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Abstract

Self-supervised learning (SSL) has gained attention in the medical field as a deep learning approach utilizing unlabeled
data. The Jigsaw puzzle task in SSL enables models to learn both features of images and the positional relationships within
images. In breast cancer diagnosis, radiologists evaluate not only lesion-specific features but also the surrounding breast
structures. However, deep learning models that adopt a diagnostic approach similar to human radiologists are still limited.
This study aims to evaluate the effectiveness of the Jigsaw puzzle task in characterizing breast tissue structures for breast
cancer classification on mammographic images. Using the Chinese Mammography Database (CMMD), we compared four
pre-training pipelines: (1) IN-Jig, pre-trained with both the ImageNet classification task and the Jigsaw puzzle task, (2)
Scratch-Jig, pre-trained only with the Jigsaw puzzle task, (3) IN, pre-trained only with the ImageNet classification task, and
(4) Scratch, that is trained from random initialization without any pre-training tasks. All pipelines were fine-tuned using
binary classification to distinguish between the presence or absence of breast cancer. Performance was evaluated based on
the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Additionally, detailed analysis
was conducted for performance across different radiological findings, breast density, and regions of interest were visualized
using gradient-weighted class activation mapping (Grad-CAM). The AUC for the four models were 0.925, 0.921, 0.918,
0.909, respectively. Our results suggest the Jigsaw puzzle task is an effective pre-training method for breast cancer classifica-
tion, with the potential to enhance diagnostic accuracy with limited data.
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Scratch-Jig  Pre-trained only with the Jigsaw puzzle
task

IN Pre-trained only with the ImageNet clas-
sification task

Trained from random initialization without

any pre-training tasks

Scratch

1 Introduction

Breast cancer is the most prevalent cancer among women
worldwide in terms of the numbers of new cases and mor-
tality rates [1]. Mammography has been widely used as a
screening tool for early detection of breast cancer and has
been shown to reduce breast cancer mortality [2, 3]. Despite
its effectiveness, mammography-based screening faces limi-
tations, such as a high rate of false positives and low sensi-
tivity in patients with dense breast (DB) tissue [3].

In clinical practice, radiologists assess mammographic
images by examining lesion-specific features as well as
its relationship to surrounding breast tissue structures
[4]. Lesion-specific features include subtle morphological
changes at the tumor periphery and shapes of individual
calcifications. Features related to surrounding breast tissue
structures include the distribution of calcifications and archi-
tectural distortion of the breast tissue.

In recent years, deep convolutional neural networks
(CNN) have been increasingly applied in the field of breast
cancer screening using mammography [5—7]. In such CNN
models, pre-training with classification tasks using large-
scale natural image datasets, such as ImageNet [8], is com-
monly used to compensate for the scarcity of medical data
[9]. However, traditional CNN models tend to rely heavily
on local information, limiting their ability to utilize global
information [10-13]. This disparity between the evaluation
methods of radiologists and CNN models in breast cancer
diagnosis underscores the necessity to analyze the associa-
tion between lesions and surrounding breast structures.

Self-supervised learning (SSL) is a recent learning
paradigm in deep neural networks that enables models to
learn semantic features from unlabeled data [14]. The SSL
pipeline is characterized by two tasks: the pretext task and
the downstream task. The objective of the pretext task is to
extract transferable representations useful for downstream
tasks, such as classification, detection, and segmentation
[15-17]. The Jigsaw puzzle pretext task, in which randomly
placed patches are rearranged into their correct configura-
tion, enables models to concurrently learn both features of
images and the positional relationships within images [18].
It has been shown to be effective in medical imaging [17,
19-22]. Applying the Jigsaw puzzle pretext task approach in
pre-training for breast cancer classification may help models
to be close to that of clinical radiologists, which requires a

@ Springer

comprehensive assessment considering both the characteris-
tics of the lesion and of surrounding breast tissue structures.

The purpose of this study was to evaluate the effective-
ness of the Jigsaw puzzle task in emphasizing breast tissue
structures for breast cancer classification on mammographic
images.

