
Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Cao et al. Journal of Big Data           (2025) 12:24  
https://doi.org/10.1186/s40537-025-01075-z

Journal of Big Data

Supervised contrastive pre‑training models 
for mammography screening
Zhenjie Cao1,2, Zhuo Deng1, Zhicheng Yang3, Jie Ma4 and Lan Ma1* 

Abstract 

Breast cancer is now the most deadly cancer worldwide. Mammography screen-
ing is the most effective method for early detection and diagnosis of breast cancer. 
Due to the lack of labeled mammograms, building an AI system for mammography 
screening often relies heavily on human-designed data augmentation, which doesn’t 
always perform robustly when applied to clinical scenarios. This paper presents a novel 
framework of Supervised Contrastive Pre-training followed by Supervised Fine-tuning 
(SCP+SF) for mammography screening. Unlike the previous approaches, the proposed 
supervised contrastive pre-training does not need a data augmentation module. 
We apply the SCP+SF framework to two challenging and important mammography 
screening tasks for breast cancer: mammographic abnormality screening and mam-
mographic malignancy screening. Our extensive experiments on a large-scale dataset 
show that the supervised contrastive pre-training (SCP) can substantially improve 
the final model performance compared with the traditional direct supervised train-
ing approach. Superior results of AUC and specificity/sensitivity have been achieved 
on two clinically significant mammographic screening tasks in comparison with previ-
ously reported State-Of-The-Art approaches. We believe this work is the first to show 
that supervised contrastive pre-training (SCP) followed by supervised fine-tuning (SF) 
can outperform the supervised counterpart on these two critical medical imaging 
tasks.

Keywords:  Breast cancer, Mammography screening, Supervised contrastive pre-
training

Introduction
According to WHO, breast cancer has surpassed lung cancer as the world’s number 
one cancer in terms of morbidity and mortality in 2020 [1]. Mammography screening is 
the most cost-effective method for early detection of breast cancer, with approximately 
48 million mammograms performed annually in the US. It has been reported that the 
U.S. radiologists ranged from 66.7% to 98.6% for sensitivity and from 71.2% to 96.9% 
for specificity in mammogram-based breast cancer diagnosis  [2]. Despite the recent 
study [3] showing that AI systems have the potential to surpass human experts in breast 
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cancer interpretation, further improvement of AI systems’ accuracy and robustness is 
demanded before their large-scale adoption.

Previous deep neural nets (DNN)-based mammographic screening systems are 
trained directly by supervised learning [3–9]. The lack of labeled data causes these 
methods to normally rely heavily on human-designed data augmentation during 
training. To solve this problem, we propose a Supervised Contrastive Pre-training + 
Supervised Fine-tuning (SCP+SF) framework. Unlike the previous approaches, the 
proposed supervised contrastive pre-training does not need a data augmentation 
module. It first performs the SCP pre-training through a carefully designed Siamese 
contrastive learning module, searching for a better clustered embedding space, then 
transfers the pre-trained encoder to the SF module for the supervised fine-tuning 
phase.

Contrastive learning has been applied to self-supervised visual representation 
learning [10–14], exemplified by the success of SimCLR/SimCLR-v2 [13, 14], which 
shows that self-supervised pre-training on ImageNet with a simple contrastive learn-
ing framework can generate competitive results on downstream image classification 
tasks when compared with fully supervised learning. Some follow-up work [15] dem-
onstrates that contrastive pre-training can also be applied to fully supervised settings 
and further improve the SOTA performance on ImageNet.

Fundamentally, contrastive pre-training is a clustering process, with the objective 
of learning an embedding space to minimize the samples’ intra-class variances while 
maximizing their inter-class variances. The rationale behind the supervised learning 
approach subsequent to contrastive pre-training is that supervised fine-tuning can be 
carried out more effectively in an embedding space where the training samples have 
been better set apart.

In this paper, we demonstrate the effectiveness of the SCP+SF framework through 
two important and challenging mammography screening tasks, namely (1) identify-
ing normal mammograms with high confidence and (2) identifying malignant mam-
mograms with high specificity (please see Sec.  Task 1: mammographic abnormality 
screening and Task 2: mammographic malignancy screening for more detailed expla-
nation). Our results show that for both tasks, the proposed SCP+SF framework sig-
nificantly outperforms their counterparts. In particular, when trained on our in-house 
dataset of 134,488 images from 30,487 patients and tested on 2,538 images from 640 
patients with biopsy ground truth, both screening models trained with SCP+SF sur-
pass the previously reported SOTA approaches [4–6] by a large margin, in terms of 
AUC and specificity/sensitivity.

