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Abstract

Deep learning models have found extensive application in medical imaging analysis, particularly in mammography classi-
fication. However, these models encounter challenges associated with limited annotated mammography public datasets. In
recent years, self-supervised learning (SSL) has emerged as a noteworthy solution to addressing data scarcity by leveraging
pretext and downstream tasks. Nevertheless, we recognize a notable scarcity of self-supervised learning models designed for
the classification task in mammography. In this context, we propose a novel self-supervised learning model for limited-sample
mammogram classification. Our proposed SSL model comprises two primary networks. The first is a pretext task network
designed to learn discriminative features through mammogram reconstruction using a variational autoencoder (VAE). Sub-
sequently, the downstream network, dedicated to the classification of mammograms, uses the encoded space extracted by
the VAE as input through a simple convolutional neural network. The performance of the proposed model is assessed on
public INbreast and MIAS datasets. Comparative analyzes are conducted for the proposed model against previous studies for
the same classification task and dataset. The proposed SSL model demonstrates high performance with an AUC of 0.94 for
density, 0.99 for malignant-nonmalignant classifications on INbreast, 0.97 for benign-malignant, 0.99 for density, and 0.99 for
normal-benign-malignant classifications on MIAS. Additionally, the proposed model reduces computational costs with only
228 trainable parameters, 204.95K FLOPs, and a depth of 3 in mammogram classification. Overall, the proposed SSL model
exhibits a robust network architecture characterized by repeatability, consistency, generalization ability, and transferability
among datasets, providing less computational complexity than previous studies.
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1 Introduction The early diagnosis of breast cancer is critical for effective

treatment and for reducing mortality rates [1]. X-ray mam-

Breast cancer is the most prevalent type of cancer worldwide,
with 2.26 million new cases and 685,000 reported deaths in
2020, according to the World Health Organization (WHO).
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mography screening serves as the predominant method for
the early diagnosis and examination of suspicious lesions in
breast tissue due to its high-resolution imaging capabilities
and the visualization of abnormalities. However, the diag-
nostic process based on mammography is labor intensive,
time-consuming, and demanding in its need for specialized
expertise for accurate interpretation. Moreover, the manual
identification of certain lesions in mammography poses chal-
lenges, particularly in glandular and highly dense breast
tissue [2]. Mammography also has limitations, failing to
detect at least 25% of cancers, with approximately 10-15%
of cases requiring additional screening modalities such as
ultrasound to identify lesions [3]. In response to these chal-
lenges, and to mitigate costs associated with supplementary
screening, computer-aided diagnosis systems (CADs) have
emerged as valuable decision support tools for experts [4-6].
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Deep learning has gained substantial attention and endor-
sement from many researchers spanning diverse domains,
encompassing computer vision [7], fault diagnosis [8],
speech recognition [9], recommendation systems [10, 11],
and medical image analysis [12, 13]. Foundational deep
learning architectures include convolutional neural networks
(CNNp&s), autoencoders such as the variational autoencoder
[8, 14] and the stacked denoising autoencoder [15], genera-
tive adversarial networks (GANS) [16], deep belief networks
(DBN) [17], long short-term memory (LSTM) networks, and
transformer networks [ 10]. In addition, the hybrid versions of
these basic structures are applied, such as the combination of
LSTM and DBN networks [18]. Notably, CNNs are widely
recognized as the most popular type of deep learning net-
work for capturing robust, discriminative, and local features
from raw datasets thanks to the convolutional mechanism. In
summary, deep learning, particularly in the form of CNNs,
has become a critical and successful application in automated
mammogram classification. Deep learning assumes a pivotal
role as a CAD system, providing valuable support to expert
radiologists across various domains.

The scarcity of extensive, publicly available datasets poses
a significant challenge for medical image analysis studies,
particularly for deep learning approaches such as mammog-
raphy imaging. This challenge arises because deep learning
models require substantial data to effectively learn the numer-
ous parameters involved. Furthermore, deep learning models
often encounter overfitting issues when applied to limited
datasets, thus falling short of their intended generalization
capabilities. Addressing the shortage of mammogram data by
collecting and publicly releasing a large volume poses prac-
tical challenges in the short term. These challenges include
concerns related to patient privacy, time constraints, costs,
and the expertise required for such endeavors. Consequently,
the development of strategic approaches within deep learn-
ing models is imperative in order to surmount the limitations
imposed by inadequate data in mammography screening.
Various strategies have been employed to mitigate overfit-
ting challenges in deep networks when dealing with limited
data. These strategies include data augmentation, synthetic
data generation, multi-task learning, and the use of transfer
learning models [19]. Despite the application of these strate-
gies, enhancing the performance of deep learning models
under limited data scenarios remains a formidable task [20].

In the past few years, self-supervised learning (SSL)
strategies have attracted remarkable attention because of
their ability to handle learning tasks utilizing pretext tasks
in data scarcity [21-23]. The pretext task is pre-designed
as the preliminary task for learning discriminative features
on unlabeled data to be used in downstream tasks, such as
classification, detection, and segmentation. Commonly used
pretext tasks are categorized as generation based, context
based, free-semantic-label based, or cross-modal based [24].