2 Materials and methods
2.1 Dataset

This study utilized the Chinese Mammography Database
(CMMD) [23], which includes data from 1775 Chinese
patients who underwent mammography examinations
between July 2012 and January 2016, with biopsy-con-
firmed benign or malignant tumors. Of these patients, 826
had bilateral breast images and 949 had images of only one
breast. The CMMD dataset contained both medial lateral
oblique (MLO) and cranial caudal (CC) views of mammo-
graphic images, resulting in a total of 5202 mammographic
images. In this study, only 2601 MLO view images, which
have fewer blind areas on mammograms compared to CC
view images, were analyzed. All images were acquired with
digital mammography at a resolution of 2294 X 1914 pixels.

Based on image interpretation by a radiologist with over
20 years of experience in breast cancer imaging, the follow-
ing cases were excluded from the 2601 images analyzed:
those with phyllodes tumors (N=6), neurofibromatosis
(N=2), lymphedema (N=1), central venous ports inserted
(N=38), visible foreign bodies (N=35), image artifacts that
hindered diagnosis (N=3), and those from breast cancer
patients where lesions were unidentifiable (N = 140).

Ultimately, a total of 2436 images were included in our
analysis, which were categorized as follows: 1167 images
with breast cancer, 215 images with benign lesions, and
1054 breasts with normal breast tissue.

2.2 (linical interpretation of mammographic
images

The CMMD dataset provides diagnostic labels indicating
whether an image contains a benign or malignant lesion;
however, it lacks detailed medical information within the
images. To enhance the analysis from a medical perspective,
all breasts were labeled with radiological findings (mass, cal-
cification, distortion, normal), breast density (dense breast
[DB], not dense breast [Not-DB]) and lesion masks based on
the image interpretation of a radiologist with over 20 years
of experience. For mass and calcification, the lesion mask
that accurately captured the boundaries of the lesion were
depicted. In contrast, for distortion, bounding boxes were
employed to define the lesion mask, as these findings exhibit
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ambiguous boundaries with the surrounding normal breast
tissue. When multiple findings were observed in a patient,
images with each finding were counted independently.
Using the lesion masks, original images were cropped
to 512 x 512 pixels, centered on the lesion area. For breasts
with normal breast tissue, the mammogram was binarized
into breast area and background, and the outline of the breast
area was extracted. Subsequently, to exclude the pectoral
muscle, a 512512 pixels image was randomly cropped
from the bottom 80% of the breast area. Consequently, a
total of 2824 images were used for our investigation, com-
prising 1515 images with breast cancer and 1309 images
without breast cancer. Figure 1 illustrates the selection pro-
cess, and Table 1 shows a breakdown of the datasets used
in this investigation. Figure 2 shows examples of cropped
images, where Fig. 2a—c represents mass, calcification, and

Table 1 Breakdown of radiological findings and breast density infor-
mation

Labels Breast cancer Not-breast cancer
Mass 954 images 186 images
Calcification 508 images 62 images
Distortion 53 images 7 images

Normal - 1054 images
Dense breast (DB) 1236 images 1141 images
Not-dense breast (N-DB) 279 images 168 images

distortion, respectively. The mean percentage of the area
occupied by the lesion masks in the 512X 512 cropped
images were as follows: mass; 20.7%, calcification; 25.2%,
and distortion; 57.5%.

N = 5,202 images

The Chinese Mammography Database (CMMD)

An open database of mammography images obtained from 1,775 Chinese patients
who underwent examinations between July 2012 and January 2016

Excluded

N = 2,601 images excluded:

+ Acquired in the CC view images

MLO view images
N = 2,601 images

Interpretation by a radiologist

Excluded

N = 165 images excluded:

+ 6 images with phyllodes tumor
+ 2 images with neurofibromatosis
+ 1 image with lymphedema