Figures  1a and b (best viewed in color) visualize the sample projections from the 
proposed contrastive learning module before and after the SCP phase, clearly illus-
trating the improvement in the separability of the two clusters representing the 
healthy and at-risk populations. Figures 1c and d are the sample projections from our 
proposed dual-view model, with direct supervised learning, and with the proposed 
SCP+SF training framework. They further demonstrate that the SCP+SF results in 
better clustering quality.

The main thrust of this paper is summarized below: 
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1.	 We show that on two clinically meaningful mammography screening tasks, abnor-
mality screening and malignancy screening, our models trained with the frame-
work of Supervised Contrastive Pre-training followed by Supervised Fine-tuning 
(SCP+SF) consistently achieve superior performance over previously reported SOTA 
approaches.

2.	 The SCP+SF framework does not require data augmentation module and uses the 
regular L2 loss. This novel framework benefits from a carefully designed Siamese 
contrastive learning module and a patient-constrained sample selection scheme.

Related work
Mammographic screening

Previous works on deep learning based mammographic screening have focused on tri-
age tasks of 1) identifying the normal mammograms with no lesions at all [6, 17–19], 2) 
identifying the malignant mammograms [3–5, 7, 20, 21]. We experiment with both tasks 
using our proposed framework. It is worth pointing out that most of the previous works 
on task No.1 use biopsy results as the ground truth to classify the patient data, while in 
our experiments, we treat the BI-RADS 11 category mammograms as normal for task 
No.1, which is a more conservative standard.

Fig. 1  Visualization of the normal and abnormal sample projections. a, b are from the Siamese contrastive 
learning module, and c, d are from the final dual-view model by t-SNE [16]. x,y axises indicating the projection 
plane before the Sigmoid function

1  We will explain the BI-RADS categories in detail in Sec. BI-RADS assessment categories
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Most of the previous methods take the traditional direct supervised learning approach. 
McKinney et  al. [3] detected lesions from mammograms’ each view and then accu-
mulated lesion-level cancer risk scores to produce image/breast/case-level cancer risk 
scores. Wu et al.  [21] pre-trained the screening model on a large amount of data with 
BI-RADS labels before fine-tuning it with biopsy ground truth. However, its pre-training 
phase is not based on the contrastive learning principle and, therefore, different from 
our approach.

In particular, Yala et al.  [6] is a classic multi-view-based method and achieved supe-
rior results on its own data, while the approaches in [4, 5] represent the latest SOTA 
mammography screening methods. All these three approaches’ effectiveness has been 
proven on large datasets. Hence, all three approaches have been tested on our large-
scale datasets and are selected as the competing methods as presented in Sec. Experi-
mental results and discussion.

Contrastive pre‑training

Most contrastive learning works have been conducted within the realm of self-super-
vised learning on ImageNet data [10–14], involving certain forms of contrastive loss [22]. 
The recent work of SimCLR-v2 [14] shows that self-supervised contrastive pre-training 
can compete with its fully supervised counterpart after supervised fine-tuning on down-
stream tasks. By encouraging the similarity of same-class data and distancing different-
class data in the feature domain, the supervised contrastive learning approaches from 
SupCon [15] achieve superior representation to that of trivial supervised learning.

Contrastive pre‑training in medical imaging

Model pre-training leveraging contrastive learning has also emerged in medical imag-
ing domain [11, 23–30]. In [29], a library of models called “Model Genesis” is obtained 
through self-supervised pre-training by recovering anatomical patterns from trans-
formed medical images. The recent work of [27] proposes to carry out contrastive 
pre-training to assist the model in learning a better embedding space across different 
modalities. Contrastive learning improves representation for image classifications of 
chest x-rays and CT images [31, 32]. Self-supervised learning fashion-based mammog-
raphy screening approaches focus on leveraging the unlabeled data  [33–35], which is 
different from our problem setup. Medical image segmentation can also benefit from 
the pre-training using contrastive loss in semi-supervised settings [24, 30]. Because it 
is expensive to obtain a large number of labeled medical images, most of them apply 
contrastive learning in an unsupervised fashion. To the best of our knowledge, our work 
is the first to leverage supervised contrastive pre-training for mammography screening.

Methodology
SCP+SF framework

The overall architecture of the SCP+SF framework is illustrated in Fig. 2. The Siamese 
contrastive learning module is designed to carry out the SCP phase. The resulting Sia-
mese encoders are then transferred to the single-view learning module and the dual-view 
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learning module to continue the SF phase, respectively, as shown by the maroon arrows 
in Fig. 2. We further elaborate on both phases in the following subsections.