The purpose of the generation-based pretext task is to learn
the features of images during the generation process, such as
image inpainting [23], image colorization [22], image gener-
ation, and image super resolutions [25], with GANs [16] or
autoencoder-based networks [26]. On the other hand, other
approaches aim to learn visual features by solving pretext
tasks that are similar to context for context-based, generat-
ing semantic labels for the free-semantic-label based, and
verifying inputs with the bi-channel network cross-modal-
based. Chee et al. [27] designed AIRNet affine registration
for 3D MRI brain images by leveraging discriminative visual
features. Chen et al. [28] applied context restoration as a pre-
text task on 2D ultrasound images for detection, CT images
for localization, and brain MRI for segmentation. Accord-
ing to the proposed strategy for learning semantic features,
two small patches are randomly selected, swapped, and then
reconstructed. While repeating this swapping process several
times, the intensity distribution is preserved, but spatial con-
texts change [28]. Zhou et al. [29] introduced Model Genesis
on CT and X-ray images using various transformers with
an autoencoder-based network. Thus, the proposed model
by [29] provides more generalization ability with different
transformations of images to improve the performance of
segmentation and classification [30]. Gildenblat et al. [31]
defined the Siamese network for image similarity as the first
self-supervised model of histopathology WSIs. Thus, a large
set of pairs extracted from histopathology WSIs are automat-
ically annotated by similarity learning without any manual
annotation owing to self-learning strategy [31]. Talep et al.
[32] proposed a multimodal puzzle task as a self-supervised
model for brain tumor segmentation and for predicting sur-
vival days on multimodalities. To et al. [33] proposed a
self-supervised model for anomaly detection and localization
on brain MRI, which uses a variational encoder to recon-
struct images and a Siamese U-net for pseudo-labeling. In
summary, as a common approach, SSL has emerged as a
robust, repeatable, and accurate strategy in light of the lack
of annotated data utilizing semantic visual features from the
data itself via a pretext task.

We found a noticeable lack of self-supervised learn-
ing models for the mammography-based classification task,
resulting from limited annotated data. To this end, we pro-
pose the use of a self-supervised model for mammogram
classification for various tasks and datasets. The model we
propose involves two main steps. First, a pretext task network
is generated with a VAE to capture discriminative fea-
tures of whole mammography images during reconstruction
mammograms. Second, the downstream task of classifying
mammograms is carried out with encoded space extracted by
VAE. The proposed SSL model has been evaluated on public
INbreast and MIAS mammography datasets. The proposed
SSL model is designed to handle various tasks, including den-
sity, malignant-nonmalignant, and normal-benign-malignant
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classification tasks. Furthermore, the results were compared
with related works designed in the same classification task
on INbreast and MIAS datasets that used end-to-end deep
learning models and a self-supervised learning model [20],
as explained in Section 2. The main contributions of this
study are as follows:

e We proposed a new self-supervised learning classifica-
tion model for a limited number of mammogram samples.

e The proposed SSL provides higher performance than pre-
vious studies, including a self-supervised model [20] for
whole image-based classification.

e The proposed SSL exhibits greater generalization ability
on small mammography datasets without high variance.

e The proposed SSL provides ease of computation com-
plexity with lower dimensional representations by enco-
ded space and lower computational complexity suitable
for small datasets.

e In contrast to findings by [34] et al., which suggest that
deep learning models perform well on a specific mammo-
gram dataset but lack transferability to unknown external
datasets, our research demonstrates the transferability of
the encoded space from the INbreast dataset during train-
ing to an unknown external dataset (MIAS).

2 Related works on mammogram
classification

Gong et al. [20] proposed a task-driven self-supervised bi-
channel networks (TSBN) framework using self- supervised
learning strategies to be trained on the INbreast dataset.
TSBN has two main networks: (1) a pretext task designed
with new contributions gray-scale image mapping (GSIM)
for the reconstruction of mammograms using UNET [35] and
the Residual Dense Network (RDN), and (2) a downstream
network for malignant and nonmalignant classification con-
structed using ResNet50 as the backbone network. The
combined features generated by the two networks are fed
into the collaborative transfer module to improve classifica-
tion performance based on the transfer learning mechanism
between the bi-channel networks. As a result, the TSBN
achieved higher performance (85.78% accuracy) than fine
tuning-based SSL algorithms for the classification of mam-
mograms on a limited INbreast dataset.

Shen et al. [36] proposed an “end-to-end” deep learning
model for ROI-based and whole image-based breast can-
cer detection on CBIS-DDSM [37] and the INbreast [38]
datasets. They used Resnet50 and VGG16 networks by com-
bining the mediolateral oblique (MLO) and cranial-caudal
(CC) views with a simple implementation that considered
the average of model evaluations on separate views. As
a result, the proposed four-model averaging improved the
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AUC from 0.88 to 0.91 on CBIS-DDSM and from 0.95
to 0.98 on INbreast, surpassing the best single model for
ROI-based classification. Regarding whole image classifica-
tion, the models trained on CBIS-DDSM and transferred to
INbreast achieved AUC between 0.87 and 0.92 on indepen-
dent training subsets of the INbreast for fine-tuning.

Wang et al. [34] focused on the inconsistency of deep
models. They tested different deep models (e.g., AlexNet
[39], VGG16 [40], and ResNet50 [41] to extract mammo-
gram features, followed by classifier networks built using
CNN. They also compared the performances of AlexNet,
VGG16, and ResNet50 as end-to-end networks. As a result,
they highlighted that different deep learning models trained
on the DDSM dataset with high performance were not found
to be transferable to testing on another public dataset, result-
ing in worse performance in each case.

Zhao et al. [42] introduced a novel bilateral adaptive spa-
tial and channel attention network (BASCNet) that used
Resnet as the backbone for breast density classification using
single view (CC or MLO) and multi-view (CC and MLO)
images. They also compared different Resnet series, which
are Resnetl8, Resnet 34, Resnet 50, Resnet 101, Resnet
152, regarding single views and multi-views on INbreast
and DDSM. Resnet18-based BASCNet has achieved the best
performance with multi-view mammograms on INbreast,
with 90.51 accuracy. Zhao et al. also focused on transfer-
ring the models trained on different datasets, and the models
on INbreast with pre-training on DDSM performed worse
than those trained only on INbreast. On the other hand, they
observed that the deeper networks lacked generalization abil-
ity. As a result, they emphasized that the generalization and
transfer among deep models’ datasets is an unsolved issue.