A 4

\ 4

+ 8 images with a central venous port
+ 5 images showing foreign objects

N = 2,436 images

- 3 images have deficiencies in the images
+ 140 images difficult to identify

the location of breast cancer

Cropped to 512 X 512 pixels

{

Cropped images
n = 2,824 images

A 4

A 4

Breast cancer
n = 1,515 images

Not-breast cancer
n = 1,309 images

Fig. 1 Flow chart of inclusion and exclusion process of mammographic database. Total 2824 mammographic images were analyzed in the pre-

sent study
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Fig.2 Examples of cropped images. The upper row and the lower
row represents full-field images and cropped images, respectively.
The radiological findings, breast density, and the percentage of the

2.3 The Jigsaw puzzle task in SSL

The lower part of Fig. 3 shows the overall framework
of the Jigsaw puzzle task in SSL used in this study. The
input data for the Jigsaw puzzle task consisted of a set
of patches cut from a mammographic image. Following
the method described by Noroozi et al. [18], we left ran-
dom gaps between the patches to prevent the model from
solving the puzzle by simply matching low-level statistics
(such as structural patterns and textures) at the edges of
adjacent patches, ignoring the content within the patches
themselves.

The set of patches was then reordered via a randomly
chosen permutation from a predefined permutation set, and
fed into the neural network. The neural network was trained
to predict the specific permutation performed on the set of
patch images. Although there are 9! (362,880) possible per-
mutations with 9 patches for the 3 X 3 Jigsaw puzzle, a previ-
ous study has shown that it is not necessary to consider all 9!
[18]. In the study of Vu YNT et al. [19], 31 different segment
placement patterns were predefined, including the correct
identity permutation and the top 30 permutations with the
greatest Hamming distance from the identity.
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area occupied by the lesion masks in the 512X 512 cropped images
for each image are as follows: a (mass, DB, 20.4%), b (calcification,
DB, 24.6%), and ¢ (distortion, DB, 56.9%)

The architecture used for the Jigsaw puzzle task was the
context-free network (CFN) [18], which shares the same
weights across all input patches. The features of each patch
are extracted independently in each neural network and
finally concatenated in a final fully connected layer.

2.4 Comparison of pre-training pipelines

Figure 3 illustrates the pre-training pipelines compared in
this study. To assess the effectiveness of the Jigsaw puzzle
task and the effect of using the ImageNet pre-trained model,
we compared the following four pipelines:

IN-Jig is the model pre-trained with both the ImageNet
classification task and the Jigsaw puzzle task. The Jigsaw
puzzle task was performed using the ImageNet pre-trained
model. The neural network was then fine-tuned for binary
classification to distinguish between the presence and
absence of breast cancer.

Scratch-Jig is the model pre-trained only with the Jig-
saw puzzle task, without utilizing an ImageNet pre-trained
model.

IN is the baseline model pre-trained solely with the Ima-
geNet classification task using random initial weights.
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Table2 AUC, sensitivity, and

Model AUC

specificity of the four models

Sensitivity

Specificity

IN-Jig
Scratch-Jig
IN

Scratch

0.925 (0.922-0.928)*
0.921 (0.918-0.923)
0.918 (0.916-0.920)
0.909 (0.905-0.913)*

0.879 (0.870-0.888)
0.890 (0.881-0.899)
0.882 (0.871-0.893)
0.879 (0.868-0.889)

0.846 (0.838-0.855)
0.834 (0.828-0.841)
0.831 (0.822-0.841)
0.817 (0.807-0.827)

The scores in the table are the mean of ten trials. Values in parentheses represent the 95% confidence inter-

val

Bold font indicates the best score among the four models
The asterisk (*) indicates AUC that showed a significant difference compared to AUC of IN

Scratch ©

IN o Pre-training with

Fine-tuning

the ImageNet
classification task

IN-Jig o—

Scratch-Jig O

Pre-training with
the Jigsaw puzzle task

for breast cancer
classification

Original image Shuffled image

[123456789]  [2.2.2222222 ‘

CFN

— Predefined permutation set

i o
2175 H

—E BB | o

9l 4 5

Prediction

Fig.3 Pre-training pipelines and overall framework of the Jigsaw
puzzle task in SSL. Abbreviations: IN=pre-trained only with Ima-
geNet classification task; IN-Jig = pre-trained with both the ImageNet

Scratch is the model that was trained for binary classifi-
cation to distinguish between the presence and absence of
breast cancer without any pre-training tasks.

