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Abstract
Self-supervised learning enables the creation of algorithms that outperform supervised pre-training methods in numerous

computer vision tasks. This paper provides a comprehensive overview of self-supervised learning applications across various
X-ray modalities, including conventional X-ray, computed tomography, mammography, and dental X-ray. Apart from the ap-
plication of self-supervised learning in the interpretation phase of X-ray images, the paper also emphasizes the critical role
of self-supervised learning integration in the preprocessing and archiving phase. Furthermore, the paper explores the appli-
cation of self-supervised learning in multi-modal scenarios, which represents a key future direction in developing machine
learning-based applications across the field of medicine. Lastly, the paper addresses the main challenges associated with the
development of self-supervised learning applications tailored for X-ray modalities. The findings from the reviewed literature
strongly suggest that the self-supervised learning approach has the potential to be a “game-changer”, enabling the elimination
of the current situation where many machine learning-based systems are developed but few are deployed in daily clinical
practice.
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1. Introduction
Radiology has been established for over 125 years and

has significantly reduced mortality rates from various dis-
eases such as pneumonia, cancer, coronary heart disease,
and nonfatal myocardial infarction (Howell 2011; The Na-
tional Lung Screening Trial Research Team 2011; Wake et
al. 2011; Crummy et al. 2018; Imai et al. 2018). Currently,
radiologists are faced with the challenge of interpreting a
vast amount of imaging data. The immense task of inter-
preting medical images leads to radiologists experiencing
fatigue and burnout, consequently raising the probability
of medical errors (Bercovich and Javitt 2018). To address
these challenges, there is an urge to develop algorithms.
Implementing automated medical image analysis offers sev-
eral advantages, including enhanced sensitivity for subtle
findings, prioritization of time-sensitive cases, automation
of routine tasks, and alleviating the scarcity of radiolo-
gists in remote areas and developing countries (Çallı et al.
2021).

The deployment of machine learning (ML) in radiology
holds promise for improving many aspects of the radiol-
ogy workflow (Pierre et al. 2023), potentially resulting in in-
creased diagnostic accuracy and efficiency, optimized treat-

ment plans, enhanced quality of care, and a potential reduc-
tion in healthcare-related expenditures. The currently devel-
oped deep learning-based systems for automated medical im-
age interpretation have reached levels comparable to practic-
ing radiologists’ performance in some tasks (Rajpurkar et al.
2017). Studies have also shown that using ML can assist physi-
cians in identifying abnormalities in medical images more ef-
fectively (Leibig et al. 2022). Despite all these breakthroughs,
several challenging aspects still need to be addressed. Deep
learning relies on having access to a substantial amount of
annotated data (Zhou et al. 2021). This issue is particularly
problematic in medical applications because medical imag-
ing datasets are significantly smaller (hundreds/thousands)
compared to natural domain datasets (millions of samples).
The annotation of medical imaging data adds another chal-
lenge as it requires a substantial amount of time, effort, and
a team of experts (Mckinney et al. 2020). To tackle the issue of
data scarcity, the transfer learning technique is a promising
solution. This method involves pretraining systems on a large
natural domain dataset and then employing them in the med-
ical image domain. However, the domain gap between the
two datasets is substantial because medical images have en-
tirely different characteristics from natural images, such as
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Fig. 1. Supervised versus self-supervised learning in medical imaging.

low image quality, latent feature distribution, lower resolu-
tion, 3D form, and similar image content across images (Zhou
et al. 2019; Zhuang et al. 2019; Li et al. 2021a). Data imbalance
is another issue for deep learning algorithms. This imbal-
ance is particularly noticeable in the context of rare diseases,
where most of the dataset comprises “normal” data, while
instances of the disease are statistically scarce. Additionally,
the ML systems frequently struggle with the designated tasks
when data are collected from different acquisition centers
and devices, introducing variation within the medical imag-
ing domain, such as signal-to-noise ratio. All these practical
challenges critically stagnate the robustness and generaliz-
ability of transfer learning.

Therefore, a logical question that arises is: How is it pos-
sible to mitigate or overcome the aforementioned challenges? To
investigate possible answers to this question, investigators
have developed systems for automated medical image anal-
ysis using a relatively new approach called self-supervised
learning (SSL), which enables the extraction of meaning-
ful representations from unlabeled data, thereby reducing
the reliance on large, labeled datasets and potentially im-
proving the efficiency and accuracy of medical image anal-
ysis. We find the SSL approach as a significant step for-
ward in the application of ML in X-ray modalities. There-
fore, in this paper, we summarize the contributions of SSL
applications in X-ray modalities and provide a comprehen-
sive overview of the current state of medical imaging. More-
over, we discuss the main challenges and future work in this
field.

2. General overview of self-supervised
learning

SSL allows learning representations without explicit super-
vision. The general pipeline of SSL involves two tasks: a pre-
text/proxy task and a downstream task (Shurrab and Duwairi
2022). The pretext task is performed in a supervised man-
ner using unlabeled data, allowing the model to learn mean-
ingful representations by creating pseudo labels. In the sec-
ond step, the learned representations from the pretext task
are transferred to the downstream task for fine-tuning (Liu
et al. 2021c). One advantage of the SSL approach over super-

vised methods is that pre-training and fine-tuning can be per-
formed using the same image distribution (Fig. 1) (Newell and
Deng 2020).

SSL algorithms have demonstrated remarkable success in
the field of computer vision, with some algorithms outper-
forming supervised pre-training methods in various com-
puter vision tasks (Tomasev et al. 2022). It remains an open
question whether these outstanding results can be replicated
in the field of X-ray imaging, given the intrinsic disparities
that distinguish it from natural image analysis.

Currently, most SSL research focuses on developing pretext
tasks since the pretext task is the key component where SSL
takes place. SSL approaches are categorized in different ways
based on model architectures and objectives (Liu et al. 2021c).
Liu et al. (2021c) divided them into generative, contrastive,
and generative–contrastive, while other authors classified
them as predictive, generative, and contrastive (Shurrab and
Duwairi 2022) or encoder, and encoder-decoder (Navarro et
al. 2021). In this paper, our focus will be on generative and
contrastive models as they are the most used approaches for
X-ray modalities.

2.1. Generative
The generative SSL approach allows the model to learn la-

tent features from unlabeled data by modeling the under-
lying distribution of the input data (Shurrab and Duwairi
2022). A typical application is the photo restoration task
(Huu et al. 2022). The basic architecture of generative
models consists of two components: the encoder and de-
coder networks (Fig. 2a). The encoder network compresses
the input data into a latent space (Z), while the decoder
network reconstructs the compressed input from the la-
tent space. Two commonly used generative models in X-
ray modalities are auto-regressive models and auto-encoder
models.