Li et al. [43] introduced a model based on dilated and
attention-guided residual learning for multi-view density
classification of mammograms. They assessed their pro-
posed model on private clinical and INbreast datasets,
demonstrating classification accuracies of 88.7% and 70.0%,
respectively. Incorporating multi-view perspectives (CC and
MLO), as well as sharing parameters across different streams,
significantly enhanced the model’s performance on clinical
datasets. Despite the fact this proposed model outperformed
both naive residual networks and recently developed deep
learning methods on the private clinical dataset, it pro-
duced less accurate results on the public dataset, which the
researchers attributed to its smaller size.

Houby et al. [44] presented CNN models for malig-
nant and nonmalignant classification by using patches of
the region of interest (ROI) and whole images on MIAS,
INbreast, and DDSM mammography benchmark datasets.
They reported satisfactory performance on both ROI-based
and whole image-based tasks. The proposed pipeline per-
forms preprocessing steps, augmentation, and resizing before
classification. In whole image classification for MIAS,
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their proposed model achieved 93.39 accuracy, 0.945 AUC,
92.72 sensitivity, 94.12 specificity, 93.58 f1; for INbreast, it
achieved 93.04 accuracy, 94.6 AUC, 94.83 sensitivity, 91.23
specificity, and 93.22 f1.

Razali et al. [45] integrated artificial intelligence (AI)
into breast screening processes, acknowledging challenges
related to diverse patient demographics and non-standardized
configurations of intelligence models. They proposed an
enhanced classification model using a deep learning approach
with a CNN) and a support vector machine (SVM). The
method outperforms existing approaches in classifying breast
density regions by utilizing pre-trained CNN models such
as GoogleNet, ResNet50, ResNet101, and AlexNet, with
SVM as a classifier. Notably, ResNet50 and GoogleNet com-
bined with SVM exhibit significant improvements, with over
94% accuracy and an AUC exceeding 0.95 on MIAS. The
model demonstrates strong feature extraction capabilities,
suggesting potential applications in detecting malignancy
from screening mammogram images.

Louetal. [46] proposed a two-stage method that combines
image preprocessing and model optimization. The first step
is designed for preprocessing mammograms to improve the
signal-to-noise ratio (SNR) and physiological characteristics.
Their proposed model reduces manual labeling requirements
by eliminating reliance on labor-intensive ROI annotations.
The second step presents an ECA-Net50 model based on
ResNet50 that incorporates an efficient channel attention
(ECA) module for benign and malignant classification on
an imbalanced mammogram dataset. ECA-Net50 was eval-
uated on the INbreast dataset and achieved an AUC value of
0.960, accuracy of 0.929, recall of 0.928, and precision of
0.883.

Jiang et al. [47] introduced a three-stage deep learning
framework for breast cancer detection and classification by
leveraging the probabilistic anchor assignment (PAA) algo-
rithm. In the first stage, a PAA-based detector identifies
suspicious breast lesions in mammograms. Following this,
a two-branch ROI detector is introduced to classify and
regress lesions, effectively minimizing false positives with
a threshold-adaptive post-processing algorithm. The final
stage involves an ROI classifier that combines local-ROI and
global-image features to classify lesions as benign or malig-
nant. Additionally, an image classifier is introduced to per-
form whole mammogram classification, utilizing the same
global image features. Their proposed model integrates with
three public mammogram datasets (CBIS-DDSM, INbreast,
MIAS). It also enhances diagnostic efficiency by automati-
cally detecting and classifying breast lesions for benign and
malignant mammograms compared to recent state-of-the-art
methods.

In summary, the general trend adopted by deep learning
studies is to use end-to-end transfer learning networks trained
by large amounts of natural data, such as ImageNet [48],

to enhance generalization on limited mammogram datasets.
Some studies employed a two- or three-stage approach
to enhance the performance of classification, addressing
challenges associated with insufficient dataset size. On
the other hand, recently, SSL models have been applied
to mammography-based classification tasks [20]. We per-
formed a comparative study of mammogram classification
on INbreast and MIAS datasets, evaluating the performance
and computational complexity of our proposed SSL model
against those of previous models.

3 Materials and methods

The proposed SSL model consists of two steps for mammo-
graphy-based classification. The proposed SSL model is
given in Fig. 1.

1. The first step is image reconstruction with a variational
autoencoder (VAE), defined as a pretext task before
the main task. Thus, deep probabilistic features have
been extracted from high-dimensional data into low-
dimensional space by VAE in an unsupervised manner.

2. The second step is classification, using the encoding vari-
ables extracted by VAE as a downstream task.

3.1 Pretext task network with a variational
autoencoder

A variational autoencoder (VAE) is an unsupervised and gen-
erative deep learning model introduced by Kingma et al. in
2013 [49]. The VAE is formed by a probabilistic encoder net-
work and decoder network based on Bayesian inference [49,
50]. First, the encoder network encodes image (x) to latent
vector (z) by computing the approximated posterior distribu-
tion g, (z|x). The latent space is calculated with mean (i),
standard deviations (o) and random variable ¢ ~ N (0, 1)
as follows:

zi = (i +0i-€) ~ qe(z]x) (D

The decoder network decodes latent vector z to x’ (recon-
structed image) by maximizing the marginal log-likelihood
po(x]z). The basic VAE uses reconstruction 1oss (L;¢c)
and Kullback-Leibler divergence (L) loss for minimizing
reconstruction error between x and x’, which is calculated as
follow :