2.5 Implementation of the Jigsaw puzzle task

We adopted ResNet50 [24] as the architecture constituting
the CFN. Each 512 x 512 pixels image was divided into a
3 x 3 grid consisting of patches of approximately 170 x 170
pixels. A 150 % 150 pixels-area was then randomly extracted
from each patch and input into the CFN. We used the iden-
tical permutation and the top 30 permutations having the
greatest Hamming distance from the correct permutation,
following the reported method of Vu YNT et al. [19]. The
mean Hamming distance of the total 31 permutations used in
this study was 8.086. Adaptive moment estimation (Adam)
was used for the optimizer and cross entropy was used as
the loss function (learning rate=0.001, weight decay =0).

classification task and the Jigsaw puzzle task; Scratch-Jig=rpre-
trained only with Jigsaw puzzle task; Scratch=trained from random
initialization without any pre-training tasks

The batch size was set to 128, and the model was trained
over 100 epochs.

2.6 Implementation of fine-tuning for breast cancer
classification

For fine-tuning, binary classification was performed to dis-
tinguish between the presence and absence of breast cancer,
using the same 512 x 512 pixels images as in the Jigsaw puz-
zle task. Adam was used for the optimizer and cross entropy
was used as the loss function (learning rate =0.001, weight
decay =0). The model was trained with a batch size of 64
over the course of 100 epochs.

2.7 Evaluations
The overall performance of four models was assessed using

receiver operating characteristic (ROC) curves, area under
the ROC curve (AUC), sensitivity (true positive rate [TPR]),
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and specificity (true negative rate [TNR]). Furthermore, to
elucidate the characteristics and trends of the model from
a medical perspective, the models’ performance was also
assessed for each group of radiological finding (mass,
calcification, distortion, normal) and breast density (DB,
Not-DB). Since AUC cannot be calculated for normal find-
ings, the normal-true negative rate (normal-TNR) was used
instead. Cutoff values for sensitivity, specificity, and normal-
TNR were calculated using the Youden index (J), defined
as J=maximum {sensitivity + specificity — 1}, which is
considered to provide the best balance of sensitivity and
specificity [25].

The accuracy of the Jigsaw puzzle task was assessed to
compare the performance between the pretext and the down-
stream task. Gradient-weighted class activation mapping
(Grad-CAM) [26] was implemented to visualize regions of
mammographic images that were the most relevant for the
network’s final classification. The Grad-CAM outputs were
analyzed to assess how the regions of interest changed with
use of the Jigsaw puzzle task.

To reduce bias due to a lack of data, fivefold cross-val-
idation was employed. The dataset was divided into five
equal parts, with four segments used for training and one
for validation. This cross-validation process was repeated
five times to calculate the mean validation accuracy. All
data were separated by patient, ensuring a consistent pro-
cess from pre-training to the downstream task. To mitigate
the effect of randomness in fine-tuning, the fivefold cross-
validation for the downstream task, breast cancer classifica-
tion, was performed ten times. The mean performance scores
and the mean ROC curves of ten trials were calculated. The
statistical significance of the overall performance of AUC
was assessed using a ¢ test, with IN serving as the refer-
ence; a p value of less than 0.05 was considered statistically
significant.

3 Results

Table 2 presents the mean values of the AUC, sensitivity,
and specificity, and Fig. 4 shows the mean ROC curves of
the four models. The AUC of IN-Jig was 0.925, which was
significantly higher than that of IN at 0.918 (p =0.0048).
The AUC of Scratch-Jig was 0.921, with no significant dif-
ference compared to the AUC of IN (p=0.0516). The AUC
of Scratch was 0.909, which was significantly lower than
that of IN (p=0.0011).