The auto-regressive methods allow learning meaningful
representations from the image datasets by regenerating
images pixel by pixel. Nagoor et al. (2022) stated that the
auto-regressive model is one of the state-of-the-art models
for estimating data distribution and pixel likelihood. Auto-
regressive models are implemented across different architec-
tures such as PixelRNN (van den Oord et al. 2016), PixelCNN
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Fig. 2. Self-supervised learning approaches: (A) generative and (B) contrastive models-schematic diagrams.

(van den Oord et al. 2016), PixelCNN++ (Salimans et al. 2017),
and Multiscale-PixelCNN (Reed et al. 2017). The main advan-
tage of auto-regressive models in computer vision is their
ability to effectively capture context dependency, allowing
them to understand spatial relationships and dependencies
in image data. However, a limitation of these models is their
unidirectional accessibility to context, which hinders their
ability to incorporate information from future positions and
capture long-range dependencies and global structures in im-
ages (Liu et al. 2021c).

The auto-encoder models can discover structure within
data to produce a compact representation of the input (Liu
et al. 2021c). Although auto-encoders were first used 40 years
ago, they remain the most popular generative models due to
their flexibility and adaptability (Ehrhardt and Wilms 2022).
Commonly used variants of the general auto-encoder archi-
tecture include denoising autoencoders, convolutional au-
toencoders, and variational autoencoders (Liu et al. 2021c).
Denoising autoencoders learn representations invariant to
noise by reconstructing a noise-free output from noisy in-
put (e.g., Gaussian noise, Poisson noise, uniform noise, im-
pulsive noise, etc.) (Liu et al. 2021c). However, denoising
autoencoders overlook the 2D structure of images, result-
ing in redundancy and a global representation of features
(Masci et al. 2011). On the other hand, convolutional au-
toencoders capture localized features by sharing weights
across all input locations, enabling spatial locality, and re-
constructing images using a linear combination of basic im-
age patches based on the latent code (Masci et al. 2011).
Variational autoencoders combine Bayesian variational in-
ference with deep learning to learn the probability dis-
tribution of data through amortized variational inference
(Singh and Ogunfunmi 2021) and the reparameterization
trick.

2.2. Contrastive
Contrastive models learn by comparing an anchor with

positive and negative instances generated through data aug-
mentation (Fig. 2b). The methodology behind contrastive
learning is remarkably intuitive and mirrors the learning
mechanisms observed in children (Dehghan and Amasyali
2023). In a child’s matching game (Ramani and Scalise 2020),
the objective of contrastive learning is to group similar
instances while keeping distant dissimilar instances. Con-
trastive learning frameworks could be divided into different
ways (Jaiswal et al. 2020; Le-Khac et al. 2020; Kumar et al.
2022; Lu 2022), but the most common division is on context–
instance and instance–instance contrasts (Liu et al. 2021c).

Context–instance contrast methods (global–local contrast)
are centered around modeling the relationship between the
instance’s local features and its global context representation
(Liu et al. 2021c). Two basic strategies of global–local contrast
are predicting relative position and maximizing mutual in-
formation. The first category emphasizes the relative position
of local components, which inherently suggests an under-
standing of the global context. For example, predicting the
relative position of two organs within the human body re-
quires comprehensive knowledge of the body’s overall com-
position. Accordingly, scientists developed several models
that could be used as the pretext task. These models solve
tasks such as jigsaw, rotation prediction, and relative posi-
tion tasks (Jaiswal et al. 2020; Liu et al. 2021c; Kumar et al.
2022). On the other hand, the second strategy ignores the
relative position between local parts and instead focuses on
learning the belonging relationship between local parts and
the global context. This concept is derived from mutual in-
formation in statistics (Liu et al. 2021c). Essentially, mutual
information assesses the association between two variables
that are sampled simultaneously. In the global–local contrast
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approach, the objective is to maximize mutual information.
Use of the mutual information in contrastive learning tasks
initiated with the Deep Infomax (Hjelm et al. 2019), and it has
further evolved with the introduction of new models such
as Augmented Multiscale Deep InfoMax-AMDIM (Bachman et
al. 2019). Meanwhile, the use of mutual information is not
only reserved for global–local contrast but is also applied in
instance–instance contrast.

Instance–instance contrastive methods focus on model-
ing the relationships between instance-level local represen-
tations from different instances, and they could be further
divided into two categories: cluster discrimination and in-
stance discrimination.

The initial success of instance–instance contrastive meth-
ods was demonstrated by their ability to achieve performance
comparable to the AlexNet supervised model (Liu et al. 2021c).
This was achieved through the utilization of clustering-based
techniques, such as Deep Cluster (Caron et al. 2019), which
employs instance clustering to generate pseudo-labels. An ad-
vanced variant of DeepCluster, known as swapping assign-
ments between multiple views (Caron et al. 2021), takes the
concept further by incorporating online clustering princi-
ples and multi-view data augmentation strategies. The in-
tegration of data augmentation into the swapping assign-
ments between multiple views method draws inspiration
from instance discrimination-based approaches, which lever-
age these strategies as a substitute for the time-intensive
clustering process. Recently, the development of instance–
instance contrastive methods has predominantly centered
around approaches based on instance discrimination. Well-
known methods in this context include CMC (Tian et al.
2020a), MoCo (He et al. 2019), SimCLR (Chen et al. 2020), In-
foMin (Tian et al. 2020b), BYOL (Grill et al. 2020), and Sim-
Siam (Chen and He 2020). To achieve contrastive learning
objectives, data augmentation techniques are used to gen-
erate similar or positive instances. However, the generation
and utilization of dissimilar or negative instances vary across
each method.

3. Applications in X-ray modalities
In the field of X-ray modalities, ML approaches have gained

significant attention for automating the analysis of X-ray im-
ages. This has led to the development of systems that can per-
form various key tasks, such as segmenting organs, lesions, or
tumors, classifying different diseases or conditions, detecting
abnormalities, monitoring disease progression or treatment
response, preprocessing X-ray images, and archiving X-ray im-
ages.

The manuscripts referenced in this review were sourced
from extensive research databases including Springer Link,
ScienceDirect, IEEE Explore, ArXiv, and PubMed. Keyword
searches were performed across these databases using terms
such as “medical imaging”, “deep learning”, “self-supervised
learning”, “computed tomography”, and “X-ray imaging”.
Given the narrow focus of our research, the most effective
strategy was to formulate queries that combined two or
more keywords. Consequently, we selected the query “self-
supervised learning” AND “X-ray imaging” as the most rel-

evant. A search conducted in March 2023 yielded a total of
5202 records (PubMed = 54; IEEE Explorer = 49; ScienceDi-
rect = 4214; SpringerLink = 823; ArXiv = 62). After removing
duplicates (primarily from PubMed and arXiv), 5162 unique
articles remained. Following a title and abstract screening,
5107 articles were excluded based on irrelevance to the re-
search objective. A full-text review was then conducted on the
remaining 58 articles, resulting in the exclusion of eight ad-
ditional studies, primarily due to the absence of downstream
task evaluation or the use of non-human (animal) datasets.
Figure 3 shows our screening strategy and screening process
results.

