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Abstract
Self-supervised learning (SSL) has gained attention in the medical field as a deep learning approach utilizing unlabeled 
data. The Jigsaw puzzle task in SSL enables models to learn both features of images and the positional relationships within 
images. In breast cancer diagnosis, radiologists evaluate not only lesion-specific features but also the surrounding breast 
structures. However, deep learning models that adopt a diagnostic approach similar to human radiologists are still limited. 
This study aims to evaluate the effectiveness of the Jigsaw puzzle task in characterizing breast tissue structures for breast 
cancer classification on mammographic images. Using the Chinese Mammography Database (CMMD), we compared four 
pre-training pipelines: (1) IN-Jig, pre-trained with both the ImageNet classification task and the Jigsaw puzzle task, (2) 
Scratch-Jig, pre-trained only with the Jigsaw puzzle task, (3) IN, pre-trained only with the ImageNet classification task, and 
(4) Scratch, that is trained from random initialization without any pre-training tasks. All pipelines were fine-tuned using 
binary classification to distinguish between the presence or absence of breast cancer. Performance was evaluated based on 
the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Additionally, detailed analysis 
was conducted for performance across different radiological findings, breast density, and regions of interest were visualized 
using gradient-weighted class activation mapping (Grad-CAM). The AUC for the four models were 0.925, 0.921, 0.918, 
0.909, respectively. Our results suggest the Jigsaw puzzle task is an effective pre-training method for breast cancer classifica-
tion, with the potential to enhance diagnostic accuracy with limited data.
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Abbreviations
DB	� Dense breast
Not-DB	� Not dense breast
CNN	� Convolutional neural networks
SSL	� Self-supervised learning

CMMD	� The Chinese Mammography Database
MLO	� Medial lateral oblique
CC	� Cranial caudal
CFN	� Context-free network
Adam	� Adaptive moment estimation
ROC	� Receiver operating characteristic curves
AUC​	� Area under the ROC curve
TPR	� True-positive rate
TNR	� True-negative rate
normal-TNR	� Normal-true negative rate
J	� Youden index
Grad-CAM	� Gradient-weighted class activation 

mapping
95% CI	� 95% Confidence intervals
TP	� True positive
FN	� False negative
TN	� True negative
IN-Jig	� Pre-trained with both the ImageNet clas-

sification task and the Jigsaw puzzle task
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Scratch-Jig	� Pre-trained only with the Jigsaw puzzle 
task

IN	� Pre-trained only with the ImageNet clas-
sification task

Scratch	� Trained from random initialization without 
any pre-training tasks

1  Introduction

Breast cancer is the most prevalent cancer among women 
worldwide in terms of the numbers of new cases and mor-
tality rates [1]. Mammography has been widely used as a 
screening tool for early detection of breast cancer and has 
been shown to reduce breast cancer mortality [2, 3]. Despite 
its effectiveness, mammography-based screening faces limi-
tations, such as a high rate of false positives and low sensi-
tivity in patients with dense breast (DB) tissue [3].

In clinical practice, radiologists assess mammographic 
images by examining lesion-specific features as well as 
its relationship to surrounding breast tissue structures 
[4]. Lesion-specific features include subtle morphological 
changes at the tumor periphery and shapes of individual 
calcifications. Features related to surrounding breast tissue 
structures include the distribution of calcifications and archi-
tectural distortion of the breast tissue.

In recent years, deep convolutional neural networks 
(CNN) have been increasingly applied in the field of breast 
cancer screening using mammography [5–7]. In such CNN 
models, pre-training with classification tasks using large-
scale natural image datasets, such as ImageNet [8], is com-
monly used to compensate for the scarcity of medical data 
[9]. However, traditional CNN models tend to rely heavily 
on local information, limiting their ability to utilize global 
information [10–13]. This disparity between the evaluation 
methods of radiologists and CNN models in breast cancer 
diagnosis underscores the necessity to analyze the associa-
tion between lesions and surrounding breast structures.

