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supervised contrastive pre-training does not need a data augmentation module.

We apply the SCP+SF framework to two challenging and important mammography
screening tasks for breast cancer: mammographic abnormality screening and mam-
mographic malignancy screening. Our extensive experiments on a large-scale dataset
show that the supervised contrastive pre-training (SCP) can substantially improve

the final model performance compared with the traditional direct supervised train-
ing approach. Superior results of AUC and specificity/sensitivity have been achieved
on two clinically significant mammographic screening tasks in comparison with previ-
ously reported State-Of-The-Art approaches. We believe this work is the first to show
that supervised contrastive pre-training (SCP) followed by supervised fine-tuning (SF)
can outperform the supervised counterpart on these two critical medical imaging
tasks.
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Introduction

According to WHO, breast cancer has surpassed lung cancer as the world’s number
one cancer in terms of morbidity and mortality in 2020 [1]. Mammography screening is
the most cost-effective method for early detection of breast cancer, with approximately
48 million mammograms performed annually in the US. It has been reported that the
U.S. radiologists ranged from 66.7% to 98.6% for sensitivity and from 71.2% to 96.9%
for specificity in mammogram-based breast cancer diagnosis [2]. Despite the recent
study [3] showing that Al systems have the potential to surpass human experts in breast
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cancer interpretation, further improvement of Al systems’ accuracy and robustness is
demanded before their large-scale adoption.

Previous deep neural nets (DNN)-based mammographic screening systems are
trained directly by supervised learning [3-9]. The lack of labeled data causes these
methods to normally rely heavily on human-designed data augmentation during
training. To solve this problem, we propose a Supervised Contrastive Pre-training +
Supervised Fine-tuning (SCP+SF) framework. Unlike the previous approaches, the
proposed supervised contrastive pre-training does not need a data augmentation
module. It first performs the SCP pre-training through a carefully designed Siamese
contrastive learning module, searching for a better clustered embedding space, then
transfers the pre-trained encoder to the SF module for the supervised fine-tuning
phase.

Contrastive learning has been applied to self-supervised visual representation
learning [10-14], exemplified by the success of SimCLR/SimCLR-v2 [13, 14], which
shows that self-supervised pre-training on ImageNet with a simple contrastive learn-
ing framework can generate competitive results on downstream image classification
tasks when compared with fully supervised learning. Some follow-up work [15] dem-
onstrates that contrastive pre-training can also be applied to fully supervised settings
and further improve the SOTA performance on ImageNet.

Fundamentally, contrastive pre-training is a clustering process, with the objective
of learning an embedding space to minimize the samples’ intra-class variances while
maximizing their inter-class variances. The rationale behind the supervised learning
approach subsequent to contrastive pre-training is that supervised fine-tuning can be
carried out more effectively in an embedding space where the training samples have
been better set apart.

In this paper, we demonstrate the effectiveness of the SCP+SF framework through
two important and challenging mammography screening tasks, namely (1) identify-
ing normal mammograms with high confidence and (2) identifying malignant mam-
mograms with high specificity (please see Sec. Task 1: mammographic abnormality
screening and Task 2: mammographic malignancy screening for more detailed expla-
nation). Our results show that for both tasks, the proposed SCP+SF framework sig-
nificantly outperforms their counterparts. In particular, when trained on our in-house
dataset of 134,488 images from 30,487 patients and tested on 2,538 images from 640
patients with biopsy ground truth, both screening models trained with SCP+SF sur-
pass the previously reported SOTA approaches [4—6] by a large margin, in terms of
AUC and specificity/sensitivity.

Figures la and b (best viewed in color) visualize the sample projections from the
proposed contrastive learning module before and after the SCP phase, clearly illus-
trating the improvement in the separability of the two clusters representing the
healthy and at-risk populations. Figures 1c and d are the sample projections from our
proposed dual-view model, with direct supervised learning, and with the proposed
SCP+SF training framework. They further demonstrate that the SCP+SF results in
better clustering quality.

The main thrust of this paper is summarized below:
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Fig. 1 Visualization of the normal and abnormal sample projections. a, b are from the Siamese contrastive
learning module, and ¢, d are from the final dual-view model by t-SNE [16]. x,y axises indicating the projection

plane before the Sigmoid function

1. We show that on two clinically meaningful mammography screening tasks, abnor-
mality screening and malignancy screening, our models trained with the frame-
work of Supervised Contrastive Pre-training followed by Supervised Fine-tuning
(SCP+SF) consistently achieve superior performance over previously reported SOTA

approaches.