In the subsequent sections, we present a comprehensive
summary of the 50 selected studies across various X-ray
modalities. As a significantly larger number of publications
about the application of SSL in X-ray modalities started to
emerge in 2018, we took into consideration the literature
starting from this point of time for this comprehensive re-
view.

3.1. Conventional X-ray
Conventional X-ray holds historical significance in the ap-

plication of ML in medical imaging as it was one of the first
modalities in which ML was utilized to assist in the interpre-
tation of medical images. The SSL approach has found differ-
ent applications in this modality, with the main studies listed
in Table 1.

The development of SSL algorithms for chest X-rays is es-
pecially complex due to the nature of disease/disorder de-
tection, often requiring the identification of abnormalities
within a limited number of pixels (Sowrirajan et al. 2020).
In contrastive models, one main challenge is to generate
positive image pairs as emphasized in the MoCo-CXR study
(Sowrirajan et al. 2020). This study developed a specific data
augmentation strategy for chest X-rays, as traditional aug-
mentations used for natural images may not be appropriate
due to the lack of meaningful representation in a chest X-ray.
By using random rotation (10 degrees) and horizontal flip-
ping, this approach created a pre-trained model that gener-
ated better representations and initializations for the detec-
tion of pathologies. MoCo-CXR demonstrated that SSL mod-
els outperformed ImageNet-pretrained models for higher-
quality representations. Similar results were observed in the
case of C2 L (Zhou et al. 2020) and MUSCLE (Liao et al. 2022)
models. While C2 L exclusively utilized a chest X-ray dataset
like MoCo-CXR, MUSCLE was developed using a broader
multi-instance dataset encompassing the head, lungs, and
bones. A different approach was proposed in a study (Truong
et al. 2021), in which the authors developed SSL models that
used the ImageNet dataset for a pretext task. A study (Azizi
et al. 2021) attempted to combine the merits of C2L, MoCo-
CXR, and (Truong et al. 2021), and further developed a two-
stage pretext task. First, they used SimCLR on the ImageNet
dataset. For the second step, they used a new model named
multi-instance contrastive learning, designed for handling
data from different projections (frontal and lateral) in chest
X-ray datasets. Another study (Müller et al. 2022) showed
that radiologist reports could enhance pretraining for down-
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Fig. 3. Screening strategy, screening process, and result flow chart. SSL, self-supervised learning.

stream tasks on chest X-ray images. Moreover, a multi-modal
RepsNet (Tanwani et al. 2022) model adapted pre-trained vi-
sion and language models to interpret medical images and
automate report generation.

The COVID-19 pandemic also accelerated the progress of
automated chest X-ray image analysis, as X-ray imaging is gen-
erally the first-line imaging test performed on symptomatic
patients. A range of applications for this purpose have been
proposed, such as (Gazda et al. 2021; Park et al. 2021; Sriram
et al. 2021). The study (Park et al. 2021) places significant
emphasis on the issue of overfitting. Overfitting is a com-
mon challenge when applying deep learning models in med-
ical imaging, particularly in cases of rare or new diseases
like COVID-19, where the available CXR dataset is limited
compared to other conditions, impacting the generalization
performance in real-world applications. Furthermore, the
SALAD (Bozorgtabar et al. 2020) model is designed specifi-
cally to tackle the issue of overfitting in anomaly detection
tasks.

3.2. Computed tomography (CT)
Computed tomography (CT) plays a significant role in di-

agnosing many diseases, resulting in approximately 300 mil-
lion CT scans per year (Schöckel et al. 2020). Analyzing CT

images is more demanding compared to X-ray images, due to
the volume of imaging data to review, the multi-planar na-
ture of CT, and improved soft tissue resolution (Zhuang et
al. 2019; Pape et al. 2022; C.C.M. Professional). To enhance
decision-making accuracy and efficiency, deep learning algo-
rithms have been developed. However, due to limited anno-
tated data and domain gaps, the SSL approach is preferred.
Recent studies on the application of SSL in CT are listed in
Table 2.

Various research studies have highlighted the need for a
profound understanding of CT images when creating pretext
tasks. For instance, applying 2D neural networks to 3D med-
ical images resulted in the loss of crucial 3D anatomical in-
formation, leading to suboptimal performance (Zhou et al.
2019). To overcome the problem of the loss of crucial 3D
anatomical information, some studies proposed 3D-based SSL
algorithms for volumetric CT data, such as Rubik’s cube re-
covery (Zhuang et al. 2019), models genesis (Zhou et al. 2019),
semantic genesis (Haghighi et al. 2020), Rubik’s cube++ (Tao
et al. 2020), 3D context feature learning (Blendowski et al.
2019), and Vol2Flow (Bitarafan et al. 2022). Most of these pre-
text tasks have been validated on classification and segmen-
tation downstream tasks, yielding promising results. Further-
more, certain pretext tasks specifically address other chal-
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Table 1. The application of self-supervised learning to conventional X-ray

Model name/model architecture
/Code Link Downstream task Performance Dataset Ref.

SALAD/auto-encoder/- Anomaly detection 94.19% AUC (NIH), and 81.17% AUC
(MURA)

NIH chest X-rays and MURA Bozorgtabar et al.
(2020)

C2l/momentum-based teacher-student
architecture/https://github.com/funny
zhou/C2L_MICCAI2020

Classification 89.3% AUROC (CheXpert) ChestX-ray14, MIMIC-CXR, CheXpert,
and MURA

Zhou et al. (2020)

-/Modified models genesis: U-shaped
convolutional neural network model
combined with a convolution block
attention module/-

Classification 98.6% averaged accuracy CXR Park et al. (2021)

MoCo-CXR/contrastive learning:
MoCo/-

Classification (CheXper) MoCo-CXR 0.813 AUC,
ImageNet 0.775 AUC.
(Shenzhen) MoCo-CXR 0.974 AUC

CheXper, Shenzhen Sowrirajan et al.
(2020)

-/Contrastive learning. Consists of
three parts: a backbone neural
network, a projection head, and a
stochastic data augmentation
module/-

Chest X-Ray classification 97.7% AUC CheXper, ChestX-ray14, C19-Cohen,
COVIDGR, Cell

Gazda et al. (2021)

