograms for predicting breast cancer
risk. Med Phys 2020;47(1):110-118.

Dembrower K, Liu Y, Azizpour H, et al. Comparison of a Deep Learning Risk
Score and Standard Mammographic Density Score for Breast Cancer Risk
Prediction. Radiology 2020;294(2):265-272.

Ha R, Chang D, Karcich J, et al. Convolutional Neural Network Based Breast
Cancer Risk Stratification Using a Mammographic Dataset. Acad Radiol
2019;26(4):544-549.

Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A Deep Learning Mam-
mography-based Model for Improved Breast Cancer Risk Prediction. Radiol-
ogy 2019;292(1):60—66.

Yala A, Mikhael PG, Strand E et al. Toward robust mammography-based
models for breast cancer risk. Sci Transl Med 2021;13(578):eaba4373.
Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition
process. Med Phys 2013;40(1):014301.

Sechopoulos 1. A review of breast tomosynthesis. Part II. Image recon-
struction, processing and analysis, and advanced applications. Med Phys
2013;40(1):014302.

Ratanaprasatporn L, Chikarmane SA, Giess CS. Strengths and Weaknesses
of Synthetic Mammography in Screening. RadioGraphics 2017;37(7):1913—
1927.

Alabousi M, Wadera A, Kashif Al-Ghita M, et al. Performance of Digital
Breast Tomosynthesis, Synthetic Mammography, and Digital Mammography
in Breast Cancer Screening: A Systematic Review and Meta-Analysis. ] Natl
Cancer Inst 2021;113(6):680-690.

Tice JA, Gard CC, Miglioretti DL, et al. Comparing Mammographic Den-
sity Assessed by Digital Breast Tomosynthesis or Digital Mammography: The
Breast Cancer Surveillance Consortium. Radiology 2022;302(2):286-292.
Haider I, Morgan M, McGow A, et al. Comparison of Breast Density Be-
tween Synthesized Versus Standard Digital Mammography. ] Am Coll Radiol
2018;15(10):1430-1436.

Gastounioti A, McCarthy AM, Pantalone L, Synnestvedt M, Kontos D,
Conant EF. Effect of Mammographic Screening Modality on Breast Density
Assessment: Digital Mammography versus Digital Breast Tomosynthesis. Ra-
diology 2019;291(2):320-327.

Aujero MB, Gavenonis SC, Benjamin R, Zhang Z, Holt JS. Clinical Per-
formance of Synthesized Two-dimensional Mammography Combined with
Tomosynthesis in a Large Screening Population. Radiology 2017;283(1):
70-76.

Zuckerman SP, Conant EE Keller BM, et al. Implementation of Synthesized
Two-dimensional Mammography in a Population-based Digital Breast Tomo-
synthesis Screening Program. Radiology 2016;281(3):730-736.

Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mam-
mography and digital breast tomosynthesis using an annotation-efficient deep
learning approach. Nat Med 2021;27(2):244-249.

Eriksson M, Destounis S, Czene K, et al. A risk model for digital breast
tomosynthesis to predict breast cancer and guide clinical care. Sci Transl Med
2022;14(644):eabn3971.

Eriksson M, Czene K, Strand E et al. Identification of Women at High
Risk of Breast Cancer Who Need Supplemental Screening. Radiology
2020;297(2):327-333.

Mendelson EB, B6hm-Vélez M, Berg WA, et al. ACR BI-RADS Ultrasound.
In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Ameri-
can College of Radiology; 2013.

Blend R, Rideout DE Kaizer L, Shannon B, Tudor-Roberts B, Boyd NE Pa-
renchymal patterns of the breast defined by real time ultrasound. Eur J Cancer
Prev 1995;4(4):293-298.

Rubin CS, Kurtz AB, Goldberg BB, Feig S, Cole-Beuglet C. Ultrasonic
mammographic parenchymal patterns: a preliminary report. Radiology
1979;130(2):515-517.

Glide-Hurst CK, Duric N, Littrup P. Volumetric breast density evaluation
from ultrasound tomography images. Medical physics 2008;35(9):3988—
3997.

Kim WH, Moon WK, Kim S], et al. Ultrasonographic assessment of breast
density. Breast Cancer Res Treat 2013;138(3):851-859.

Izumori A, Horii R, Akiyama F, Iwase T. Proposal of a novel method for ob-
serving the breast by high-resolution ultrasound imaging: understanding the
normal breast structure and its application in an observational method for
detecting deviations. Breast Cancer 2013;20(1):83-91.