2. The SCP+SF framework does not require data augmentation module and uses the
regular L2 loss. This novel framework benefits from a carefully designed Siamese
contrastive learning module and a patient-constrained sample selection scheme.

Related work
Mammographic screening

Previous works on deep learning based mammographic screening have focused on tri-
age tasks of 1) identifying the normal mammograms with no lesions at all [6, 17-19], 2)
identifying the malignant mammograms [3-5, 7, 20, 21]. We experiment with both tasks
using our proposed framework. It is worth pointing out that most of the previous works
on task No.1 use biopsy results as the ground truth to classify the patient data, while in
our experiments, we treat the BI-RADS 1! category mammograms as normal for task
No.1, which is a more conservative standard.
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! We will explain the BI-RADS categories in detail in Sec. BI-RADS assessment categories
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Most of the previous methods take the traditional direct supervised learning approach.
McKinney et al. [3] detected lesions from mammograms’ each view and then accu-
mulated lesion-level cancer risk scores to produce image/breast/case-level cancer risk
scores. Wu et al. [21] pre-trained the screening model on a large amount of data with
BI-RADS labels before fine-tuning it with biopsy ground truth. However, its pre-training
phase is not based on the contrastive learning principle and, therefore, different from
our approach.

In particular, Yala et al. [6] is a classic multi-view-based method and achieved supe-
rior results on its own data, while the approaches in [4, 5] represent the latest SOTA
mammography screening methods. All these three approaches’ effectiveness has been
proven on large datasets. Hence, all three approaches have been tested on our large-
scale datasets and are selected as the competing methods as presented in Sec. Experi-
mental results and discussion.

Contrastive pre-training

Most contrastive learning works have been conducted within the realm of self-super-
vised learning on ImageNet data [10-14], involving certain forms of contrastive loss [22].
The recent work of SimCLR-v2 [14] shows that self-supervised contrastive pre-training
can compete with its fully supervised counterpart after supervised fine-tuning on down-
stream tasks. By encouraging the similarity of same-class data and distancing different-
class data in the feature domain, the supervised contrastive learning approaches from
SupCon [15] achieve superior representation to that of trivial supervised learning.

Contrastive pre-training in medical imaging

Model pre-training leveraging contrastive learning has also emerged in medical imag-
ing domain [11, 23-30]. In [29], a library of models called “Model Genesis” is obtained
through self-supervised pre-training by recovering anatomical patterns from trans-
formed medical images. The recent work of [27] proposes to carry out contrastive
pre-training to assist the model in learning a better embedding space across different
modalities. Contrastive learning improves representation for image classifications of
chest x-rays and CT images [31, 32]. Self-supervised learning fashion-based mammog-
raphy screening approaches focus on leveraging the unlabeled data [33—35], which is
different from our problem setup. Medical image segmentation can also benefit from
the pre-training using contrastive loss in semi-supervised settings [24, 30]. Because it
is expensive to obtain a large number of labeled medical images, most of them apply
contrastive learning in an unsupervised fashion. To the best of our knowledge, our work

is the first to leverage supervised contrastive pre-training for mammography screening.

Methodology

SCP+SF framework

The overall architecture of the SCP+SF framework is illustrated in Fig. 2. The Siamese
contrastive learning module is designed to carry out the SCP phase. The resulting Sia-
mese encoders are then transferred to the single-view learning module and the dual-view
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Fig. 2 The SCP+SF framework, consisting of the Siamese contrastive learning module and SF modules for
both the single-view and the dual-view model

learning module to continue the SF phase, respectively, as shown by the maroon arrows
in Fig. 2. We further elaborate on both phases in the following subsections.

SCP phase
The SCP phase is carried out by the Siamese contrastive learning module, which consists
of a Siamese encoding block and a Siamese projection block.

Siamese contrastive learning is a technique used in computer vision to improve the
feature representation of images through a unique architecture and training method.
The approach utilizes a Siamese network, which consists of two identical subnetworks
that share the same weights and parameters. Each subnetwork processes a different
input image. The goal is to learn a feature space where similar inputs are pulled closer
together while dissimilar inputs are pushed apart. The learned representations through
Siamese contrastive learning can be transferred to various downstream tasks.