Self-supervised learning (SSL) is a recent learning 
paradigm in deep neural networks that enables models to 
learn semantic features from unlabeled data [14]. The SSL 
pipeline is characterized by two tasks: the pretext task and 
the downstream task. The objective of the pretext task is to 
extract transferable representations useful for downstream 
tasks, such as classification, detection, and segmentation 
[15–17]. The Jigsaw puzzle pretext task, in which randomly 
placed patches are rearranged into their correct configura-
tion, enables models to concurrently learn both features of 
images and the positional relationships within images [18]. 
It has been shown to be effective in medical imaging [17, 
19–22]. Applying the Jigsaw puzzle pretext task approach in 
pre-training for breast cancer classification may help models 
to be close to that of clinical radiologists, which requires a 

comprehensive assessment considering both the characteris-
tics of the lesion and of surrounding breast tissue structures.

The purpose of this study was to evaluate the effective-
ness of the Jigsaw puzzle task in emphasizing breast tissue 
structures for breast cancer classification on mammographic 
images.

2 � Materials and methods

2.1 � Dataset

This study utilized the Chinese Mammography Database 
(CMMD) [23], which includes data from 1775 Chinese 
patients who underwent mammography examinations 
between July 2012 and January 2016, with biopsy-con-
firmed benign or malignant tumors. Of these patients, 826 
had bilateral breast images and 949 had images of only one 
breast. The CMMD dataset contained both medial lateral 
oblique (MLO) and cranial caudal (CC) views of mammo-
graphic images, resulting in a total of 5202 mammographic 
images. In this study, only 2601 MLO view images, which 
have fewer blind areas on mammograms compared to CC 
view images, were analyzed. All images were acquired with 
digital mammography at a resolution of 2294 × 1914 pixels.

Based on image interpretation by a radiologist with over 
20 years of experience in breast cancer imaging, the follow-
ing cases were excluded from the 2601 images analyzed: 
those with phyllodes tumors (N = 6), neurofibromatosis 
(N = 2), lymphedema (N = 1), central venous ports inserted 
(N = 8), visible foreign bodies (N = 5), image artifacts that 
hindered diagnosis (N = 3), and those from breast cancer 
patients where lesions were unidentifiable (N = 140).

Ultimately, a total of 2436 images were included in our 
analysis, which were categorized as follows: 1167 images 
with breast cancer, 215 images with benign lesions, and 
1054 breasts with normal breast tissue.

2.2 � Clinical interpretation of mammographic 
images

The CMMD dataset provides diagnostic labels indicating 
whether an image contains a benign or malignant lesion; 
however, it lacks detailed medical information within the 
images. To enhance the analysis from a medical perspective, 
all breasts were labeled with radiological findings (mass, cal-
cification, distortion, normal), breast density (dense breast 
[DB], not dense breast [Not-DB]) and lesion masks based on 
the image interpretation of a radiologist with over 20 years 
of experience. For mass and calcification, the lesion mask 
that accurately captured the boundaries of the lesion were 
depicted. In contrast, for distortion, bounding boxes were 
employed to define the lesion mask, as these findings exhibit 
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ambiguous boundaries with the surrounding normal breast 
tissue. When multiple findings were observed in a patient, 
images with each finding were counted independently.

Using the lesion masks, original images were cropped 
to 512 × 512 pixels, centered on the lesion area. For breasts 
with normal breast tissue, the mammogram was binarized 
into breast area and background, and the outline of the breast 
area was extracted. Subsequently, to exclude the pectoral 
muscle, a 512 × 512 pixels image was randomly cropped 
from the bottom 80% of the breast area. Consequently, a 
total of 2824 images were used for our investigation, com-
prising 1515 images with breast cancer and 1309 images 
without breast cancer. Figure 1 illustrates the selection pro-
cess, and Table 1 shows a breakdown of the datasets used 
in this investigation. Figure 2 shows examples of cropped 
images, where Fig. 2a–c represents mass, calcification, and 

distortion, respectively. The mean percentage of the area 
occupied by the lesion masks in the 512 × 512 cropped 
images were as follows: mass; 20.7%, calcification; 25.2%, 
and distortion; 57.5%.  