Lyec = _Eq(p(zlx)[log Po(x]2)] )
Lkr = Dkr(qe (z|x) llo(x]2) 3)
L =1L+ Lgr “)
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Fig.1 The proposed
self-supervised model for
classifying mammogram images
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The pretext task network, incorporating a VAE, is illus-
trated in Fig. 2. Within the VAE network, the encoder tries to
map an image of fixed dimensions (640, 800, 1) onto a latent
space with dimensions (640, 1). Simultaneously, the decoder
network strives to reconstruct the image to its original size.
The encoder, receiving an input image of shape (640, 800,
1), systematically diminishes its spatial dimensions through
three 2D convolutional layers employing a (3,3) kernel size,
ReLU activation, and subsequent max-pooling layers. The
resulting flattened representation undergoes dense layers,
yielding mean (u) and log variance (o) vectors. A Lambda
layer computes the final latent vector (z). The decoder gets
the latent vector (z) as input and reconstructs the original
image through a dense layer, transforming the latent vector
into a format compatible with the decoder. A reshape layer
then converts the 1D output to a 4D tensor. Consequently,
the decoder network comprises three 2D transposed convo-
lutional layers with a (3,3) kernel size and ReLU activation,
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followed by up-sampling layers that progressively decrease
filters. The ultimate output shape signifies the reconstructed
image as (640, 800, 1). Additionally, L1 and L2 regulariza-
tion are applied to the dense layers in both the encoder and
decoder, contributing to the model’s generalization and mit-
igating overfitting concerns.

In summary, the VAE facilitates image representation and
compresses data from a high-dimensional dataset into an
allowable dimensional latent space using a learned non-linear
map. In the encoding process, the encoder network of VAE
endeavors to extract deep probabilistic features from high-
dimensional data and transform them into a low-dimensional
space. This study concentrates explicitly on the latent space,
characterized by mean (u) and standard deviation (o) vec-
tors, within the context of a classification task. Consequently,
the VAE is configured as a pretext task preceding the main
classification task and trained in an unsupervised manner
with MIAS and INbreast datasets to extract self-features for
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Fig. 2 The detailed encoder and decoder networks of VAE. The encoder network comprises three 2D convolutional layers with max-pooling
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each dataset. Thus, two separate VAE models were developed
for the INbreast and MIAS datasets to obtain an encoded
space for subsequent use in the classification step.

3.2 Downstream task network with convolutional
neural networks

Convolutional Neural Networks (CNN) [51] are generally
built up with convolutional, pooling, and fully connected
layers. While convolution layers extract features and pool-
ing layers reduce the dimension of the extracted features,
the last layer, which is fully connected, is used for classifi-
cation. According to filtering and downsampling strategies,
CNN-based classifier models are frequently used in computer
vision tasks, including medical image analyses.

In this study, we used a simple CNN model for dealing
with over-fitting problems on limited data for classification
and took low dimensional encoded space extracted by the
VAE as an input. Thus, the classification model has only one
1D convolutional layer employing a 3-kernel size, ReLU
activation, followed by a global average pooling layer and
the last fully connected layer for classification. The classi-
fier model considers only the encoded space vector as an
input vector in both training and testing to classify data
that are in breast density range 0 to 3, benign-malignant,
malignant-nonmalignant, and normal-benign-malignant. In
summary, after the VAE extracts encode feature spaces in
an unsupervised manner, the classifier model tries to model
a low-dimensional encoded space vector (640,3) instead of
high-dimensional mammography images (640,800,1). The
computational complexity of the proposed models for each
network is given in Table 1.

4 Experimental study and results
4.1 Dataset
4.1.1 INbreast

This study used the INbreast dataset due to the high quality
and limited digital mammogram images published by [38].
The INbreast dataset has 115 cases and 410 digital mam-
mography images. We analyzed the proposed model’s per-
formance on two different classification tasks in the INbreast
dataset: density classification and malignant-nonmalignant
classification. In the density classification, the classification
model tries to classify breast density ratios that are fatty
(0-25 %), of scattered density (26-50 %), heterogeneously
dense (51-75 %), and extremely dense (76-100 %). On the
other hand, in the malignant and nonmalignant classifica-
tion, BI-RADS 1 and 2 (but not BI-RADS 3) were targeted
as nonmalignant, and BI-RADS 4, 5, and 6 were targeted as

@ Springer

Table 1 The computational complexity of the proposed models is
evaluated by including the number of depths, FLOPs (Floating-point
Operations), and parameters

Network Subnetwork Depth FLOPs(G) Parameters
Pretext Task Encoder of VAE 10 0.163 52.22M
Network
Decoder of VAE 9 0.147 41.03M
VAE 19 0.311 93.25M
Downstream CNN 3 0.000205 228
Network

(204.95K)

malignant. The number of images belonging to each class in
INbreast is given in Table 2.

We used the data augmentation techniques of horizon-
tal flipping and applying preprocessing before training
with VAE on mammography images from the INbreast
dataset. First, 410 mammography images were increased
to 1230 using contrast-limited adaptive histogram equaliza-
tion (CLAHE). Then, the originals and the CLAHE images
were horizontally flipped; consequently, the total number of
images increased to 2460. The augmented mammography
dataset was combined into one class and split into train-
ing and validation sets in ranges of 75 and 25 for the VAE
model, respectively. There was no augmentation in classifi-
cation except with regard to the malignant training set. The
number of images in the malignant train set was increased
twice using the original and CLAHE versions of images.
The training set and test set were split into 80% and 20%,
respectively, for each class in the classification process, and
20 percent of the training set was used as a validation in the
classifier model for INbreast.