SCP phase

The SCP phase is carried out by the Siamese contrastive learning module, which consists 
of a Siamese encoding block and a Siamese projection block.

Siamese contrastive learning is a technique used in computer vision to improve the 
feature representation of images through a unique architecture and training method. 
The approach utilizes a Siamese network, which consists of two identical subnetworks 
that share the same weights and parameters. Each subnetwork processes a different 
input image. The goal is to learn a feature space where similar inputs are pulled closer 
together while dissimilar inputs are pushed apart. The learned representations through 
Siamese contrastive learning can be transferred to various downstream tasks.

In the encoding block, one pair of the input mammographic images are simultane-
ously fed into the shared-weight encoders. The encoded features are then projected 
into a lower dimensional space by max-pooling and 1 × 1 conv operations before being 
flattened into two 1-dimensional vectors. The 1-D vectors are further reduced to 2 × 1 
output vectors through fully connected layers and sigmoid operation, representing the 
likelihood for each class.

The contrastive loss[22] is designed to draw the samples from the same class closer 
and separate the samples from different classes farther apart in the projected space. 
Given a pair of input images (I , I ′) , we use the regular L2 distance in the loss function 
and set margin as 

√
2:

Fig. 2  The SCP+SF framework, consisting of the Siamese contrastive learning module and SF modules for 
both the single-view and the dual-view model
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where

and Esia(·) and Psia(·) denote the Siamese encoder block and nonlinear projection block, 
respectively; lI and lI ′ indicate the corresponding BI-RADS labels. The loss for a batch of 
N image pairs can be simply defined as Lbatch =

∑N
i=1 L(Ii, I

′
i ).

Other types of the loss function (e.g., inner product based) as in [13, 15] are also 
experimented with and showed no significant difference. The SCP phase is completed 
once the training of this module ends.

SF phase

Each mammogram typically includes four views, the left and right craniocaudal (LCC/
RCC), and mediolateral-oblique (LMLO/RMLO), and the triage screening model can 
take one or multiple views as input.

Single‑view model

The Single-view learning module in Fig. 2 illustrates the network architecture of the sin-
gle-view model. During the SF phase, its encoder block is directly transferred from the 
Siamese encoding block trained in the SCP phase and kept intact, while the projection 
block after the encoder is fine-tuned based on the regular cross-entropy loss.

Dual‑view model

In practice, radiologists routinely identify the abnormalities through bilateral analysis 
of mammography image pairs (i.e., LCC/RCC, or LMLO/RMLO). Therefore, we also 
experimented with the bilateral views as the input for a dual-view model in addition to 
the single-view model.

The Dual-view learning module in the SF phase comprises a dual-view-based input 
structure, a Siamese encoder, and a projection block, as shown in Fig.  2. Since our 
screening model output is for each image, we designate one image of the bilateral pair as 
the main input, and the other image serves as the auxiliary input. For the example shown 
in Fig. 2, the LCC view is the main input, and the RCC view from the same patient serves 
as the auxiliary input. The RCC input will first be registered and warped according to 
the LCC view before being fed into the shared-weight pre-trained encoder in tandem 
with the LCC view. The output encoded features are then concatenated before being 
projected into a lower dimension and further reduced to a 2 × 1 vector. Similar to the 
single-view model, the encoder block of the dual-view model is directly transferred from 
the SCP phase and fixed during the SF phase.

Sample selection strategy

During supervised contrastive learning, a batch of images is first randomly selected 
from the training set. Then, the positive and negative pairs are identified according to 
the sample labels within this selected batch [15]. Limited by the affordable batch size, 

(1)L(I , I ′) =
{

D2 if lI = lI ′

max
(

0,margin− D
)2

if lI �= lI ′ ,

(2)D =
∥

∥Psia(Esia(I))−Psia(Esia(I
′))

∥

∥

L2
,
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we experimented with two slightly different sampling strategies. One method is ran-
dom sampling, where the training batch includes N pairs of positive and negative image 
pairs directly sampled from the entire training set with the corresponding labels. Since 
our dual-view model takes input from a pair of images from the same patient, we also 
experimented with a patient-constrained sampling method, where each randomly sam-
pled positive or negative pair must come from the same patient. The training label comes 
from the main input as in Fig.  2. The auxiliary input will be another image from this 
patient.

Experiment design
In this section, we first provide preliminary knowledge about BI-RADS assessment cat-
egories. We then present the details of our dataset and describe our two clinically mean-
ingful screening tasks. The training parameter settings and evaluation metrics are also 
provided.