Fig. 1   Flow chart of inclusion and exclusion process of mammographic database. Total 2824 mammographic images were analyzed in the pre-
sent study

Table 1   Breakdown of radiological findings and breast density infor-
mation

Labels Breast cancer Not-breast cancer

Mass 954 images 186 images
Calcification 508 images 62 images
Distortion 53 images 7 images
Normal – 1054 images
Dense breast (DB) 1236 images 1141 images
Not-dense breast (N-DB) 279 images 168 images
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2.3 � The Jigsaw puzzle task in SSL

The lower part of Fig. 3 shows the overall framework 
of the Jigsaw puzzle task in SSL used in this study. The 
input data for the Jigsaw puzzle task consisted of a set 
of patches cut from a mammographic image. Following 
the method described by Noroozi et al. [18], we left ran-
dom gaps between the patches to prevent the model from 
solving the puzzle by simply matching low-level statistics 
(such as structural patterns and textures) at the edges of 
adjacent patches, ignoring the content within the patches 
themselves.

The set of patches was then reordered via a randomly 
chosen permutation from a predefined permutation set, and 
fed into the neural network. The neural network was trained 
to predict the specific permutation performed on the set of 
patch images. Although there are 9! (362,880) possible per-
mutations with 9 patches for the 3 × 3 Jigsaw puzzle, a previ-
ous study has shown that it is not necessary to consider all 9! 
[18]. In the study of Vu YNT et al. [19], 31 different segment 
placement patterns were predefined, including the correct 
identity permutation and the top 30 permutations with the 
greatest Hamming distance from the identity.

The architecture used for the Jigsaw puzzle task was the 
context-free network (CFN) [18], which shares the same 
weights across all input patches. The features of each patch 
are extracted independently in each neural network and 
finally concatenated in a final fully connected layer.

2.4 � Comparison of pre‑training pipelines

Figure 3 illustrates the pre-training pipelines compared in 
this study. To assess the effectiveness of the Jigsaw puzzle 
task and the effect of using the ImageNet pre-trained model, 
we compared the following four pipelines:

IN-Jig is the model pre-trained with both the ImageNet 
classification task and the Jigsaw puzzle task. The Jigsaw 
puzzle task was performed using the ImageNet pre-trained 
model. The neural network was then fine-tuned for binary 
classification to distinguish between the presence and 
absence of breast cancer.

Scratch-Jig is the model pre-trained only with the Jig-
saw puzzle task, without utilizing an ImageNet pre-trained 
model.

IN is the baseline model pre-trained solely with the Ima-
geNet classification task using random initial weights.

Fig. 2   Examples of cropped images. The upper row and the lower 
row represents full-field images and cropped images, respectively. 
The radiological findings, breast density, and the percentage of the 

area occupied by the lesion masks in the 512 × 512 cropped images 
for each image are as follows: a (mass, DB, 20.4%), b (calcification, 
DB, 24.6%), and c (distortion, DB, 56.9%)
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Scratch is the model that was trained for binary classifi-
cation to distinguish between the presence and absence of 
breast cancer without any pre-training tasks.

2.5 � Implementation of the Jigsaw puzzle task

We adopted ResNet50 [24] as the architecture constituting 
the CFN. Each 512 × 512 pixels image was divided into a 
3 × 3 grid consisting of patches of approximately 170 × 170 
pixels. A 150 × 150 pixels-area was then randomly extracted 
from each patch and input into the CFN. We used the iden-
tical permutation and the top 30 permutations having the 
greatest Hamming distance from the correct permutation, 
following the reported method of Vu YNT et al. [19]. The 
mean Hamming distance of the total 31 permutations used in 
this study was 8.086. Adaptive moment estimation (Adam) 
was used for the optimizer and cross entropy was used as 
the loss function (learning rate = 0.001, weight decay = 0). 