In the encoding block, one pair of the input mammographic images are simultane-
ously fed into the shared-weight encoders. The encoded features are then projected
into a lower dimensional space by max-pooling and 1x1 conv operations before being
flattened into two 1-dimensional vectors. The 1-D vectors are further reduced to 2x1
output vectors through fully connected layers and sigmoid operation, representing the
likelihood for each class.

The contrastive loss[22] is designed to draw the samples from the same class closer
and separate the samples from different classes farther apart in the projected space.
Given a pair of input images (1,1’), we use the regular L2 distance in the loss function
and set margin as v/2:
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LUT) = D? ifl =1l
"7 | max (0, margin — D)2 if Iy # I, 1
where
D= H’Psia(gsia(l)) - ’Psia(gsia(ll))HLz; (2)

and £, (+) and Piia (+) denote the Siamese encoder block and nonlinear projection block,
respectively; /; and [ indicate the corresponding BI-RADS labels. The loss for a batch of
N image pairs can be simply defined as Lpaech = Zf\i 1 LU, ID).

Other types of the loss function (e.g., inner product based) as in [13, 15] are also
experimented with and showed no significant difference. The SCP phase is completed
once the training of this module ends.

SF phase

Each mammogram typically includes four views, the left and right craniocaudal (LCC/
RCC), and mediolateral-oblique (LMLO/RMLO), and the triage screening model can
take one or multiple views as input.

Single-view model

The Single-view learning module in Fig. 2 illustrates the network architecture of the sin-
gle-view model. During the SF phase, its encoder block is directly transferred from the
Siamese encoding block trained in the SCP phase and kept intact, while the projection
block after the encoder is fine-tuned based on the regular cross-entropy loss.

Dual-view model

In practice, radiologists routinely identify the abnormalities through bilateral analysis
of mammography image pairs (i.e.,, LCC/RCC, or LMLO/RMLO). Therefore, we also
experimented with the bilateral views as the input for a dual-view model in addition to
the single-view model.

The Dual-view learning module in the SF phase comprises a dual-view-based input
structure, a Siamese encoder, and a projection block, as shown in Fig. 2. Since our
screening model output is for each image, we designate one image of the bilateral pair as
the main input, and the other image serves as the auxiliary input. For the example shown
in Fig. 2, the LCC view is the main input, and the RCC view from the same patient serves
as the auxiliary input. The RCC input will first be registered and warped according to
the LCC view before being fed into the shared-weight pre-trained encoder in tandem
with the LCC view. The output encoded features are then concatenated before being
projected into a lower dimension and further reduced to a 2x1 vector. Similar to the
single-view model, the encoder block of the dual-view model is directly transferred from
the SCP phase and fixed during the SF phase.

Sample selection strategy

During supervised contrastive learning, a batch of images is first randomly selected
from the training set. Then, the positive and negative pairs are identified according to
the sample labels within this selected batch [15]. Limited by the affordable batch size,
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we experimented with two slightly different sampling strategies. One method is ran-
dom sampling, where the training batch includes N pairs of positive and negative image
pairs directly sampled from the entire training set with the corresponding labels. Since
our dual-view model takes input from a pair of images from the same patient, we also
experimented with a patient-constrained sampling method, where each randomly sam-
pled positive or negative pair must come from the same patient. The training label comes
from the main input as in Fig. 2. The auxiliary input will be another image from this

patient.

Experiment design

In this section, we first provide preliminary knowledge about BI-RADS assessment cat-
egories. We then present the details of our dataset and describe our two clinically mean-
ingful screening tasks. The training parameter settings and evaluation metrics are also
provided.

BI-RADS assessment categories

BI-RADS is a widely adopted standard for risk assessment of breast cancer using unified
terminology and reporting schema [36], applicable to mammography and other breast
imaging modalities. It has seven numeric categories: 0 — Incomplete (need additional
imaging evaluation); 1 — Normal; 2 — Benign; 3 — Probably benign; 4 — Suspicious for
malignancy; 5 — Highly suggestive of malignancy; 6 — Known biopsy-proven malignancy.
BI-RADS 0 is a special category, indicating that the subject needs to have further imag-
ing evaluation, such as additional mammographic views or other breast imaging modali-
ties. BI-RADS 0 is often regarded as between BI-RADS 3 and 4 by radiologists [37, 38].
In the literature [3, 21, 39], mammographic screening models have been developed and
tested only with large-scale private datasets conforming to the realistic patient distribu-
tion. Since no similar public dataset is available, we follow the convention and perform
experiments on our own large-scale datasets. BI-RADS categories can be assigned to a
lesion, an image, a breast, or a patient. Our screening tasks use the image-level BI-RADS

annotation.