Hou XY, Niu HY, Huang XL, Gao Y. Correlation of Breast Ultrasound Clas-
sifications with Breast Cancer in Chinese Women. Ultrasound Med Biol
2016542(11):2616-2621.

Lee SH, Ryu HS, Jang MJ, et al. Glandular Tissue Component and Breast
Cancer Risk in Mammographically Dense Breasts at Screening Breast US.
Radiology 2021;301(1):57-65.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Kim SH, Kim HH, Moon WK. Automated Breast Ultrasound Screening for
Dense Breasts. Korean ] Radiol 2020;21(1):15-24.

Chang RE, Hou YL, Lo CM, et al. Quantitative analysis of breast echotexture
patterns in automated breast ultrasound images. Med Phys 2015;42(8):4566—
4578.

McKian KP, Reynolds CA, Visscher DW, et al. Novel breast tissue feature
strongly associated with risk of breast cancer. ] Clin Oncol 2009;27(35):5893—
5898.

Ghosh K, Hartmann LC, Reynolds C, et al. Association between mammo-
graphic density and age-related lobular involution of the breast. ] Clin Oncol
2010528(13):2207-2212.

Bao Z, Zhao Y, Chen S, et al. Evidence and assessment of parenchymal pat-
terns of ultrasonography for breast cancer detection among Chinese women:
a cross-sectional study. BMC Med Imaging 2021;21(1):152.

Sung JS, Stamler S, Brooks J, et al. Breast Cancers Detected at Screening
MR Imaging and Mammography in Patients at High Risk: Method of De-
tection Reflects Tumor Histopathologic Results. Radiology 2016;280(3):
716-722.

Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS Magnetic Reso-
nance Imaging. In: ACR BI-RADS Atlas, Breast Imaging Reporting and Data
System. American College of Radiology; 2013.

King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Back-
ground parenchymal enhancement at breast MR imaging and breast cancer
risk. Radiology 2011;260(1):50-60.

Liao GJ, Henze Bancroft LC, Strigel RM, et al. Background parenchymal en-
hancement on breast MRI: A comprehensive review. ] Magn Reson Imaging
2020;51(1):43-61.

Jung Y, Jeong SK, Kang DK, Moon Y, Kim TH. Quantitative analysis of
background parenchymal enhancement in whole breast on MRI: Influence
of menstrual cycle and comparison with a qualitative analysis. Eur ] Radiol
2018;103:84-89.

King V, GuY, Kaplan JB, Brooks JD, Pike MC, Morris EA. Impact of meno-
pausal status on background parenchymal enhancement and fibroglandular
tissue on breast MRI. Eur Radiol 2012;22(12):2641-2647.

King V, Goldfarb SB, Brooks JD, et al. Effect of aromatase inhibitors on back-
ground parenchymal enhancement and amount of fibroglandular tissue at
breast MR imaging. Radiology 2012;264(3):670-678.

King V, Kaplan J, Pike MC, et al. Impact of tamoxifen on amount of fibro-
glandular tissue, background parenchymal enhancement, and cysts on breast
magnetic resonance imaging. Breast ] 2012;18(6):527-534.

Kuhl CK. Predict, Then Act: Moving Toward Tailored Prevention. J Clin On-
col 2019;37(12):943-945.

DeLeo MJ 3rd, Domchek SM, Kontos D, Conant E, Chen ], Weinstein S.
Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1
and BRCA2 mutation carriers before and immediately after risk-reducing sal-
pingo-oophorectomy. AJR Am ] Roentgenol 2015;204(3):669-673.

W S, Weinstein SB, DeLeo MJ 3rd, et al. Quantitative assessment of back-
ground parenchymal enhancement in breast MRI predicts response to risk-
reducing salpingo-oophorectomy: preliminary evaluation in a cohort of
BRCA1/2 mutation carriers. Breast Cancer Res 2015;17(1):67. [Published
correction appears in Breast Cancer Res 2015;17:144.]

Arasu VA, Miglioretti DL, Sprague BL, et al. Population-Based Assessment
of the Association Between Magnetic Resonance Imaging Background Paren-
chymal Enhancement and Future Primary Breast Cancer Risk. ] Clin Oncol
2019;37(12):954-963.

Hu X, Jiang L, Li Q, Gu Y. Quantitative assessment of background paren-
chymal enhancement in breast magnetic resonance images predicts the risk of
breast cancer. Oncotarget 2017;8(6):10620-10627.

Sung JS, Corben AD, Brooks JD, et al. Histopathologic characteristics of
background parenchymal enhancement (BPE) on breast MRI. Breast Cancer
Res Treat 2018;172(2):487-496.