4.1.2 MIAS

The Mammographic Image Analysis Society (MIAS) is
a public digital mammography dataset published by [52].
MIAS has 322 digital mammograms, 208 classified as nor-
mal, 63 as benign, and 51 as malign. We applied CLAHE

Table2 The number of images corresponding to breast density, malig-
nant, and nonmalignant class labels in the INbreast dataset

Classes Number of mammography images
respectively fatty (A) 136

scattered density (B) 147

heterogeneously dense (C) 99

extremely dense (D) 28

nonmalignant 287

malignant 100
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to all 322 mammogram images and horizontally flipped the
same setting as in INbreast to train VAE. The augmented
images were split into training and validation sets, respec-
tively 75% and 25% in the VAE model. In the classification
model of MIAS for density, benign-malignant and normal-
benign-malignant classification tasks were considered, as
those were the annotated labels of the dataset. The number
of mammography images belonging to each class in MIAS
is given in Table 3. The training and test sets were split into
80% and 20% for the classification model, and 20% of the
train data set was used to validate the classifier model for
MIAS.

4.2 INbreast dataset transferred to MIAS dataset

Wang et al. [34] reported deep learning models that can-
not easily be transferred from one mammogram dataset to
other mammogram datasets. Thus, we focus on the trans-
fer model from the INbreast to MIAS datasets to observe
its effect on performance. The INbreast dataset is used for
training and testing MIAS in different model settings for
benign-malignant and normal-benign-malignant classifica-
tion. While we use all nonmalignant and malignant classes
of INbreast for benign-malignant classification, the A, B, and
C+D (merged in one class) INbreast density classes are used
for normal-benign-malignant classification. When INbreast
is set as the training set, MIAS is a test set that includes
51 malignant and 63 benign samples for benign-malignant
classification and 51 normal-benign-malignant samples for
normal-benign-malignant classification.

4.3 Experimental setup

The VAE and classifier models were built using the Keras
library. On the other hand, the models were trained and tested
on a GeForce RTX 2080 Ti GPU with the Tensorflow-gpu
library. The VAE was set up with 16 batch size, L1= le-5 and
L2= le-4 regularization over mean(u), var(o), and a latent
layer of VAE, RMSprop optimizer with 0.001 learning rate,
and 100 epochs to train in an unsupervised manner on each

Table3 The number of images corresponding to breast density, normal,
benign, and malignant class labels in MIAS

Classes Number of mammography images
fatty 106

glandular 104

dense 112

normal 208

benign 63

malignant 51

of the mammography datasets that are [Nbreast and MIAS.
The classifier model was defined with 16 batch size, Adam
optimizer with 0.001 learning rate, and 10000 epochs to train
with encoded spaces extracted from each dataset of classify-
ing density, benign-malignant, malignant-nonmalignant, and
normal-benign-malignant tasks. In addition, 5-fold cross-
validation was used for all classification experiments. The
classifier model was evaluated by recall, precision, F1, and
area under the curve (AUC) evaluation metrics for each
dataset calculated with a weighted average.

4.4 VAE results

The VAE reconstruction results of the INbreast and MIAS
datasets are presented in Fig. 3, sorted as original mam-
mograms, implemented CLAHE-resize (640, 800, 1), and
reconstructed images. The reconstructed mammograms by
the VAE can be described as a rough reconstruction because
of some losses, as seen in Fig. 3. While the VAE captures
the general and significant framework (e.g., dense lesions
in the breast), details are only hinted at (e.g., the capillaries
in the breast). The purpose of the pretext network model in
this study is not to fully learn the intrinsic representations
of mammograms but rather general, representative features.
Therefore, the primary objective is to observe whether map-
ping the images in a lower-dimensional latent space would
provide sufficient information to conduct the classification
tasks defined. On the other hand, we operate on a small
dataset, bringing out a significant overfitting problem. Con-
sequently, missing insignificant details will contribute to the
model’s generalizing ability and reduce variance on insuf-
ficient samples to avoid overfitting. Thus, the classification
model tries to correctly classify the extracted encoded fea-
tures by the VAE. The classification results are presented in
the following sections.

4.5 Classification results for INbreast

The mean and standard deviation of the 5-fold cross-
validation results on density and malignant-non-malignant
classification experiments for the INbreast dataset are pre-
sented in Table 4. The results of MIAS are given in Table
5. In addition, ROC and precision-recall curves are given in
Fig. 4. The results from various views (image-only, MLO,
and CC) have also been obtained and reported. The pro-
posed model with image view for density classification is
better than MLO and CC view models when it comes to
accuracy, AUC, precision, recall, and F1 scores, with 88.75,
0.94, 82.86, 88.75, and 85.52. MLO and CC models produced
results close to these with the image-only model by a differ-
ence of 0.95 for MLO and 2.12 for CC. On the other hand, the
model’s precision results are lower than its other metrics; the
proposed model generally assigns an extremely dense class
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INbreast MIAS
Orjinal mammogram  with clahe and Reconstructed image | Orjinal mammogram with clahe and Reconstructed image
image of INbreast resize(640,800) with INbreast-VAE image of MIAS resize(640,800) with MIAS-VAE
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Fig. 3 Reconstruction results of mammograms from both the INbreast and MIAS datasets, involving original, original mammograms processed

with CLAHE and resizing, reconstructed mammograms by VAE, respectively

(D) as a heterogeneously dense class (C), as illustrated in
Fig. 4. While the AUC of the other classes is over 0.96, the

(28), as well as the imbalance between classes, might have
made it impossible to distinguish D from C of the proposed