MICLe/contrastive learning: adapted
SimCLR/-

Chest X-ray classification 0.7689 ± 0.0010 AUC, improvement of
1.1% outperforming ImageNet
pre-train

CheXpert Azizi et al. (2021)

DVME/contrastive learning: SimCLR,
SwAV, DINO; DVME- a model-agnostic
technique to combine multiple
self-supervised pretrained features for
downstream tasks/-

Chest X-ray classification DINO-0.6323 AUC (NIH Chest X-ray),
SwAV - 0.5903 AUC. (APTOS), SwAV
-0.6330 AUC,
DVME 0.6566 AUC

NIH chest X-ray, Pneumonina chest
X-ray; (APTOS, PatchCam)

Truong et al. (2021)

-/Contrastive
learning-MoCo/https://github.com/fac
ebookresearch/CovidPrognosis

Adverse event prediction from single
images; Oxygen requirements
prediction from single images, and
adverse event prediction from
multiple

0.786 AUC for predicting and 0.848
AUC of for predicting mortalities

MIMIC-CXR, CheXpert, NYU COVID Sriram et al. (2021)

-/BYOL (Grill et al. 2020), SimCLR
(Chen et al. 2020), PixelPro/-

Semantic segmentation and object
detection tasks

The best methods on four tasks (BYOL
on three and PixelPro on one task)

MIMIC-CXR 2 Müller et al. (2022)

MUSCLE/consists of two parts:
Multi-Dataset Momentum Contrastive
(Multi-Dataset MoCo) Learning,
Multi-Task Continual Learning/-

Pneumonia classification, skeletal
abnormality classification, lung
segmentation, and tuberculosis
detection

99.72% AUC (pneumonia
classification), and 88.37% AUC
(skeleton abnormality classification)

NIHCC, China-Set-CXR,
Montgomery-Set-CXR, Indiana-CXR,
RSNA Bone Age; Pneumonia, MURA,
Chest Xray Masks, TBX

Liao et al. (2022)

RepsNet/encoder–decoder model.
The encoder aligns the images with
natural language descriptions via
contrastive learning, while the
decoder predicts answers from the
encoded images/https:
//sites.google.com/view/repsnet

VQA-Rad (Medical visual question
answering) and IU-Xray (report
generation)

81.08% classification accuracy on
VQA-Rad 2018 and 0.58 BLEU-1 score
on IU-Xray

VQA-Rad, IU-XRay Tanwani et al. (2022)

Note: Abbreviation:——model unnamed and/or code not available.
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Table 2. The application of self-supervised learning to CT.

Model name/model architecture
/Code Link Downstream task Performance Dataset Ref.

Rubik’s cube recovery/involves two
operators: cube rearrangement and
cube rotation; and Siames——Octad
network/-

(1) Brain hemorrhage classification
and (2) brain tumor segmentation

(1) 83.8% accuracy (2) 76.2% mIoU
using U-Net and 77.3% mIoU using 3D
DUC

Brain Hemorrhage Dataset- internal
dataset and BraTS-2018

Zhuang et al. (2019)

Models
genesis/encoder–decoder/https://gith
ub.com/MrGiovanni/ModelsGenesis

Classification and segmentation (NCC,
NCS, LCS, BMS)

NCC- 98.20 ± 0.5% (AUC)
NCS- 77.62 ± 0.6% (IoU)
LCS- 79.52 ± 4.7% (IoU)
BMS- 90.60 ± 0.2% (IoU)

LIDC-IDRI, ChestX-ray8 Zhou et al. (2019)

-/REG2D and HEATMAP/- Few-shot CT segmentation task ≈55% average Dice score (one-shot
segmentation accuracy)

VISCERAL Anatomy3 Blendowski et al. (2019)

Semantic genesis/encoder–decoder,
introduce two novel components:
self-discovery and
self-classification/https://github.com/J
LiangLab/SemanticGenesis

Classification and segmentation (NCC,
NCS, LCS, BMS)

NCC- 98.47 ± 0.2% (AUC)
NCS- 77.24 ± 0.6% (IoU)
LCS- 85.60 ± 1.9% (IoU)
BMS- 68.80 ± 0.3% (IoU)

LUNA-2016, ChestX-ray14 Haghighi et al. (2020)

-/Alternative encoder–decoder CNN
architectures: RS-AE, DE-UNET,
RS-UNET/-

Reconstruct the skull defect removed
during decompressive craniectomy
performed after traumatic brain
injury from post-operative CT images

The proposed direct estimation
method based on the U-Net
architecture (DE-UNet) outperforms
all the other strategies

Dataset were provided by the
University of Cambridge (Division of
aesthesis, department of medicine)

Matzkin et al. (2020)

-/includes a spatial transformer stage
that takes as input the NN-generated
landmarks and compares the
resulting aligned images/-

Automatically positioning and
detecting landmarks

Phantom dataset-0.01% average
registration loss 2D dataset-0.1%
testing registration accuracy

Shepp-Logan (S-L) phantom (synthetic)
dataset, 3D cranial CT scans of infants,
2D images of diatoms of four
morphological classes

Bhalodia et al. (2020)

Rubik’s cube++/Consists of two
components: a generator and a
discriminator/-

(1) Pancreas segmentation, (2) brain
tissue segmentation

(1) 4-fold cross validation yielded
100%-84.08% DSC (2) 77.56% DSC

NIH Pancreas computed tomography,
MRBrainS18

Tao et al. (2020)

-/Consists of 3D encoder, RE/SE
module, augmentation module and
3D Siamese network/https://github.c
om/hongweilibran/imbalanced-SSL

Classification: discriminating high
grade (H-grade) and low-grade tumor
(L-grade), predicting lung cancer
stages (i.e., I, II or III)

BraTS: Sensitivity/specificity
0.920/0.711 Lung cancer staging:
Overall/Minor-class accuracy
0.538/0.372

a multi-center MRI dataset (BraTS), a
lung CT dataset with 420 non-small
cell lung cancer patients
(NSCLC-radiomics)

Li et al. (2021a)

PCL/contrastive learning: U-Net
encoder with projection head/https:
//github.com/dewenzeng/positional_cl

Multi organ segmentation Achieved mean (standard deviation)
on 5-fold cross-validation: CHD-
0.774(.03) and ACDC- 0.929(.00) for
M = 51. M-number of patients used in
the fine-tuning process

CHD, MMWHS, ACDC, and HVSMR Zeng et al. (2021)

FCL/contrastive learning: MoCo (He et
al. 2019)/-

Volumetric medical image
segmentation

0.656 ± 0.052 DIC for N = 1, N-the
number of annotated patients for
fine-tuning on each client

ACDC MICCAI 2017 challenge dataset Wu et al. (2021)

SAME/Pixel-level contrastive learning
framework, breaks down image
registration into three steps: affine
transformation, coarse deformation,
and deep deformable registration/-

(1) intra-phase registration and (2)
cross-phase registration

(1) 54.42% Dice score, and (2) 50.96%
Dice score

Internal dataset Liu et al. (2021b)
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Table 2. (concluded).