BI‑RADS assessment categories

BI-RADS is a widely adopted standard for risk assessment of breast cancer using unified 
terminology and reporting schema [36], applicable to mammography and other breast 
imaging modalities. It has seven numeric categories: 0 – Incomplete (need additional 
imaging evaluation); 1 – Normal; 2 – Benign; 3 – Probably benign; 4 – Suspicious for 
malignancy; 5 – Highly suggestive of malignancy; 6 – Known biopsy-proven malignancy. 
BI-RADS 0 is a special category, indicating that the subject needs to have further imag-
ing evaluation, such as additional mammographic views or other breast imaging modali-
ties. BI-RADS 0 is often regarded as between BI-RADS 3 and 4 by radiologists [37, 38]. 
In the literature [3, 21, 39], mammographic screening models have been developed and 
tested only with large-scale private datasets conforming to the realistic patient distribu-
tion. Since no similar public dataset is available, we follow the convention and perform 
experiments on our own large-scale datasets. BI-RADS categories can be assigned to a 
lesion, an image, a breast, or a patient. Our screening tasks use the image-level BI-RADS 
annotation.

Datasets

Our data for training and validation is collected from three collaborative hospitals at dis-
tinct geographical locations using three different vendors’ equipment and dated from 
2011 to 2018. Screening equipment is MAMMOMAT Fusion from Siemens Health-
ineers, Senographe Crystal from GE Healthcare, and Hologic. For this study, we collect 
Full-Field Digital Mammography (FFDM) only, as FFDM reduces overlapping tissue 
issues that can obscure small lesions and improves detection rates in dense breasts. All 
the data are initially stored in hospitals in PACS (Picture Archiving and Communication 
Systems). They have pixel values of  500–2000 HU. The original captured images are in 
DICOM format. To process DICOM images, we first apply Pydicom to extract its meta-
data and pixel data. Then, with normalization, windowing, and leveling, the image data 
turns into Numpy arrays that the deep learning models can process. Most of the dimen-
sions are 3328 x 4096 pixels with very few exceptions, on which we use zero-padding to 
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resize into the same dimension. We downsample them three times before sending them 
into models.

In our study, the dataset covers 30,487 patients, of which 13,931 patients have at least 
one side breast diagnosed as abnormal (other than BI-RADS  1), and 16,556 patients’ 
both breasts are diagnosed as normal/healthy (BI-RADS 1). Our 640-patient test set is 
collected within 31 consecutive days (March 2019) from one of those three hospitals, in 
which 405 patients have at least one side breast diagnosed as abnormal (other than BI-
RADS 1), and 235 patients’ both breasts are diagnosed as normal/healthy (BI-RADS 1). 
Mammograms in the test set come with biopsy-proven malignancy results. The image-
level details of our datasets are listed in Table 1. For abnormal cases, the BI-RADS cat-
egories are listed by increasing risk level, where BI-RADS 0 is often regarded as between 
BI-RADS 3 and 4 by radiologists [37, 38].

Public datasets like DDSM [40] have BI-RADS information on patients’ data. How-
ever, BI-RADS 1 data only accounts for less than 30% of the complete dataset, while it 
should be over 70% in real clinical cases. Thus, the dataset’s distribution is not consistent 
with screening mammography scenarios. Other public mammography datasets either 
contain no BI-RADS 1 patients’ data or only have diagnostic mammograms (when a 
screening mammogram does show an abnormality, a diagnostic mammogram may be 
needed). Besides, in the literature [3, 21, 39], screening models have also been developed 
and tested only with large-scale private datasets conforming to the realistic patient dis-
tribution. Since no similar public dataset is available, we follow the convention and per-
form experiments on our own large-scale datasets.

Our entire data collection has been approved by the ethics committee with the IRB-
number LL-XJS-2020011.

Experimental settings

The dataset is split into the training and validation sets by an 8:1 ratio. All input images 
are resized to 1008 × 800 and retain the original aspect ratio. All implementations 
use Python 3.11 and Pytorch 2.0.0. The SCP and SF phases share the following train-
ing parameter settings. The initial learning rate is 1× 10−5 with 4 warming-up steps 
and reduced to 1× 10−6 after 100 epochs. Adam is used [41], with a weight decay of 
5× 10−4 . Two NVIDIA A100 GPUs (40 G memory each) are used, and the batch size 
for contrastive learning is set to 12 due to the computation limit. The model training 
normally completes within 300 epochs. Our final model’s runtime is less than 3 s on our 
machine.

Evaluation metric

Since our goal is to screen out a portion of mammograms confidently, for Task 1 as in 
Sec. Task 1: mammographic abnormality screening, BI-RADS 1 mammograms are con-
sidered as positives, and other BI-RADS images are negative samples. While for Task 2, 
as in Sec. Task 2: mammographic malignancy screening, non-malignant mammograms 
are considered positives.