Datasets

Our data for training and validation is collected from three collaborative hospitals at dis-
tinct geographical locations using three different vendors’ equipment and dated from
2011 to 2018. Screening equipment is MAMMOMAT Fusion from Siemens Health-
ineers, Senographe Crystal from GE Healthcare, and Hologic. For this study, we collect
Full-Field Digital Mammography (FFDM) only, as FFDM reduces overlapping tissue
issues that can obscure small lesions and improves detection rates in dense breasts. All
the data are initially stored in hospitals in PACS (Picture Archiving and Communication
Systems). They have pixel values of 500-2000 HU. The original captured images are in
DICOM format. To process DICOM images, we first apply Pydicom to extract its meta-
data and pixel data. Then, with normalization, windowing, and leveling, the image data
turns into Numpy arrays that the deep learning models can process. Most of the dimen-
sions are 3328 x 4096 pixels with very few exceptions, on which we use zero-padding to
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resize into the same dimension. We downsample them three times before sending them
into models.

In our study, the dataset covers 30,487 patients, of which 13,931 patients have at least
one side breast diagnosed as abnormal (other than BI-RADS 1), and 16,556 patients’
both breasts are diagnosed as normal/healthy (BI-RADS 1). Our 640-patient test set is
collected within 31 consecutive days (March 2019) from one of those three hospitals, in
which 405 patients have at least one side breast diagnosed as abnormal (other than BI-
RADS 1), and 235 patients’ both breasts are diagnosed as normal/healthy (BI-RADS 1).
Mammograms in the test set come with biopsy-proven malignancy results. The image-
level details of our datasets are listed in Table 1. For abnormal cases, the BI-RADS cat-
egories are listed by increasing risk level, where BI-RADS 0 is often regarded as between
BI-RADS 3 and 4 by radiologists [37, 38].

Public datasets like DDSM [40] have BI-RADS information on patients’ data. How-
ever, BI-RADS 1 data only accounts for less than 30% of the complete dataset, while it
should be over 70% in real clinical cases. Thus, the dataset’s distribution is not consistent
with screening mammography scenarios. Other public mammography datasets either
contain no BI-RADS 1 patients’ data or only have diagnostic mammograms (when a
screening mammogram does show an abnormality, a diagnostic mammogram may be
needed). Besides, in the literature [3, 21, 39], screening models have also been developed
and tested only with large-scale private datasets conforming to the realistic patient dis-
tribution. Since no similar public dataset is available, we follow the convention and per-
form experiments on our own large-scale datasets.

Our entire data collection has been approved by the ethics committee with the IRB-
number LL-X]JS-2020011.

Experimental settings

The dataset is split into the training and validation sets by an 8:1 ratio. All input images
are resized to 1008 x 800 and retain the original aspect ratio. All implementations
use Python 3.11 and Pytorch 2.0.0. The SCP and SF phases share the following train-
ing parameter settings. The initial learning rate is 1 x 10> with 4 warming-up steps
and reduced to 1 x 107 after 100 epochs. Adam is used [41], with a weight decay of
5 x 10~% Two NVIDIA A100 GPUs (40 G memory each) are used, and the batch size
for contrastive learning is set to 12 due to the computation limit. The model training
normally completes within 300 epochs. Our final model’s runtime is less than 3 s on our
machine.

Evaluation metric
Since our goal is to screen out a portion of mammograms confidently, for Task 1 as in
Sec. Task 1: mammographic abnormality screening, BI-RADS 1 mammograms are con-
sidered as positives, and other BI-RADS images are negative samples. While for Task 2,
as in Sec. Task 2: mammographic malignancy screening, non-malignant mammograms
are considered positives.