The batch size was set to 128, and the model was trained 
over 100 epochs.

2.6 � Implementation of fine‑tuning for breast cancer 
classification

For fine-tuning, binary classification was performed to dis-
tinguish between the presence and absence of breast cancer, 
using the same 512 × 512 pixels images as in the Jigsaw puz-
zle task. Adam was used for the optimizer and cross entropy 
was used as the loss function (learning rate = 0.001, weight 
decay = 0). The model was trained with a batch size of 64 
over the course of 100 epochs.

2.7 � Evaluations

The overall performance of four models was assessed using 
receiver operating characteristic (ROC) curves, area under 
the ROC curve (AUC), sensitivity (true positive rate [TPR]), 

Table 2   AUC, sensitivity, and 
specificity of the four models

The scores in the table are the mean of ten trials. Values in parentheses represent the 95% confidence inter-
val
Bold font indicates the best score among the four models
The asterisk (*) indicates AUC that showed a significant difference compared to AUC of IN

Model AUC​ Sensitivity Specificity

IN-Jig 0.925 (0.922–0.928)* 0.879 (0.870–0.888) 0.846 (0.838–0.855)
Scratch-Jig 0.921 (0.918–0.923) 0.890 (0.881–0.899) 0.834 (0.828–0.841)
IN 0.918 (0.916–0.920) 0.882 (0.871–0.893) 0.831 (0.822–0.841)
Scratch 0.909 (0.905–0.913)* 0.879 (0.868–0.889) 0.817 (0.807–0.827)

Fig. 3   Pre-training pipelines and overall framework of the Jigsaw 
puzzle task in SSL. Abbreviations: IN = pre-trained only with Ima-
geNet classification task; IN-Jig = pre-trained with both the ImageNet 

classification task and the Jigsaw puzzle task; Scratch-Jig = pre-
trained only with Jigsaw puzzle task; Scratch = trained from random 
initialization without any pre-training tasks
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and specificity (true negative rate [TNR]). Furthermore, to 
elucidate the characteristics and trends of the model from 
a medical perspective, the models’ performance was also 
assessed for each group of radiological finding (mass, 
calcification, distortion, normal) and breast density (DB, 
Not-DB). Since AUC cannot be calculated for normal find-
ings, the normal-true negative rate (normal-TNR) was used 
instead. Cutoff values for sensitivity, specificity, and normal-
TNR were calculated using the Youden index (J), defined 
as J = maximum {sensitivity + specificity − 1}, which is 
considered to provide the best balance of sensitivity and 
specificity [25].

The accuracy of the Jigsaw puzzle task was assessed to 
compare the performance between the pretext and the down-
stream task. Gradient-weighted class activation mapping 
(Grad-CAM) [26] was implemented to visualize regions of 
mammographic images that were the most relevant for the 
network’s final classification. The Grad-CAM outputs were 
analyzed to assess how the regions of interest changed with 
use of the Jigsaw puzzle task.

To reduce bias due to a lack of data, fivefold cross-val-
idation was employed. The dataset was divided into five 
equal parts, with four segments used for training and one 
for validation. This cross-validation process was repeated 
five times to calculate the mean validation accuracy. All 
data were separated by patient, ensuring a consistent pro-
cess from pre-training to the downstream task. To mitigate 
the effect of randomness in fine-tuning, the fivefold cross-
validation for the downstream task, breast cancer classifica-
tion, was performed ten times. The mean performance scores 
and the mean ROC curves of ten trials were calculated. The 
statistical significance of the overall performance of AUC 
was assessed using a t test, with IN serving as the refer-
ence; a p value of less than 0.05 was considered statistically 
significant.