Tables 3 and 4 show the mean scores for each radiologi-
cal finding and each breast density, respectively. In Table 3,
mass-AUC and calcification-AUC of IN-Jig (0.766 and
0.783) were higher than those of IN (0.743 and 0.763),
while Scratch-Jig (0.728 and 0.735) were lower than those
of IN. In Table 4, DB-AUC was consistently lower than
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Fig.4 Mean ROC curves of four models

Not-DB-AUC for all models. IN-Jig and Scratch-Jig (0.916
and 0.913) had a higher DB-AUC than IN (0.909). Figure 5
illustrates samples of Not-DB and DB cases. In both cases,
IN-Jig correctly predicted breast cancer, while IN incorrectly
predicted those as not-breast cancer.

Table 5 shows the accuracy of the Jigsaw puzzle task.
IN-Jig (0.894) achieved a higher accuracy than Scratch-Jig
(0.876).

Figure 6 illustrates cases in which the application of the
Jigsaw puzzle task led to a notable change in the regions
of interest between IN and IN-Jig. IN made predictions by
focusing on a part of the lesion or breast tissue. In the case
of false negative (FN), IN focused on areas unrelated to the
lesion. On the other hand, IN-Jig made predictions based
on a wider area, including the entire lesion and surrounding
breast tissue.

4 Discussion

In the present study, IN-Jig, pre-trained with both the
ImageNet classification task and the Jigsaw puzzle task,
showed superior diagnostic performance in identifying
breast cancers compared to IN, the conventional method.
This suggests that the Jigsaw puzzle task, which empha-
sizes surrounding breast tissue structures, is effective for
breast cancer classification on mammographic images. In
addition, Scratch-Jig, pre-trained only with the Jigsaw puz-
zle task using approximately 2500 mammographic images,
showed an AUC comparable to IN, which was pre-trained
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Table 3 Mean scores for each

8 ; ! Model Mass-AUC Calcification-AUC Distortion-AUC Normal-TNR
radiological finding
IN-Jig 0.766 (0.756-0.777)  0.783 (0.771-0.795)  0.667 (0.618-0.716)  0.936 (0.934-0.943)
Scratch-Jig  0.728 (0.716-0.739)  0.735 (0.722-0.748)  0.742 (0.697-0.787)  0.938 (0.929-0.942)
IN 0.743 (0.737-0.748)  0.763 (0.748-0.777)  0.679 (0.635-0.722)  0.930 (0.923-0.936)
Scratch 0.697 (0.685-0.709)  0.755 (0.732-0.777)  0.674 (0.624-0.723)  0.926 (0.918-0.934)

Table 4 Mean scores for each breast density

The scores in the table are the mean of ten trials. Values in parentheses represent the 95% confidence inter-

val

Bold font indicates the best score among the four models

Model Not-DB-AUC DB-AUC

IN-Jig 0.963 (0.958-0.967) 0.916 (0.912-0.919)
Scratch-Jig 0.951 (0.945-0.956) 0.913 (0.911-0.915)
IN 0.952 (0.948-0.955) 0.909 (0.906-0.911)
Scratch 0.947 (0.941-0.953) 0.900 (0.895-0.904)

The scores in the table are the mean of ten trials. Values in parenthe-
ses represent the 95% confidence interval

Bold font indicates the best score among the four models

Dense breast
(DB)

'Not-dense breast
(Not-DB)

Fig.5 Samples of Not-DB and DB cases. The lower row represents
images with the lesion masks added to the upper row. The images in
the Not-DB and DB contain malignant tumors and malignant calcifi-
cations, respectively. In both images, IN-Jig correctly predicted, but
IN incorrectly predicted

Table 5 Accuracy of the Jigsaw

) N Model Accuracy of
puzzle tas Jigsaw puzzle
task
IN-Jig 0.894
Scratch-Jig 0.876

Bold font indicates the higher
score between the two models

using approximately 1.3 million images [8]. These results
suggest that pre-training with the Jigsaw puzzle task enables
efficient learning of features useful for breast cancer classifi-
cation, even with smaller datasets, and can further enhance
diagnostic performance.