Model name/model architecture
/Code Link Downstream task Performance Dataset Ref.

-/Variational autoencoders/- Detect incorrect organ segmentations 0.92 AUC (kidney), 0.95 AUC (liver),
0.82 AUC (spleen)

Medical segmentation decathlon (liver
and spleen), internal dataset for
kidney segmentation, abdominal CT
dataset from University of Wisconsin
hospital and clinics

Sandfort et al. (2021)

MoCo-COVID-19/Contrastive
learning-MoCo/-

Few-shot classification-automated
diagnosis of COVID-19

0.931 ± 0.013 AUC COVID-19 CT, dataset provided by the
Italian Society of Medical and
Interventional Radiology and
preprocessed by MedSeg

Chen et al. (2021)

CMT-CNN/Multi-task contrastive
learning

Classification COVID-19 CT (5.49%–6.45%) and X-ray
(0.96%–2.42%)

Internal datasets (CT and X-ray) Li et al. (2021b)

DeSD/Consists of online student
network and a momentum teacher
network/https:
//github.com/yeerwen/DeSD

Seven segmentation tasks (liver,
kidney, hepaV, pancreas, colon, lung,
spleen)

55.6% average Dice for 10%
annotations and 75.8% average Dice
for 100% annotations

DeepLesion; LiTS, KiTS, Hepatic Vessel
(HepaV), Medical Segmentation
Decathlon (MSD)

Ye et al. (2022)

Vol2Flow/Architecture is based on
3D-UNet structures (similar to
VoxelMorph)/https://github.com/Adele
hBitarafan/Vol2Flow

Multi-organ segmentation 82.20 ± 6.23 average DSC C4KC-KiTS, CT-LN, CT-Pancrea,
Sliver07, CHAOS, 3Dircadb-01,
3Dircadb-02

Bitarafan et al. (2022)

PrepNet/auto-encoder/- COVID-19 classification 0.5343 cross-dataset average SARS-CoV-2, UCSD COVID-CT, MosMed
dataset

Amirian et al. (2022)

MAE/masked Autoencoders/- CT abdomen multi-organ
segmentation, magnetic resonance
brain tumor segmentation, chest
X-ray disease classification

83.5Avg DSC, 78.91 Avg DSC, 81.5%
mAUC

BTCV, BRATS, CXR14 Truong Vu et al. (2021)

3DFPN-HS2/consists of rotation
module and rotation prediction
network/-

Lung nodule detection 90.6% sensitivity at 1/8 false positive
per scan on the LUNA16 dataset

LUNA16, SPIE-AAPM, LungTIME, and
HMS

Liu et al. (2022)

-/Consists of a multi-modal keypoint
detection module with attentive
fusion for 2D patient joint
localization, a self-supervised 3D
mesh regression module/-

Automated isocentering with clinical
CT scans

5.3/7.5/8.1 mm mean errors for
abdomen/thorax/head respectively
versus 13.2 mm median error of
radiographers

SLP, internal RGBD data Zheng et al. (2022)

Note: Abbreviation:——model unnamed and/or code not available; NCC- Nodule false positive reduction; NCS- Lung nodule segmentation; LCS- Liver segmentation; BMS- Brain tumor segmentation.
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lenges in the medical image domain, such as Vol2Flow, which
enhances generalizability by leveraging 3D medical images
obtained from diverse acquisition conditions.

Recently, contrastive learning has gained prominence as a
dominant SSL method due to its superior performance (Wang
et al. 2023). To harness the potential of this method, a large
number of algorithms have been developed specifically ad-
dressing the challenges of working with CT images, such as
PCL (Zeng et al. 2021), FCL (Wu et al. 2021), SAME (Liu et
al. 2021b), DeSD (Ye et al. 2022), MoCo-COVID-19 (Chen et al.
2021), and CMT-CNN (Li et al. 2021b). The challenge of creat-
ing contrastive learning algorithms for the medical domain
is highlighted in the PCL publication. In this study, the au-
thors focused on the issue of introducing numerous false neg-
ative pairs resulting from the utilization of state-of-the-art
contrastive learning frameworks originally designed for the
natural image domain. On the other side, the DeSD and FCL
publications offer solutions for some of the challenges inher-
ent to contrastive learning methods tailored specifically for
the medical image domain. DeSD deals with the problem of
weak supervision at the shallow layer, which has negative ef-
fects on downstream task performance. Conversely, FCL of-
fers a new solution for a federated learning approach, which
solves problems with limited amounts of medical data. It en-
ables sharing image-level representation throughout differ-
ent medical institutions while keeping source data private.
Most automated CT image analysis systems use chest imag-
ing datasets. Recently, many studies focused on using these
systems to detect pneumonia or COVID-19, such as MoCo-
COVID-19, CMT-CNN, and PrepNet (Amirian et al. 2022). Ad-
ditionally, other SSL studies are being developed for specific
applications such as decompressive craniectomy (Matzkin et
al. 2020), statistical shape analysis (Bhalodia et al. 2020), ra-
diomics (Li et al. 2021a), detection of incorrect organ segmen-
tation (Sandfort et al. 2021), lung nodule detection (Liu et al.
2022), and 3D patient body modeling (Zheng et al. 2022).

3.3. Mammography
Mammography-based screening, alongside other medical

imaging-based screening programs, plays a crucial role in pre-
ventive care systems. In the United States, mammography has
significantly contributed to the consistent decline in breast
cancer mortality rates over the past two decades (Ghesu et al.
2022). Furthermore, SSL algorithms have exhibited promis-
ing potential in the task of malignancy prediction, as evi-
denced by several notable studies listed in Table 3.

When developing SSL models for mammograms, the stud-
ies also need to consider the unique characteristics of mam-
mograms. In a study focused on identifying cancer in mam-
mography images (Truong Vu et al. 2021), the authors high-
lighted that traditional SSL tasks such as rotation prediction
and colorization prediction may not be suitable for predict-
ing the presence of cancer in mammography images (Truong
Vu et al. 2021). This limitation arises from the fact that breast
cancer tumors and other abnormalities in mammograms are
typically small in scale, displayed in grayscale, and lack a
defined orientation. As an alternative, the authors proposed
solving a jigsaw puzzle task to generate features more suit- Ta
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Table 4. The application of self-supervised learning to dental X-rays

Model name/Model architecture Downstream task Performance Dataset Ref.