We set the sensitivity (recall rate of normal/non-malignant images) at 20%, which
is commonly used in clinical studies for mammogram triage screening [42], and com-
pare the specificity rate (percentage of correctly classified abnormal images) of different
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Fig. 3 Examples of mammograms in our dataset. The left two are normal cases and the right four are all
abnormal mammograms, with mass, architectural distortion, and calcification in them

approaches. In addition, AUC is used to compare the overall performance of the classifi-
cation models. We then investigate how many abnormal images are incorrectly screened
out as false positives. We use specificity (i.e., true negative rate) as the metric to indi-
cate how many abnormal images are correctly retained. Table 2 has illustrated the above
details.

Task 1: mammographic abnormality screening

This triage screening task aims to identify normal mammograms (BI-RADS 1) with
near-perfect accuracy in physical screening scenarios. Patients with any suspicious
regions in the breasts should not be screened out as normal patients. This task can
be further defined as a binary classification problem of BI-RADS 1 (normal/healthy)
vs. other BI-RADS categories (abnormal). The majority of screening mammograms
belong to BI-RADS 1; thus, screening them off can assist radiologists in reducing
their workload. Our collaborative radiologists recommend this screening task because
safely screening out a portion of BI-RADS 1 mammograms while retaining almost all
the mammograms that are in the abnormal BI-RADS categories has huge potential
to reduce the radiologists’ workload. Figure 3 shows examples of mammograms from

normal and abnormal categories.

Task 2: mammographic malignancy screening

A malignancy screening aims to identify mammograms with malignant findings with
high specificity so that we can confidently screen out some non-malignant patients.
The malignancy screening has been well studied in the literature. In order to prop-
erly compare the performance of some recent methods with ours, we reformat our
datasets into malignant and non-malignant portions. Since there is no hard bound-
ary to divide the BI-RADS categories regarding malignancy, biopsy is regarded as the
gold standard of malignancy determination. However, a biopsy is not applied to every
patient, depending on the follow-up clinical recommendation after the screening. We
simplify this task by gathering BI-RADS 1~3 into the non-malignant class and BI-
RADS 4~6 into the malignant class. BI-RADS 0 is excluded due to its uncertainty of
malignancy. Several recently representative methods [3, 6, 20], which have been tested
on their own large-scale datasets, are selected and re-implemented. In particular, Yala

et al. [6] proposed a classic multi-view-based method; Shen et al. [4] and Truong et al.
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[5] represented the latest SOTA multi-view screening methods with mammography.
All three approaches have been tested on large-scale datasets. We compare their
performance with our proposed method in Sec. Task 2: mammographic malignancy

screening task. The training parameter settings are as in Sec. Experimental settings.

Experimental results and discussion

Task 1: Mammographic abnormality screening task

We first present our experimental results of the mammographic abnormality screen-
ing task (BI-RADS 1 vs. other BI-RADS categories) on the test set using methods
listed in Table 2 according to the evaluation metrics described in Sec. Evaluation met-
ric. Table 2 shows the performance comparison of the triage screening task with dif-
ferent approaches, where Yala et al. [6], Shen et al. [4] and Truong et al. [5] are all
previous SOTA models, alongside our proposed single-view and dual-view models
with different SCP+SF training strategies. We also scrutinize the number of abnormal
images that are incorrectly screened out from the 1192 abnormal images in the test
set and further break it down according to the BI-RADS level (in the order of 2, 3, 0,
4, 5, 6). Therefore, a non-zero number appearing at a later position in the last column
of Table 2 has a more harmful impact on performance. To demonstrate the efficacy of
our design, we next interpret Table 2 from three aspects as follows.

Comparisions with previous SOTA methods

We re-implemented the previous SOTA approaches for this comparison. Our single-
view model with SCP+SF and random sample selection generates the best single-view
performance. Our dual-view model trained with SCP+SF and patient-constrained
sample selection (Row 6) generates the best result overall, outperforming Shen [4]
and Truong [5], which are both previous SOTA screening models. At higher sensi-
tivity, such as 0.8, our SCP+SF with patient-constrained sample selection method
improves the specificity from 0.806 to 0.888 compared to our vanilla dual view model.
We have also included three SOTA models for natural image classification for com-
parision in Table 2, ViT [43], Swin-Transformer [44], and ConvNexT-Base [45].