We set the sensitivity (recall rate of normal/non-malignant images) at 20%, which 
is commonly used in clinical studies for mammogram triage screening [42], and com-
pare the specificity rate (percentage of correctly classified abnormal images) of different 
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approaches. In addition, AUC is used to compare the overall performance of the classifi-
cation models. We then investigate how many abnormal images are incorrectly screened 
out as false positives. We use specificity (i.e., true negative rate) as the metric to indi-
cate how many abnormal images are correctly retained. Table 2 has illustrated the above 
details.

Task 1: mammographic abnormality screening

This triage screening task aims to identify normal mammograms (BI-RADS 1) with 
near-perfect accuracy in physical screening scenarios. Patients with any suspicious 
regions in the breasts should not be screened out as normal patients. This task can 
be further defined as a binary classification problem of BI-RADS 1 (normal/healthy) 
vs. other BI-RADS categories (abnormal). The majority of screening mammograms 
belong to BI-RADS 1; thus, screening them off can assist radiologists in reducing 
their workload. Our collaborative radiologists recommend this screening task because 
safely screening out a portion of BI-RADS 1 mammograms while retaining almost all 
the mammograms that are in the abnormal BI-RADS categories has huge potential 
to reduce the radiologists’ workload. Figure 3 shows examples of mammograms from 
normal and abnormal categories.

Task 2: mammographic malignancy screening

A malignancy screening aims to identify mammograms with malignant findings with 
high specificity so that we can confidently screen out some non-malignant patients. 
The malignancy screening has been well studied in the literature. In order to prop-
erly compare the performance of some recent methods with ours, we reformat our 
datasets into malignant and non-malignant portions. Since there is no hard bound-
ary to divide the BI-RADS categories regarding malignancy, biopsy is regarded as the 
gold standard of malignancy determination. However, a biopsy is not applied to every 
patient, depending on the follow-up clinical recommendation after the screening. We 
simplify this task by gathering BI-RADS  1∼ 3 into the non-malignant class and BI-
RADS 4∼ 6 into the malignant class. BI-RADS 0 is excluded due to its uncertainty of 
malignancy. Several recently representative methods [3, 6, 20], which have been tested 
on their own large-scale datasets, are selected and re-implemented. In particular, Yala 
et al. [6] proposed a classic multi-view-based method; Shen et al. [4] and Truong et al. 

Fig. 3  Examples of mammograms in our dataset. The left two are normal cases and the right four are all 
abnormal mammograms, with mass, architectural distortion, and calcification in them



Page 10 of 17Cao et al. Journal of Big Data           (2025) 12:24 

[5] represented the latest SOTA multi-view screening methods with mammography. 
All three approaches have been tested on large-scale datasets. We compare their 
performance with our proposed method in Sec. Task 2: mammographic malignancy 
screening task. The training parameter settings are as in Sec. Experimental settings.

Experimental results and discussion
Task 1: Mammographic abnormality screening task

We first present our experimental results of the mammographic abnormality screen-
ing task (BI-RADS  1 vs. other BI-RADS categories) on the test set using methods 
listed in Table 2 according to the evaluation metrics described in Sec. Evaluation met-
ric. Table 2 shows the performance comparison of the triage screening task with dif-
ferent approaches, where Yala et  al.  [6], Shen et  al.  [4] and Truong et  al.  [5] are all 
previous SOTA models, alongside our proposed single-view and dual-view models 
with different SCP+SF training strategies. We also scrutinize the number of abnormal 
images that are incorrectly screened out from the 1192 abnormal images in the test 
set and further break it down according to the BI-RADS level (in the order of 2, 3, 0, 
4, 5, 6). Therefore, a non-zero number appearing at a later position in the last column 
of Table 2 has a more harmful impact on performance. To demonstrate the efficacy of 
our design, we next interpret Table 2 from three aspects as follows.

Comparisions with previous SOTA methods

We re-implemented the previous SOTA approaches for this comparison. Our single-
view model with SCP+SF and random sample selection generates the best single-view 
performance. Our dual-view model trained with SCP+SF and patient-constrained 
sample selection (Row 6) generates the best result overall, outperforming Shen  [4] 
and Truong  [5], which are both previous SOTA screening models. At higher sensi-
tivity, such as 0.8, our SCP+SF with patient-constrained sample selection method 
improves the specificity from 0.806 to 0.888 compared to our vanilla dual view model. 
We have also included three SOTA models for natural image classification for com-
parision in Table 2, ViT [43], Swin-Transformer [44], and ConvNexT-Base [45].