LCD-Net/Modified MoCoV2. LCD
(the self-supervised pretrain stage
and the two-branch network
training stage

Segmentation and
classification: diagnosis of
tumors and cysts

LCD-Net 91.45% ACC (classification
scores)
LCD - 71.26 IoU (detection performance)
LCD-Net 70.84 mIoU (segmentation
performance)

Internal
dataset

Hu et al. (2021)

-/SimCLR, BYOL, Barlow Twins Dental caries classification (Sensitivity) Barlow Twins -57.9%,
SimCLR-57.2%, and BYOL-54.6%

Internal
dataset

Taleb et al.
(2022)

Note: Abbreviation:——model unnamed.

able for malignancy classification. Other studies attempted
to use contrastive-based SSL algorithms for malignancy pre-
diction (Li et al. 2021c; Miller et al. 2022; You et al. 2022). The
study (Miller et al. 2022) identified the optimal image trans-
formations for mammograms, including random crop with
resizing to the original image size, gamma shift, contrast
shift, and histogram equalization. The authors apply these
augmentations to patches created by dividing the mammo-
grams with a grid pattern, instead of the entire image, for bet-
ter localization of the area of interest (e.g., lesion). Other stud-
ies (Li et al. 2021c; You et al. 2022) employ contrastive learn-
ing to address specific challenges in mammography datasets,
such as domain gaps between datasets from different institu-
tions, vendor domain gaps, false positive rates, and intra-class
variations.

3.4. Dental X-ray
The phrase “teeth are half of health” portrays the significance

of oral health to our overall health. Dentists commonly em-
ploy radiological procedures for diagnosing and treating den-
tal problems. Deep learning has found extensive use in this
field, while SSL holds the potential to offer even better per-
formance. However, it is worth noting that SSL has not been
widely applied in dental X-ray imaging, and key studies re-
lated to this are listed in Table 4.

The study (Taleb et al. 2022) proposed a contrastive
learning-based approach (SimCLR, BYOL, and Barlow Twins)
for the caries classification task. The notable advantage of
this study lies in its label efficiency. Annotating the dataset
for the SSL approach took approximately 71 working hours,
whereas annotating the dataset for the supervised approach
would have required over 7600 working hours (equivalent to
950 workdays). Additionally, scientists defined a suitable data
augmentation strategy based on the nature of bitewing radio-
graphs. This data augmentation strategy included: random
resized cropping between 50% and 100% of input size, ran-
dom horizontal flip with 50% probability, color adjustments
(probabilities): brightness (20%) and contrast (10%), and satu-
ration (10%), and random rotation angles between −20◦ and
20◦. Contrastive learning methods have also been employed
as pretraining models for the detection of jaw tumors and
cysts. In a study (Hu et al. 2021), the authors proposed a
method that addresses two main drawbacks of existing mod-
els: their heavy reliance on the number of lesion samples and
the lack of reliability in diagnosis results. To overcome these
drawbacks, they used many healthy samples for pretraining
the model and designed a dual-branch network combined

with the patch-covering data augmentation strategy with lo-
calization consistency loss.

3.5. Multi-modal applications
The multi-modal approach in medicine refers to the learn-

ing tasks that can process and integrate information from
multiple types and sources of data, such as medical images
and clinical reports, to provide a more comprehensive under-
standing of a patient’s health condition. The literature sug-
gests that implementing a multi-modal approach could im-
prove the performance of automated medical image analysis
(You et al. 2022). For these reasons, this holistic approach is
widely applied in daily clinical practice nowadays. However,
implementing a multi-modal approach in automated medi-
cal image analysis systems could be challenging due to pri-
vacy restrictions, high-class imbalance, and high annotation
costs associated with medical data. SSL provides an opportu-
nity to overcome these limitations, making the implementa-
tion of a multi-modal approach more feasible. Recent studies
on multi-modal applications and SSL are listed in Table 5.

The selected multi-modal applications could be divided
into two categories: the first category involves integrat-
ing medical image datasets from different medical imaging
modalities, while the second category combines medical im-
age datasets with text datasets. The most extensive integra-
tion of data from various medical imaging modalities is pre-
sented in the study (Ghesu et al. 2022). This study used a train-
ing dataset consisting of over 100 million medical images
from X-ray, CT, magnetic resonance, and ultrasound modal-
ities. The authors proposed an SSL method based on con-
trastive learning and online feature clustering. This method
suggested an increase in accuracy and robustness to various
image augmentations, as well as accelerated model conver-
gence during training. Additionally, the results of the study
demonstrated the effectiveness of the proposed method in
improving the performance of different downstream tasks,
such as classification/detection. In recent studies (Zhang et
al. 2021; Zheng et al. 2021), it has been observed that while
SSL has been extensively explored in classification and de-
tection tasks, its application in medical segmentation tasks
has been limited. To address these limitations, the authors
proposed a new hierarchical SSL framework that learns task-
agnostic knowledge from diverse medical image segmenta-
tion tasks using aggregated multi-domain datasets. Addition-
ally, another study (Zhang et al. 2021) aimed to improve the
accuracy of 3D tumor segmentation tasks using a SAR SSL
method on CT and magnetic resonance datasets. This study
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Table 5. The application of self-supervised learning to multi-modal applications

Model name/Model architecture/Code Link Downstream task Performance Dataset Ref.

-/Contrastive learning: the dual encoder
framework/https://github.com/rwindsor1/bio
bank-self-supervised-alignment

Unsupervised rigid multi-modal scan
registration, and cross-modal segmentation
with opposite-modality annotations

0.927 Dice score the UK Biobank (Sudlow et
al. 2015)

Windsor et al. (2021)

HSSL/Contrastive learning. Consists of three
hierarchical levels: image-level, task-level,
group-level/-

Segmentations tasks: heart, prostate, spleen heart-87.65% Dice score, prostate-68.58%
Dice score, prostate-88.45% Dice score

Eight different data sources Zheng et al. (2021)

SAR/Encoder–decoder architecture. Consists
of: Multi-scale cube generator, transformation
module, encoder, scale-aware module,
decoder, and modality invariant adversarial
learning module/-

Brain tumor segmentation, pancreas tumor
segmentation

BraTS2018- 84.92% in average Dice.
MSD- 75.68% average Dice (pancreas
segmentation), 33.92% average Dice
(tumor segmentation)

LUNA2016, LiTS2017,
BraTS2018, MSD

Zhang et al. (2021)

CPRD/Consists of three specialized teacher
models to focus on different body region
respectively and then teach a student model to
learn both intra- and inter-region features for
Med-VQA/https://github.com/awenbocc/cprd

Med-VQA (Medical visual question
answering)

SLAKE-EN accuracy 81.2% and 83.4% for
“open-ended” and “closed-ended”
questions respectively

SLAKE, SLAKE-EN, Medical
Segmentation Decathlon.