Effectiveness of SCP+SF

As shown in Table 2, for both single-view and dual-view models, the SCP+SF frame-
work effectively improves the overall performance of the models, including the AUC
and the specificity at given sensitivity (20%). In turn, the number of total incorrectly
screened abnormal images is reduced. In addition, for the dual-view model, the
SCP+SF framework can completely remove the error made for BI-RADS 4,5,6 images,
which is critical in practice since those images often correspond to higher cancer risk.
Such results would enable a confident deployment of such Al system as it confidently
screens out no-risk cases. In comparison, existing methods [4—6] still have misclas-
sified BI-RADS 4,5,6 cases in Table 2, which, in physical examination scenarios,
would be risky. For the single-view model, the SCP+SF framework can also reduce
the error for BI-RADS 5,6 images to near zero. We further confirm from the separate
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biopsy reports that the incorrectly screened images from the dual-view methods with
SCP+SF do not include any malignant findings.

Table 4 shows the ablation study results of the backbone in SCP. We compare a set
of ResNets [46] and ConvNexTs [45] an see no significant difference between them.
To run the system efficiently, ConvNext-Small has been selected to serve our encoder.

To evaluate the impact of data augmentation, we train our state-of-the-art (SOTA)
model from Table 2 using standard data augmentation techniques, including flipping,
rotation, and Gaussian noise addition. Despite employing the same training recipes,
the AUC and specificity on the test set are 0.8806 and 0.9801, respectively, both fall-
ing short of the current SOTA results.

Effectiveness of patient-constrained training strategy

To compare our proposed patient-constrained training strategy, we develop another
training approach that selects two random images from the entire dataset (Row 5 and 8).
Patient-constrained sampling improves the dual-view model over the random sampling
method, while random sampling is slightly better than the patient-constrained sampling
for the single-view model, and both are consistent with our expectations.

Mammograms from the same patients have many similarities in terms of texture, den-
sity, etc. Our patient-constrained training strategy in the SCP phase enables the encoder
to learn the patient-level similarities and dissimilarities of the same patient. This strategy
is able to narrow down the solution space when a bilateral dual-view input structure is
given in the SF Phase. However, such characteristics don’t exist for single-view models.
As a result, this strategy only improves the performance of dual-view-based models in
Table 2.

Task 2: mammographic malignancy screening task

The performance comparison among various methods is shown in Table 3, where the
AUC values are for the non-malignant class, and a sensitivity of 20% means that 20%
non-malignant mammograms are confidently screened out from all non-malignant
mammograms. In our dual-view-based methods, the effectiveness of the SCP phase
is again demonstrated, and the efficacy of the patient-constrained training strategy
is also validated over the random-selection-based one. Even though the SOTA multi-
view-based method (Row 3) is slightly better than our dual-view-based SF phase with-
out SCP (Row 4), our complete method of dual-view-based SF with patient-constrained
SCP (Row 6) surpasses all previous SOTA methods by reporting the best AUC value
of 0.9270. The specificity value of 100% means that there isn’t any malignant image
screened out as a false positive non-malignant one. We thus confidently state that our
method achieves the SOTA performance on the mammographic malignancy screening
task. Figure 5 shows that the AUC values are in line with the training epochs on our
validation set, using our best method (Row 6 in Table 3). We see that the AUC value
is rising up significantly while the training epoch is increasing. Similar to the previous
section, we have also experimented with three SOTA image classification approaches,
ViT [43], Swin-Transformer [44], and ConvNexT-Base [45]. However, the results are far
from competitive, with their AUCs reaching 0.8241, 0.8298, and 0.8369.
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Fig. 4 Visualization of the malignant and non-malignant outputs of the Siamese contrastive learning module
on the test set data before and after the SCP phase by t-SNE. (a) Distribution before the SCP phase. (b)
Distribution after the SCP phase. x,y axes indicating the projection plane before the Sigmoid function

Table 1 Number of mammograms in each BI-RADS category

Type BI-RADS Dataset
Train & Val Test
Abnormal 2 35290 728
3 14508 226
0 1570 136
4 3288 88
5 732 6
6 174 8
Total 55562 1192
Normal (Healthy) 1 78926 1346
Total 134488 2538

Figure 4 also shows t-SNE visualization of the malignant and non-malignant outputs
of the Siamese contrastive learning module on the test set data before and after the SCP
phase. We observe that the SCP phase significantly pulls the diffuse malignant samples
out from the non-malignant samples and effectively forms two clusters in an embedding
space. The effectiveness of SCP is again demonstrated.