Effectiveness of SCP+SF

As shown in Table 2, for both single-view and dual-view models, the SCP+SF frame-
work effectively improves the overall performance of the models, including the AUC 
and the specificity at given sensitivity (20%). In turn, the number of total incorrectly 
screened abnormal images is reduced. In addition, for the dual-view model, the 
SCP+SF framework can completely remove the error made for BI-RADS 4,5,6 images, 
which is critical in practice since those images often correspond to higher cancer risk. 
Such results would enable a confident deployment of such AI system as it confidently 
screens out no-risk cases. In comparison, existing methods  [4–6] still have misclas-
sified BI-RADS 4,5,6 cases in Table  2, which, in physical examination scenarios, 
would be risky. For the single-view model, the SCP+SF framework can also reduce 
the error for BI-RADS 5,6 images to near zero. We further confirm from the separate 
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biopsy reports that the incorrectly screened images from the dual-view methods with 
SCP+SF do not include any malignant findings.

Table 4 shows the ablation study results of the backbone in SCP. We compare a set 
of ResNets  [46] and ConvNexTs  [45] an see no significant difference between them. 
To run the system efficiently, ConvNext-Small has been selected to serve our encoder.

To evaluate the impact of data augmentation, we train our state-of-the-art (SOTA) 
model from Table 2 using standard data augmentation techniques, including flipping, 
rotation, and Gaussian noise addition. Despite employing the same training recipes, 
the AUC and specificity on the test set are 0.8806 and 0.9801, respectively, both fall-
ing short of the current SOTA results.

Effectiveness of patient‑constrained training strategy

To compare our proposed patient-constrained training strategy, we develop another 
training approach that selects two random images from the entire dataset (Row 5 and 8). 
Patient-constrained sampling improves the dual-view model over the random sampling 
method, while random sampling is slightly better than the patient-constrained sampling 
for the single-view model, and both are consistent with our expectations.

Mammograms from the same patients have many similarities in terms of texture, den-
sity, etc. Our patient-constrained training strategy in the SCP phase enables the encoder 
to learn the patient-level similarities and dissimilarities of the same patient. This strategy 
is able to narrow down the solution space when a bilateral dual-view input structure is 
given in the SF Phase. However, such characteristics don’t exist for single-view models. 
As a result, this strategy only improves the performance of dual-view-based models in 
Table 2.

Task 2: mammographic malignancy screening task

The performance comparison among various methods is shown in Table 3, where the 
AUC values are for the non-malignant class, and a sensitivity of 20% means that 20% 
non-malignant mammograms are confidently screened out from all non-malignant 
mammograms. In our dual-view-based methods, the effectiveness of the SCP phase 
is again demonstrated, and the efficacy of the patient-constrained training strategy 
is also validated over the random-selection-based one. Even though the SOTA multi-
view-based method (Row 3) is slightly better than our dual-view-based SF phase with-
out SCP (Row 4), our complete method of dual-view-based SF with patient-constrained 
SCP (Row 6) surpasses all previous SOTA methods by reporting the best AUC value 
of 0.9270. The specificity value of 100% means that there isn’t any malignant image 
screened out as a false positive non-malignant one. We thus confidently state that our 
method achieves the SOTA performance on the mammographic malignancy screening 
task. Figure  5 shows that the AUC values are in line with the training epochs on our 
validation set, using our best method (Row 6 in Table  3). We see that the AUC value 
is rising up significantly while the training epoch is increasing. Similar to the previous 
section, we have also experimented with three SOTA image classification approaches, 
ViT [43], Swin-Transformer [44], and ConvNexT-Base [45]. However, the results are far 
from competitive, with their AUCs reaching 0.8241, 0.8298, and 0.8369.
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Figure 4 also shows t-SNE visualization of the malignant and non-malignant outputs 
of the Siamese contrastive learning module on the test set data before and after the SCP 
phase. We observe that the SCP phase significantly pulls the diffuse malignant samples 
out from the non-malignant samples and effectively forms two clusters in an embedding 
space. The effectiveness of SCP is again demonstrated.

Discussion of the results

Technical aspect

All prior methods for building reliable AI systems in medical domains face the com-
mon challenge of limited labeled data. These methods typically rely on direct supervised 
training, which heavily depends on hand-crafted data augmentation techniques to com-
pensate for the scarcity of labeled examples. While contrastive pre-training with large 
amounts of unlabeled data has been successfully adopted in other fields to mitigate data 
shortages-owing to the ease of acquiring such data-this approach is impractical in mam-
mography screening due to the difficulty of collecting extensive datasets for unsuper-
vised contrastive pre-training.