Liu et al. (2021a)

M3AE/Masked Autoencoders. Consists of
different encoders and decoders for vision and
language/https:
//github.com/zhjohnchan/M3AE

Medical visual question answering, medical
image-text classification, medical
image-caption retrieval

87.82% accuracy for closed-ended”
questions on SLACK, 78.50% accuracy on
MELINDA dataset, and the highest
accuracy 66.65% on ROCO test set

ROCO, MedICaT, VQA-RAD,
SLAKE, VQA-2019,
MELINDA

Chen et al. (2022)

-/Online clustering——swapped prediction
optimization, B. hybrid
Self-Supervised——supervised lear/-

Abnormality detection in chest X-ray, brain
metastases detection in magnetic
resonance, brain hemorrhage detection in
CT

Lesion detection- 0.94 AUC, brain
metastasis detection-0.932 AUC.
85% acceleration of model convergence
during training

Internal and public
datasets

Ghesu et al. (2022)

Note: Abbreviation:——model unnamed and/or code not available.
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is geared towards addressing challenges associated with tu-
mor region segmentation, which arise from variations in
scale, appearance, and geometric properties of the tumor
regions.

In addition, an approach has been developed that utilizes
SSL in medical imaging when two scan modalities are avail-
able for the same subject (Windsor et al. 2021). In this study,
the authors proposed a multi-modal image-matching con-
trastive framework without any change, which utilizes two
whole-body scans of magnetic resonance and dual-energy X-
ray absorptiometry. This approach allows training a network
to segment anatomical regions in magnetic resonance scans
without the need for ground-truth magnetic resonance exam-
ples.

The second category of multi-modal applications involves
medical vision-and-language models. These models aim to
acquire generalized representations from extensive medical
image-text datasets, which can be applied to various med-
ical vision-and-language tasks such as medical visual ques-
tion answering, medical image-text classification, and med-
ical image-text retrieval. One example of such a model is pre-
sented in the study (Chen et al. 2022), which is a multi-modal
masked autoencoder that learns cross-modal domain knowl-
edge by reconstructing missing pixels and tokens from ran-
domly masked images and texts.

3.6. Other application
Once X-ray images are acquired, they go through a series

of steps, including preprocessing, interpretation, and archiv-
ing. SSL has found applications in all these phases, and re-
cent studies have explored the potential of pretext tasks for
improving preprocessing techniques and addressing the chal-
lenges of data archiving. The most notable studies are listed
in Table 6.

The use of X-ray modalities in medical imaging comes with
inherent risks due to the nature of X-rays, which could cause
short-term and long-term negative effects on patients and
clinical staff (Kim 2016). More recent contributions to reduc-
ing the negative effects of X-rays include the digitalization of
image acquisition and the development of advanced prepro-
cessing methods (Uffmann and Schaefer-Prokop 2009). One
example is shown in the study by Zha et al. (2022), where
the authors proposed a fast SSL solution for sparse-view cone
beam computed tomography reconstruction. In this study,
the reduction of radiation dose was achieved by decreasing
the projection view in cone beam CT acquisition.

Additionally, the computational time required by the
model is relatively short, ranging from 10 to 40 min, depend-
ing on the dataset used. Collectively, these results suggest
making this model feasible for clinical CT applications. An-
other CT preprocessing application is proposed in the study
(Roger et al. 2021) for performing interpolation of slices in
CT. The PixelMiner model used a generative approach to ac-
curately construct the texture and greatly improved the per-
formance of downstream tasks. This SSL method has satisfac-
tory robustness and generalizability because it performs well
not only on the training dataset but also on externally vali-
dated datasets.

Reducing the radiation dose in medical imaging inevitably
results in the creation of noise in medical images, thus ne-
cessitating the need for effective image-denoising methods.
Biomedical image denoising is a challenging task because the
noise corresponds directly to the signal strength and follows
a Poisson distribution.

The study (Ta et al. 2022) proposed the Poisson2Sparse
method for single-image denoising without ground-truth
data. However, the need for image denoising is especially im-
portant for dynamic imaging methods because they use fast
imaging techniques to improve temporal resolution, which
can decrease the signal-to-noise ratio in each time frame. One
possible application for dynamic medical imaging denoising
was proposed in the study (Xu and Adalsteinsson 2021). This
model, named Deformed2Self, combines single-image and
multi-image denoising to improve image quality and uses a
spatial transformer network to model motion between differ-
ent slices.

In the previously described applications, an SSL approach
was primarily considered as part of the preprocessing phase.
One of the main challenges in the archiving phase is memory
constraint, as medical images need to be archived for a spe-
cific number of years according to each country’s regulations.
For example, in the United States, medical images must be
maintained for a period ranging from 5 to 10 years (Warren
2022). Traditional commercial compression algorithms may
not be suitable for diagnostic radiology settings because they
result in image quality losses that are unacceptable in a di-
agnostic radiology setting (Kwon et al. 2020). Among current
imaging compression techniques, a deep learning-based au-
toencoder has become a promising option. Autoencoders con-
sist of compression and decompression mechanisms. The au-
toencoders encode the medical image into a compressed rep-
resentation and reconstruct the image by the decoder. Like
other compression methods, this process causes information
loss. Unfortunately, there is no clear guideline on an accept-
able level of loss in a compression algorithm. Institutions
such as the Food and Drug Administration only advise that
the loss in compression “should be minimized as much as
possible” (Warren 2022). Some studies, Warren (2022) and
Barone identified the autoencoder-based methods, particu-
larly those based on convolutional autoencoders, as being the
most effective for medical image compression. These com-
pression algorithms for medical images have shown promis-
ing results in reducing resource requirements for model
training and image interpretation. For example, Joon et al.
(Kwon et al. 2020) utilized a two-level vector quantized varia-
tional autoencoder framework for this purpose.

4. Main benefits and challenges
According to the reviewed literature, applying SSL in med-

ical imaging offers a significant advantage by eliminating the
need for large, labeled training datasets. This is particularly
crucial when dealing with 3D volumetric medical data, as an-
notations for such data require considerable time from expe-
rienced clinicians (Tao et al. 2020). To address this challenge,
previous studies have introduced the ImageNet pretraining
strategy, which not only enhances accuracy but also expe-
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Table 6. Self-supervised learning in applications for preprocessing and archive

Model name/Model architecture
/Code Link Task Performance Dataset Ref.