3 � Results

Table 2 presents the mean values of the AUC, sensitivity, 
and specificity, and Fig. 4 shows the mean ROC curves of 
the four models. The AUC of IN-Jig was 0.925, which was 
significantly higher than that of IN at 0.918 (p = 0.0048). 
The AUC of Scratch-Jig was 0.921, with no significant dif-
ference compared to the AUC of IN (p = 0.0516). The AUC 
of Scratch was 0.909, which was significantly lower than 
that of IN (p = 0.0011).  

Tables 3 and 4 show the mean scores for each radiologi-
cal finding and each breast density, respectively. In Table 3, 
mass-AUC and calcification-AUC of IN-Jig (0.766 and 
0.783) were higher than those of IN (0.743 and 0.763), 
while Scratch-Jig (0.728 and 0.735) were lower than those 
of IN. In Table 4, DB-AUC was consistently lower than 

Not-DB-AUC for all models. IN-Jig and Scratch-Jig (0.916 
and 0.913) had a higher DB-AUC than IN (0.909). Figure 5 
illustrates samples of Not-DB and DB cases. In both cases, 
IN-Jig correctly predicted breast cancer, while IN incorrectly 
predicted those as not-breast cancer.

Table 5 shows the accuracy of the Jigsaw puzzle task. 
IN-Jig (0.894) achieved a higher accuracy than Scratch-Jig 
(0.876).

Figure 6 illustrates cases in which the application of the 
Jigsaw puzzle task led to a notable change in the regions 
of interest between IN and IN-Jig. IN made predictions by 
focusing on a part of the lesion or breast tissue. In the case 
of false negative (FN), IN focused on areas unrelated to the 
lesion. On the other hand, IN-Jig made predictions based 
on a wider area, including the entire lesion and surrounding 
breast tissue.

4 � Discussion

In the present study, IN-Jig, pre-trained with both the 
ImageNet classification task and the Jigsaw puzzle task, 
showed superior diagnostic performance in identifying 
breast cancers compared to IN, the conventional method. 
This suggests that the Jigsaw puzzle task, which empha-
sizes surrounding breast tissue structures, is effective for 
breast cancer classification on mammographic images. In 
addition, Scratch-Jig, pre-trained only with the Jigsaw puz-
zle task using approximately 2500 mammographic images, 
showed an AUC comparable to IN, which was pre-trained 

Fig. 4   Mean ROC curves of four models
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using approximately 1.3 million images [8]. These results 
suggest that pre-training with the Jigsaw puzzle task enables 
efficient learning of features useful for breast cancer classifi-
cation, even with smaller datasets, and can further enhance 
diagnostic performance.

Although both IN-Jig and Scratch-Jig were pre-trained 
with the same Jigsaw puzzle task, there was a substantial 
numerical difference between IN-Jig and Scratch-Jig in 
mass-AUC and calcification-AUC. ImageNet pre-training 
likely enabled IN-Jig to capture more detailed features of 
mass and calcification during the Jigsaw puzzle task phase, 
while Scratch-Jig, pre-trained with the Jigsaw puzzle task 
using random weights as initial values, may not have fully 
utilized the detailed characteristics of the lesion. As a result, 
Scratch-Jig may have been biased toward diagnosis based 
on rough mammary gland structures, limiting its ability to 
improve mass-AUC and calcification-AUC.

Determining whether a breast is categorized as DB or 
Not-DB involves evaluating the entire breast, so this clas-
sification may not be directly applicable to cropped images 
such as Fig. 5. However, similar to the general challenge to 
distinguish between lesions and normal breast tissue in DB 
[27], DB-AUC of all models in this study was lower than 
Not-DB-AUC. In addition, DB-AUC of IN-Jig and Scratch-
Jig were higher compared to IN. This indicates that the Jig-
saw puzzle task is effective even for the more difficult task 
of classifying breast cancer in DB tissue.