To address these limitations, our method introduces Supervised Contrastive Pre-
training (SCP), leveraging limited labeled data without requiring additional data 

Fig. 4  Visualization of the malignant and non-malignant outputs of the Siamese contrastive learning module 
on the test set data before and after the SCP phase by t-SNE. (a) Distribution before the SCP phase. (b) 
Distribution after the SCP phase. x,y axes indicating the projection plane before the Sigmoid function

Table 1  Number of mammograms in each BI-RADS category

Type BI-RADS Dataset

Train & Val Test

Abnormal 2 35290 728

3 14508 226

0 1570 136

4 3288 88

5 732 6

6 174 8

Total 55562 1192

Normal (Healthy) 1 78926 1346

Total 134488 2538
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Table 2  Performance comparison of different approaches on the abnormality triage screening task 
(task 1). SCP+SF(R) refers to SCP with random sample selection and SCP+SF(PC) indicates SCP with 
patient-constrained sample selection as in Sec.  Sample selection strategy.The last column shows 
the number of incorrectly screened abnormal images with a breakdown according to their BI-RADS 
levels (in the order of 2, 3, 0, 4, 5, 6). The 95% confidence intervals (CI) are shown in the square 
brackets. Bold values represent the achieved best results

Method AUC​ Sensitivity = 20%

Specificity # of incorrectly 
screened out 
images out of 1192
abnormal images

Yala et al. [6]    2021) 0.8452 [0.8432, 0.8476] 0.9748 [0.9712, 0.9778] 30 (10, 8, 9, 2, 0, 1)

Shen et al. [4]    (2021) 0.8602 [0.8529, 0.8681] 0.9765 [0.9737, 0.9793] 28 ( 8,11, 8, 1, 0, 0)

Truong et al. [5] (2023) 0.8733 [0.8707, 0.8765] 0.9790 [0.9766, 0.9814] 25 ( 8, 7,  9, 1, 0, 0)

ViT  [43] (2020) 0.8555 [0.8551, 0.859] 0.9706 [0.9701, 0.9709] 35 (11, 12, 9, 3, 0, 0)

Swin-T  [44] (2022) 0.8688 [0.8685, 0.8691] 0.9732 [0.9725, 0.9739] 32 (10, 10, 9, 3, 0, 0)

ConvNexT [45] (2022) 0.8342 [0.8328, 0.8356] 0.9673 [0.9665, 0.9680] 39 (13, 13, 7, 5, 1, 0)

Single-view 0.8348 [0.8327, 0.8372] 0.9713 [0.9688, 0.9739] 34 ( 7, 9, 14, 2, 1, 1)

Single-view SCP+SF (R) 0.8512 [0.8486, 0.8544] 0.9740 [0.9736, 0.9754] 31 ( 8, 9,10, 2, 0, 0)

Single-view SCP+SF (PC) 0.8441 [0.8380, 0.8502] 0.9757 [0.9721, 0.9793] 29 (10, 6,11, 1, 0, 1)

Dual-view 0.8566 [0.8540, 0.8592] 0.9782 [0.9764, 0.9800] 26 ( 7, 8, 10, 1, 0, 0)

Dual-view SCP+SF (R) 0.8888 [0.8829, 0.8947] 0.9815 [0.9796, 0.9834] 22 ( 7, 5, 10, 0, 0, 0)

Dual-view SCP+SF (PC) 0.9046 [0.9007, 0.9085] 0.9841 [0.9825, 0.9859] 19 ( 7, 5,  7, 0, 0, 0)

Table 3  Results of the mammographic malignancy screening task (task 2). The 95% confidence 
intervals (CI) are shown in the square brackets. Bold values represent the achieved best results

Method AUC​ Spe. (Sen. = 20%)

Yala et al. [6] (2021) 0.8671 [0.8667, 0.8671] 0.9808 [0.9804, 0.9811]

Shen et al. [4] (2021) 0.8946 [0.8940, 0.8952] 0.9902 [0.9899, 0.9905]

Trong et al. [5] (2023) 0.9071 [0.9069, 0.9074] 0.9902 [0.9901, 0.9903]

Dual-view 0.8929 [0.8922, 0.8936] 0.9804 [0.9797, 0.9801]

Dual-view SCP+SF (random) 0.9070 [0.9065, 0.9075] 1.0 [1.0, 1.0]
Dual-view SCP+SF (patient-constrained) 0.9270 [0.9264, 0.9276] 1.0 [1.0, 1.0]

Table 4  Ablation study on different encoders in SCP.   Bold values represent the achieved best 
results

Encoder AUC​ Specificity 
(Sen.=20%)