Thompson CM, Mallawaarachchi I, Dwivedi DK, et al. The Association of
Background Parenchymal Enhancement at Breast MRI with Breast Cancer: A
Systematic Review and Meta-Analysis. Radiology 2019;292(3):552-561.

Hu N, Zhao J, Li Y, et al. Breast cancer and background parenchymal en-
hancement at breast magnetic resonance imaging;: a meta-analysis. BMC Med
Imaging 2021;21(1):32.

Kim GR, Cho N, Kim SY, Han W, Moon WK. Interval Cancers after Nega-
tive Supplemental Screening Breast MRI Results in Women with a Personal
History of Breast Cancer. Radiology 2021;300(2):314-323.

Lee SH, Jang M], Yoen H, et al. Background Parenchymal Enhancement at
Postoperative Surveillance Breast MRI: Association with Future Second Breast
Cancer Risk. Radiology 2022. 10.1148/radiol.220440. Published online Au-
gust 30, 2022.

Grubstein A, Rapson Y, Benzaquen O, et al. Comparison of background pa-
renchymal enhancement and fibroglandular density at breast magnetic reso-

radiology.rsna.org = Radiology: Volume 306: Number 3—March 2023



nance imaging between BRCA gene mutation carriers and non-carriers. Clin
Imaging 2018;51:347-351.

95. Price ER, Brooks JD, Watson EJ, Brennan SB, Comen EA, Morris EA. The
impact of bilateral salpingo-oophorectomy on breast MRI background paren-
chymal enhancement and fibroglandular tissue. Eur Radiol 2014;24(1):162—
168.

96. Bermot C, Saint-Martin C, Malhaire C, et al. Background parenchymal en-
hancement and fibroglandular tissue on breast MRI in women with high ge-
netic risk: Are changes before and after risk-reducing salpingo-oophorectomy
associated with breast cancer risk? Eur ] Radiol 2018;109:171-177.

97. Bennani-Baiti B, Dietzel M, Baltzer PA. MRI Background Parenchymal
Enhancement Is Not Associated with Breast Cancer. PLoS One 2016;11
(7):¢0158573 [Published correction appears in PLoS One 2016;11(9)
:¢0162936.].

98. Bignotti B, Signori A, Valdora E et al. Evaluation of background paren-
chymal enhancement on breast MRI: a systematic review. Br ] Radiol
2017;90(1070):20160542.

99. Kuhl C, Weigel S, Schrading S, et al. Prospective multicenter cohort study to
refine management recommendations for women at elevated familial risk of
breast cancer: the EVA trial. ] Clin Oncol 2010;28(9):1450-1457.

100.Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Ab-
breviated breast magnetic resonance imaging (MRI): first postcontrast sub-
tracted images and maximum-intensity projection-a novel approach to breast
cancer screening with MRI. J Clin Oncol 2014;32(22):2304-2310.

101. Weinstein SB, Korhonen K, Cirelli C, et al. Abbreviated Breast Magnetic Res-
onance Imaging for Supplemental Screening of Women With Dense Breasts
and Average Risk. J Clin Oncol 2020;38(33):3874-3882.

102.Comstock CE, Gatsonis C, Newstead GM, et al. Comparison of Abbrevi-
ated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detec-
tion Among Women With Dense Breasts Undergoing Screening. JAMA
2020;323(8):746-756.

103.Niell BL, Abdalah M, Stringfield O, et al. Quantitative Measures of Back-
ground Parenchymal Enhancement Predict Breast Cancer Risk. AJR Am ]
Roentgenol 2021;217(1):64-75.

104. Eskreis-Winkler S, Sutton EJ, D’Alessio D, et al. Breast MRI Background Pa-
renchymal Enhancement Categorization Using Deep Learning: Outperform-
ing the Radiologist. ] Magn Reson Imaging 2022;56(4):1068-1076.

105.Saha A, Grimm LJ, Ghate SV, et al. Machine learning-based prediction of
future breast cancer using algorithmically measured background paren-
chymal enhancement on high-risk screening MRI. ] Magn Reson Imaging
2019;50(2):456-464.

106.Portnoi T, Yala A, Schuster T, et al. Deep Learning Model to Assess Can-
cer Risk on the Basis of a Breast MR Image Alone. AJR Am ] Roentgenol
2019;213(1):227-233.

107.Li ], Mo Y, He B, et al. Association between MRI background parenchymal
enhancement and lymphovascular invasion and estrogen receptor status in
invasive breast cancer. Br J Radiol 2019;92(1103):20190417.