AUC of the highly dense class is 0.59. The low sample of D model.
1:8'5 ;rei?;éi?trzzzﬁfa;r?é FI Objectives VIEW accuracy auc precision recall Fl1
Wit},l mean and standard Density image mean 88.75 0.94 82.86 88.75 85.52
deviation(std) results are ) )
assessed through 5 classification std 0.012 0.011 0.014 0.013 0.012
cross-validation on the INbreast MLO mean 87.80 0.92 83.28 87.80 84.91
dataset using the INbreast-VAE std 0.000 0.007 0.000 0.000 0.000
model cC mean  86.63 091 80.41 86.67  83.33
std 0.011 0.006 0.013 0.011 0.012
Malignant image mean 91.79 0.95 93.46 91.79 92.09
nonmalignant std 0.011 0.003 0.009 0.011 0.011
classification MLO mean 90.86 0.99 92.94 90.86 91.11
std 0.013 0.004 0.007 0.013 0.012
cC mean 94.86 0.98 94.90 94.86 94.86
std 0.013 0.007 0.014 0.013 0.013

The metrics are evaluated for density and malignant-nonmalignant classification, considering image, MLO,

and CC views
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Fig. 4 Confusion Matrix, Precision-Recall Curve, and ROC Curve depicting the best evaluation results on INbreast for density and malignant-

nonmalignant classification using the INbreast-VAE model

On the other hand, the best results of malignant and
nonmalignant classification were 94.86 accuracy, 94.90 pre-
cision, 94.86 recall, and 94.86 F1 with CC view and AUC
0.99 with MLO view. According to the image view, the clas-
sification of malignant and nonmalignant results is still high,
with 91.79 accuracy, 0.95 AUC, 93.46 precision, 91.79 recall,
and 92.09 F1. The MLO and image view results are similar,
except an AUC of MLO is 0.99, which is superior to the oth-
ers. Regarding different tasks, the malignant-nonmalignant
classifications are more stable than density classifications for
each class, as seen by the ROC and precision-recall curves
given in Fig. 4. As the number of classes increases, the clas-
sification task becomes more challenging for the proposed
SSL model.

The results of previous studies on INbreast classification
are shown in Table 6 to facilitate a comparative analysis.
The proposed model for density classification on the MLO
view performed better than earlier works regarding accu-
racy, AUC, and F1 results. Although BASCNet (ResNet18)
[42] on the MLO view resulted in better performance, with
0.94 AUC, BASCNet (ResNet18) has a low F1 score (68.09)
and higher variances than the proposed model. Therefore, the
proposed model is more robust against different test sets than
BASCNet (ResNet18). Based on the outcomes of malignant-

nonmalignant classification, the proposed model for image
views, with an AUC of 0.95, surpasses earlier studies [20, 34,
36]. While the proposed model exhibits comparable perfor-
mance on the image view of mammograms, as seen in prior
studies [44—46], it achieves superior performance on the CC
view, with an AUC of 0.98 compared to all the previous stud-
ies [20, 34, 36,44-46]. On the other hand, Table 6 presents the
self-supervised Bi-channel networks (TSBN)[20] for mam-
mogram classification with Resnet50, RDN, and U-Net based
on various pretext tasks; this study is in the same category as
ours. The proposed SSL model significantly outperformed
the TSBN introduced by [20]. Moreover, Welch’s t-test was
employed to conduct statistical significance tests compar-
ing AUC scores across studies. The studies of [20] and [42]
assessed the F1 score as an exception since AUC scores were
unavailable in [20] and there was a substantial difference
between the F1 score and AUC in [42]. The p-value rep-
resents the statistical significance of the difference between
the models, the test statistic (T) measures the difference, and
the effect size (d) indicates the magnitude of the difference.
While lower p-values (p < 0.05) suggest more significant
differences, the large test statistics and effect sizes in some
cases indicate substantial distinctions between the compared
models. In Table 6, the proposed model is highlighted in bold,
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Table 5 The test accuracy,

AUC, precision, recall, and F1 Objectives Train data accuracy auc precision recall F1

witlll mean and standard Density MIAS mean 94.60 0.99 94.90 94.60 94.60
deviation(std) results are . .

assessed through 5 Classification std 0.009 0.005 0.008 0.009 0.009
cross-validation on MIAS Benign MIAS mean 89.09 0.97 89.93 89.09 88.95
Malignant std 0.025 0.007 0.022 0.025 0.026
INbreast mean 87.23 0.95 88.80 87.23 86.93
std 0.000 0.002 0.000 0.000 0.000
Normal MIAS mean 81.90 0.83 73.02 81.90 76.45
Benign std 0.009 0.008 0.008 0.009 0.008
Malignant INbreast mean 86.54 0.99 88.61 86.54 85.97
std 0.012 0.002 0.009 0.012 0.013

The assessment is conducted using the MIAS-VAE model for density, benign-malignant, and normal-benign-
malignant classification tasks. Additionally, the proposed model, trained on the INbreast dataset, is evaluated

on an external dataset (MIAS)

indicating significant improvements over the compared mod-
els. The proposed model exhibits significant improvement
over Resnetl8 [42] with the lowest p-value of 0.000319,
the largest test statistic (T) of 9.6774, and effect size (d)
of 6.12 in the context of density classification. Similarly, for
malignant-nonmalignant classification, the proposed model
significantly outperforms AlexNet + CNN [34] with a p-
value of 1.681e-27, a test statistic (T) of 4901.5304, and
an effect size (d) of 3100. In summary, the proposed model
consistently demonstrated significant improvements over the
compared models in density and malignant-nonmalignant
classification tasks on INbreast, as indicated by low p-values
(p < 0.05), large negative test statistics, and substantial
effect sizes. These findings suggest the effectiveness and
superiority of the proposed model across different datasets
and tasks. Furthermore, our model was assessed in terms of
computational complexity compared to previous studies, as
shown in Table 8. The proposed model enables a lightweight
network characterized by a small number of trainable param-
eters (228 parameters), low computational cost (204.95K),
and a depth of 3, positioning it as a resource-efficient and
highly accurate model. Consequently, our proposed model
emerges as a robust, reliable, and efficient solution in the
context of mammogram classification.