Although both IN-Jig and Scratch-Jig were pre-trained
with the same Jigsaw puzzle task, there was a substantial
numerical difference between IN-Jig and Scratch-Jig in
mass-AUC and calcification-AUC. ImageNet pre-training
likely enabled IN-Jig to capture more detailed features of
mass and calcification during the Jigsaw puzzle task phase,
while Scratch-Jig, pre-trained with the Jigsaw puzzle task
using random weights as initial values, may not have fully
utilized the detailed characteristics of the lesion. As a result,
Scratch-Jig may have been biased toward diagnosis based
on rough mammary gland structures, limiting its ability to
improve mass-AUC and calcification-AUC.

Determining whether a breast is categorized as DB or
Not-DB involves evaluating the entire breast, so this clas-
sification may not be directly applicable to cropped images
such as Fig. 5. However, similar to the general challenge to
distinguish between lesions and normal breast tissue in DB
[27], DB-AUC of all models in this study was lower than
Not-DB-AUC. In addition, DB-AUC of IN-Jig and Scratch-
Jig were higher compared to IN. This indicates that the Jig-
saw puzzle task is effective even for the more difficult task
of classifying breast cancer in DB tissue.

IN-Jig’s higher accuracy on the Jigsaw puzzle task com-
pared to Scratch-Jig, corresponded with IN-Jig’s superior
AUC for breast cancer classification. Previous studies by
Kornblith et al. [28] and Han et al. [29] have shown that
higher pre-training accuracy often leads to better perfor-
mance in downstream tasks. In this study, the same trend
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Original image

Grad-CAM for
IN-Jig

Grad-CAM for
IN

Fig.6 Visualized attention regions in the classification models
with Grad-CAM. The upper row are originally-input images, and is
described as follows: the blue regions in (a) and (b); malignant mass,
the yellow regions in (c¢) and (d); malignant calcification, the green
regions in (e) and (f); malignant distortion, and (g) and (h); normal

was observed, indicating that the Jigsaw puzzle task allows
the model to learn generalized feature representations that
are sufficiently beneficial for breast cancer classification.

The Grad-CAM results indicate that the Jigsaw puzzle
task enabled the model to make predictions based not only
on the lesion characteristics but also on surrounding breast
tissue structures. These predictions are similar to the clini-
cal diagnosis by radiologists, suggesting that breast cancer
imaging diagnostic approach is able to be successfully incor-
porated into the model through Jigsaw puzzle pre-training.

This study has several limitations. First, the results were
validated with the hyperparameters employed in prior stud-
ies, a single dataset, and a single neural network. Further
investigation is needed to confirm the robustness and appli-
cability of these results across different conditions. Second,
we used cropped mammographic images of the lesion for
the training and validation data. For large lesions, there was
a possibility that the information of the surrounding breast
tissue was not fully reflected due to the cropping of the
image. Further investigation should explore models trained
with whole breast images to evaluate their performance in a
wider clinical framework.

5 Conclusion

We investigated how the Jigsaw puzzle task affects breast
cancer classification by analyzing in detail performance
across different radiological findings, breast density, and
regions of interest visualized with Grad-CAM. The results of
this study suggest that using the Jigsaw puzzle task for pre-
training improves CNN-based breast cancer classification
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breast tissue. The Grad-CAM highlighted areas are essential for clas-
sifying the image, with strongly emphasized regions marked in red
and weakly emphasized areas in blue. The predicted results of IN-Jig
and IN are shown in the top left of the Grad-CAM output image: true
positive (TP), false negative (FN), and true negative (TN)

on mammographic images. The combination of ImageNet
and the Jigsaw puzzle task, IN-Jig, enhanced diagnostic
accuracy by enabling the model to assess both the lesion
and surrounding breast structures. Interestingly, Scratch-Jig,
even without ImageNet, performed comparably to traditional
methods, highlighting the potential of the Jigsaw puzzle task
when working with limited data. Future studies are desired
to validate these findings under various conditions to ensure
broader applicability.
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