108.Onishi N, Li W, Newitt DC, et al. Breast MRI during Neoadjuvant Che-
motherapy: Lack of Background Parenchymal Enhancement Suppression and
Inferior Treatment Response. Radiology 2021;301(2):295-308.

109.Lim Y, Ko ES, Han BK, et al. Background parenchymal enhancement on
breast MRI: association with recurrence-free survival in patients with newly
diagnosed invasive breast cancer. Breast Cancer Res Treat 2017;163(3):573—
586.

Radiology: Volume 306: Number 3—March 2023 » radiology.rsna.org

Acciavatti and Lee et al

110.Yala A, Mikhael PG, Strand E et al. Multi-Institutional Validation of a Mam-
mography-Based Breast Cancer Risk Model. ] Clin Oncol 2022;40(16):1732—
1740.

111.Eriksson M, Conant EE Kontos D, Hall P. Risk Assessment in Population-
Based Breast Cancer Screening. ] Clin Oncol 2022;40(20):2279-2280.

112.Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of
physician-performed whole-breast US: lesion detection and characterization.
Radiology 2006;241(2):355-365.

113.Lee SH, Yi A, Chang JM, Cho N, Moon WK, Kim SY. Background Echotex-
ture on Breast Ultrasound: Impact on Diagnostic Performance of Supplemental
Screening in Women with Negative Mammography (SSE01-04). 103rd Sci-
entific Assembly and Annual Meeting, Radiological Society of North America;
McCormick Place, Chicago, 2017 (RSNA Conference Abstract). https://
rsna2017.rsna.org/program/.

114.Albert M, Schnabel E Chun ], et al. The relationship of breast density in
mammography and magnetic resonance imaging in high-risk women and
women with breast cancer. Clin Imaging 2015;39(6):987-992.

115.Cho GY, Moy L, Kim SG, et al. Comparison of contrast enhancement and
diffusion-weighted magnetic resonance imaging in healthy and cancerous
breast tissue. Eur ] Radiol 2015;84(10):1888-1893.

116.Dontchos BN, Rahbar H, Partridge SC, et al. Are Qualitative Assessments of
Background Parenchymal Enhancement, Amount of Fibroglandular Tissue
on MR Images, and Mammographic Density Associated with Breast Cancer
Risk? Radiology 2015;276(2):371-380.

117. Telegrafo M, Rella L, Stabile Ianora AA, Angelelli G, Moschetta M. Breast MRI
background parenchymal enhancement (BPE) correlates with the risk of breast
cancer. Magn Reson Imaging 2016;34(2):173-176.

118.Melsaether A, Pujara AC, Elias K, et al. Background parenchymal enhance-
ment over exam time in patients with and without breast cancer. ] Magn Re-
son Imaging 2017;45(1):74-83.

119.Choi EJ, Choi H, Choi SA, Youk JH. Dynamic contrast-enhanced breast
magnetic resonance imaging for the prediction of early and late recurrences in
breast cancer. Medicine (Baltimore) 2016;95(48):¢5330.

120.Wu S, Zuley ML, Berg WA, et al. DCE-MRI Background Parenchymal En-
hancement Quantified from an Early versus Delayed Post-contrast Sequence:
Association with Breast Cancer Presence. Sci Rep 2017;7(1):2115.

121.Lam DL, Hippe DS, Kitsch AE, Partridge SC, Rahbar H. Assessment of
Quantitative Magnetic Resonance Imaging Background Parenchymal En-
hancement Parameters to Improve Determination of Individual Breast Can-
cer Risk. ] Comput Assist Tomogr 2019;43(1):85-92.

122.Grimm LJ, Saha A, Ghate SV, et al. Relationship between Background Paren-
chymal Enhancement on High-risk Screening MRI and Future Breast Cancer
Risk. Acad Radiol 2019;26(1):69-75.

123.Sippo DA, Rutledge GM, Burk KS, et al. Effect of Background Parenchy-
mal Enhancement on Cancer Risk Across Different High-Risk Patient
Populations Undergoing Screening Breast MRI. AJR Am ] Roentgenol
2019;212(6):1412-1418.

124.Vreemann S, Dalmis MU, Bult P, et al. Amount of fibroglandular tissue FGT
and background parenchymal enhancement BPE in relation to breast cancer
risk and false positives in a breast MRI screening program : A retrospective
cohort study. Eur Radiol 2019;29(9):4678-4690.

125.Watt GP, Sung J, Morris EA, et al. Association of breast cancer with MRI
background parenchymal enhancement: the IMAGINE case-control study.
Breast Cancer Res 2020;22(1):138.

17