-/Autoencoder/- Compressing medical images Convolutional autoencoder; the loss
reached a plateau at L = 0.0032
convolutional autoencoder + PCA: the
quality of the image, L ’ 0.0036.
Asymmetric autoencoder: if compared
with CAE + PCA1024, the results are
clearly worst even though the
compression factor is the same

CRO Aviano: patch level dataset,
full image dataset

Barone

Deformed2Self/Consists of three
modules: a single-imaging denoising
network; a spatial transformer network
(STN); a multi-image denoising network/-

Dynamic imaging denoising 31.77% on PINCAT with 15% the standard
deviation of Gaussian noise and 28.22%
on ACDC with the same standard
deviation of Gaussian noise

PINCAT, ACDC Xu and Adalsteinsson
(2021)

PixelMiner/Model based on
PixelCNN++. PixelMiner includes many
of the features of PixelCNN++, including
vertically and horizontally stacked
masked convolutions, gated
convolutions, and the logistic mixture
likelihood
Loss/-

Slice interpolation of medical
images

EPR 82% (p < .01), NRMSE of 0.11
(p < .01), (CCC) ≥ 0.85 (p < .01)

The radiological society of North
America pulmonary embolism
detection challenge ©

Roger et al. (2021)

NAF/Consists of four modules: ray
sampling, position encoding,
attenuation coefficient prediction, and
projection synthesis/-

Sparse-view CBCT reconstruction
(Cone Beam Computed
Tomography)

PSNR/SSIM 33.05/.96 (chest)
34.14/.94 (jaw)
31.63/.94 (foot)
34.45/.95 (abdomen)
30.34/.88 (aorta)

LIDC-IDRI, Open scientific
visualization, phantom internal
dataset

Zha et al. (2022)

Poisson2Sparse/Sparsity and dictionary
learning-based approach/https:
//github.com/tacalvin/Poisson2Sparse

Biomedical image denoising Outperform existing state-of-the-art
methods for SSL approaches under a
variety of datasets and varying levels of
Poisson noise, for example, by more
∼2 dB PSNR in average performance

Florescent microscopy denoising
dataset, PINCAT dataset

Ta et al. (2022)

FedFew/federated SSL/- Multi-label classification Accuracies 0.75 (edema), 0.73
(pneumonia), 0.77 (hernia)

ChestX-ray14 Dong et al. (2022)

-/Autoencoders/https:
//github.com/ciwarren/CCAE-MI

Image archiving Compression ratio of 32:1, up to 96
percent SSIM, and an MSE of less than
0.003

Brain CT, brain magnetic
resonance, COVID CT, chest X-ray

Warren (2022)

Note: Abbreviation:——model unnamed and/or code not available.
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dites model convergence (Zhou et al. 2020). However, a no-
table limitation arises from the absence of an ImageNet med-
ical image dataset for pretraining, resulting in a clear domain
gap between natural images and medical images (Zhou et al.
2020). For instance, while ImageNet models are trained on
relatively balanced datasets, they struggle to account for the
inherent imbalanced nature commonly observed in medical
data (Li et al. 2021a). This discrepancy presents a significant
hurdle when attempting to transfer the learned representa-
tions from natural images to medical images, considering the
substantial differences in their underlying distributions and
characteristics. By introducing SSL approaches, this limita-
tion is overcome as both the pretext task and downstream
task are conducted on the same data domain, allowing for
better alignment, and leveraging of the intrinsic properties
of medical images. Additionally, studies have demonstrated
that SSL learning can aid in the creation of a medical Ima-
geNet by quickly generating initial rough annotations for un-
labeled images, which can then be reviewed by experts (Zhou
et al. 2019). This reduces the annotation efforts and acceler-
ates the creation of a large, highly annotated medical Ima-
geNet. Moreover, the benefits of SSL extend beyond the elim-
ination of labeled datasets. They also contribute to the im-
provement of model robustness and generalizability, making
them highly applicable in daily medical image analysis prac-
tice. For instance, in the study (Liu et al. 2022) the authors im-
proved the robustness of the nodule detection across datasets
collected by different vendors of CT scanners. Investigators
also achieved the enhancement of model robustness and gen-
eralizability through the application of federated learning, in
which SSL found its application.

In addition to the significant advantages over supervised
learning approaches, it is worth noting that the creation of
SSL methods presents a challenging task. In fact, SSL ap-
proaches rely on heuristics to design pretext tasks (Li et
al. 2021b). This can be particularly challenging when ap-
plied to segmentation tasks (Zhuang et al. 2019). In seg-
mentation, although the pre-trained weights can typically
be adapted to the encoder part of the network, the decoder
still requires random initialization. This can be problem-
atic as the random initialization of the decoder may dis-
rupt the pre-trained feature representation and counteract
the improvements achieved through pre-training. Addition-
ally, applying contrastive learning-based methods may not
be practically feasible, especially in 3D datasets, as they re-
quire large batch sizes and/or negative pairs. This poses chal-
lenges for medical datasets because different images can have
similar structures or organs, resulting in many false nega-
tive pairs (Zeng et al. 2021). For this reason, scientists of-
ten utilize Siamese networks to perform adaptation of exist-
ing models or propose novel contrastive learning networks.
In the study (Li et al. 2021b), the authors even state that
models in contrastive learning usually involve more param-
eters than their supervised counterparts. For instance, to
achieve a comparable top-1 accuracy, the parameters of Sim-
CLR are 16 times those of ResNet-50. Moreover, SSL faces
similar challenges as other methods, such as the “black
box” nature of CNN, and biases in datasets (Gazda et al.
2021).

5. Conclusion
This paper provided a comprehensive overview of SSL ap-

plications to X-ray modalities. The general pipeline of SSL
involves a pretext/proxy task and a downstream task. The
focus was given on pretext/proxy task, as it represents the
actual point where SSL takes place. Various categorizations
can be applied to SSL approaches, but we concentrated on
generative and contrastive models. While contrastive mod-
els predominantly find their application in the interpreta-
tion phase of X-ray images, generative models take a lead role
in the preprocessing and archiving phases. Studies demon-
strated that formulating pretext tasks demands a profound
understanding of the inherent nature of X-ray images. For
instance, within contrastive models, a significant challenge
lies in generating positive image pairs, leading to the de-
velopment of specific data augmentation strategies tailored
to the characteristics of X-ray images. Additionally, SSL has
shown remarkable success in multi-modal scenarios, where
integrating X-ray images with textual data or utilizing medi-
cal images from various modalities results in the formation
of combined datasets. These datasets serve as a foundation for
building SSL models that collectively aim to improve the per-
formance of downstream tasks. Furthermore, SSL approaches
could potentially mitigate limitations observed in supervised
learning methods. The limitations include the requirement
for access to extensive volumes of annotated data, issues re-
lated to data imbalances, considerations of robustness, and
enhancing generalizability. From the reviewed literature, it is
clear that the self-supervised learning approach has transfor-
mative potential by eliminating the current situation where
many machine learning-based systems are developed but few
are deployed in daily clinical practice.
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