4.6 Classification results for MIAS

The results of 5-fold cross-validation on density, malignant-
nonmalignant, and normal-benign-nonmalignant classifica-
tion experiments for the MIAS dataset are reported in Table 5.
In addition, the confusion matrix, ROC curve, and precision-
recall curve are given in Fig. 5. The proposed model reached
accuracy, precision, recall, and F1 scores with approximately
95 and 0.99 AUC for density classification and approximately
89 and 0.97 AUC for benign-malignant. In normal-benign-
malignant classification, the classifier using INbreast data for

@ Springer

training and MIAS for testing has better evaluation metrics
that are 86.54 accuracy, 0.99 AUC, 88.61 precision, 86.54
recall, and 85.97 F1.

We presented a comprehensive comparison between the
proposed SSL model and previous studies [34, 44, 45] in
the context of MIAS classification, as outlined in Table 6.
While the CNN model proposed by [44] demonstrates high
accuracy, recall, and F1 scores, the proposed model reaches a
high AUC score of 0.97 for benign and malignant classifica-
tion. In addition, the proposed model has seen an outstanding
performance with 0.97 AUC against the study by [34] for
the identification of benign and malignant. Moreover, the
study by [34] focused on transfer learning among mammo-
gram datasets. The AlexNet + CNN model [34] is trained
on mixed mammogram datasets (INbreast, MIAS, private
set), then tested on unseen external mammogram datasets,
given in Table 7. They [34] reported inconsistency in deep
learning models that have high performance on one mam-
mography dataset and cannot be transferred or generalized
to unseen external data sets. In our proposed model, we used
the INbreast dataset for training and MIAS for testing, which
demonstrates that the encoded space of the INbreast dataset
is transferable and performs effectively on the unseen exter-
nal MIAS dataset. This observation contradicts the findings
of [34], as indicated by a p-value of 4.181e-26, a test statistic
(T) of 7144.2472, and an effect size (d) of 4518.4 obtained
from Welch’s t-test, highlighting the transferability issue
of deep learning models between different mammogram
datasets. The encoded space extracted by VAE proved to be a
valuable asset, facilitating model transfer between INbreast
and MIAS datasets and enhancing normal-benign-malignant
classification results, as reported in Table 7. Regarding den-
sity classification, the proposed model exhibits performance
similar to that of the previous study conducted by Razali et
al. [45], with a p-value of 0.5. This p-value of 0.5 typically
indicates that there is no statistically significant difference
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Confusion matrix of normal-bening-
malignant classification result for
MIAS with train on INbreast

The precision-recall curve of normal-

bening-malignant classification results for

MIAS with train on INbreast

normal 0.0000 100 i R
0.98 : 008
z | 2
| . c ' o 06
| benign 0.0000 509 ; 2z
3 5 L G
= o ! L o4
8- 094 i o
i 2
malign{ 0.0000 0.0455 --- VAE+encoder classifier model for class 0 i =02 —— VAE+encoder classifier model for class 0 (AUC= 1.000)
0.921 --- VAE+encoder classifier model for class 1 ) —— VAE+encoder classifier model for class 1 (AUC= 1.000)
——- VAE+encoder classifier model for class 2 [,’ 0.0 —— VAE+encoder classifier model for class 2 (AUC= 0.997)
normal  benign malign 0.0 0.2 0.4 06 08 10 0.0 02 04 0.6 08 10
Predicted Label Recall False Positive Rate
Confusion matrix of density The precision-recall curve of density Roc curve of density classification result
classification results for MIAS classification results for MIAS for MIAS
1.000 = 1.0
benign 0.975 ;i :ﬂzu
5 i o 08
3 < 0950 :: 2
| o i =4
- ‘@ 0925 o v 06
g g 1 [ =
= & 0900 E i .§
e O 04
malign{ 0.1000 0.875 i p
0850 i = 02
-=- VAE+encoder classifier model for class 0 | . —— VAE+encoder classifier model for class 0 (AUC= 0.975)
- - 0.8251 --- VAE+encoder classifier model for class 1 .-~ 0.0 —— VAE+encoder classifier model for class 1 (AUC= 0.975)
benign malign :
Predicted Label 00 02 04 06 08 10 00 02 04 06 08 10
Confusi trix of beni Recall False Positive Rate
; on uf'oln m: nxt_o enmltg_f The precision-recall curve of bening- Roc curve of bening-malignant
malignant ¢ asl\s/lllfg lon results Tor | malignant classification results for MIAS classification result for MIAS
1.0 ; . 1.0
normal 0.0000 0.0000 b
0.9 g ] 08
K] 1 S
2 . c 9 n:, 0.6
—| benign 208 i 2
e z %
= 2 i L o4
& 07 i o
malign 0.0784 0.2353 ~= VAE+encoder classifier model for class 0 i i VAE+encoder classifier model for class 0 (AUC= 1.000)
0614 VAE+encoder classifier model for class 1 i —— VAE+encoder classifier model for class 1 (AUC= 0.980)
—=- VAE+encoder classifier model for class2 & 0.0 —— VAE+encoder classifier model for class 2 (AUC= 0.992)
normal  benign  malign 00 02 04 06 08 10 00 02 04 06 08 1.0
Predicted Label Recall False Positive Rate

ROC curve of normal-bening-malignant
classification result for MIAS with train on

INbreast

Fig. 5 Confusion Matrix, Precision-Recall Curve, and ROC Curve depicting the best evaluation results on MIAS for density, benign-malignant,
and normal-benign-malignant classification tasks using the MIAS-VAE model

between the performance of the proposed model and that of

the model from the previous study. Moreover, the proposed

model stands out by providing substantially lower compu-
tational complexity (Table 8) while still maintaining high
performance on the MIAS dataset for both benign-malignant
and density classifications. This highlights the efficiency and
effectiveness of the proposed model in the context of mam-
mogram classification on the MIAS dataset.