Discussion of the results
Technical aspect
All prior methods for building reliable AI systems in medical domains face the com-
mon challenge of limited labeled data. These methods typically rely on direct supervised
training, which heavily depends on hand-crafted data augmentation techniques to com-
pensate for the scarcity of labeled examples. While contrastive pre-training with large
amounts of unlabeled data has been successfully adopted in other fields to mitigate data
shortages-owing to the ease of acquiring such data-this approach is impractical in mam-
mography screening due to the difficulty of collecting extensive datasets for unsuper-
vised contrastive pre-training.

To address these limitations, our method introduces Supervised Contrastive Pre-
training (SCP), leveraging limited labeled data without requiring additional data
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Table 2 Performance comparison of different approaches on the abnormality triage screening task
(task 1). SCP+SF(R) refers to SCP with random sample selection and SCP+SF(PC) indicates SCP with
patient-constrained sample selection as in Sec. Sample selection strategy.The last column shows
the number of incorrectly screened abnormal images with a breakdown according to their BI-RADS
levels (in the order of 2, 3, 0, 4, 5, 6). The 95% confidence intervals (Cl) are shown in the square
brackets. Bold values represent the achieved best results

Method AUC Sensitivity = 20%

# of incorrectly
screened out
images out of 1192
abnormal images

Specificity

Yalaetal.[6] 2021) 0.8452 [0.8432,0.8476] 0.97481[0.9712,0.9778] 30(10,8,9,2,0,1)
Shenetal.[4] (2021) 0.8602 [0.8529, 0.8681] 0.9765 [0.9737,0.9793] 28(8,11,8,1,0,0)
Truong et al. [5] (2023) 0.8733[0.8707,0.8765] 0.9790 [0.9766, 0.9814] 25(8,7,9,1,0,0)
VIT [43] (2020) 0.8555[0.8551, 0.859] 0.9706 [0.9701,0.9709] ( 1,12,9,3,0,0)
Swin-T [44] (2022) 0.8688 [0.8685, 0.8691] 0.9732[0.9725,0.9739] 2(10,10,9,3,0,0
ConvNexT [45] (2022) 0.8342 [0.8328, 0.8356] 0.9673 [0.9665, 0.9680] ( 3,13,7, 5, ,0)
Single-view 0.8348 [0.8327,0.8372] 0.9713[0.9688,0.9739] ( 2,1,1)
Single-view SCP+SF (R) 0.8512 [0.8486, 0.8544] 0.9740 [0.9736, 0.9754] 1(8,910,2,0,0)
Single-view SCP+SF (PC) 0.8441 [0.8380, 0.8502] 0.975710.9721,0.9793] (1 0,611,1,0,1)
Dual-view 0.8566 [0.8540, 0.8592] 0.9782 [0.9764, 0.9800] 6(7,8,10,1,0,0)
Dual-view SCP+SF (R) 0.8888 [0.8829, 0.8947] 0.9815 [0.9796, 0.9834] 22 ( 7,5,10,0,0,0)

Dual-view SCP+SF (PC) 0.9046 [0.9007, 0.9085] 0.9841 [0.9825, 0.9859] 19(7,5, 7,0,0,0)

Table 3 Results of the mammographic malignancy screening task (task 2). The 95% confidence
intervals (Cl) are shown in the square brackets. Bold values represent the achieved best results

Method AUC Spe. (Sen. = 20%)

0.9808 [0.9804, 0.9811
0.9902 [0.9899, 0.9905
[

Yala et al. [6] (2021) 0.8671 ]
]
0.9902 [0.9901, 0.9903]
]

Shenetal. [4] (2021) 0.8946 [0.8940, 0.8952

[0.8667,0.8671]
[ ]
Trong et al.[5] (2023) 0.9071 [0.9069, 0.9074]
[ ]
[

Dual-view 0.8929[0.8922, 0.8936 0.9804 [0.9797,0.9801
Dual-view SCP+SF (random) 0.9070 [0.9065, 0.9075] 1.0[1.0,1.0]
Dual-view SCP+SF (patient-constrained) 0.9270[0.9264, 0.9276] 1.0[1.0,1.0]