ResNet-22 0.9040 98.32%

ResNet-34 0.9013 98.15%

ResNet-50 0.8993 98.15%

ConvNexT-Tiny 0.9025 98.29%

ConvNexT-Small 0.9046 98.41%
ConvNexT-Base 0.8975 97.99%
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augmentation. This innovative design not only harnesses the benefits of contrastive 
pre-training to enhance model generalizability but also eliminates the need for hand-
crafted data augmentation strategies. Subsequent Supervised Fine-tuning (SF) further 
refines the model’s representation capabilities, leading to superior performance. Table 2 
and 3 highlight the state-of-the-art (SOTA) results achieved by our SCP+SF framework, 
beating existing approaches. Moreover, our dual-view input paradigm capitalizes on the 
inherent symmetry of mammograms, improving model performance. The patient-con-
strained sample selection strategy effectively narrows the solution space, complementing 
the dual-view approach. Both strategies have been validated through ablation studies, as 
shown in Table 2.

Clinical aspect

Previous methods in mammography screening have primarily focused on identifying 
abnormal or malignant cases. However, due to limitations in achieving near-perfect 
sensitivity and specificity, these methods often require significant human intervention, 
making their deployment in real clinical settings challenging. In contrast, our system tar-
gets a different aspect of clinical need. In physical examination scenarios, the majority of 
screening mammograms fall under BI-RADS category 1, indicating no apparent abnor-
malities. Our AI system aims to confidently recognize a portion of healthy (BI-RADS 
1) cases while ensuring that nearly all abnormal mammograms are retained for further 
review. Specifically, our experimental results demonstrate that when screening out 20% 
of normal cases, no instances from BI-RADS categories 4, 5, or 6 were misclassified by 
our AI system. Consequently, this AI system can be effectively deployed to assist radiol-
ogists in reducing their workload by confidently screening out certain BI-RADS 1 cases. 
By identifying abnormalities and malignancies that human radiologists may overlook, 
AI can contribute to earlier diagnosis, which is crucial for effective treatment and better 
outcomes. With improved accuracy and less overdiagnosis, patients may experience less 
anxiety and uncertainty while awaiting results. This capability significantly reduces the 
workload for radiologists by allowing them to focus on more complex cases and enhance 
their efficiency without compromising diagnostic accuracy.

Fig. 5  AUC vs. training epochs for the malignancy screening task
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Limitations and future prospects

There are still a few limitations of this work that need improving in the future. First, it 
has yet to be tested on an open-world dataset to prove its universal practicability. The 
lack of diversity could lead to dataset bias. Hence, we are working on agreements with 
other medical centers in Hong Kong and Macau that contain mammograms screened 
by vendors different from our current ones. By doing so, we will enlarge our dataset 
to foster its generality. Second, the runtime needs to accelerate through better parallel 
processing. Embedding ZeRO [47] is one solution we believe could benefit the overall 
runtime, and we will work on one next up. Besides, a great portion of incorrect predic-
tions are caused by occlusion at different viewing angles. We believe including modali-
ties other than mammography, like hispathological data and MRI, can not only alleviate 
the impact of this problem but also has high clinical value, as they all count as clinically 
meaningful approaches to screening breast cancer. Lastly, inspired by the recent success 
of large foundation models, we will work to build them into our current pipeline.

Conclusion
Mammography screening is the most effective and widely used approach for early 
breast cancer detection. Due to the heavy workload of radiologists, an AI system serv-
ing as their daily assistant would greatly ease their pressure. This paper presents a novel 
framework of Supervised Contrastive Pre-training followed by Supervised Fine-tuning 
(SCP+SF) for two critical mammography screening tasks. Different from the previous 
supervised learning methods, the proposed framework leverages the limited medical 
data well without any data augmentation operation. Our extensive experiments dem-
onstrate that the SCP+SF framework can substantially improve the final model perfor-
mance. When compared with previous approaches, the proposed framework achieves 
SOTA performance on both mammography screening tasks.

Such an AI system has great potential to boost medical service efficiency and even-
tually improve the breast cancer survival rate. The AI system can minimize errors due 
to fatigue or cognitive overload experienced by radiologists, particularly during high-
volume screening. In real medical and clinical scenarios, especially in physical exami-
nation departments or physical examination centers, radiologists can quickly filter out 
confidently normal or malignant cases on the PACS (Picture Archiving and Commu-
nication Systems) device deployed with this AI software. This can significantly reduce 
the workload of radiologists in the remaining physical examination scenarios, freeing up 
their energy and time to focus more on patients with more ambiguous and controversial 
conditions.
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