@ Springer

5 Discussion

The proposed SSL model addresses the challenge of limited
data availability in mammogram classification. Our proposed
model offers a promising solution to the challenges posed
by limited mammogram samples. Furthermore, the proposed
SSL classification model enables effective and efficient mod-
els with lower computational costs. Overall, the performance,
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Table 7 Comparative results for . .

f S 1
MIAS between the proposed Objectives references mode train data test data auc
SSL model and the study by [34]  gepjop. Wang et al. [34] AlexNet+CNN mixeddata  MIAS 0.58+0.01
are presented to illustrate the .
transferability of the encoded malignant proposed INbreast MIAS 0.95+0.002
space from the INbreast dataset classification proposed MIAS MIAS 0.97+0.007

during training to an unknown

external dataset (MIAS) for testing
T testin,

generalization ability, ease of computation, and transferabil-
ity of encoded space make it a valuable contribution to the
field of mammogram classification, with potential implica-
tions for enhancing the accuracy and efficiency of breast
cancer diagnosis.

On the other hand, the results demonstrate a notable chal-
lenge with the proposed model in distinguishing between an
extremely dense class (D) and a heterogeneously dense class
(C). The AUC of the highly dense class is notably lower
at 0.59 compared to the AUCs of other classes, which are
reported to be over 0.96. This discrepancy in AUC values
indicates a difficulty in accurately classifying density clas-
sification belonging to the highly dense class on INbreast.
Furthermore, the visualization of the reconstructed mammo-
grams by the VAE provides insights into the limitations of the
model. The reconstructed images appear to undergo rough
reconstruction, indicating that the VAE faces challenges in
capturing fine details. While the VAE effectively captures
general and significant features such as dense lesions in the
breast, it falls short in representing intricate details like cap-
illaries. Therefore, the proposed model utilizes only latent
space features for classification.

In future studies, our objective is to improve the generation
results for mammograms by exploring advanced genera-
tive models, such as GAN and diffusion-based networks.
These superior models will be employed to enhance the qual-
ity of the generated images. Subsequently, these generated
images will be used as data augmentation in the classifica-
tion step. Furthermore, the current model relies on a single

The study by [34] utilized mixed mammogram datasets (INbreast, MIAS, private set) for training and MIAS

mammography image for classification. In future work, we
aspire to develop a multi-view model for mammography clas-
sification to ensure consistency in identifying mammograms
through a patient-based model, rather than relying solely on
individual images.

6 Conclusion

This study proposed an SSL model in two stages to over-
come the drawback of limited mammogram samples on deep
learning models. The proposed SSL model has achieved bet-
ter performance than robust architectures such as Resnet,
VGG, and AlexNet, as reported by previous studies on the
public mammogram dataset. Furthermore, we also focused
on the performance of the study that used self-supervised
strategies for mammogram classification. The proposed self-
supervised strategy achieved more accurate results than the
previously reported bi-channel self-supervised network on
the INbreast dataset. Thus, the proposed self-supervised
model has shown promising effectiveness with respect to
repeatability, consistency, generalization ability, and transfer
among various datasets. As a result, the proposed self-
supervised model provides higher performance on limited
data without high variance and eases computation of both
lower-dimensional representations with encoded space and
fewer computational costs, with only 228 trainable param-
eters, 204.95K FLOPs, and a depth of 3 for mammogram
classification. It should be noted that the number of trainable

Table 8 The computational

. References Model Depth FLOPs(G) Parameters
complexity of the proposed
models is compared to that of Wang et al. [34] AlexNet 8 727 60.97M
previous studies, considering
metrics including the number of Lee et al. [36] VGG16 16 154.7 138.36M
layers (depth), FLOPs Zhao et al. [42] BASCNet 22 7.32 24.23M
(Eloatini-poi?t Operations), and g Houby et al. [44] CNN 8 - 121M
the number of parameters Razali et al. [45] GoogleNet 2 16.04 6.9M
Lou et al. [46] ECA-Net50 50 — 23.51M
Gong et al. [20] TSBN-downstream 50 3.8 25.56M
network (ResNet50)
The proposed The downstream 3 0.000205 228
network with CNN (204.95K)
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parameters for various classification tasks in this study was
relatively small (228 parameters). Nevertheless, the result-
ing classifiers were shown to be competitive. This might
imply that general image features are fundamental to related
problems, and representation learning might find suitable
applications in medical imaging diagnostics.

Medical image labeling processing requires time, exper-
tise, and cost; therefore, SSL presents a solution for using
many unlabeled data in medicine. Future studies of SSL on
medical image tasks could have potential because the practi-
cal scenarios often lack sufficient unlabeled data yet present
a small number of annotated samples. Furthermore, SSL
allows for the use of unlabeled data in unsupervised pretext
tasks. In conclusion, SSL has emerged as a remarkable field
for overcoming the problem of many limited and unlabeled
datasets.
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