Table 4 Ablation study on different encoders in SCP. Bold values represent the achieved best

results
Encoder AUC Specificity
(Sen.=20%)
ResNet-22 0.9040 98.32%
ResNet-34 09013 98.15%
ResNet-50 0.8993 98.15%
ConvNexT-Tiny 0.9025 98.29%
ConvNexT-Small 0.9046 98.41%
ConvNexT-Base 0.8975 97.99%
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Fig. 5 AUC vs. training epochs for the malignancy screening task

augmentation. This innovative design not only harnesses the benefits of contrastive
pre-training to enhance model generalizability but also eliminates the need for hand-
crafted data augmentation strategies. Subsequent Supervised Fine-tuning (SF) further
refines the model’s representation capabilities, leading to superior performance. Table 2
and 3 highlight the state-of-the-art (SOTA) results achieved by our SCP+SF framework,
beating existing approaches. Moreover, our dual-view input paradigm capitalizes on the
inherent symmetry of mammograms, improving model performance. The patient-con-
strained sample selection strategy effectively narrows the solution space, complementing
the dual-view approach. Both strategies have been validated through ablation studies, as

shown in Table 2.

Clinical aspect

Previous methods in mammography screening have primarily focused on identifying
abnormal or malignant cases. However, due to limitations in achieving near-perfect
sensitivity and specificity, these methods often require significant human intervention,
making their deployment in real clinical settings challenging. In contrast, our system tar-
gets a different aspect of clinical need. In physical examination scenarios, the majority of
screening mammograms fall under BI-RADS category 1, indicating no apparent abnor-
malities. Our Al system aims to confidently recognize a portion of healthy (BI-RADS
1) cases while ensuring that nearly all abnormal mammograms are retained for further
review. Specifically, our experimental results demonstrate that when screening out 20%
of normal cases, no instances from BI-RADS categories 4, 5, or 6 were misclassified by
our Al system. Consequently, this Al system can be effectively deployed to assist radiol-
ogists in reducing their workload by confidently screening out certain BI-RADS 1 cases.
By identifying abnormalities and malignancies that human radiologists may overlook,
Al can contribute to earlier diagnosis, which is crucial for effective treatment and better
outcomes. With improved accuracy and less overdiagnosis, patients may experience less
anxiety and uncertainty while awaiting results. This capability significantly reduces the
workload for radiologists by allowing them to focus on more complex cases and enhance

their efficiency without compromising diagnostic accuracy.
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Limitations and future prospects

There are still a few limitations of this work that need improving in the future. First, it
has yet to be tested on an open-world dataset to prove its universal practicability. The
lack of diversity could lead to dataset bias. Hence, we are working on agreements with
other medical centers in Hong Kong and Macau that contain mammograms screened
by vendors different from our current ones. By doing so, we will enlarge our dataset
to foster its generality. Second, the runtime needs to accelerate through better parallel
processing. Embedding ZeRO [47] is one solution we believe could benefit the overall
runtime, and we will work on one next up. Besides, a great portion of incorrect predic-
tions are caused by occlusion at different viewing angles. We believe including modali-
ties other than mammography, like hispathological data and MRI, can not only alleviate
the impact of this problem but also has high clinical value, as they all count as clinically
meaningful approaches to screening breast cancer. Lastly, inspired by the recent success
of large foundation models, we will work to build them into our current pipeline.

Conclusion

Mammography screening is the most effective and widely used approach for early
breast cancer detection. Due to the heavy workload of radiologists, an Al system serv-
ing as their daily assistant would greatly ease their pressure. This paper presents a novel
framework of Supervised Contrastive Pre-training followed by Supervised Fine-tuning
(SCP+SF) for two critical mammography screening tasks. Different from the previous
supervised learning methods, the proposed framework leverages the limited medical
data well without any data augmentation operation. Our extensive experiments dem-
onstrate that the SCP+SF framework can substantially improve the final model perfor-
mance. When compared with previous approaches, the proposed framework achieves
SOTA performance on both mammography screening tasks.

Such an AI system has great potential to boost medical service efficiency and even-
tually improve the breast cancer survival rate. The Al system can minimize errors due
to fatigue or cognitive overload experienced by radiologists, particularly during high-
volume screening. In real medical and clinical scenarios, especially in physical exami-
nation departments or physical examination centers, radiologists can quickly filter out
confidently normal or malignant cases on the PACS (Picture Archiving and Commu-
nication Systems) device deployed with this Al software. This can significantly reduce
the workload of radiologists in the remaining physical examination scenarios, freeing up
their energy and time to focus more on patients with more ambiguous and controversial
conditions.
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