IN-Jig’s higher accuracy on the Jigsaw puzzle task com-
pared to Scratch-Jig, corresponded with IN-Jig’s superior 
AUC for breast cancer classification. Previous studies by 
Kornblith et al. [28] and Han et al. [29] have shown that 
higher pre-training accuracy often leads to better perfor-
mance in downstream tasks. In this study, the same trend 

Table 3   Mean scores for each 
radiological finding

The scores in the table are the mean of ten trials. Values in parentheses represent the 95% confidence inter-
val
Bold font indicates the best score among the four models

Model Mass-AUC​ Calcification-AUC​ Distortion-AUC​ Normal-TNR

IN-Jig 0.766 (0.756–0.777) 0.783 (0.771–0.795) 0.667 (0.618–0.716) 0.936 (0.934–0.943)
Scratch-Jig 0.728 (0.716–0.739) 0.735 (0.722–0.748) 0.742 (0.697–0.787) 0.938 (0.929–0.942)
IN 0.743 (0.737–0.748) 0.763 (0.748–0.777) 0.679 (0.635–0.722) 0.930 (0.923–0.936)
Scratch 0.697 (0.685–0.709) 0.755 (0.732–0.777) 0.674 (0.624–0.723) 0.926 (0.918–0.934)

Table 4   Mean scores for each breast density

The scores in the table are the mean of ten trials. Values in parenthe-
ses represent the 95% confidence interval
Bold font indicates the best score among the four models

Model Not-DB-AUC​ DB-AUC​

IN-Jig 0.963 (0.958–0.967) 0.916 (0.912–0.919)
Scratch-Jig 0.951 (0.945–0.956) 0.913 (0.911–0.915)
IN 0.952 (0.948–0.955) 0.909 (0.906–0.911)
Scratch 0.947 (0.941–0.953) 0.900 (0.895–0.904)

Fig. 5   Samples of Not-DB and DB cases. The lower row represents 
images with the lesion masks added to the upper row. The images in 
the Not-DB and DB contain malignant tumors and malignant calcifi-
cations, respectively. In both images, IN-Jig correctly predicted, but 
IN incorrectly predicted

Table 5   Accuracy of the Jigsaw 
puzzle task

Bold font indicates the higher 
score between the two models

Model Accuracy of 
Jigsaw puzzle 
task

IN-Jig 0.894
Scratch-Jig 0.876
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was observed, indicating that the Jigsaw puzzle task allows 
the model to learn generalized feature representations that 
are sufficiently beneficial for breast cancer classification.

The Grad-CAM results indicate that the Jigsaw puzzle 
task enabled the model to make predictions based not only 
on the lesion characteristics but also on surrounding breast 
tissue structures. These predictions are similar to the clini-
cal diagnosis by radiologists, suggesting that breast cancer 
imaging diagnostic approach is able to be successfully incor-
porated into the model through Jigsaw puzzle pre-training.

This study has several limitations. First, the results were 
validated with the hyperparameters employed in prior stud-
ies, a single dataset, and a single neural network. Further 
investigation is needed to confirm the robustness and appli-
cability of these results across different conditions. Second, 
we used cropped mammographic images of the lesion for 
the training and validation data. For large lesions, there was 
a possibility that the information of the surrounding breast 
tissue was not fully reflected due to the cropping of the 
image. Further investigation should explore models trained 
with whole breast images to evaluate their performance in a 
wider clinical framework.

5 � Conclusion

We investigated how the Jigsaw puzzle task affects breast 
cancer classification by analyzing in detail performance 
across different radiological findings, breast density, and 
regions of interest visualized with Grad-CAM. The results of 
this study suggest that using the Jigsaw puzzle task for pre-
training improves CNN-based breast cancer classification 

on mammographic images. The combination of ImageNet 
and the Jigsaw puzzle task, IN-Jig, enhanced diagnostic 
accuracy by enabling the model to assess both the lesion 
and surrounding breast structures. Interestingly, Scratch-Jig, 
even without ImageNet, performed comparably to traditional 
methods, highlighting the potential of the Jigsaw puzzle task 
when working with limited data. Future studies are desired 
to validate these findings under various conditions to ensure 
broader applicability.
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